Lesson Teaching Plan

Subject: Artificial Intelligence	Branch: Computer Application
Semester: 5 th Sem	Faculty name: Bighnaraj Naik

Module	Торіс	No. of
		classes
1	Introduction to Artificial Intelligence: The Foundations of Artificial	1
	Intelligence	
	The History of Artificial Intelligence, and the State of the Art.	1
	Intelligent Agents: Introduction, How Agents should Act, Structure of	
	Intelligent Agents, Environments.	
	Solving Problems by Searching: problem-solving Agents, Formulating	1
	Example problems, and searching for Solutions	1
	Example problems, and searching for Solutions,	1
	Uninformed search: BES and DES	1
	Informed search: Best first search	1
	A* search	1
	ΔO^* search	1
	Hill climbing search	1
	Min-Max search	1
	a_B pruning	1
	Avoiding Repeated States and Constraint Satisfaction Search	1
	Heuristic Functions, Memory Bounded Search, and Iterative Improvement	1
	Algorithms.	
2	Agents That Reason Logically; A Knowledge-Based Agent, The Wumpus	1
	World Environment	
	Representation, Reasoning & Logic prepositional Logic : A very simple	1
	Logic,	
	An agent for the Wumpus World.	1
	First-Order Logic; Syntax and Semantics, Extensions and National,	1
	Variations, using First Order Logic,	-
	Logical Agents for the Wumpus World, A Simple Reflex Agent,	1
	Representing Charge in the World,	1
	Deducing Hidden Properties of the World, Preferences Among Actions,	1
	Toward A Goal-Based Agent.	1
	Knowledge Engineering	1
	The Electronic Circuits Domain, General Outology, The Grocery Shopping	1
	World	1
	Inference in First-Order Logic : Inference Rules Involving Quantifiers An	1
	Example Proof. Generalized Modus Ponens,	1
	Forward and Backward, Chaining & Completeness, Resolution: A complete	1
	Inference Procedure, Completeness of Resolution.	
3	Planning A Simple Planning Agent Form Problem Solving to Planning.	1
	Planning in Situation Calculus. Basic Representations for Planning. A	1
	Partial-Order planning Example, A partial Order planning algorithm,	
	Planning With partially Instantiated Operators, Knowledge Engineering for	1
	Planning.	
	Making Simple Decision: Combining Beliefs and desires under uncertainty.	1

	The Basis of Utility Theory, Utility Functions. Multi attribute utility Functions, Decision Networks.	1
	The Value of Information. Decision – Theoretic Expert Systems.	
	Learning in Neural and Belief Networks' How the Brain Works, Neura	
	Networks, perceptions	
	Multi-layered Feed Forward Networks	1
	Applications Back propagation algorithm, Applications of Neural Networks	1
4	Knowledge in Learning: Knowledge in Learning, Explanation-based	1
	Learning	
	Learning Using Relevance Information, Inductive Logic Programming.	1
	Agents that Communicate: Communication as action, Types of	
	Communicating Agents	
	A Formal Grammar for A subset of English Syntactic Analysis (Parsing),	1
	Definite Clause Grammar (DCG), Augmenting A Grammar.	
Semantic Interpretation. Ambiguity and Disambiguation. A Communica		1
	Agent.	
	Practical Natural Language processing Practical applications. Efficient	1
	Parsing Scaling up the lexicon. Scaling up the Grammar Ambiguity.	
	Discourse Understanding.	
	Total no. of classes:	40