Semester: Third

Subject: Chemistry III (Basic Physical-I) (CH-211)

Session: Odd 2016–2017 Branch/Course:Int.M.Sc.(5yr) **Theory**/Sessional Name of the Faculty Member: **Dr. Monalisa Mohapatra**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Dilute Solutions: Vapour pressure	
2	Ι	Thermodynamic derivation of vapour pressure	
3	Ι	Colligative properties	
4	Ι	Raoults law	
5	Ι	Thermodynamic derivation of laws relating to elevation of boiling point	
6	Ι	Depression of freezing point	
7	Ι	Osmotic pressure	
8	Ι	Ideal and nonideal solution	
9	Ι	Association and dissociation	
10	II	Homogenous equilibrium: Law of mass action	
11	Π	Thermodynamic derivation of the expression for equilibrium constant	
12	II	Different forms of equilibrium constants	
13	II	Lechatelier's principle, Illustrations with some gaseous reactions	
14	II	Effect of temperature on equilibrium Vant-hoff's equation and its integration	
15	III	Chemical kinetics: Order and molecularity	
16	III	Kinetics of 1st order reactions	
17	III	Kinetics of 2nd order reactions	
18	III	Simple opposing (A&B) reaction	
19	III	Consecutive of Sequential (A-B-C) reaction	
20	III	Chain reaction $(H_2 + Br_2)$	

21	III	Effect of temperature on reaction rate	
22	111	Collision theory of reaction rate	
	III	consistent alcory of reaction face	
23	III	Qualitative treatment of transition theory	
24	IV	Thermodynamic concept: Heat content and heat capacity	
25	IV	Work done for Isothermal change	
26	IV	Work done for Adiabaic change	
27	IV	Work done for Ideal gases	
28	IV	Work done for van der Waal gases	
29	IV	Thermochemistry: Heat changes in chemical reactions	
30	IV	Hess's law	
31	IV	Kirchoff s equation	
32	IV	2nd law of thermodynamics: Spontaneous process	
33	IV	Carnot's theorem and Carnot's cycle	
34	IV	Efficiency of heat engine	
35	IV	Entropy changes in revercible processes	
36	IV	Entropy changes in irrevercible processes	
37	IV	Free energy Condition for equilibrium	
38	IV	Work function Condition for equilibrium	
39	IV	Claypeyeron and Claussisus equation	
40	IV	Gibbs Helmholtz equation	
Signatu	re of Facul	lty Member:	
Date:		Counter Signature of	HOD
Date.		Counter Signature of	п.о.р.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 3rd

Date:

Subject: ENVIRONMENTAL SCIENCE (CH-212)

Session: Odd **2016–2017** Branch/Course: **Int. M. Sc.** **Theory**/Sessional Name of the Faculty Member: **Prof. R. B. Panda**

Counter Signature of H.O.D.

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1-2	Ι	Scope of Ecology, Component of Ecosystem	•
3-4	Ι	Concept and Definition of Environmental Pollution	
5-6	Ι	Types and Classification of Pollution, Pollution and	
		Source of Pollution. History of Major Pollution	
		Episodes	
7-8	Ι	Concept of Hydrosphere, Concept of Atmosphere and	
0.10		its Pollution	
9-10	Ι	Major and Minor Pollutants in Atmosphere $(SO_x,$	
11.10		NO _x , CO ₂ , Fluoride, Hydrocarbon)	
11-12	II	Classification and Types of Water Pollution	
13-14	II	Industrial Waste, Municipal Waste	
15-16	II	Agriculture Chemicals, Oil Pollution	
17-18	II	Heavy Metals Ground Water Pollution (Mercury).	
19-20	II	Heavy Metals Ground Water Pollution (Lead, Arsenic).	
21-22	TIT	,	
		Acid Rain, Photochemical Smog, Greenhouse Effect	
23-24	III	Ozone Layer Depletion, Eutrophication, Ecological Magnification	
25-26	III	Concept of Lithosphere, Sources of Soil Pollution	
27-28	III	Pollution Effect of Pesticides and Fertilizer in Soil	
29-30	III	Use of Flora for Control of Pollution	
31-32	IV	Pollution by radiation: Sources of Radioactive Pollution	
33-34	IV	fect of Radiation Protection and Control from Radiation	
35-36	IV	Disposal of Radioactive Waste	
37-38	IV	Sources of Noise, Noise Levels in Decibel Scale	
39-40	IV	Effect of Noise on Human Health, Prevention and Control of Noise	

Semeste		ER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURL LESSON PLAN Subject: Basic Org	
Session:	Even 2016	E-2017 Theory/Sessional	
Branch/	Course: Int	. M. Sc. Name of the Faculty Member: P	rof. R. B. Panda
Period	Module /Numbe r	Topics to be Covered	Remarks/Sign. of Faculty Member
1-2	Ι	Formation, Stability and Structure of Free Radicals and Carbenes	
3-4	Ι	Nitrene, Enamine, and Benzyne	
5-6	Ι	Reaction in Organic Compounds, <i>Classification of Reactions:</i> Substitution, addition	
7-8	Ι	Elimination, Electron Transfer Reaction, Molecularity, Order of Reactions	
9-10	Ι	Transition State and Intermediates, Nucleophiles and Electrophiles	
11-12	II	<i>Configurational Isomerism:</i> Optical Isomerism: Introduction, Conditions for Optical Activity, Optical Rotation, Specific Rotation	
13-14	II	D & L Convention, R & S Notations, Optical Isomers of Lactic, and Tartaric Acids	
15-16	II	Enantiomers and Diastereomers, Threo and Erythro Nomenclature, Meso Compounds, Racimic Modification, Methods of Resolution	
17-18	II	Introduction, Structural Requirement (Cis & Trans, Syn & Anti), E- Z Convention, Configuration of Oximes.	
19-20	II	Introduction, Conformations of Ethane and n-Butanes & Cyclohexane, Baeyer Strain Theory	
21-22	III	Grignard's Reagent: Preparation, Structure, Synthetic Uses	
23-24	III	<i>Esters Containing Active Methylene Groups:</i> Acetoacetic Ester: Synthesis, Synthetic Uses, structure and Keto-Enol Tautomerism	
25-26	III	Malonic Ester: Preparation and Synthesis Uses.	
27-28	III	Classification, Configuration of Sugars, Glucose and Fructose (Occurrence, Reaction: Osazone formation with Felhings Solution	
29-30	III	Mutarotaion, Elucidation of Structure of D-Glucose (Open Chain and Ring Structure)	
31-32	IV	Five Membered heterocyclics: Pyrrole, Thiophene and Furan: Synthesis (from Sugar, Dicarbonyl Compound)	
33-34	IV	operties (Aromaticity, Electrophillic Substitution Reactions) of Five Membered heterocyclics	
35-36	IV	Acyclic Compounds: Preparation, Reactions and Stability.	
37-38	IV	Aryl Nitrogen Compounds Nitro Hydrocarbons, Preparations	
39-40	IV	Aryl Nitrogen Compounds: Properties, Reduction of Nitro Benzene, TNT, Amines	

Signature of Faculty Member: Date:

Counter Signature of H.O.D.

LESSON PLAN

Semester: 5th

Session: Odd

Subject: Basic Organic-II (CH-311) Theory/Sessional

Branch/Course:Int.M.Sc.(5yr)

Name of the Faculty Member: **Dr A. K. Panda**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Types of mechanisms, types of reactions	
2	Ι	Aliphatic substitution reaction: SN1 Kinetics, stereochemistry, structural and environmental aspects), Neighboring group participation reactions	
3	Ι	Aliphatic substitution reaction: SN2 Kinetics, stereochemistry, structural and environmental aspects)	
4	Ι	Aliphatic substitution reaction: SNi reactions, Neighboring group participation reactions	
5	Ι	Conformational Isomerism: Introduction conformations of cyclohexane	
6	Ι	Conformational analysis, mono and di substituted cyclohexanes	
7	Ι	Dyes: Colour and constitution	
8	I	Classification of dyes	
9	Ι	Chemistry and synthesis of methyl orange	
10	II	Chemistry and synthesis of Bismarck brown.	
11	II	Heterocyclic compounds: Six membered heterocylces	
12	II	Pyridine (Preparation and Reactions)	
13	II	Quinoline (Preparation and Reactions)	
14	II	Fused heterocycles: Urides	
15	II	Elucidation of structure of Uric acid	
16	II	Purines	
17	II	Indigo: Structure and Use	
18	II	Polynuclear Hydrocarbons: Naphthalene and Anthracene).	
19	II	Addition and electrophilic substitution reactions of Naphthalene and Anthracene	
20	II	Elucidation of their structures Naphthalene and Anthracene	
21	III	Alkaloids: Introduction	

IIISynthesis of nicotine23IIISynthesis of nicotine24IIIElucidation of structure of papavarine25IIISynthesis of papavarine26IIITerpenes: Introduction Isoprene rule27IIIElucidation of the structure of the camphor28IIISynthesis of Camphor29IIIVitamines: Introduction30IIIElucidation of the structure of the Vitamine C31IVMechanism and applications of Molecular rearrangements: Pinacole-pinacolone32IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.35IVPrinciple mechanism and application of Name	
IIIJ24IIIElucidation of structure of papavarine25IIISynthesis of papavarine26IIITerpenes: Introduction Isoprene rule27IIIElucidation of the structure of the camphor28IIISynthesis of Camphor29IIIVitamines: Introduction30IIIElucidation of the structure of the Vitamine C31IVMechanism and applications of Molecular rearrangements: Pinacole-pinacolone32IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
25IIISynthesis of papavarine26IIITerpenes: Introduction Isoprene rule27IIIElucidation of the structure of the camphor28IIISynthesis of Camphor29IIIVitamines: Introduction30IIIElucidation of the structure of the Vitamine C31IVMechanism and applications of Molecular rearrangements: Pinacole-pinacolone32IVMechanism and applications of Demnzenov33IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
26IIITerpenes: Introduction Isoprene rule27IIIElucidation of the structure of the camphor28IIISynthesis of Camphor29IIIVitamines: Introduction30IIIElucidation of the structure of the Vitamine C31IVMechanism and applications of Molecular rearrangements: Pinacole-pinacolone32IVMechanism and applications of Demnzenov33IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
27IIIElucidation of the structure of the camphor28IIISynthesis of Camphor29IIIVitamines: Introduction30IIIElucidation of the structure of the Vitamine C30IIIMechanism and applications of Molecular rearrangements: Pinacole-pinacolone31IVMechanism and applications of Demnzenov33IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
28IIISynthesis of Camphor29IIIVitamines: Introduction30IIIElucidation of the structure of the Vitamine C31IVMechanism and applications of Molecular rearrangements: Pinacole-pinacolone32IVMechanism and applications of Demnzenov33IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
IIIVitamines: Introduction29III30III30III31IVMechanism and applications of Molecular rearrangements: Pinacole-pinacolone32IVMechanism and applications of Demnzenov33IVMechanism and applications of Dienone-phenol34IVIVMechanism and applications of Beckmann and Benzidene.	
IIIElucidation of the structure of the Vitamine C30IIIElucidation of the structure of the Vitamine C31IVMechanism and applications of Molecular rearrangements: Pinacole-pinacolone32IVMechanism and applications of Demnzenov33IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
IIIMechanism and applications of Molecular rearrangements: Pinacole-pinacolone32IVMechanism and applications of Demnzenov33IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
IVrearrangements: Pinacole-pinacolone32IVMechanism and applications of Demnzenov33IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
33IVMechanism and applications of Dienone-phenol34IVMechanism and applications of Beckmann and Benzidene.	
IV II I 34 Mechanism and applications of Beckmann and Benzidene.	
IV Benzidene.	
35 IV Principle mechanism and application of Name	
reactions: Diels-Alder, Fries	
36 IV Principle mechanism and application of Michael, Mannich reaction	
37 IV Principle mechanism and application of Reformatsky, Cleisen and Dickmann reactions	
38 IV Preparation properties and application of Reagent: LiAlH4, NaBH4	
39 IV Preparation properties and application of Reagent: HIO4, PhI(OAc)4	
40 IV Preparation properties and application of Reagent: PCC and DCC	
Signature of Faculty Member:	
Date: Counter Signatur	re of H.O.D.

LESSON PLAN

Semester: 5th

Subject: Solid State Chemistry (CH-312) Theory/Sessional

Session: Odd **2016–2017** Branch/Course: **Int. M. Sc.**

Name of the Faculty Member: Dr. Biswa Nath Ghosh

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1-2	Ι	Description of Crystalline and Amorphous Solids; Crystal Systems	
3-4	Ι	Point Groups, Methods of Characterizing Crystal Structure - Powder X-ray Diffraction, Electron and Neutron Diffraction	
5-6	Ι	Close Packing - HCP and CCP, Packing Efficiency, Radius Ratios	
7-8	Ι	Description of Solids-NaCl, ZnS, Na ₂ O, CdCl ₂ , Wurtzite, Nickel Arsenide	
9-10	Ι	Description of Solids-CsCl, CdI ₂ , Rutile and Cs ₂ O, Perovskite ABO ₃ , K ₂ NiF ₄ , Spinels.	
11-12	II	Preparative Methods: Solid State Reaction, Chemical Precursor Method	
13-14	II	<i>Preparative Methods:</i> Co-precipitation, Sol-Gel, Metathesis	
15-16	II	Self-propagating High Temperature Synthesis, Ion Exchange Reactions	
17-18	II	Intercalation/Deintercalation Reactions; Template Synthesis	
19-20	II	Hydrothermal: High Pressure Synthesis.	
21-22	III	Characterization: Thermal Analysis - TGA, DTA, DSC	
23-24	III	Electrical Properties: Band Theory of Solids -Metals and their Properties	
25-26	III	Semiconductors - Extrinsic and Intrinsic; Hall effect	
27-28	III	Thermoelectric Effects (Thomson, Peltier and Seebeck)	
29-30	III	Insulators - Dielectric, Ferroelectric, Pyroelectric and Piezoelectric Properties; Ionic Conductors.	
31-32	IV	<i>Magnetic Properties:</i> Dia, Para, Ferro, Ferri, and Antiferro	
33-34	IV	agnetic Types; Soft and Hard Magnetic Materials; Select Magnetic Materials such as Spinels, Garnets and Perovskites, Hexaferrites	
35-36	IV	Lanthanide-Transition Metal Compounds; Magnetoresistance.	
37-38	IV	<i>Optical Properties:</i> Luminescence of d- and f- block ions; Structural Probes;	
39-40	IV	Up and Down Conversion Materials	

Semester: 5th M.Sc

Lesson Plan

Subject: Green Chemistry (CH-313)

Session: Odd 2016-17 Course: 5-Year Int.M.Sc (Chemistry) TheoryName of the Faculty Member: Dr. Ramakrishna D.S.

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Green alternatives to synthesis Organic Transformations:	
		Principles of green chemistry	
2	Ι	Planning of a green organic synthesis	
3	Ι	Aqueous phase Transformations	
4	Ι	p-Acetylaminophenol	
5	Ι	3 Aminopyridine, Anthranilic acid	
6	Ι	Benzoin, n-butyl bromide	
7	Ι	cycloheptanone, 2,4- dihydroxy benzoinc acid,	
8	Ι	Hippuric acid	
9	Ι	Pinacolone	
10	Ι	Miscellaneous transformations in water	
11	III	Transformations Using Phase transfer catalysis	
12	III	Benzoic acid, benzonitrile,	
13	III	n-butyl benzyl ether,	
14	III	4,6-dimethyl-3-phenyl coumarin,	
15	III	flavone, phenylisocyanide, salicylaldehyde,	
16	III	Applications: Benzoin condensation,	
17	III	Darzen's reaction, Michael reaction,	
18	III	Welliamson ether synthesis	
19	III	Wittig reaction,	
20	III	Wittig Horner reaction.	

22	II	2-Allyl phenol, anthraquinone,
23	II	benzil, 2,5-dimethylpyrrole, flavone,
24	II	Applications: Oxidation of alcohols to carbonyl compounds,
25	II	oxidation of sulphides to sulphoxides, Pinacol-Pinacolone rearrangement,
26	II	Beckmann Rearrangement, Crossed Cannizzaro reaction.
27	II	Cis-azobenzene, Benzopinacol, Maleic acid, cis-stilbene,
28	II	Applications: Photochemical cycloaddition reactions, Paterno- Buchi reaction,
29	II	Photoinduced substitution, Photochlorination,
30	II	Photochemical reaction in solid state
31	IV	Transformations using sonication
32	IV	Benzyl cyanide, biphenyl, cannizzaro reaction,
33	IV	cinnamaldehyde, cyclohexanone, ethyl phenyl ether,
34	IV	Applications: Hydrolysis of nitriles, solvolysis,
35	IV	Strecker synthesis, Reformatsky reaction,
36	IV	Curtius rearrangement,
37	IV	oxymercuration of olefins,
38	IV	Dieckmann cyclisation,
39	IV	Isomerization of maleic acid to fumaric acid.
	IV	Overview on all topics

Semester: 5th M.Sc

Lesson Plan

Subject: CIM (CH-315)

Session: Odd 2016-17 Course: 5-Year Int.M.Sc (Chemistry)

Image: Name of the Faculty Member:Image: TheoryName of the Faculty Member:Image: Dr A. K. Panda

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Fuel and combustion: Introduction, classification	
2	Ι	Calorific value, Petroleum and coal based chemicals	
3	Ι	Composition of petroleum, fractional distillation	
4	Ι	Thermal and catalytic cracking of petroleum	
5	Ι	Fractional distillation of coal tar	
6	Ι	Fractional distillation of coal tar	
7	Ι	Diesel engine fuels, Biodiesel	
8	Ι	Composition, preparation and uses of water gas	
9	Ι	Composition, preparation and uses of CNG	
10	Ι	Composition, preparation and uses of LPG	
11	III	Polymers: Functionality, degree of polymerisation	
12	III	Polymerization mechanisms,	
13	III	Addition or chain growth polymerisation with example	
14	III	Condensation or step growth polymerisation	
15	III	Application of polymers	
16	III	Dyes and pigments: Properties and requirement	
17	III	Types of dyes based on the structure	
18	III	Types of dyes based on application	
19	III	Paints, composition, uses	
20	III	Varnishes, composition, uses	
21	II	Oils and fats: difference,	
22	п	properties of oil	
23	II	Solvent extraction of oils, hydrogenation of oil,	
24	II	Analysis of oil	
25	II	Soap, type, composition,	
26	II	use of oil in the manufacturing of soap	
27	п	Detergents, Definition, classification,	

28	Π	Manufacturing of detergents	
29	II	Surface-active agents	
30	IV	Cleansing action of soap and detergents.	
31	IV	Components of cement, classification of cement, raw materials for cement manufacture	
32	IV	Preparation of cement by wet and dry process	
33	IV	Reactions in the kiln	
34	IV	Additives in cements, setting of cement.	
35	IV	Metal extraction I	
36	IV	Metal extraction II	
37	IV	Metal extraction III	
38	IV	Pesticides: DDT manufacture	
39	IV	BHC manufacture	
40	IV	Parathion manufactur	
Signatur	e of Facu	ilty Member:	

ate:	

Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

Semester: 6th M.Sc

Lesson Plan

Subject: Natural products (CH-321)

Session: Even 2016-17 Course: 5-Year Int.M.Sc (Chemistry) Name of the Faculty Member: Dr Sukalyan Dash

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Natural Colouring Matter, General Classification	
2	Ι	Synthesis of Anthocyanins (Cyanine),	
3	Ι	Synthesis of Anthocyanins (Cyanine),	
4	Ι	Synthesis of Flavones (Chryosin) and Flavanol (Querecetin)	
5	Ι	Synthesis of Flavones (Chryosin) and Flavanol (Querecetin)	
6	Ι	Porphyrin: Structure, Spectral Properties, Biological Importance	
7	Ι	Porphyrin: Structure, Spectral Properties, Biological Importance	
8	Ι	Synthesis of Haemoglobin	
9	Ι	Synthesis of Chlorophyll-A	
10	Ι	Synthesis of Chlorophyll-A	

11	II	General Method of Structure Elucidation of Alkaloids
12	II	General Method of Structure Elucidation of Alkaloids
13	II	Structure Elucidation of Quinine
14	II	Structure Elucidation of Quinine
15	II	Biological Importance and Synthesis of Morphine
16	II	Vitamins: Introduction
17	II	Synthesis and Biochemical Importance of Vitamin B ₁
		(Thiamine), Vitamin H (Biotin)
18	II	Synthesis and Biochemical Importance of Vitamin B ₁
		(Thiamine), Vitamin H (Biotin)
19	II	Synthesis and Biochemical Importance of α-Tocopherol (Vitamin
		E), and Vitamin C
20	II	Synthesis and Biochemical Importance of α-Tocopherol (Vitamin
		E), and Vitamin C
21	III	Introduction and Stereochemistry of Steroids
22	III	Structure Elucidation of Cholesterol
23	III	Structure Elucidation of Cholesterol
24	III	Structure Elucidation of Cholesterol
25	III	Structure Elucidation of Cholesterol
26	III	Biological Importance of Bile Acid
27	III	Biological Importance of Androgens
28	III	Biological Importance of Oestrogens, Gestrogens
29	III	Biological Importance of Adrenocortical Hormones
30	III	Biological Importance of Cortisone
31	IV	Terpenoids: Classification
32	IV	Nomenclature
33	IV	General Methods of Structure Determination
34	IV	General Methods of Structure Determination
35	IV	Structure Elucidation of Abietic Acid
36	IV	Structure Elucidation of Abietic Acid
37	IV	Structure Elucidation of Abietic Acid
38	IV	Synthesis and Biological Importance of Farnesol

39	IV	Synthesis and Biological Importance of Zingeberine		
40	IV	Synthesis and Biological Importance of Squalene		
Signature of Faculty Member:				

Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

Lesson Plan

Semester: 6th M.Sc

ate:

Subject: Basic physical Chemistry-II (CH-

<u>324)</u>

Session: Even 2016-17 Course: 5-Year Int.M.Sc (Chemistry) Name of the Faculty Member: **Dr Sukalyan Dash**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Natural Colouring Matter, General Classification	
2	Ι	Synthesis of Anthocyanins (Cyanine),	
3	I	Synthesis of Anthocyanins (Cyanine),	
4	I	Synthesis of Flavones (Chryosin) and Flavanol (Querecetin)	
5	I	Synthesis of Flavones (Chryosin) and Flavanol (Querecetin)	
6	Ι	Porphyrin: Structure, Spectral Properties, Biological Importance	
7	I	Porphyrin: Structure, Spectral Properties, Biological Importance	
8	I	Synthesis of Haemoglobin	
9	Ι	Synthesis of Chlorophyll-A	
10	I	Synthesis of Chlorophyll-A	
11	II	General Method of Structure Elucidation of Alkaloids	
12	II	General Method of Structure Elucidation of Alkaloids	
13	II	Structure Elucidation of Quinine	
14	II	Structure Elucidation of Quinine	
15	II	Biological Importance and Synthesis of Morphine	
16	II	Vitamins: Introduction	
17	II	Synthesis and Biochemical Importance of Vitamin B ₁	
		(Thiamine), Vitamin H (Biotin)	
18	II	Synthesis and Biochemical Importance of Vitamin B ₁	
		(Thiamine), Vitamin H (Biotin)	
19	II	Synthesis and Biochemical Importance of α-Tocopherol (Vitamin	

		E), and Vitamin C	
20	II	Synthesis and Biochemical Importance of α-Tocopherol (Vitamin	
		E), and Vitamin C	
21	III	Introduction and Stereochemistry of Steroids	
22	III	Structure Elucidation of Cholesterol	
23	III	Structure Elucidation of Cholesterol	
24	III	Structure Elucidation of Cholesterol	
25	III	Structure Elucidation of Cholesterol	
26	III	Biological Importance of Bile Acid	
27	III	Biological Importance of Androgens	
28	III	Biological Importance of Oestrogens, Gestrogens	
29	III	Biological Importance of Adrenocortical Hormones	
30	III	Biological Importance of Cortisone	
31	IV	Terpenoids: Classification	
32	IV	Nomenclature	
33	IV	General Methods of Structure Determination	
34	IV	General Methods of Structure Determination	
35	IV	Structure Elucidation of Abietic Acid	
36	IV	Structure Elucidation of Abietic Acid	
37	IV	Structure Elucidation of Abietic Acid	
38	IV	Synthesis and Biological Importance of Farnesol	
39	IV	Synthesis and Biological Importance of Zingeberine	
40	IV	Synthesis and Biological Importance of Squalene	

	VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA				
Semester		LESSON PLAN Subject: Principles of Inorganic Ch			
	Even 2016 –2		Theory/Sessional		
	ourse: Int. I				
Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member		
1-2	Ι	Theory of Acid-Bases: Arrhenius Theory, Solvent- System Definition, Brönsted-Lowry Theory: Conjugate Acid-Base Pairs			
3-4	Ι	Lewis Theory, Usanovich Concept, Lux-Flood Concept.			
5-6	Ι	Acid-base Equilibrium, Strength of Brönsted Acids and Bases: Gas-Phase Proton Affinity			
7-8	Ι	Acid and Bases in Water, Levelling Effect of Water. Lewis Acid and Bases: Properties			
9-10	I	Hard and Soft Acids and Bases (Pearson's Classification, HSAB Principle), Symbiosis Effect, Strength of Lewis Acids and Bases.			
11-12	Ι	Super Acids: Hammet-Acidity Function.			
13-14	II	Basic Concepts, Redox Reactions and Electromotive Force, Electrochemical Cells			
15-16	II	Type of Electrodes, Electrode Potential: Standard Electrode Potential, Formal Potential.			
17-18	II	Factors Influencing Electrode Potential: Effect of Concentration, pH, Precipitation, Complex Formation.			
19-20	II	Application of Electrode Potential: Electrochemical Series, Redox Stability in Water			
21-22	II	Redox Potential Diagram: Latimer Diagram (Disproportionation Reaction: Chlorine, Manganese System, Copper System, Oxidation by Atmospheric Oxygen)			
23-24	II	Redox Potential Diagram: Frost Diagram (Manganese), Redox Indicator			
25-26	II	Redox Titration: Titration of Fe(II) by KMnO ₄ , Titration of Fe(II) by K ₂ Cr ₂ O ₇ .			
27-28	III	Electron Deficient, Electron Precise, and Electron Rich Compounds, Gillespie and Nyholm Rules for Predicting Structures			
29-30	III	Homocyclic Rings of S, Se and Te, S, SN and SeN Compounds- Neutral Sulfur Rings			

31-32	III	Cyclic Sulfur Imides, Sulfur-Nitrogen Rings and Chains	
		(SN_x)	
33-34	III	atenation and Heterocatenation, Heteropoly and Isopoly	
		Anions,	
35-36	III	Electron Counting Rules for Clusters: Wade-Mingos-	
		Lauher Rules and Extended 18 Electron Rules (mno	
		rules), Boranes: Boron Cage Compounds- Closo, Nido,	
		Arachno,	
37-38	III	Heteroboranes, Carboranes, Metalloboranes and	
		Metallocarboranes	
39-40	III	Cage Compounds of S and P, Carbonyl and Carbide	
		Clusters	
Signature	e of Facul	ty Member:	
Date:		Counter Signature of	

Session:	Semester: 6 th Subject: Biomo Session: Even 2016–2017 Branch/Course:Int. MSc Name of the Faculty Member: Dr. R		
Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Introduction, Functions of Carbohydrates,	
		Classification of carbohydrate	
2	Ι	D&L-Isomers, Epimers	
3	Ι	Structure of Glucose (open chain structure)	
4	Ι	Cyclic structure of Glucose, Drawbacks of open chain structure	
5	Ι	Structure of Fructose (both open chain& ring structure)	
6	Ι	Mutarotation & its Mechanism	
7	Ι	Reaction of Glucose, Osazone formation	
8	Ι	Reaction of Fructose, Conversion of Aldose to Ketose & vice versa, Epimerization	
9	Ι	Chain lengthening &chain Shorting of Aldose, Anomers, Chemistry of Disaccharides	
10	Ι	Sucrose &Lactose (Structure and Properties)	
11	II	Amino acids: (Introduction)	
12	II	structural features,	
13	II	Physical properties of amino acids,	
14	II	optical activity and isoelectic point,	
15	II	essential amino acids,	
16	П	non-essential amino acids	
17	II	Synthesis of alpha amino acids.	
18	II	Chemical properties of alpha amino acids.	

19	п	Chemical properties of alpha amino acids.	
20	II	Overall view on module II	
21	III	Proteins:	
22	III	Peptides	
23	III	Structure determination. Polypeptides or proteins:	
24	III	Classification	
25	III	primary structure of proteins	
26	III	Secondary and tertiary structure of proteins	
27	III	quaternary structure of proteins	
28	III	glycoproteins, denaturation	
29	III	Folding enzymes.	
30	III	Overall view on module III	
31	IV	Introduction, Chemistry of Nucleic Acid,	
		Assignments	
32	IV	Structure of Nucleotides ,Nucleosides ,RNA, DNA	
33	IV	Nitrogenous bases, pentose Sugar, binding of	
		Nucleotide components	
34	IV	Structure of DNA	
35	IV	Structure of RNA ,Types of RNA	
36	IV	m-RNA, t-RNA	
37	IV	Transcription & Translation	
38	IV	Post Transcription Modification, Genetic Code	
39	IV	Central dogma of life, Replication of DNA	
40	IV	Protein Biosynthesis ,genetic error ,Wobblehypothesis	
Signatı Date:	ure of Facu	ılty Member: Counter Signature of I	H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 1st & 7th Subject: Group Theory and Wave Mechanics (CH-411) Session: Odd 2016-2017 Theory/Sessional Branch/Course: M.Sc. (IC) and Int. M.Sc. (Chemistry) Name of the Faculty Member: Dr. Aruna Kumar Barick Module/ **Remarks/Sign. of** Period **Topics to be Covered Faculty Member** Number Symmetry Elements and Symmetry Operations, Matrix 41 Representation of Symmetry Operation, Classes of Ι Operations Doint Groups (C. C. 40 T C and D)

42	Ι	Point Groups ($C_{n, C_{nv}}, C_{nh, S_n}, D_n, D_{nd}$, and D_{nh})
43	Ι	Point Groups $(T_d, O_h, D_{\infty a}, C_{\infty v}, \text{ and } D_{\infty h})$
44	Ι	Properties of Point Groups,
45	Ι	Irreducible and Reducible Representation, Bases of Representation
46	Ι	Character of a Representation, Reduction Formula
47	Ι	The Great Orthogonality Theorem (Without Proof) and Its Explanation
48	Ι	Construction of Character Tables for C_{2v} and C_{3v}
49	Ι	Construction of Character Tables for T (Cubic), C_4 (Cyclic) and D_{∞} Groups
50	Ι	Projection Operator and Direct Product
51	II	Postulates of Quantum Mechanics, Quantum Mechanical Operators
52	II	Application of Schrodinger Wave Equation to Particle in a Box
53	II	Harmonic Oscillator
54	II	Rigid Rotator
55	II	Hydrogen Atom, Transformation of Co-ordinates
56	II	Separations of Variables
57	Π	ϕ , θ and R Equations, Spherical Harmonics
58	Π	Shapes of <i>s</i> , <i>p</i> and <i>d</i> Orbital
59	II	Probability Density in 1s Orbital, Physical Interpretation of Hydrogen Orbitals

60	II	Radial Distribution Function and Curves
61	III	Definition
62	III	Generalized Angular Momentum
63	III	Eigen Functions and Eigen Values of Angular Momentum
64	III	Operator using Ladder Operators
65	III	Addition of Angular Moments
66	III	Mutual Interaction of Electron Orbitals and Resultant Vectors
67	III	Russel–Saunder's Coupling
68	III	j–j Coupling
69	III	Ground State Term Symbols and Hund's Rule
70	III	Micro States and Derivation of Russel–Saunder's Term for P^2 , d^2 and pd Configuration
71	IV	Variation Theorem and its Application to Hydrogen atom
		in Derivation of its Ground State Energy
72	IV	Perturbation Theory (First Order and Non-degenerate)
73	IV	Secular Equations
74	IV	Linear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory)
75	IV	Application to Hydrogen Molecule Ion
76	IV	Huckel Theory of Conjugated Systems
77	IV	Bond Order and Charge Density Calculations
78	IV	Applications to Ethylene, Butadiene
79	IV	Applications to Cyclopropenyl Radical, Cyclobutadiene, etc.
80	IV	Spin and Anti-symmetric Nature of Wave Function (Pauli's Exclusion Principle)
Signatur Date:	re of Facul	ty Member: Counter Signature of H.O.D.

LESSON PLAN

Semester: 1st & 7th

Session: Odd 2016-2017

Subject: Structure and Reactivity (CH-413)

Theory/Sessional

Branch/Course: M.Sc. (IC) and Int. M.Sc. (Chemistry)

Name of the Faculty Member: Dr. Sukalyan Dash

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Delocalized Chemical Bonding, Conjugation	
2	Ι	Cross Conjugation	
3	Ι	Resonance	
4	Ι	Hyperconjugation, Bonding in Fullerenes, Tautomerism.	
5	Ι	Aromaticity in Benzenoid and Non-benzenoid Compounds, Alternant and Non-alternant Hydrocarbons	
6	Ι	Huckel's Rule, Energy Levels of π -molecular Orbitals of Simple Systems, Annulenes, Anti-aromaticity, Homo-aromaticity	
7	Ι	Bonds Weaker than Covalent (Addition compounds)	
8	Ι	Crown Ether Complexes and Cryptands	
9	Ι	Inclusion Compounds, Cyclodextrins	
10	Ι	Catenanes and Rotaxanes	
11	II	Types of Mechanisms, Types of Reactions	
12	п	Thermodynamic and Kinetic Requirements	
13	Π	Kinetic and Thermodynamic Control	
14	II	Hammond's Postulate, Curtin-Hammett Principle	
15	II	Potential Energy Diagrams, Transition States and Intermediates	
16	Π	Methods of Determining Mechanisms	
17	Π	Methods of Determining Mechanisms	
18	II	Hard and Soft Acids and Bases	

19	II	Hammett Equation and Linear Free Energy Relationship	
20	II	Substituent and Reaction Constants. Taft Equation	
21	III	Non-classical Carbocations	
22	III	Generation and Structure of Free Radicals	
23	III	Generation and Structure of Carbenes	
24	III	Generation and Structure of Nitrenes	
25	III	Generation and Structure of Arynes	
26	III	General Discussion on Isotope Effect	
27	III	General Discussion on Isotope Effect	
28	III	Stereoselective, Regioselective Reactions	
29	III	Stereospecific and Regiospecific Reactions	
30	III	Stereospecific and Regiospecific Reactions	
31	IV	S_N^2 , S_N^1 Mechanisms	
32	IV	Mixed S_N^{1} and S_N^{2} Mechanism	
33	IV	SET Mechanisms. The Neighboring Group Mechanism	
34	IV	Neighboring Group Participations by Sigma and Pi Bonds	
35	IV	Classical and Non-classical Carbocations, Phenonium Ions, Norbornyl System	
36	IV	Nucleophilic Substitution at Allylic, Carbon	
37	IV	Nucleophilic Substitution at Aliphatic Trigonal and Vinylic Carbon	
38	IV	Effects of Substrate Structure, Attacking Nucleophile	
39	IV	Effects of Leaving Group and Reaction Medium	
40	IV	Phase Transfer Catalysis, Ambident Nucleophile, Regioselectivity	
Signatu Date:	re of Facu	lty Member:	ignature of H.O.D.

	VEER SU	IRENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA	
Semester M.Sc	-7 th &1st M.Sc	LESSON PLAN	
		Subject: Thermodynamics & Chemical dynam	nics (CH-414)
Session:	2016		eory
Branch/	Course: Integrated	M.Sc & M.Sc Name of the Faculty Member: Dr Trina	, th Biswal
Period	Module /Number	Topic to be covered	
1	Ι	Laws of Thermodynamics	
2	Ι	Free Energy	
3	Ι	Partial Molar Properties & Chemical Potential	
4	Ι	Third Law of Thermodynamics & Determination of Entropy	
5	Ι	Entropy & Probability	
6	Ι	Boltzmann-Planck equation	
7	Ι	Partial free energy ,molar volume ,molar heat content	
8	Ι	Problems	
9	Ι	Fugacity &its Determination	
10	Ι	Determination of fugacity by Graphical Method	
11	Ι	Determination of fugacity by Approximate & General	
		Method	
12	II	Probability Distribution, Ensemble averaging &its types	
13	II	Postulates of Ensemble averaging ,Canonical , Grand	
		Canonical& Microcanonical	
14	II	Corresponding Distribution Law	
15	II	Translational & Rotational Partition Function	
16	II	Vibrational Partition Function, Electronic Partition Function	
17	II	Calculation of thermodynamic properties of Partition	
		Function	
18	II	Applications of Partition Function	
19	II	Behavior of solids , Fermi- Dirac Statistics	
20	II	Chemical equilibria & equilibrium constant in terms of	
		Partition function	
21	II	Bose-Einstein Statistics, Distribution Law & application to	
		He	
22	II	Phosphate group transfer & ATP, Biological oxidation&	
	, III	reduction Reaction	
23	III	Interionic attraction Theory & Debye- Huckel Treatment	
24	III	Onsagar Limiting law its Verification & Modification	
25	III	Activity& Activity coefficient	
26	III	Debye- Huckel – Bronsted Equation , Salt effect	
27	III	Primary salt effect & secondary salt effect	
28	III	Determination of activity coefficient by solubility Method	
20		,Ion Association	
29	III	Determination of thermodynamic dissociation constant of	
		weak electrolytes by Shedlovsky Method & EMF Method	

30	III	Amino acids ,Hydrogen ion concentration	
31	III	Ampholytes Isoelectronic points	
32	IV	Introduction , collision theory of Reaction Rate	
33	IV	Theory of Absolute Reaction rate of both unimolecular & Bimolecular Reaction	
34	IV	Lindeman Mechanism	
35	IV	Arrehenious theory & Activated complex	
36	IV	Reaction between ions	
37	IV	Stedy-State Kinetics &its Problems, Examples	
38	IV	Dynamic chain reactions of Hydrogen & Bromine	
39	IV	Pyrolysis of Acetaldehyde, Ethane	
40	IV	Fast reaction &its study by Relaxation Method	
41	IV	Flash photolysis & NMR Technique	

Signature of Faculty member: Date:

Counter Signature of H.O.D

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

Semeste	r -1 st &7 th	SSON PLAN Subject: Polymer Chemis	try (CH-415)
Session:			ory/ Sessional
Branch/C	Course: M.Sc &Integr	rated M.Sc Name of the Faculty Member: Dr Trina	th Biswal
Period	Module /Number	Topic to be covered	
1	Ι	Introduction, classification of polymer, DP, Tacticity,	
2	I	Functionality, crystallinity , Degree of crystallinity	
3	Ι	Glass Transition temperature &its application	
4	I	Inorganic polymer & Elemento -Organic polymer ,Crystallisability	
5	I	Chain-growth polymerization ,its mechanism , Kinetics of Chain –growth polymerization	
6	I	Polyaddition polymerization , Step-growth polymerization ,its mechanism , Kinetics of step – growth polymerization	
7	I	Distinction between Step-growth & Chain-growth polymerization, Molecular weight control & Molecular weight distribution of linear polymer	
8	I	Polyfunctional step polymerization, Newer type of step polymerization	
9	I	Radical chain polymerization ,Molecular weight , chain transfer, Inhabitation &Retardation	
10	I	Determination of absolute rate constant, Auto acceleration	
11	II	Emulsion Polymerization ,Qualitative aspect , Mechanism	
12	II	CMC , Salient features, Application, Advantages	
13	II	Ionic chain polymerization ,comparison of radical & ionic chain polymerization	
14	II	Kinetics of cationic chain polymerization ,Carother equation	
15	II	Kinetics of anionic chain polymerization ,features of cationic & anionic chain polymerization	

16	II	Cationic polymerization & Anionic polymerization of carbon-carbon double bond	
17	II	Block copolymer ,types synthesis ,properties & Application	
18		Chain copolymerization ,classification properties , application	
19	111	Radical chain co-polymerization &its kinetic study	
20	111	Ionic chain co-polymerization &its kinetic study	
21	111	Ring opening polymerization , Examples & Mechanism	
22		General characteristic Ring opening polymerization of cyclic ethers & cyclic amides	
23	111	Stereoisomerism ,types of stereoisomerism in polymers	
24	111	.Properties of Stereo- regular polymers	
25	111	Forces of Stereo -regulation in alkene polymerization	
26		Ziegler-Natta polymerization ,Types ,Mechanism & kinetic study	
27	111	Crystalline melting point, Glass transition temperature	
28	111	.Relationship of T _g with molecular weight , plasticizer ,n copolymer	
29	111	Properties involving Large deformation	
30	IV	Properties involving small deformation	
31	IV	Ideal , Azeotropic , Alternating Copolymerization	
32	IV	Property requirement & Utilization of polymers	
33	IV	Fracture & Deformation of polymer	
34	IV	,Fracture Mechanism , Types of Fracture	
35	IV	Crack growth & its Mechanism	
36	IV	Cyclic deformation &its Molecular aspects	
37	IV	Healing of polymer. Adhesives	
38	IV	Conducting polymer , characteristics & Examples	
39	IV	Different types of Molecular weight	
40	IV	Molecular weight Determination	
41	IV	Molecular weight Determination & Short questions	
Signature o Date:	of Faculty mer	nber: Counter Signa	ture of H.O.D

Semester: 2nd, 8th Session: Even 2016–2017 Branch/Course: M Se LESSON PLAN Subject: Stereochemistry (CH-422) Theory/Sessional

Branch/Course: M.Sc and Int. MSc Name of the Faculty Member: **Dr. Ramakrishna D.S.**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Chirality, Fischer projection and R and S notations,	
2	Ι	Threo and erythro nomenclature, E and Znomenclature,	
3	Ι	Optical isomerism in biphenyls	
4	Ι	Allenes,	
5	Ι	Concept of Prostereoisomerism	
6	Ι	Assymetric synthesis	
7	Ι	Assymetric synthesis (enzymatic)	
8	Ι	catalytic nexus	
9	Ι	Conformation of a few acyclic molecules (5memb)	
10	Ι	Conformation of a few acyclic molecules (6memb)	
11	II	Conformation of a few acyclic molecules (hetero)	
12	II	Conformation of cyclic systems having one sp2 carbon atoms	
13	II	two sp2 carbon atoms	
14	II	Dynamic stereochemistry	
15	II	Conformation and reactivity, Selection of substrates	
16	II	Quantitative correlation between conformation and reactivity	
17	II	Weinstein-Eliel equations and Curtin-Hammett principles	
18	II	Conformational effects on stability and reactivity in acyclic compounds	
19	II	Ionic elimination	
20	II	Intramolecular rearrangements	
21	II	Neighbouring group participation	

22	II	cyclic systems	
23	II	Nucleophilic substitution reaction at ring carbon	
24	II	Formation and Cleavage of epoxide rings	
25	II	Addition reactions to double bonds	
26	II	Elimination reactions	
27	III	Molecular dissymmetry	
28	III	chiroptical properties	
29	III	linearly and circularly polarised lights	
30	III	circular birefringence and circular dicroism	
31	IV	ORD, Plane curves, Cotton effect	
32	IV	Rotatory Dispersion of ketones	
33	IV	the Axial Haloketone rule	
34	IV	the Octane rule	
35	IV	Helicity rule	
36	IV	Lowe's rule	
37	IV	Emperical rule	
38	IV	Benzene chromophore.	
39	IV	Problems	
40	IV	Overall view	

Signature of Faculty:

Date:

Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 2nd & 8th Session: Even 2016–2017 Branch/Course: M Sc. (IC) and

Subject: **Spectroscopy-I (CH-423) Theory**/Sessional

Session: Even 2016–2017 Theo Branch/Course: M.Sc. (IC) and Int. M.Sc. (Chemistry)

Name of the Faculty Member: **Dr. Aruna Kumar Barick**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Atomic Spectroscopy: Introduction	
2	Ι	Electromagnetic Spectrum	
3	Ι	General Discussion on Various Molecular Excitation Processes	
4	Ι	Spectra of Hydrogen and Hydrogen Like Atoms	
5	Ι	Alkali Metals Spectra	

6	Ι	L-S Coupling, Term Symbols,
7	Ι	Space Quantization
8	Ι	Zeeman Effect and Stark Effect
9	Ι	Paschen-Bach Effect
10	Ι	Problem Solve
11	II	Rotational and Vibrational Spectroscopy: Introduction
12	II	Rotation of Molecules and Classification of Molecules
13	II	Molecular Spectra of Diatomic Gases
14	II	Rotational Spectra of Diatomic Molecules
15	II	Rotational Spectra of Polyatomic Molecules
16	II	Vibrational Spectra of Diatomic Molecules
17	II	Intensity of Spectral Lines
18	II	Vibrational-Rotational Spectra
19	II	P, Q, and R Branches
20	II	Problem Solve
21	III	Raman Spectroscopy: Introduction
22	III	Quantum Theory of Raman Effect
23	III	Classical Theory of Raman Effect
24	III	Pure Rotational Raman Spectra
25	III	Vibrational Raman Spectra
26	III	Polarization of Light and the Raman Effect
27	III	Rotational-Vibrational Raman Spectra
28	III	Comparison with IR spectra
29	III	Structure Determination from Raman and IR Spectra
30	III	Problem Solve
31	IV	Photoelectron Spectroscopy: Basic Principles
32	IV	Photoelectric effect, Ionization Process, Koopman's

		Theorem		
33	IV	Photoelectron Spectra of Simple Molecules		
34	IV	ESCA, Chemical Information from ESCA		
35	IV	Auger Electron Spectroscopy – Basic Idea		
36	IV	Mössbauer Spectroscopy: Introduction		
37	IV	Principles of Mossbauer Spectroscopy		
38	IV	Experimental Methods, Theoretical Aspects		
39	IV	Quadrupole Splitting, Magnetic Hyperfine Interaction		
40	IV	Problem Solve		
Signature of Faculty Member:				

Date:

Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 2nd & 8th Session: Even 2016–2017 Branch/Course: M Sc. (IC)

Subject: Organic Reaction Mechanism (CH-424) Theory/Sessional

Branch/Course: M.Sc. (IC) and Int. M.Sc. (Chemistry)

Name of the Faculty Member: **Dr. Sukalyan Dash**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	S_E^{1} , S_E^{2} and S_E^{i} Mechanisms	
2	Ι	Effect of Substrate, Leaving Group and Solvent	
3	Ι	Reactions Hydrogen Exchange, Migration of Double Bonds, Keto-Enol Tautomerism	
4	Ι	Halogenation, Aliphatic Diazonium Coupling, Stork- Enamine Reaction	
5	Ι	Structure Reactivity, Relationship in Mono- substituted Benzene	
6	Ι	Orientation in Benzene Ring with More than One Substituent, Vilsmeier-Haack Reaction, Pechmann Reaction	
7	Ι	Introduction, Mechanisms of Aromatic Nucleophilic Substitutions (S _N Ar, S _N ¹ , Aryne)	

8	I	Effect of Substrates, Leaving Groups, and Nucleophile	
9	I	Reactions: Nucleophilic Displacement in Areno- diazonium Salts by Different Nucleophiles, Chichibabin Reaction Image: Chichibabin Reaction Image: Chichibabin Reaction Image: Chichibabin Reaction	
10	I	Reactions: Nucleophilic Displacement in Areno- diazonium Salts by Different Nucleophiles, Chichibabin Reaction	
11	II	Electrophilic Addition	
12	II	Nucleophilic Addition	
13	II	Free Radical Addition	
14	II	Orientation and Reactivity, Addition to Cyclopropanes	
15	II	Hydroboration, Michael Reaction, Sharpless Asymmetric Epoxidation	
16	II	Mechanism and Reactivity	
17	Π	Mannich Reaction, LiAlH ₄ Reduction of Carbonyl Compounds, Acids, Esters, Nitriles	
18	II	Addition of Grignard Reagents, Reformatsky Reaction, Aldol Condensation	
19	П	Knoevenagel Condensation, Perkin Reaction, Tollens Reaction	
20	П	WittigReaction,PrinsReaction,BenzoinCondensation	
21	III	E ² Mechanism	
22	III	E ¹ Mechanism	
23	III	E ¹ _{CB} Mechanism	
24	III	Orientation, Effect of Substrate	
25	III	Effect of Base, Leaving Group	
26	III	Effect of Medium, Orientation of Double Bond	
27	III	Saytzeff and Hoffman Rules, Pyrolytic Elimination Reaction	
28	III	Oxidative Elimination (Oxidation of Alcohol by	
		Chromium, Moffatt Oxidation)	
29	III	Cleavage of Quaternary Ammonium Hydroxides	

30	III	Chugaev Reaction, Shapiro Reaction	
31	IV	Nature of Migration	
32	IV	Migratory Aptitude	
33	IV	Memory Effects	
34	IV	Wagner-Meerwein Rearrangement	
35	IV	Favorskii Rearrangement	
36	IV	Arndt-Eistert Synthesis	
37	IV	Neber Rearrangement	
38	IV	Hofmann Rearrangement	
39	IV	Baeyer-Villiger Rearrangement	
40	IV	Sommelet-Hauser Rearrangement	
Signatur	e of Facult	ty Member:	
Date:	Date: Counter Signature of H.O.D.		

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA ester: 2nd and Subject: SCNC

Semester: 2^{nd} and 8^{th}

8th Session: Even 2016–2017 Branch/Course: M.Sc. (IC)

Theory/Sessional Name of the Faculty Member: **Dr. Monalisa Mohapatra**

and Int.	and Int. M.Sc. (Chemistry)		
Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Derivation of phase rule, Brief concept on one and	
		two component system	
2	Ι	Water, Sulphur system	
3	Ι	Application of phase rule to three component systems of solids	
4	Ι	Application of phase rule to three component systems of liquids	
5	Ι	Kinetics of Catalytic Reactions	
6	Ι	Acid-base Catalysis, Enzyme Catalysis	
7	Ι	Heterogeneous Catalysis	
8	II	Surface tension	
9	II	Capillary action	

II III 11 II 12 II Freundlich's adsorption isother 13 II	
12 II Freundlich's adsorption isother 13 Langmuir's adsorption isotherm and its limitations	
13 L angmuir's adsorption isotherm and its limitations	
13 II Langmun s adsorption isotherm and its initiations	
14BET adsorption isotherm and its applications	
15 II Heat of adsorption	
16 II Estimation of surface areas of solids from solution adsorption studies	
17 II Brief concepts on micelle	
18 II Reversed micelle	
19 II Microemulsions	
20 III Polymer-definition, Types of polymer	
21 III Number average and weight average macromolecules	
22 III Determination of molecular weights of	
macromolecules 23 III Osmometry	
23 III Osmonerry 24 III Viscometry	
25 III Diffusion and Light scattering method	
26 III Diritision and Light scattering method 26 III Kinetics of polymerization	
27 III Donnan Effect	
28 III Stereochemistry of polymerization	
29 IV Classification of nuclides, nuclear stability, binding	
energy	
30 IV Nuclear models, Characteristics of radioactive decay	
31 IV Decay kinetics, parent-daughter decay growth relationships	
32 IV Detection and measurement of radioactivity,	
advances in the solid and liquid scintillation counting	
techniques	
33 IV Methods for the determination of half life period	
of single and mixed radionuclides	
34 IV Nuclear fission, nuclear fuels and nuclear reactors,	
nuclear fuel reprocessing 25 IV East broader reactors, radiological sofety expects and	
35 IV Fast breeder reactors, radiological safety aspects and radioactive waste managements	
36 IV Interaction of radiation with matter, effect of	
ionizing/	
non-ionizing radiations on water	
37 IV Aqueous solutions and on organic compounds,	
radiation dosimetry 38 IV Propagation and concertion of radioactive isotomes	
38IVPreparation and separation of radioactive isotopes39IVApplication of radioisotopes and radiations in various	
fields	
40 IV Isotopic dilution techniques, neutron activation	
analysis and its applications	

Date:

Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

LESSON PLAN

Semester: 3rd and 9th Session: Odd 2016-2017 Branch/Course: M. Sc. And Int MSC

Theory/Sessional

Subject: ENVIRONMENTAL Chemistry

Name of the Faculty Member: Prof. R. B. Panda

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1-2	Ι	Air Pollutants, Air Quality Standards, Production, Fate, Effects and Control of Gaseous Pollutants	
3-4	Ι	Oxides of Carbon, Nitrogen and Sulphur, Organic Air Pollutants, Photochemical Reaction	
5-6	I	Photochemical Smog, Greenhouse Effect, Climate Change, Global warming, Acid Rain and Ozone Depletion.	
7-8	I	Water World, Source of Water, Water Quality, Water Pollutants (Inorganic and Organic), Sources, Fate, Effects and Controlling Measures, Chemical Speciation, Pollution by Radionuclides	
9-10	Ι	Biochemical Oxygen Demand, Chemical Oxygen Demand, Eutrophication, Biodegradation of Pollutants	
11-12	II	Treatment of Water for Drinking, Electro-dialysis, Ion Exchange, Reverse Osmosis	
13-14	II	Desalination Processes, Removal of Iron, Manganese, Phosphorous, Calcium and Nitrogen and Treatment of Water for Industrial Purposes	
15-16	II	Sedimentation, Coagulation, Flocculation, Filtration, Adsorption, Disinfection of Water	
17-18	II	Sewage Treatment (Physical and Chemical Methods), Health Effects of Drinking Water Treatment Technologies	
19-20	II	Impact of Detergents, Pesticides and Other Additives	

		on Sewage Treatment	
21-22	III	Sources of Oil Pollution, Chemistry and Fate of	
		Hydrocarbons Oil in Run Off and Ground Water	
23-24	III	Biodegradation, Effect on Aquatic Organisms and	
		Communities	
25-26	III	Treatment and Disposal Technology	
27-28	III	Soil Pollutants (Inorganic, Organic, Pesticides,	
		Radionuclides)	
29-30	III	Sources and Effects on Nature and Properties of Soil,	
		Crops, Plants and Terrestrial Animals.	
31-32	IV	Nature and Sources of Hazardous Wastes,	
		Classification, Characteristics and Constituents,	
33-34	IV	ansport and Effects, Treatment by Physical and	
		Chemical Methods, Thermal Treatment Methods	
35-36	IV	Biodegradation of Wastes, Disposal of Hazardous	
		Wastes. Waste Management and Industrial by	
		Products, Natural Hazards and Management	
37-38	IV	Control of Subsurface Migration of Hazardous Waste,	
		Biomedical Waste Management	
39-40	IV	Environmental Management and Sustainable	
		Development	
Signature	of F oo-14	Mamban	
Signature	e of Facult	y Member:	
Date:		Counter Signature of H.O.D.	

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 4^{th and} 10th Session: Even 2016–2017 Branch/Course: M.Sc. (IC) and Int MSc

Subject: Chemistry of Materials Theory/Sessional

Name of the Faculty Member: Dr. Sukalyan Dash

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Glassy State, Glass Formers	
2	I	Glass Modifiers, Applications	

3	Ι	Ceramic Structures
4	I	Mechanical Properties
5	Ι	Clay Products. Refractories
6	I	Characterizations, Properties and Applications
7	I	Macroscopic Composites, Dispersion-Strengthened and Particle-Reinforced, Fibre-Reinforced Composites
8	Ι	Nanocrystalline Phase, Preparation
9	I	Procedures, Special Properties
10	Ι	Applications
11	II	Types of Ionic Conductors
12	II	Mechanism of Ionic Conduction
13	II	
14	II	Interstitial Jumps (Frenkel), Vacancy Mechanism
15	II	Diffusion Superionic Conductors
16	II	Phase Transition and Mechanism of Conduction in Superionic Conductors
17	Π	Phase Transition and Mechanism of Conduction in Superionic Conductors
18	II	Phase Transition and Mechanism of Conduction in Superionic Conductors
19	II	Examples and Applications of Ionic Conductors
20	II	Examples and Applications of Ionic Conductors
21	III	Conducting Organics, Organic Superconductors
22	III	Magnetism in Organic Materials
23	III	Fullerenes-Doped, Fullerenes as Superconductors
24	III	Molecular Rectifiers
25	III	Molecular Transistors
26	III	Artificial Photosynthetic Devices

27	III	Optical Storage Memory and Switches-Sensors	
28	III	Nonlinear Optical Effects, Second and Third Order,	
		Molecular Hyperpolarisability	
29	III	Second Order Electric Susceptibility	
30	III	Materials for Second and Third Harmonic Generation	
31	IV	Introduction to Thin Films and Langmuir-Blodgett	
		Films	
32	IV	Preparation Techniques: Evaporation/Sputtering	
33	IV	Chemical Processes, Sol-Gel Method	
34	IV	Growth Techniques of Langmuir-Blodgett (LB) Film	
35	IV	Photolithography	
36	IV	Properties and Application of Thin and LB Films	
37	IV	Molecular Shape, Structure and Configuration of	
		Polymeric materials	
38	IV	Crystallinity, Stress-Strain Behaviour	
39	IV	Polymer Types and Their Applications	
40	IV	Conducting and Ferroelectric Polymers	
Signatur Date:	Signature of Faculty Member: Date: Counter Signature of H.O.D.		