
Module-I 

One’s Complement: Complement all the bits .i.e. makes all 1s as 0s and all 0s as 1s 

Two’s Complement: One’s complement+1 

SIGNED BINARY NUMBERS 

Positive integers (including zero) can be represented as unsigned numbers. However, to 
represent negative integers, we need a notation for negative values. There are three different 
format to represent a negative (signed) number. For example: 
    Three different ways to represent -9 with eight bits: 

Signed magnitude representation:         10001001 

signed‐1’s‐complement representation: 11110110 

signed‐2’s‐complement representation: 11110111 
 

 
Two’s Complement as -ve Number 

Two’s complement is -ve number because binary addition of a n-bit number with it’s 
complement gives n bit result with all bits = 0s 
 
Highest Two’s Complement format +ve Number: A highest positive arithmetic number 
is when at msb there is 0 and all remaining bits are 1s 
Lowest Two’s Complement format -ve Number : A lowest negative arithmetic number 
is when at msb there is 1 and all remaining bits are 0s 
Therefore for 8-bits 
• Maximum 8-bit number = 0111 1111( +127) 
• Minimum 8-bit number = 1000 0000 ( −128) 

 

 



 

Subtraction using �′� and  

Example: Calculate the following binary 

     then verify the result in decimal System.

Important Note:  

� When using the complement methods in subtraction and having no additional 1 in the 

extreme left cell, then, 

� In this case, the solution is the negative 

complement initially), or the negative of 2’s complement of the result (if using 2’s 

complement initially). 

It is shown in the following examples, where the results are 

 

 

 

 

and  �′ complements 

Calculate the following binary Subtraction:  11101.101 

then verify the result in decimal System. 

 

When using the complement methods in subtraction and having no additional 1 in the 

 this means a negative result.  

In this case, the solution is the negative of 1’s complement of the result (if using 1’s 

complement initially), or the negative of 2’s complement of the result (if using 2’s 

  

following examples, where the results are –ve. 

Subtraction:  11101.101 – 1011.11,           

When using the complement methods in subtraction and having no additional 1 in the 

complement of the result (if using 1’s 

complement initially), or the negative of 2’s complement of the result (if using 2’s 

 



 

BINARY CODES 

In the coding, when numbers, letters or words are represented by a specific group of symbols, 

it is said that the number, letter or word is being encoded. The group of symbols is called as a 

code. The digital data is represented, stored and transmitted as group of binary bits. This  

group is also called as binary code. The binary code is represented by the number as well as 

alphanumeric letter. 

Binary-Coded Decimal Code 

           Binary Coded Decimal (BCD) as the name implies is a way of representing Decimal 

numbers in a 4 bit binary code. BCD numbers are useful when sending data to display 

devices for example. The numbers 0 through 9 are the only valid BCD values. Notice in the 

table that the binary and BCD values are the same for the numbers 0 to 9. When we exceed 

the value of 9 in BCD each digit in the BCD number is now represented by a 4 bit binary 

value. 

In this code each decimal dig it is represented by a 4-bit binary number. BCD is a way to 

express each of the decimal digits with a binary code. In the BCD, with four bits we can 

represent sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used 

(0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD. 

 

BCD Addition 

Consider the addition of two decimal digits in BCD, together with a possible carry from a 
previous less significant pair of digits. Since each digit does not exceed 9, the sum cannot be 
greater than 9 + 9 + 1 = 19, with the 1 being a previous carry. Suppose we add the BCD digits 
as if they were binary numbers. Then the binary sum will produce a result in the range from 0 
to 19. In binary, this range will be from 0000 to 10011, but in BCD, it is from 0000 to 1 
1001, with the first (i.e., leftmost) 1 being a carry and the next four bits being the BCD sum. 
When the binary sum is equal to or less than 1001 (without a carry), the corresponding BCD 
digit is correct. However, when the binary sum is greater than or equal to 1010, the result is 



an invalid BCD digit. The addition of 6 = (0110)2 to the binary sum converts it to the correct 
digit and also produces a carry as required. This is because a carry in the most significant bit 
position of the binary sum and a decimal carry differ by 16 - 10 = 6. Consider the 
following three BCD additions: 
 

 
In each case, the two BCD digits are added as if they were two binary numbers. If the binary 
sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum and a carry. 
In the first example, the sum is equal to 9 and is the correct BCD sum. In the second example, 
the binary sum produces an invalid BCD digit. The addition of 0110 produces the correct 
BCD sum, 0010 (i.e., the number 2), and a carry. In the third example, the binary sum 
produces a carry. This condition occurs when the sum is greater than or equal to 16. Although 
the other four bits are less than 1001, the binary sum requires a correction because of the 
carry. Adding 0110, we obtain the required BCD sum 0111 (i.e., the number 7) and a BCD 
carry.  

The addition of two n‐digit unsigned BCD numbers follows the same procedure. 
Consider the addition of 184 + 576 = 760 in BCD: 
 

 
 
The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a carry 
for the next pair of digits. The second pair of BCD digits plus a previous carry produces a 
digit sum of 0110 and a carry for the next pair of digits. The third pair of digits plus a carry 
produces a binary sum of 0111 and does not require a correction. 
Advantages of BCD Codes: It is very similar to decimal system. We need to remember binary 

equivalent of decimal numbers 0 to 9 only.  

Disadvantages of BCD Codes: The addition and subtraction of BCD have different rules. The 

BCD arithmetic is little more complicated. BCD needs more number of bits than binary to 

represent the decimal number. So BCD is less efficient than binary. 

 

 

 

 



Gray Codes 

It is the non-weighted code and it is not arithmetic codes. That means there are no specific weights 

assigned to the bit position. It has a very special feature that has only one bit will chang e, eachtime 

the decimal number is incremented as shown in the table . As only one bit chang es at a time, the g ray 

code is called as a unit distance code. The g ray code is a cyclic code. Gray code cannot be used for 

arithmetic operation 

Decimal BCD Code Gray Code 

0 0000 0000 

1 0001 0001 

2 0010 0011 

3 0011 0010 

4 0100 0110 

5 0101 0111 

6 0110 0101 

7 0111 0100 

8 1000 1100 

9 1001 1101 

  

Binary to Gray Conversion:  
Follow the below Steps to convert Binary number to gray code.  
Lets Consider the Binary number B1 B2 B3 B4 ... Bn and the Gray code is G1 G2 G3 G4 ... Gn  
 

1. Most significant bit (B1) is same as the most significant bit in Gray Code (B1 = G1) 

2. To find next bit perform Ex-OR (Exclusive OR) between the Current binary bit and 

previous bit.  

Gn = Bn (Ex-OR) Bn-1 

3. Look the below Image for Binary to Gray code Conversion  
                       

                                  

Gary to Binary Conversion 
Follow the below steps to convert Gray Code to Binary 

1. Most significant bit (G1) is same as the most significant bit in Binary Code (G1 = B1) 

2. The next number can be obtain by taking Exclusive OR operation between the 

previous binary bit, and the current gray code bit and write down the value. 



Repeat the Above Step until you find Bn  

Look at the below example for Converting Binary to Gray Code.  

                   
 

Application of Gray code:  Gray code is popularly used in the shaft position encoders. A shaft 

position encoder produces a code word which represents the angular position of the shaft. 

Excess-3 code 

 The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal 

numbers. The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2 or 

(3)10 to each code word in8421. The excess-3 codes are obtained as follows 

Decimal Number                 BCD Code                    Exess-3 Code 

Decimal BCD Code Excess-3(BCD+0011) 

0 0000 0011 

1 0001 0100 

2 0010 0101 

3 0011 0110 

4 0100 0111 

5 0101 1000 

6 0110 1001 

7 0111 1010 

8 1000 1011 

9 1001 1100 

 

 

 

 

 

 

 



 

ASCII Code 

(American Standard Code for Information Interchange) 

 ASCII code is a 7-bit code whereas. ASCII code is more commonly used worldwide. This 

standard binary code for the alphanumeric characters is the American Standard Code for 

Information Interchange (ASCII), which uses seven bits to code 128 characters, as shown in 

Table given below. The seven bits of the code are designated by b1 through b7, with b7 the 

most significant bit. The letter A, for example, is represented in ASCII as 1000001 (column 

100, row 0001). The ASCII code also contains 94 graphic characters that can be printed and 

34 nonprinting characters used for various control functions. 

The graphic characters consist of the 26 uppercase letters (A through Z), the 26 lowercase 
letters (a through z), the 10 numerals (0 through 9), and 32 special printable characters, 
such as %, *, and $. 

 
 
The 34 control characters are designated in the following ASCII table with abbreviated 
names 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

BOOLEAN FUNCTIONS 
Boolean algebra is an algebra that deals with binary variables and logic operations. A 
Boolean function described by an algebraic expression consists of binary variables, the 
constants 0 and 1, and the logic operation symbols. For a given value of the binary variables, 
the function can be equal to either 1 or 0. As an example, consider the Boolean function 
 

F1 = x +��z 
A Boolean function can be transformed from an algebraic expression into a circuit diagram 

composed of logic gates connected in a particular structure. The logic‐circuit diagram (also 
called a schematic) for F1 is shown in Figure using different logic gates.   

                                                                                                               

       
  

 

CANONICAL AND STANDARD FORMS 

 
Minterms and Maxterms 

A binary variable may appear either in its normal form (x) or in its complement form (� ′) 
Now consider two binary variables x and y combined with an AND operation. Since each 

variable may appear in either form, there are four possible combinations:�� ′�� ′,�� ′�,��� ′ and 
xy. Each of these four AND terms is called a minterm, or a standard product. In a similar 
manner, n variables can be combined to form 2n minterms. The 2n different minterms may be 
determined by a method similar to the one shown in Table given below for three variables. 
Each minterm is obtained from an AND term of the n variables, with each variable being 
primed if the corresponding bit of the binary number is a 0 and unprimed if a 1. A symbol for 
each minterm is also shown in the table and is of the form mj, where the subscript j denotes 
the decimal equivalent of the binary number of the minterm designated. 
In a similar fashion, n variables forming an OR term, with each variable being primed or 
unprimed, provide 2n possible combinations, called maxterms, or standard sums. The eight 
maxterms for three variables, together with their symbolic designations, are listed in Table 
2.3 . Any 2n maxterms for n variables may be determined similarly. It is important to note 
that (1) each maxterm is obtained from an OR term of the n variables, with each variable 
being unprimed if the corresponding bit is a 0 and primed if a 1, and (2) each maxterm is the 
complement of its corresponding minterm and vice versa. 

A Boolean function can be expressed algebraically from a given truth table by forming 

a minterm for each combination of the variables that produces a 1 in the function 

and then taking the OR of all those terms. For example, the function f1 in Table 2.4 is 



determined by expressing the combinations 001, 100, and 111 as x_y_z, xy_z_, and xyz, 
respectively. Since each one of these minterms results in f1 = 1, we have 

f1 = � ′� ′� + �� ′� ′ + ���  = m1 + m4 + m7 =
(1,4,7) 

 
Minterms and Maxterms for Three Binary Variables 

 
 
 

Standard Forms 

Another way to express Boolean functions is in standard form. 
-SOP (sum of products) 
-POS (product of sums) 

The sum of products is a Boolean expression containing AND terms, called product terms, 

with one or more literals each. The sum denotes the ORing of these terms. An example of a 
function expressed as a sum of products is 

F1 = ��+ xy + ��y�� 
The expression has three product terms, with one, two, and three literals. Their sum is, in 

effect, an OR operation. The logic diagram of a sum‐of‐products expression consists of a 
group of AND gates followed by a single OR gate. This configuration pattern is shown in 
Fig. 2.3 (a). Each product term requires an AND gate, except for a term with a single literal. 
The logic sum is formed with an OR gate whose inputs are the outputs of the AND gates and 
the single literal. It is assumed that the input variables are directly available in their 
complements, so inverters are not included in the diagram. This circuit configuration is 
referred to as a two-level implementation. 
A product of sums is a Boolean expression containing OR terms, called sum terms. Each term 
may have any number of literals. The product denotes the ANDing of these terms. An 
example of a function expressed as a product of sums is 
 

F2 = x (�� + z) (���+y+��) 
 

This expression has three sum terms, with one, two, and three literals. The product is an AND 
operation. The use of the words product and sum stems from the similarity of the AND  
operation to the arithmetic product (multiplication) and the similarity of the OR operation to 

the arithmetic sum (addition). The gate structure of the product‐of‐sums expression consists 
of a group of OR gates for the sum terms (except for a single literal), followed by an AND 
gate. This standard type of expression results in a two-level structure of gates. 



 

Gate-Level Minimization 
 

Gate-level minimization is the design task of finding an optimal gate-level implementation of 
the Boolean functions describing a digital circuit. The map method presented here provides a 
simple, straightforward procedure for minimizing Boolean functions. This method may be 
regarded as a pictorial form of a truth table. The map method is also known as the Karnaugh 

map or K-map. A K-map is a diagram made up of squares, with each square representing one 
minterm of the function that is to be minimized. 
 

Two-Variable K-Map 

        There are four minterms for two variables; hence, the map consists of four squares, one 
for each minterm.. The 0 and 1 marked in each row and column designate the values of 
variables. Variable x appears primed in row 0 and unprimed in row 1. Similarly, y appears 
primed in column 0 and unprimed in column 1. If we mark the squares whose minterms 
belong to a given function, the two-variable map becomes another useful way to represent 
any one of the 16 Boolean functions of two variables. As an example, the function xy is 
shown in Figure (a). Since xy is equal to m3, a 1 is placed inside the square that belongs to 
m3. Similarly, the function x + y is represented in the map of Figure (b) by three squares 
marked with 1’s. These squares are found from the minterms of the function: 

 

 
The three squares could also have been determined from the intersection of variable x in the 
second row and variable y in the second column, which encloses the area belonging to x or y . 
In each example, the minterms at which the function is asserted are marked with a 1. 
 

 

 
 

 

 

 



Three-Variable K-Map 

 

Example: Simplify the Boolean function 

F (x,y,z) = 
(2,3,4,5) 
 

 
The simplified function is:  F (x,y,z) = x’y+yx’ 
 

 

 

Example 

For the Boolean function 

F = ��C + ��B + ���C + BC 

 
(a) Express this function as a sum of minterms. 
(b) Find the minimal sum-of-products expression. 
 
Note that F is a sum of products. Three product terms in the expression have two literals and 
are represented in a three-variable map by two squares each. The two squares corresponding 

to the first term, ��C, are found in Fig-a from the coincidence of �� (first row) and C (two 
middle columns) to give squares 001 and 011. Note that, in marking 1’s in the squares, it is 
possible to find a 1 already placed there from a preceding term. 

This happens with the second term, ��B, which has 1’s in squares 011 and 010. Square 011 is 

common with the first term, ��C, though, so only one 1 is marked in it. Continuing in this 
fashion, we determine that the term AB’C belongs in square 101, corresponding to minterm 5, 
and the term BC has two 1’s in squares 011 and 111. The function has a total of five 
minterms, as indicated by the five 1’s in the map of Figure . The minterms are read directly 
from the map to be 1, 2, 3, 5, and 7. The function can be expressed in sum-of-minterms form 

as  F (x,y,z)=�
(1,2,3,5,7) 
The sum-of-products expression, as originally given, has too many terms. It can be 
simplified, as shown in the map, to an expression with only two terms: 
 

Fig-a 

The simplified function is:  F = C + ��B 
 



FOUR-VARIABLE K-MAP 

       Here for four variables we have 16 minterms. So a map of 16 squares is required. 
Lets say 4 variables are w,x,y,z 

 
 

Example 

Simplify the Boolean function: F (x,y,z)=�
(0,1,2,4,5,6, ,9,12,13,14) 
 

Eight adjacent squares marked with 1’s can be combined to form the one literal term ��. The 
remaining three 1’s on the right cannot be combined to give a simplified term; they must be 
combined as two or four adjacent squares. The larger the number of squares combined, the 
smaller is the number of literals in the term. In this example, the top two 1’s on the right are 

combined with the top two 1’s on the left to give the term ���� . Note that it is permissible to 
use the same square more than once. We are now left with a square marked by 1 in the third 
row and fourth column (square 1110). Instead of taking this square alone (which will give a 
term with four literals), we combine it with squares already used to form an area of four 
adjacent squares. These squares make up the two middle rows and the two end columns, 

giving the term x��.                                       

 
 

The simplified function is:   F =��+ w’��+x�� 



 

 

 

Example 

Simplify the Boolean function: F = A’B’C’+ B’CD’ + A’BCD’ + AB’C’ 

 
 

The simplified function is:     F = B’D’ + A’CD’ + B’C’ 
 

Five-Variable Map 

A five-variable map needs 32 squares and a six-variable map needs 64 squares.  It can be 
explained in the class. 
 
 
 
 
 
 

PRODUCT-OF-SUMS SIMPLIFICATION 

  By using K-map the simplified function is in SOP format. 
So if we want to get Final answer in POS format, we need to simplified for the F’ and at the 
end take complement of F’ to get F in POS form. It can be easily explained in the following 
example 

 

Example 

Simplify the following Boolean function into (a) sum-of-products form and (b) product-of-
sums form: 
 

F (A,B,C,D)=�
(0,1, 2, 5, 8, 9,10) 
The 1’s marked in the map of Figure represent all the minterms of the function. The squares 
marked with 0’s represent the minterms not included in F and therefore denote the 
complement of F. Combining the squares with 1’s gives the simplified function in sum-of-
products form: 
 



(a) F = ���� + ����+ A’��D 

If the squares marked with 0’s are combined, as shown in the diagram, we obtain the 
simplified complemented function: 

F_ = AB + CD + B�� 
Applying DeMorgan’s theorem, we obtain the simplified function in productof-sums form: 
 

(b) F = (�� + ��) (�� + ��) (��+ D) 
 
The gate-level implementation of the simplified expressions obtained in Example 3.7 is 
shown in Fig. 3.13 . The sum-of-products expression is implemented in (a) with a group of 
AND gates, one for each AND term. The outputs of the AND gates are connected to the 
inputs of a single OR gate. The same function is implemented in (b) in its product-of-sums 

 
F (A, B, C, D) = 
(�, �, �, �, �,  , ��)�= ����+ ����+ ����D = 

(��+ ��)(���+ ��)(���+ D) 
 

 

 
 
 

DON’T-CARE CONDITIONS 

 

       The logical sum of the minterms associated with a Boolean function specifies the 
conditions under which the function is equal to 1. The function is equal to 0 for the rest of the 
minterms. In practice, in some applications the function is not specified for certain 
combinations of the variables. As an example, the four-bit binary code for the decimal digits 
has six combinations that are not used and consequently are considered to be unspecified. 
Functions that have unspecified outputs for some input combinations are called incompletely 



specified functions . these unspecified minterms are don’t-care conditions and can be used on 
a map to provide further simplification of the Boolean expression. 
A don’t-care minterm is a combination of variables whose logical value is not specified.  To 
distinguish the don’t-care condition from 1’s and 0’s, an X is used. Thus, an X inside a square 
in the map indicates that we don’t care whether the value of 0 or 1 is assigned to F for the 
particular minterm. 
In choosing adjacent squares to simplify the function in a map, the don’t-care minterms may 
be assumed to be either 0 or 1. When simplifying the function, we can choose to include each 
don’t-care minterm with either the 1’s or the 0’s, depending on which combination gives the 
simplest expression. 
 

Example 

Simplify the Boolean function:   F (w,x,y,z)=�
(1,3,7,11,15) 

which has the don’t-care conditions:  d (w,x,y,z)=�
(0, 2, 5) 
 
     The minterms of F are the variable combinations that make the function equal to 1. The 
minterms of d are the don’t-care minterms that may be assigned either 0 or 1(marked by X’s) 
and the remaining squares are filled with 0’s. To get the simplified expression in sum-of-
products form, we must include all five 1’s in the map, but we may or may not include any of 
the X’s, depending on the way the function is simplified. The term yz covers the four 
minterms in the third column. The remaining minterm, m1, can be combined 
 

 
 
with minterm m3 to give the three-literal term w’x’z. However, by including one or two 
adjacent X’s we can combine four adjacent squares to give a two-literal term. In Figure (a), 
don’t-care minterms 0 and 2 are included with the 1’s, resulting in the simplified function 

F = yz + w’x’ 
In Figure (b), don’t-care minterm 5 is included with the 1’s, and the simplified function is 
now       F = yz + w’z 

Either one of the preceding two expressions satisfies the conditions stated for this example. 

 

More examples will be done in the Class. 
 
 
 
 



 
 

NAND AND NOR IMPLEMENTATION 

Digital circuits are frequently constructed with NAND or NOR gates rather than with AND 
and OR gates. NAND and NOR gates are easier to fabricate with electronic components and 
are the basic gates used in all IC digital logic families. Rules and procedures have been 
developed for the conversion from Boolean functions given in terms of AND, OR, and NOT 
into equivalent NAND and NOR logic diagrams. 
 

NAND Circuits 

The NAND gate is said to be a universal gate because any logic circuit can be implemented 
with it. To show that any Boolean function can be implemented with NAND gates, we need 
only show that the logical operations of AND, OR, and complement can be obtained with 
NAND gates alone. This is indeed shown in Figure.  
 

     A convenient way to implement a Boolean function with NAND gates is to obtain the 

simplified Boolean function in terms of Boolean operators and then convert the function 

to NAND logic. The conversion of an algebraic expression from AND, OR, and complement 
to NAND can be done by simple circuit manipulation techniques that change AND–OR 
diagrams to NAND diagrams. 
 Two equivalent graphic symbols for the NAND gate are shown in Figure . The AND-invert 
symbol has been defined previously and consists 
 
   

 
The general procedure for converting a multilevel AND–OR diagram into an all-NAND 
diagram using mixed notation is as follows: 
1. Convert all AND gates to NAND gates with AND-invert graphic symbols. 
2. Convert all OR gates to NAND gates with invert-OR graphic symbols. 
3. Check all the bubbles in the diagram. For every bubble that is not compensated by another 
small circle along the same line, insert an inverter (a one-input NAND gate) or complement 
the input literal. 

 

Two-Level Implementation 

Example: The implementation of Boolean functions with NAND gates requires that the 
functions be in sum-of-products form.  
                                                  F = AB + CD 

The function is implemented in Figure(a) with AND and OR gates.   
In Figure(b), the AND gates are replaced by NAND gates and the OR gate is replaced by a 
NAND gate with an OR-invert graphic symbol. Remember that a bubble denotes 
complementation and two bubbles along the same line represent double complementation, so 
both can be removed. Removing the bubbles on the gates of (b) produces the circuit of (a).  



 

Multilevel NAND Circuits 

    Implement :   F = A (CD + B) + B�� 

 

 

 

 

 

 



 

NOR Implementation 

Two equivalent graphic symbols for the NOR gate are shown in Figure . 

 

NOR implementation of a function expressed as a product of sums. Then the OR-AND pattern can be 
easily converted to NOR gates.For example: 
 

F = (A + B)(C + D)E 

 
Ex.The Boolean function for this circuit is:F = (AB_ + A_B)(C + D_) 

 

 

THER TWO-LEVEL IMPLEMENTATIONS 

The eight nondegenerate forms are as follows: 
AND–OR                      OR–AND 
NAND–NAND             NOR–NOR 
NOR–OR                      NAND–AND 
OR–NAND                  AND–NOR 
 

AND–OR–INVERT Implementation 

 

The two forms, NAND–AND and AND–NOR, are equivalent and can be treated together. 
Both perform the AND–OR–INVERT function, as shown in Figure given below . The AND–
NOR form resembles the AND–OR form, but with an inversion done by the bubble in the 
output of the NOR gate. It implements the function 

F = (AB + CD + E)_ 
By using the alternative graphic symbol for the NOR gate, we obtain the diagram of Figure 
(b). Note that the single variable E is not complemented, because the only 



change made is in the graphic symbol of the NOR gate. Now we move the bubble from 
the input terminal of the second-level gate to the output terminals of the first-level gates. 
An inverter is needed for the single variable in order to compensate for the bubble. 
Alternatively, the inverter can be removed, provided that input E is complemented. The 
circuit of Fig. 3.27 (c) is a NAND–AND form and was shown in Fig. 3.26 to implement 
the AND–OR–INVERT function. 
An AND–OR implementation requires an expression in sum-of-products form. The 
AND–OR–INVERT implementation is similar, except for the inversion. Therefore, if the 
complement of the function is simplified into sum-of-products form (by combining the 0’s 
in the map), it will be possible to implement F_ with the AND–OR part of the function. 
When F_ passes through the always present output inversion (the INVERT part), it will 

 
OR–AND–INVERT Implementation 

The OR–NAND and NOR–OR forms perform the OR–AND–INVERT function, as shown in 
Fig. 3.28 . The OR–NAND form resembles the OR–AND form, except for the inversion done 
by the bubble in the NAND gate. It implements the function  

F = 3(A + B)(C + D)!� 
By using the alternative graphic symbol for the NAND gate, we obtain the diagram of Figure 
(b). The circuit in Figure(c) is obtained by moving the small circles from the inputs of the 
second-level gate to the outputs of the first-level gates. The circuit of Fig.  (c) is a NOR–OR 
form and was shown in Fig. 3.26 to implement the OR–AND–INVERT function. 
The OR–AND–INVERT implementation requires an expression in product-of-sums form. If 

the complement of the function is simplified into that form, we can implement "� with the 
OR–AND part of the function. When F_ passes through the INVERT part, we obtain the 

complement of "�,�or F , in the output. 
 

 
 
 
 
 



 
 
 

 EXCLUSIVE-OR FUNCTION 

 

The exclusive-OR (XOR), denoted by the symbol⊕, is a logical operation that performs the 
following Boolean operation: 

x ⊕y = xy� + x�y 

The exclusive-OR is equal to 1 if only x is equal to 1 or if only y is equal to 1 (i.e., x and y 

differ in value), but not when both are equal to 1 or when both are equal to 0. The exclusive- 
NOR, also known as equivalence performs the following Boolean operation: 

(��⊕��)�= xy + x�y� 
The exclusive-NOR is equal to 1 if both x and y are equal to 1 or if both are equal to 0. 
The exclusive-NOR can be shown to be the complement of the exclusive-OR by means 
of a truth table or by algebraic manipulation: 

(��⊕��)�= (xy� +�x�y ) = (x� + y)(x + y�) = xy + x�y� 
The following identities apply to the exclusive-OR operation: 

x ⊕ 0 = x 

x ⊕ 1 = x� 

x⊕x = 0 

x⊕x�= 1 

x ⊕ y�= x�⊕ y =�(��⊕��)� 

Any of these identities can be proven with a truth table or by replacing the ⊕ operation 
by its equivalent Boolean expression. Also, it can be shown that the exclusive-OR operation 
is both commutative and associative; that is, 

A ⊕ B = B ⊕ A 

and 

(A ⊕ B) ⊕ C = A⊕ (B ⊕ C) = A⊕B ⊕ C 

This means that the two inputs to an exclusive-OR gate can be interchanged without affecting 
the operation. It also means that we can evaluate a three-variable exclusive-OR operation in 
any order, and for this reason, three or more variables can be expressed without parentheses. 
This would imply the possibility of using exclusive-OR gates with three or more inputs. 
However, multiple-input exclusive-OR gates are difficult to fabricate with hardware. In fact, 
even a two-input function is usually constructed with other types of gates. A two-input 
exclusive-OR function is constructed with conventional gates using two inverters, two AND 
gates, and an OR gate, as shown in Fig (a). Figure (b) shows the implementation of the 

exclusive-OR with four NAND gates. The first NAND gate performs the operation�(xy)� = 

(x�+ y�). The other two-level NAND circuit 



produces the sum of products of its inputs: 

(x�+ y�) + (x�+ y�) = xy�+ x�y = x ⊕ y 

 

 

Odd Function 

The exclusive-OR operation with three or more variables can be converted into an ordinary 

Boolean function by replacing the ⊕  symbol with its equivalent Boolean expression. In 
particular, the three-variable case can be converted to a Boolean expression 
as follows: 

A⊕ B ⊕  C = (A�� + ��B)���+ (AB + ����)C       

= A����+ ��B�� + ABC + ����C 

= 
(1, 2, 4, 7) 
The Boolean expression clearly indicates that the three-variable exclusive-OR function is 
equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary to 
the two-variable case, in which only one variable must be equal to 1, in the case of three or 
more variables the requirement is that an odd number of variables be equal to 1. As a 
consequence, the multiple-variable exclusive-OR operation is defined as an odd function. 

 

 

Parity Generation and Checking 



Exclusive-OR functions are very useful in systems requiring error detection and correction 
codes. A parity bit is used for the purpose of detecting errors during the transmission of  inary 
information. A parity bit is an extra bit included with a binary message to make the number 
of 1’s either odd or even. The message, including the parity bit, is transmitted and then 
checked at the receiving end for errors. An error is detected if the checked parity does not 
correspond with the one transmitted. The circuit that generates the parity bit in the transmitter 
is called a parity generator. The circuit that checks the parity in the receiver is called a parity 

checker. 

As an example, consider a three-bit message to be transmitted together with an even-parity 
bit. Table shows the truth table for the parity generator. The three bits x, y, and z constitute 
the message and are the inputs to the circuit. The parity bit P is the output. For even parity, 
the bit P must be generated to make the total number of 1’s (including P ) even. From the 
truth table, we see that P constitutes an 
 

 

odd function because it is equal to 1 for those minterms whose numerical values have 
an odd number of 1’s. Therefore, P can be expressed as a three-variable exclusive-OR 
function: 

P = x ⊕ y ⊕ z 

The logic diagram for the parity generator can be drawn using XOR gates. The three bits in 
the message, together with the parity bit, are transmitted to their destination, where they are 
applied to a parity-checker circuit to check for possible errors in the transmission. Since the 
information was transmitted with even parity, the four bits received must have an even 
number of 1’s. An error occurs during the transmission if the four bits received have an odd 
number of 1’s, indicating that one bit has changed in value during transmission. The output of 
the parity checker, denoted by C , will be equal to 1 if an error occurs—that is, if the four bits 
received have an odd number of 1’s. The truth table for the even-parity checker is given 



below. From it, we see that the function C consists of the eight minterms with binary 
numerical values having an odd number of 1’s. The table corresponds to the map of Fig.(a), 
which 

 

represents an odd function. The parity checker can be implemented with exclusive-OR gates: 

C = x ⊕ y ⊕ z ⊕ P 

The logic diagram of the parity checker can be drawn using XOR gates. It is obvious from the 
foregoing example that parity generation and checking circuits always have an output 
function that includes half of the minterms whose numerical values have either an odd or 
even number of 1’s. As a consequence, they can be implemented with exclusive-OR gates. A 
function with an even number of 1’s is the complement of an odd function. It is implemented 
with exclusive-OR gates, except that the gate associated with the output must be an 
exclusive-NOR to provide the required complementation. 

 

 

 


