VEER SURNDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA, ODISHA LESSON PLAN

Semester: 3rd B.Tech. (Electrical Engineering), Session: 2020-21

Subject: Network Theory, (Subject Code: 1303)

Branch: Electrical & Electronics Engineering, Name of Faculty: Dr. Gyan Ranjan Biswal

Period	Module No.	Topics to be Covered	Signature of Faculty
1	I	MODULE-I -> Coupled Circuits: Defining Self	
		Inductance and Mutual Inductance; Interrelation	
		between Self and Mutual Inductances in a coupled	
		circuit; Coefficient of coupling and Dot conversion	
2	I	Equivalent inductance in series connected mutually	
		coupled network using dot conversion; Equivalent	
		inductance in a parallel/ shunt connected mutually	
		coupled network using dot conversion, Some practice	\.
		problems; Ideal Transformers: definitation and	
		assumptions; Linear transformer; Coupled curcuits as a	- " · · · · ·
		Transformer	155
3	I	Introducing Transient and Strady State Analysis; Time	(E)
		domain analysis of First order networks: RL and RC	+
		types	1 1
4	I	Second order network: RLC circuits; RL, RC and RLC	
		networks using Laplace Transform	
5	I	Both Time domain and Frequency domain analysis	
		with DC and AC (sinusoidal) excitations; Respose to	
		Forced Inputs: Step, Impulse and Ramp types	
6	I	Doubt session and Test - I	
7		MODULE-II -> Two-Port Networks: two port	
-		parameters: Open circuit Impedance (Z) parameter	
8	II	Short circuit Admittance (Y) parameter].
9		Image and Hybrid parameters	
10		Transmission (ABCD) parameter	6
10		Ideal Two port devices e.g. Ideal Transformers, Tee	(5)
11		and Pie circuit representation: Cascade and Parallel	T
		Connections	
12		Doubt session and Test - II	
13		MODULE-III ->Network Function & Responses:	
15		concept of complex frequency Driving point and	
		transfer functions for one port and two port networks	
		transfer functions for one port and two port networks	
14	II	Poles and Zeros of network functions; Restrictions on	7.
		Pole and Zero locations of network functions;	2
15	II	Impulse response and Complete response	/ Si
16	II	Three phase circuits: analysis of unbalanced loads;	(SS)
		Neutral shift and Symmetrical components; Analysis	φ
		of unbalanced system	X X
17	II	Power in terms of unbalanced and balanced loads;	
		Power in terms of symmetrical components	
18		Doubt session and Test - III	
19	111	MODULE-IV -> Network Synthesis: Introduction,	
		realizability concept	λ.

20		Hurwitz property and Positive realness, properties of positive real functions	
21		Synthesis of RL, RC, and LC driving point functions	(E)
22	III	Foster Forms	TI
23	III	Cauer Forms	
24	III	Doubt session and Test - IV	
25	IV	MODULE-V -> Graph Theory: Introduction, Linear	
		graph of a network, Tie-set and Cut-set schedule	
			\backslash .
26	IV	Incidence matrix, analysis of resistive network using	·
		Tie-set	Der 1
27	IV	Analysis of resistive network using Cut-set, dual of a	CC/
		network	(())
28	IV	Filters: classification of filters	τ (
29		Characteristics of Ideal filters	
30	IV	Doubt session and Test - V	

Signature of the Faculty

Signature of HOD (EEE)