VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

Semester: 2ND

LESSON PLAN

Subject STRUCTURAL MECHANICS II

Session: Jan 2017 - May 2017 Branch/Course: Architecture

Theory / Sessional Name of the Faculty Member: Er. SANCHITA BEHERA

Period	Module/	Topic to be covered	Remarks/ Sign. of
02	1	Theory of simple hending Introduction pure hending and	
02	1	ordinary bending, assumptions derivation of flexure formula	
		section modulus	
03		Numerical on flexure equation	
04		Shear stresses in beams. Introduction, derivation of shear	
		stress formula	
05		shear stress distribution for standard shapes like rectangle.	
		circle	
06		shear stress distribution for standard shapes like triangle	
		I.T.L.C sections, Numerical	
07		Direct & Bending Stresses, Introduction, stress distribution of	
		eccentrically loaded column, middle third rule, core or Kernel	
		of section	
08		stress distribution for column with one axis eccentricity, two	
		axis	
		eccentricities, Numerical	
09	2	Deflection-I, Introduction of slope & deflection	
10		slopes and deflections for cantilever beams with point load	
		using double integration method & moment area methods	
11		slopes and deflections for cantilever beams with UDL using	
10	2	double integration method & moment area methods	
12	3	deflections,	
13		simply supported beams with point load & udl's double	
		integration & Macaulay's method	
14		Fixed beams: Introduction, Advantages and disadvantages of	
		fixed beams over simply supported beams	
15		SFD and BMD for fixed beams with combination of point	
		loads & udl's	
16	4	Propped cantilevers Introduction, Reaction of a prop.	
		Cantilevers with Udl's point loads, prop, at end & at	
		intermediate positions,	
17		slope & deflection of Propped cantilevers	
18		Welded joints, Introduction, Advantages and disadvantages	
10		of welded joints, types	
19		strength of fillet welds, design of welded joint for plates	
		andunsymmetrical sections for axial loading	
Signature of the Faculty Member :			
Date: Counter Signature of			

H.O.D.