LESSON PLAN

Semester:I Session: 2016-17 Branch/Course Subject-REAL ANALYSIS Theory Name of Faculty: Dr. A.K.SAHOO

Period	Module/	Topic to be covered	Remarks
	Number	-	
1	Ι	Sets, Relation, Function	
2	Ι	Axioms for Real numbers, Axioms of Choice and	
		equivalents	
3	Ι	Cardinality, Countability	
4	Ι	Elements of set theory for metric space and in	
		particular for R ⁿ	
5	Ι	Bolzano-Weiestrass Theorem	
6	Ι	Heine-Borel theorems	
7	Ι	sequences and series of real numbers	
8	Ι	Convergence of Sequence	
9	Ι	Convergence of Series	
10	Ι	Cauchy criterion for convergence	
11	II	Real valued function	
12	II	Properties of real valued continuous function on R ⁿ	
13	II	Uniform continuity of Sequence	
14	II	Uniform continuity Sequences	
15	II	Uniform continuity of series of functions	
16	II	Uniform continuity of series of functions Uniform	
		continuity of series of functions	
17	II	Uniform convergence	
18	II	Uniform convergence	
19	II	Power series	
20	II	Weiestrass approximation theorem.	
21	III	Differentiation	
22	III	Reimann-Stieltjes integral of real valued function w.r.t a	
		monotone function	
23	111	Reimann-Stieltjes integral of real valued function w.r.t a	
		monotone function, Cont.	
24	111	Properties of Reimann-Stieltjes integral(Linearity,	
25		Integration by parts)	
25	111	Properties of Reimann-Stieltjes integral(Change of	
26	TTT	variables)	
26		Term by term integration	
27		Differentiation and the integration.	
28		Integration under the integral sign	
29		Integration under the integral sign	
30		Europion of sourced verification	
22		Function of several variables	
52	11	Limit of function of several variables	1

33	IV	Continuity of function of several variables	
34	IV	Differentiability	
35	IV	Theorem based on differentiability	
36	IV	Pre-requisites of Inverse Function Theorem	
37	IV	Implicit function theorem	
38	IV	Implicit function theorem, Cont.	
39	IV	Maxima and Minima of real valued function	
40	IV	constrained maxima and minima	

Semester:II Session: 2016-17 Branch/Course Subject-Ordinary Differential Equations Theory

Name of Faculty: Dr. S Mohapatra

Period	Module/	Topic to be covered	Remarks
	Number		
1	I	Quick Review of linear differential Equations of	
		Higher Order, Wronskian.	
2	Ι	System of first order equations,	
3	Ι	Existence and Uniqueness theorems	
4	Ι	Existence and Uniqueness theorems	
5	Ι	Fundamental Matrix	
6	Ι	Fundamental Matrix	
7	I	Homogeneous and Non Homogeneous linear systems	
		with constant Coefficients	
8	I	Homogeneous and Non Homogeneous linear systems	
		with constant Coefficients	
9	I	Linear system with periodic Coefficients	
10	I	Linear system with periodic Coefficients	
11	II	Successive approximation Picard's Theorem	
12	II	Successive approximation Picard's Theorem	
13	II	Uniqueness of solutions,	
14	II	Uniqueness of solutions	
15	II	Continuation and dependence on Initial conditions,	
16	Π	Continuation and dependence on Initial conditions,	
17	Π	Existence of solutions in the large	
18	Π	Existence of solutions in the large	
19	II	Existence and uniqueness of solution of systems	
20	II	Existence and uniqueness of solution of systems	
21	III	Oscillations of second Order Equations	
22	III	Oscillations of second Order Equations	
23	III	Fundamental Results	
24	III	Fundamental Results	
25	III	Sturm's Comparison theorem	
26	III	Sturm's Comparison theorem	
27	III	Solving problems	
28	III	Oscillations of $x''+a(t)x = 0$	
29	III	Oscillations of $x''+a(t)x = 0$	
30	III	Solving problems	
31	IV	Boundary Value Problems :- Introduction	
32	IV	Strum Liouville's Problem	
33	IV	Strum Liouville's Problem	
34	IV	Solving problems	
35	IV	Green's functions	
36	IV	Green's functions	
37	IV	Solving problems	
38	IV	Picard's theorem	
39	IV	Picard's theorem	
40	IV	Solving problems	

LESSON PLAN

Semester:II

Subject-Measure Theory and Integration

Session: 2016-17 Branch/Course

Theory Name of Faculty: Dr. P.K.JENA

Period	Module/	Topic to be covered	Remarks
	Number		
1		Sigma Algebra of Sets, Borel sets of R	
2		Lebesgue outer measure and its properties	
3		Lebesgue outer measure and its properties	
4		Sigma Algebra of Measurable sets in R	
5		Non-measurable sets	
6	1	Measurable sets which is not a Borel set, Lebesgue	
		measure and its properties	
7		Cantor set and its properties	
8	1	Measurable functions Simple function	
9	1	Integration of Nonnegative functions	
10	1	Riemann and Lebesgue Integration	
11		Abstract measure spaces	
11		Abstract measure spaces	
12			
13			
14			
15		Integration with respect to a measure	
16		Monotone convergence theorem	
17		ivionotone convergence theorem	
18		Fatou's Lemma	
19		Lebesgue Dominated convergence theorem	
20	 	Lebesgue Dominated convergence theorem	
21		Modes of convergence, Point wise convergence and	
		convergence in Measure	
22		Convergence in mean	
23		convergence diagrams	
24		convergence diagrams	
25		Counter examples of Convergence.	
26		Egorov's theorem.	
27		Egorov's theorem	
28		Differentiation of monotone functions	
29		Lebesgue Differentiation theorem, Absolute continuity	
30		Lebesgue Differentiation theorem, Absolute continuity	
31	IV	Complex and signed measure	
32	IV	Hahn decomposition theorem	
33	IV	Jordan decomposition theorem	
34	IV	Jordan decomposition theorem	
35	IV	Radon-Nikodym theorem	
36	IV	Radon-Nikodym theorem	

LESSON PLAN

Semester:II Session: 2016-17 Branch- Applied Mathematics

Subject- Numerical Analysis Theory Name of Faculty: Dr. S.K. Padhan

Period	Module/	Topic to be covered	Remarks
	Number		
1	Ι	An overview on number system, Error analysis	
2	Ι	Numerical solution, stability of numerical algorithm	
3	Ι	Error Analysis, floating point representation and	
		approximations, different types of error	
4	Ι	Solution of nonlinear equations: bisection method,	
		secant method, regulafalsi mthod, geometrical	
		representation, error analysis	
5	Ι	Newton's method, geometrical representation, error	
		analysis, advantages and disadvantages	
6	Ι	Rate of convergence of above methods	
7	Ι	General iteration methods, fixed point iterations	
8	Ι	Convergence of first order iterations with several	
		examples	
9	Ι	Iteration methods based on second degree: Muller	
		method, Chebysev method	
10	Ι	Rate of convergences of above two methods	
11	II	Introduction and existence and uniqueness of	
		interpolation	
12	II	Lagrange interpolation, geometrical representation,	
		error in Lagrange interpolation	
13	II	Disadvantages of Lagrange interpolation, Newton	
		divided difference interpolation	
14	II	Finite difference operators and relations between them	
15	II	Finite difference interpolation: Newton forward and	
		backward difference interpolation	
16	II	Hermite interpolation, error analysis	
17	II	Piecewise and spline interpolation	
18	II	Piecewise and spline interpolation	
19	II	Differentiation: Methods based on interpolation (linear	
		and quadratic)	
20	II	Uniform nodals, Methods based on finite differences	
21	III	Methods based on undetermined co-efficients, Optimum	
		choice of step length	
22	III	Introduction on integration	
23		Gauss quadratue rule	
24		Trapezodial rule, error analysis	
25	III	Simpson's 1/3 rd rule, error analysis	
26	III	Gauss Legendre integration, Lobatto integration, error	
		analysis	
27	m	Radon integration method, Gauss-Chebysev integration,	
		error calculation	

Semester:II Session: 2016-17 Branch/Course Subject-STATISTICAL METHOD Theory Name of Faculty: Dr. A. K. SAHOO

Period	Module/	Topic to be covered	Remarks
	Number		
1	Ι	Random variable	
2	Ι	Expectations	
3	Ι	Moment Generating functions	
4	Ι	Characteristic functions	
5	Ι	Properties of Characteristic functions	
6	Ι	Statement of inversion theorem and its application	
7	Ι	Derivation of Characteristic function	
8	Ι	Derivation of Characteristic function, Cont.	
9	Ι	Moments, Central moments	
10	Ι	Basic discrete distributions	
11	II	Basic discrete distributions and their properties	
		(Bernoulli)	
12	II	Basic discrete distributions and their properties	
		(Binomial)	
13	II	Basic discrete distributions and their properties	
		(Poisson)	
14	II	Basic discrete distributions and their properties	
		(Negative Binomial)	
15	II	Basic discrete distributions and their properties	
		(Geometric)	
16	II	Basic discrete distributions and their properties (Hyper	
		geometric)	
17	II	Basic discrete distributions and their properties (uniform	
		distribution)	
18	II	Characteristic and moment generating function	
19	II	Characteristic and moment generating function, Cont.	
20	II	Sampling distribution of sum of observations for	
		discrete distributions	
21	III	Continuous Random Variable	
22	III	Continuous distributions ,pdf,cdf.	
23	III	Continuous distributions ,pdf,cdf examples	
24	III	Rectangular distribution	
25	III	Gamma distribution	
26	III	Beta distribution	
27	III	Normal distribution	
28	III	Cauchy distribution	
29	III	Exponential Lognormal distribution	
30	III	Sampling distributions	

LESSON PLAN

Semester:II Session: 2016-17 Branch/Course Subject- MATHEMATICAL MODELLING Theory Name of Faculty: Dr. J. P. PANDA

Period	Module/	Topic to be covered	Remarks
	Number	-	
1	Ι	Need, Techniques of Mathematical Modelling	
2	Ι	Classification of Mathematical Modelling	
3	Ι	Characteristics of Mathematical Modelling	
4	Ι	Mathematical Modelling Through 1 st order ODE	
5	Ι	Related Problems of 1 st order ODE	
6	Ι	Linear growth and Decay Model	
7	Ι	Related Problems of Decay Model	
8	Ι	Linear growth and Decay Model	
9	Ι	Compartment model	
10	Ι	Compartment model problems	
11	II	Modelling of Geometrical Problems	
12	II	Modelling of Geometrical Problems	
13	II	Mathematical Modelling Through system of First order	
		ODE	
14	II	Mathematical Modelling Through system of First order	
		ODE	
15	II	Problems on Modelling Through system of First order	
		ODE	
16	II	Modelling on Population Dynamics	
17	II	Problems on Population Dynamics	
18	II	Modelling on Epidemics	
19	II	Modelling on compartment Models	
20	II	Modelling in Economics	
21	III	Modelling in Economics	
22	III	Modelling in Medicine	
23	III	Modelling in Medicine	
24	III	Modelling in Arms race	
25	III	Modelling in Arms race	
26	III	Linear growth and Decay Model	
27	III	Linear growth and Decay Model	
28	III	Compartment model	
29	III	Problems on Compartment model	
30	III	Modelling in Arms race, Battles	
31	IV	Modelling in durational trades.	
32	IV	Mathematical Modelling through Second Order O.D.E	
33	IV	Modelling of Planetary motion	
34	IV	Keplers laws and its verification through Mathematical	
		Modelling	
35	IV	Modelling, circular motion	
36	IV	Circular motion	
37	IV	Circular motion of satellite.	

38	IV	Elliptic motion of satellite.	
39	IV	Related problems on Modelling through Second Order	
		O.D.E	
40	IV	Related problems on Modelling through Second Order	
		O.D.E	

LESSON PLAN

Semester:III

Subject- Linear Algebra

Theory Name of Faculty: Dr. J. P. PANDA

Session: 2016-17	
Branch/Course	

Period	Module/	Topic to be covered	Remarks
	Number		
1	Ι	Vector spaces over fields	
2	Ι		
3	Ι	Subspaces, bases and dimension.	
4	Ι	Problems on Subspaces, bases and dimension	
5	Ι	Systems of linear equations, Gaussian elimination	
6	Ι	Rank of matrices	
7	Ι	Linear transformations	
8	Ι	Representation of linear transformations by matrices	
9	Ι	Rank-nullity theorem	
10	Ι	Duality and transpose	
11	II	Determinants, Laplace expansions	
12	II	Cofactors, adjoint, Cramer's Rule	
13	Π	Eigenvalues and eigenvectors	
14	Π	Eigenvalues and eigenvectors	
15	Π	Characteristic polynomials	
16	Π	Minimal polynomials	
17	Π	Cayley-Hamilton Theorem	
18	Π	Triangulation of matrices	
19	Π	Diagonalization of matrices	
20	II	Rational canonical form	
21	III	Jordan canonical form	
22	III	Inner product spaces	
23	III	Problems on Inner product spaces	
24	III	Gram-Schmidt orthonormalization	
25	III	Problems on Gram-Schmidt orthonormalization	
26	III	Orthogonal projections	
27	III	Linear functionals and adjoints	
28	III	Problems on linear functionals	

29	III	Hermitian, self-adjoint operators
30	III	Unitary and normal operators
31	IV	Spectral Theorem for normal operators
32	IV	Problems on operators
33	IV	Rayleigh quotient, Min-Max Principle
34	IV	Bilinear forms
35	IV	Problems on bilinear forms
36	IV	Symmetric and skew-symmetric bilinear forms
37	IV	Real quadratic forms
38	IV	Problems on
39	IV	Sylvester's law of inertia
40	IV	Positive definiteness

Semester:III		Subject-Partial Diff. Eqns.	
Dronoh/Co	/10-1/	Theory Name of Faculty, Dr. S. Mahanati	
Dranch/Co	Madada (Tamie of Faculty: Dr. 5 Monapau	Dereseler
Period	Number	I opic to be covered	Remarks
1	T	Meaning of Partial differential equation	
2	T	Classification of first order Partial differential equations	
3	T	Sami linear and quasi linear equations	
<u> </u>	T	Semi-linear and quasi-linear equations	
5	T	Pfaffian differential equations	
5	T	Diaffian differential equations	
7	T	I agrange's method	
/ Q	T	Compatible sustants	
0	T	Compatible systems	
9		Leashi's method	
10		Jacobi s method	
11		Integral surfaces passing through a given curve	
12		Integral surfaces passing through a given curve	
13		Cauchy problem	
14		Cauchy problem	
15	11	Method of characteristics for quasi-linear and non linear	
16		partial differential equation	
10		Monge cone,	
17		Characteristic strip	
18		First order non-liner equations in two independent variables	
19		Solving problems	
20		Complete integral.	
21	111	Linear Second order partial Differential Equations : Origin	
		of second order p.d.e's,	
22		Classification of Second order Partial Differential Equations.	
23		One dimensional Wave equation	
24		One dimensional Wave equation	
25		Vibration of an infinite string	
26	III	D'Alembert's solution	
27	III	Vibrations of a semi finite string	
28	III	Vibrations of a string of finite length	
29	III	Existence and uniqueness of solution	
30	III	Riemann method	
31	IV	Laplace equation, Boundary value problems	
32	IV	Maximum and minimum principles, Uniqueness and	
		continuity theorems	
33	IV	Dirichilet problem for a circle, Dirichlet problem for a	
		circular annulus	
34		Neumann problem for a circle	
35		Theory of Green's function for Laplace equation	
36		Heat equation, Heat conduction problem for an infinite rod	
37		Heat conduction in a finite rod	
38	IV	Existence and uniqueness of the solution	
39	IV	Classification in higher dimension, Kelvin's inversion	
		theorem	
40	IV	Equipotential surfaces.	

Semester:II Session: 2016-17 Branch/Course Subject-Ordinary Diff. Eqns. Theory

Name of Faculty: Dr. S Mohanatra

Period	Module/	l opic to be covered	Remarks
	Number		
1	1	Quick Review of linear differential Equations of	
		Higher Order, Wronskian.	
2	Ι	System of first order equations,	
3	Ι	Existence and Uniqueness theorems	
4	Ι	Existence and Uniqueness theorems	
5	Ι	Fundamental Matrix	
6	Ι	Fundamental Matrix	
7	Ι	Homogeneous and Non Homogeneous linear systems	
		with constant Coefficients	
8	Ι	Homogeneous and Non Homogeneous linear systems	
		with constant Coefficients	
9	Ι	Linear system with periodic Coefficients	
10	Ι	Linear system with periodic Coefficients	
11	II	Successive approximation Picard's Theorem	
12	Π	Successive approximation Picard's Theorem	_
13	Π	Uniqueness of solutions,	
14	П	Uniqueness of solutions	1
15	Π	Continuation and dependence on Initial conditions,	1
16	II	Continuation and dependence on Initial conditions,	1
17	II	Existence of solutions in the large	1
18	II	Existence of solutions in the large	1
19	II	Existence and uniqueness of solution of systems	1
20	II	Existence and uniqueness of solution of systems	1
21	III	Oscillations of second Order Equations	1
22	III	Oscillations of second Order Equations	1
23	III	Fundamental Results	
24	III	Fundamental Results	1
25	III	Sturm's Comparison theorem	-
26	III	Sturm's Comparison theorem	1
27	III	Solving problems	-
28	III	Oscillations of $x'' + a(t)x = 0$	-
29	III	Oscillations of $x'' + a(t)x = 0$	-
30	III	Solving problems	-
31	IV	Boundary Value Problems :- Introduction	1
32	IV	Strum Liouville's Problem	1
33	IV	Strum Liouville's Problem	1
34	IV	Solving problems	1
35	IV	Green's functions	1
36	IV	Green's functions	1
37	IV	Solving problems	1
38	IV	Picard's theorem	1
39	IV	Picard's theorem	1
40	IV	Solving problems	1

Semester: III Session: 2016-17 Branch/Course: Applied Mathematics

Subject-: Functional Analysis Theory Name of Faculty: Dr. S. K.Paikray

Class	Module	Topic to be covered	Remarks/Sgn of
No.	No.		Faculty Member
1	Ι	Introduction to Functional Analysis, Abstract space.	
2	Ι	Review of Linear Algebra (metric space), Basis and Dimension.	
3	Ι	Metric space, Example of metric space, Discrete metric space	
4	Ι	Further example, Sequence space.	
5	Ι	Holder inequality & Minkowski's inequality in l ^{p-} space	
6	Ι	L ^p space and Holder Minkowski's inequality in L ^{p-} space	
7	Ι	Completeness of $L^p \& l^p$ - space.	
8	Ι	Example of Complete space.	
9	Ι	Normed linear space and introduction to Banach space	
10	Ι	Inner product space and Hilbert space.	
11	Ι	Properties of NLS and IPS.	
12	Ι	Continuity of Linear maps.	
13	Ι	Discussion of problems.	
14	II	Details of Hilbert space, examples.	
15	II	Orthogonal and orthonormal sets.	
16	II	Grahm schmidth orthonormal set.	
17	II	Orthonormal polynomials, problem discussion.	
18	II	Fourier expansion, even and odd function, arbitrary period.	
19	II	Problem discuss of Fourier series and orthogonal function.	
20	II	Bessel inequality and Parseval's equality	
21	II	Orthonormal basis, problem discussion.	
22	II	Direct sum and projection.	
23	II	Projection theorem and doubt discussion.	
24	II	Riesz representation theorem.	

25	III	Details of Banach space, examples.
26	III	Hahn Banach theorem.
27	III	Baire's category theorem.
28	III	Open mapping theorem.
29	III	Closed graph theorem.
30	III	Uniform boudedness principle.
31	III	Dual of L ^P space.
32	III	Transpose of L ^P space, and C [a, b] space.
33	III	Reflexivity, Problem discussion.
34	IV	Bounded linear operator on Banach - space.
35	IV	Banach algebra, Banach limit, examples.
36	IV	Spectrum of a bounded operator, Resolvant.
37	IV	Compact and connected sets
38	IV	Compact operators on Banach spaces
39	IV	Spectrum of compact operators
40	IV	Elementary ideas on integral equations
41	IV	Unbounded Operators, problems discussion
42	IV	Fixed point theorems
43	IV	Problems discussion.

Semester: IV Session: 2016-17 Branch/Course: Applied Mathematic

Subject: Graph Theory Theory Name of Faculty: Dr. S. K.Paikray

Class	Module	Topic to be covered	Remarks/Sgn of
No.	No.		Faculty Member
1	Ι	Introduction to Graph Theory.	
2	Ι	Definition and Examples, Special Graphs.	
3	Ι	Connectedness Walk, Path and circuits.	
4	Ι	Discussion of Theorems.	
5	Ι	Discussion of Theorems and problems.	
6	Ι	Konigsberg bridge problem, Eulerian Path and circuits.	
7	Ι	Necessary and sufficient condition for Eulerian Path and circuits.	
8	Ι	Discussion of Theorems and problems.	
9	Ι	Hamiltonian Path and circuits.	
10	Ι	Discussion of Theorems and problems.	
11	Ι	Some applications of Graph Theory.	
12	II	Introduction to Trees, Basic Terminologies.	
13	II	Discussion of elementary Theorems.	
14	II	Rooted trees, binary trees, Problems discussion.	
15	II	Spanning trees, Prims and Kruskal's algorithim	
16	II	Discussion of Theorems and problems.	
17	II	Cut sets, bridge, cut vertex, Fundamental cut-sets.	
18	II	Fundamental circuits, Theorem discussion.	
19	II	Discussion of Theorems and problems.	
20	II	Network flows, Max flow and min cut theorem.	
21	II	Problems discussion.	
22	II	1-isomorphism, 2-isomorphism.	
23	III	Planar graphs, Kuratowski two non planar graphs.	
24	III	Euler's Formula; proof.	

25	III	Corollaries and associated Theorems.	
26	III	Non planarity of $k_{3,3}$ and k_5 .	
27	III	Detection of planarity.	
28	III	Geometric dual: Examples and discussion of problems	
29	III	Thickness and crossing; Examples.	
30	III	Discussion of Theorems and problems.	
31	IV	Coloring of Graphs, chromatic number.	
32	IV	Chromatic numbers of some standard graphs.	
33	IV	Discussion of Theorems and problems.	
34	IV	Coloring of dual Graphs	
35	IV	Discussion of Theorems.	
36	IV	Discussion of Theorems and problems.	
37	IV	Compact and connected sets	
38	IV	Four color problem.	
39	V	Directed graph, Basic Terminologies. Digraphs and binary relations, Euler digraphs.	
40	V	In and out degrees, theorems discussion.	
41	V	Unbounded Operators, problems discussion	
42	V	Isomorphism of digraphs, discussion of problems.	
43	V	Adjacency and incidence matrix.	
44	V	Connected digraphs; Strongly connected graphs.	
45	V	Binary relations & diagraphs, properties.	

Semester: IV

Subject-: Operations

Research

Session: 2016-17 **Branch/Course: Applied Mathematics K.Paikray**

Theory Name of Faculty: Dr. S.

Class	Module	Topic to be covered	Remarks/Sgn of
No.	No.		Faculty Member
1	Ι	Introduction to Game Theory, basic terminologies.	
2	Ι	Games with saddle points, maximin and minimax criterion.	
3	Ι	Two person and zero sum games, problems discussion.	
4	Ι	Games without saddle points.	
5	Ι	Dominance rule and problems discussion.	
6	Ι	Graphical methods in solving 2 x n and m x 2 pay off matrices.	
7	Ι	Solution of games by simplex methods.	
8	Ι	Sequencing Problems, basic assumptions and terminologies.	
9	Ι	n – jobs and 2 machine problems.	
10	Ι	n – jobs and k machine problems.	
11	Ι	Problems discussion.	
12	Ι	2 – jobs and k - machine problems; Graphical methods.	
13	Ι	Discussion of problems.	
14	II	Introduction to Dynamic Programming.	
15	II	State and Stage, other basic terminologies.	
16	II	DPP algorithms and characteristics.	
17	II	Examples and Problems discussion.	
18	II	Problems discussion.	
19	II	Solution of DPP by technique of LPP.	
20	II	Forward computation method.	
21	II	Backward computation method.	
22	II	Discussion of mixed type problems	
23	II	Problem solving and discussion of doubts.	
24	III	Introduction to Integer Programming; cases pure and mixed type problems.	

25	III	Bnach and Bound Algorithm for solving IPP.
26	III	Solution of problems (Max type).
27	III	Solution of problems (Min type).
28	III	Solution of problems (Mixed type).
29	III	Gomory's cutting plane Method for solution of IPP.
30	III	Examples and Problem solving.
31	III	Network programming; Basic terminologies, rules of construction of net work.
32	III	Critical path method; Problem discussion.
33	III	PERT; Problem discussion.
34	III	Comparison between PERT and CPM.
35	IV	Nonlinear Programming; unconstrained and constrained NLPP.
36	IV	Convexity and concavity; Lagrange multipliers and NLPP wiyth all equality constraints.
37	IV	Compact and connected sets
38	IV	Kuhn Tucker Conditions and Examples discussion.
39	IV	Solution of problems.
40	IV	Quadratic Programming; Hessian matrix, positive and negative definite matrix.
41	IV	Wolfe's modified Simplex method; discussion of problems.
42	IV	Beale's method; discussion of problems.
43	IV	Problems discussion and doubt clearing.