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Fundamentals of Fluid Mechanics

SCOPE OF FLUID MECHANICS

Knowledge and understanding of the basic principles and concepts of fluid mechanics are
essential to analyze any system in which a fluid is the working medium. The design of almost
all means transportation requires application of fluid Mechanics. Air craft for subsonic and
supersonic flight, ground effect machines, hovercraft, vertical takeoff and landing requiring
minimum runway length, surface ships, submarines and automobiles requires the knowledge
of fluid mechanics. In recent years automobile industries have given more importance to
aerodynamic design. The collapse of the Tacoma Narrows Bridge in 1940 is evidence of the
possible consequences of neglecting the basic principles fluid mechanics.

The design of all types of fluid machinery including pumps, fans, blowers,
compressors and turbines clearly require knowledge of basic principles fluid mechanics.
Other applications include design of lubricating systems, heating and ventilating of private

homes, large office buildings, shopping malls and design of pipeline systems.

The list of applications of principles of fluid mechanics may include many more. The
main point is that the fluid mechanics subject is not studied for pure academic interest but

requires considerable academic interest.
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CHAPTER -1

Definition of a fluid:-

Fluid mechanics deals with the behaviour of fluids at rest and in motion. It is logical to begin
with a definition of fluid. Fluid is a substance that deforms continuously under the application
of shear (tangential) stress no matter how small the stress may be. Alternatively, we may
define a fluid as a substance that cannot sustain a shear stress when at rest.

A solid deforms when a shear stress is applied , but its deformation doesn’t continue to
increase with time.

Fig 1.1(a) shows and 1.1(b) shows the deformation the deformation of solid and fluid under
the action of constant shear force. The deformation in case of solid doesn’t increase with
time ie 6,=0,..... =0,

tn -

From solid mechanics we know that the deformation is directly proportional to applied shear
stress (t= F/A ),provided the elastic limit of the material is not exceeded.

To repeat the experiment with a fluid between the plates , lets us use a dye marker to outline
a fluid element. When the shear force ‘F’, is applied to the upper plate , the deformation of
the fluid element continues to increase as long as the force is applied , i.e 6,, > 6,,.

Fluid as a continuum :-

Fluids are composed of molecules. However, in most engineering applications we are
interested in average or macroscopic effect of many molecules. It is the macroscopic effect
that we ordinarily perceive and measure. We thus treat a fluid as infinitely divisible substance
, 1.e continuum and do not concern ourselves with the behaviour of individual molecules.

The concept of continuum is the basis of classical fluid mechanics .The continuum
assumption is valid under normal conditions .However it breaks down whenever the mean
free path of the molecules becomes the same order of magnitude as the smallest significant

characteristic dimension of the problem .In the problems such as rarefied gas flow (as
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encountered in flights into the upper reaches of the atmosphere ) , we must abandon the
concept of a continuum in favour of microscopic and statistical point of view.

As a consequence of the continuum assumption, each fluid property is assumed to have a
definite value at every point in the space .Thus fluid properties such as density , temperature ,
velocity and so on are considered to be continuous functions of position and time .

Consider a region of fluid as shown in fig 1.5. We are interested in determining the density at
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the point ‘c’, whose coordinates are x,, y, and z, . Thus the mean density V would be given
by p= % . In general, this will not be the value of the density at point ‘c’ . To determine the
density at point ‘c’, we must select a small volume , &V, surrounding point ‘c’ and determine
the ratio ‘;—’: and allowing the volume to shrink continuously in size.

Assuming that volume oV is initially relatively larger (but still small compared with volume ,
V) a typical plot might appear as shown in fig 1.5 (b) . When 6V becomes so small that it

contains only a small number of molecules, it becomes impossible to fix a definite value for
sm . . .
v the value will vary erratically as molecules cross into and out of the volume. Thus there

is a lower limiting value of oV, designated oV'. The density at a point is thus defined as

om
= lim T
P VoV g,




Fundamentals of Fluid Mechanics

Since point ‘¢’ was arbitrary , the density at any other point in the fluid could be determined
in a like manner. If density determinations were made simultaneously at an infinite number of
points in the fluid , we would obtain an expression for the density distribution as function of
the space co-ordinates , p = p(X,y,Z,) , at the given instant.

Clearly, the density at a point may vary with time as a result of work done on or by the fluid
and /or heat transfer to or from the fluid. Thus , the complete representation(the field
representation) is given by :p = p(x,y,z,t)

Velocity field:

In a manner similar to the density , the velocity field ; assuming fluid to be a continuum , can

be expressed as :V = V(x,y,z,t)

The velocity vector can be written in terms of its three scalar components , i.e
V =ui+vj+wk

In general ; u = u(x,y,z,t) , v=v(x,y,z,t) and w=w(X,y,z,t)

If properties at any point in the flow field do not change with time , the flow is termed as

steady. Mathematically , the definition of steady flow is Z—Z =0 ; where n represents any fluid

property.
Thus for steady flow is Z—‘t’ =0 or p=p(x,y,z)

Z—: =0orV = V(x,y,z)

Thus in steady flow ,any property may vary from point to point in the field , but all properties
, but all properties remain constant with time at every point.

One, two and three dimensional flows :

A flow is classified as one two or three dimensional based on the number of space
coordinates required to specify the velocity field. Although most flow fields are inherently
three dimensional, analysis based on fewer dimensions are meaningful.

Consider for example the steady flow through a long pipe of constant cross section

(refer Figl.6a). Far from the entrance of the pipe the velocity distribution for a laminar flow

u

can be described as: = [1 - (%)2]. The velocity field is a function of r only. It is

Umax

independent of rand &.Thus the flow is one dimensional.
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Figl.6a and Figl.6b

An example of a two-dimensional flow is illustrated in Figl.6b.The velocity distribution is

depicted for a flow between two diverging straight walls that are infinitely large in z
direction. Since the channel is considered to be infinitely large in z the direction, the velocity
will be identical in all planes perpendicular to z axis. Thus the velocity field will be only

function of x and y and the flow can be classified as two dimensional. Fig 1.7

For the purpose of analysis often it is convenient
to introduce the notion of uniform flow at a given
cross-section. Under this situation the two

dimensional flow of Fig 1.6 b is modelled as one

dimensional flow as shown in Figl.7, i.e. velocity

field is a function of x only. However,

convenience alone does not justify the assumption such as a uniform flow assumption at a
cross section, unless the results of acceptable accuracy are obtained.

Stress Field:

Surface and body forces are encountered in the study of continuum fluid mechanics. Surface
forces act on the boundaries of a medium through direct contact. Forces developed without
physical contact and distributed over the volume of the fluid, are termed as body forces .
Gravitational and electromagnetic forces are examples of body forces .

Consider an area 8A , that passes through ‘¢’

n .Consider a force 8F acting on an area 84 through
¥ » 0 F point ‘c’ .The normal stress 0y, and shear stress T,
¢4 y oF,
G _ o 5Fn
§ Ft are then defined as @0, = limg, 5a.
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SF;

5A ;Subscript ‘n’ on the stress is included as a reminder that the stresses are
n

Ty =limgy

associated with the surface 84 , through ‘c’ , having an outward normal in 7 direction .For
any other surface through ‘c’ the values of stresses will be different .
Consider a rectangular co-ordinate system , where stresses act on planes whose normal are in

X,y and z directions.

6%, ey
fi 2 £ Tpone
0Fa Iz .
s o

Fig 1.9

Fig 1.9 shows the forces components acting on the area d A, .

The stress components are defined as ;

Z i SF,
O-xx - lmgAxﬁo (SAx

_ 5F,
Oxy = lMgy, 5Ay

SF,
SAy

Oy, = limé‘Ax_)o
A double subscript notation is used to label the stresses. The first subscript indicates the plane
on which the stress acts and the second subscript represents the direction in which the stress
acts, i.e Oyy Tepresents a stress that acts on x- plane (i.e the normal to the plane is in x

direction ) and acts in ‘y’ direction .

Consideration of area element 64,, would lead to the definition of the stresses , a,, , 0, and

gy, - Use of an area element 54, would similarly lead to the definition o, , 7., and o, .
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An infinite number of planes can be passed through point ‘c’ , resulting in an infinite number
of stresses associated with planes through that point. Fortunately , the state of stress at a point
can be completely described by specifying the stresses acting on three mutually perpendicular
planes through the point.
Thus , the stress at a point is specified by nine components and given by :

Oxx Oxy Oxz
g =|%x Oyy Oyz

O-ZJC Jzy O-ZZ

Fig 1.10

Viscosity:

In the absence of a shear stress , there will be no deformation. Fluids may be broadly
classified according to the relation between applied shear stress and rate of deformation.

Consider the behaviour of a fluid element between the two infinite plates shown in fig 1.11 .
The upper plate moves at constant velocity , du , under the influence of a constant applied
force ,OF, .

The shear stress , 0y, , applied to the fluid element is given by :

8Fy _dFy

Oyx = limgy, 84y dA,

Where , 54, is the area of contact of a fluid element with the plate. During the interval 6t

the fluid element is deformed from position MNOP to the position M'NOP' . The rate of
deformation of the fluid element is given by:
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Deformation rate = lim Sa _ da

e BRI / /

N e FOICE, BF

Velocity, du
Fluid element

\ at time, ¢ Fluid element

attime, r + 8¢

- : da . .
To calculate the shear stress, o, , it is desirable to express d—(; in terms of readily measurable
quantity. ol = du ot

Also for small angles , 8l = 3y da

Equating these two expressions , we have

da _ o
st oy

. .. . . . da _du
Taking limit of both sides of the expression , we obtain ; P o

Thus the fluid element when subjected to shear stress , o,,, , experiences a deformation rate ,
. du

given by a

#Fluids in which shear stress is directly proportional to the rate of deformation are

“Newtonian fluids .

# The term Non —Newtonian is used to classify in which shear stress is not directly
proportional to the rate of deformation .

Newtonian Fluids :

Most common fluids i.e Air , water and gasoline are Newtonian fluids under normal
conditions. Mathematically for Newtonian fluid we can write :

du
Oyx X o
If one considers the deformation of two different Newtonian fluids , say Glycerin and water
,one recognizes that they will deform at different rates under the action of same applied
stress. Glycerin exhibits much more resistance to deformation than water . Thus we say it is
more viscous. The constant of proportionality is called , ‘p’ .

10
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du
Thus,, Oyx =t

Non-Newtonian Fluids :

n
gyx=K (@) , ‘n’ is flow behaviour index and ‘k’ is consistency index .

To ensure that g, has the same sign as that of (g—;) , We can express
-1
|G () ()

du\|" L. . .
Where ‘v’ = k| (d—y)| is referred as apparent viscosity.
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# The fluids in which the apparent viscosity decreases with increasing deformation rate (n<1)
are called pseudoplastic (shear thining) fluids . Most Non —Newtonian fluids fall into this
category . Examples include : polymer solutions , colloidal suspensions and paper pulp in
water.

# If the apparent viscosity increases with increasing deformation rate (n>1) the fluid is termed
as dilatant( shear thickening). Suspension of starch and sand are examples of dilatant fluids .

# A fluid that behaves as a solid until a minimum yield stress is exceeded and subsequently
exhibits a linear relation between stress and deformation rate .

Oyy = Oyiorq + (du)
VX yield u dy

Examples are : Clay suspension , drilling muds & tooth paste.
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Causes of Viscosity:
The causes of viscosity in a fluid are possibly due to two factors (i) intermolecular force of

cohesion (ii) molecular momentum exchange.

#Due to strong cohesive forces between the molecules, any layer in a moving fluid tries to

drag the adjacent layer to move with an equal speed and thus produces the effect of viscosity.

#The individual molecules of a fluid are continuously in motion and this motion makes a
possible process of momentum exchange between layers. Such migration of molecules causes

forces of acceleration or deceleration to drag the layers and produces the effect of viscosity.

Although the process of molecular momentum exchange occurs in liquids, the intermolecular
cohesion is the dominant cause of viscosity in a liquid. Since cohesion decreases with

increase in temperature, the liquid viscosity decreases with increase in temperature.

In gases the intermolecular cohesive forces are very small and the viscosity is dictated by
molecular momentum exchange. As the random molecular motion increases wit a rise in

temperature, the viscosity also increases accordingly.

Example-1An infinite plate is moved over a second plate on a layer of liquid. For small gap
width ,d, a linear velocity distribution is assumed in the liquid . Determine :
(i) The shear stress on the upper and lower plate .

(ii) The directions of each shear stresses calculated in (i).

7

"T:‘/“/;«*'/ 77

. _du
SOln.Tyx —HE
Since the velocity profile is linear ;we have

Uy —0) Uo
T = = —
yx “( d—o d

. — _ . Uo _
Hence; Tyx|y=g = Tyxly=0 = u—-= constant

12
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Example-2

An oil film of viscosity p & thickness h<<R lies between a solid wall and a circular disc as
shown in fig E .1.2. The disc is rotated steadily at an angular velocity Q. Noting that both the
velocity and shear stress vary with radius ‘r’, derive an expression for the torque ‘T’ required
to rotate the disk.

Soln: I

. . . . . du
Assumption : linear velocity profile, laminar flow.u = Qr; 7, =p—

0
== dF=tdA
dy h

dF=p (%)21’& dr

4
T=[dT= [ ‘rdF =2 (F r3dr:H”2!;lR

Vapor Pressure:

Vapor pressure of a liquid is the partial pressure of the vapour in contacts with the saturated
liquid at a given temperature. When the pressure in a liquid is reduced to less than vapour

pressure, the liquid may change phase suddenly and flash.
Surface Tension:

Surface tension is the apparent interfacial tensile stress (force per unit length of interface) that
acts whenever a liquid has a density interface, such as when the liquid contacts a gas, vapour,
second liquid, or a solid. The liquid surface appears to act as stretched elastic membrane as
seen by nearly spherical shapes of small droplets and soap bubbles. With some care it may be
possible to place a needle on the water surface and find it supported by surface tension.

A force balance on a segment of interface shows that there is a pressure jump across
the imagined elastic membrane whenever the interface is curved. For a water droplet in air,
the pressure in the water is higher than ambient; the same is true for a gas bubble in liquid.
Surface tension also leads to the phenomenon of capillary waves on a liquid surface and

capillary rise or depression as shown in the figure below.

13
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Basic flow Analysis Techniques:

There are three basic ways to attack a fluid flow problem. They are equally important for a
student learning the subject.

(1)Control-volume or integral analysis
(2)Infinitesimal system or differential analysis
(3) Experimental or dimensional analysis.

In all cases the flow must satisfy three basic laws with a thermodynamic state relation and
associated boundary condition.

1. Conservation of mass (Continuity)

2. Balance of momentum (Newton’s 2" Jaw)

3. First law of thermodynamics (Conservation of energy)
4. A state relation like p=p (P, T)

5. Appropriate boundary conditions at solid surface, interfaces, inlets and exits.

Flow patterns:

Fluid mechanics is a highly visual subject. The pattern of flow can be visualized in a dozen of
different ways . Four basic type of patterns are :

1. Stream line- A streamline is a line drawn in the flow field so that it is tangent to the line
velocity field at a given instant.

2. Path line- Actual path traversed by a fluid particle.

14
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3. Streak line- Streak line is the locus of the particles that have earlier passed through a
prescribed point.

4. Time line — Time line is a set of fluid particles that form a line at a given instant .

For stream lines: d¥ xV =0

ik
dx dy dz|=0
u vw

= f(wdy-vdz)-jwdx—udz)+k(vdx—udy)=0
= wdy=vdz ;wdx=udz & vdx=udy.
dx dy dz
SO;7=—=—

v w

EX: A velocity field given by V = Ax i — Ay . x, y are in meters . units of velocity in m/s.
A=03s"1

(a) obtain an equation for stream line in the X,y plane.

(b) Stream line plot through (2,8,0)

(c) Velocity of a particle at a point (2,8,0)

(d) Position at t = 6s of particle located at (2,8,0)

(e) Velocity of particle at position found in (d)

(F) Equation of path line of particle located at (2,8,0) at t=0

Soln: -
g . X _ @ 16
(2) For stream lines ; — = —~
dx dy u v
R 12
dx _ dy
= f7_ - f7 =
= lnx=- lny +C % 8H— ‘72,8,0 DB 2_4f e
= lnxy=C
= Xy =C e
(b)Stream lime plot through ( x, , v, ,0)
0
= x0Yo =C 5
= (=16
= Xxy=16

(©)V=06i-06]

u=Ax, Z=Ax , [[Z=Afdt

dt X0 X

X

= 1n(xio)=At ,x—O:eAf

d d t
v=-Ay, d—3t1=-Ay : fy’;;y:Adet

15
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= In(L)=-At , Z=¢™4
Yo Yo

Att=6s5;x=2¢e%3%6 =121m
1 y=8e703%6 =132 m
() V=03x121¢ -03x1.32f = 3.631— 0.396]

(F) To determine the equation of the path line , we use the parametric equation :

At

X=x,e4 and y=y,e 4" and eliminate ‘t’

= XY = XoYo
Remarks :

(a)The equation of stream line through (x,, y,) and equation of the path line traced out by
particle passing through (x,y,)are same as the flow is steady.

(b) In following a particle ( Lagrangian method of description ) , both the coordinates of the
particle (x,y) and the component (u,, & v,) are functions of time.

Example -2:

A flow is described by velocity field, V =ay i + bt j , wherea=1s"1,b=0.5m/s? . Att=2s,
what are the coordinates of the particle that passed through (1,2) at t=0 ? At t=3s, what are
the coordinates of the particle that passed through the point (1,2) at t= 2s .

Plot the path line and streak line through point (1,2) and compare with the stream lines
through the same point ( 1,2) at instant , t=0,1,2 & 3s.

Soln:

Path line and streak line are based on parametric equations for a particle .

v==2 =bt, so, dy=hbtdt
dt

b
= Y- :E(tz_toz)

d b
&u:d—’;:ay:a[y0+5(t2—t02)]

> [ dx = [ {a[ yo + 7 (£~ tp?) I}t

= (x — xo) =ayo(t- to)"‘g(g —tozt)go

D x=xo+aylt-to) + 2 { 2 - t’(t 1) }

0 Yo 0 > 3 0 0

(@) Forty=0and (x,, yo) =(1,2),att=2s, we have
> y-2=2(4)
= y=3m
> x=1+2(2-0)+ = [7-0]=567m

(b)For ty =2s and (xq , y9) =(1,2) . Thusatt=3s
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We have , y -2 = Z(t2— to2) = 2= (9-4) = 1.25

= y=3.25m

33-23

& x=1+2(32)+2 {5 -2’32}

= x_1+2(32)+—{(ﬂ) 4(1)}=358m

(c) The streak line at any given ‘t’ may be obtained by varying ‘t,’ .

# part (a) : path line of particle located at (x, , yo) att,=0Ss.

) [t [Xm) [ Y(m)
0 0 1 2

0 1 3.08 2.25
0 2 5.67 3.00
0 3 9.25 4.25

W ’JY‘Q R\Ot
to(s) | 1(s) X Y o4 i
2 2 1 2 ko %
2 3 358 |3.25 '}
2 4 767 |50
g
o

#part (c) : ===
= dx = ( )dy
= ydy—;dx
= yzz(%bt)x+c
Thus , ¢ = 2 - (59) %
For (xo , yo) = (1,2) , for different value of ‘t’ .
Fort=0;c=(2)2=4
t=1c=4-(5)1=3

t=2;c=4-(3)1=2

17
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t:3;c:4—(§)1:1

ts) |0 1 2 3
C= 4 3 2 1
X Y Y Y Y
1 2 2 2 2
2 2 2.24 2.45 2.65
3 2 2.45 2.83 3.16
4 2 2.65 3.16 |3.61
5 2 2.53 3.46 | 4.0
6 2 3.0 3.74 | 4.36
7 2 3.16 400 |4.69

# Streak line of particles that passed through point (x, , y,) att = 3s.

bo(s) (1) [X(m) | Y(m)
0 3 9.25 4.25
1 3 6.67 4.00
2 3 3.58 3.25
3 3 1.0 2.0

oy ear nd plot
t =g

18
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CHAPTER -2

FLUID STATICS

In the previous chapter , we defined as well as demonstrated that fluid at rest cannot sustain
shear stress , how small it may be. The same is true for fluids in “ rigid body” motion.
Therefore, fluids either at rest or in “rigid body” motion are able to sustain only normal
stresses. Analysis of hydrostatic cases is thus appreciably simpler than that for fluids
undergoing angular deformation.

Mere simplicity doesn’t justify our study of subject . Normal forces transmitted by fluids are
important in many practical situations. Using the principles of hydrostatics we can compute
forces on submerged objects, developed instruments for measuring pressure, forces
developed by hydraulic systems in applications such as industrial press or automobile brakes.

In a static fluid or in a fluid undergoing rigid-body motion, a fluid particle retains its identity
for all time and fluid elements do not deform. Thus we shall apply Newton’s second law of
motion to evaluate the forces acting on the particle.

The basic equations of fluid statics :

For a differential fluid element , the body forceis dF; =g dm = gpdVv

(here , gravity is the only body force considered)where, g is the local gravity vector ,p is
the density & dV is the volume of the fluid element. In Cartesian coordinates, dv= dx dy dz
.In a static fluid no shear stress can be present. Thus the only surface force is the pressure
force. Pressure is a scalar field, p = p(x,y,z) ; the pressure varies with position within the
fluid.

N

p- |00 &) 1
J o
. d ;3’:"5“

TN
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Pressure at the left face : P, = (p - Z—Z dzy)

ap dy)

Pressure at the right face : P = (p + — 3y 2

Pressure force at the left face :F,=(p - —p dy)dx dzj

Pressure force at the right face :Fr = (p + Z—z %y)dx dz (-j)

Similarly writing for all the surfaces , we have

=1 (p- 22 Dydy dz + (p+ 32 Lydy dz () + (p- 2 Lydx oz J
+(p+ 5 dxdz () + (p+ 32 Dy () +(p+ 52 Dhdx dy (R)

Collecting and concealing terms , we obtain :

dF;, =- (2

Q)lQJ
<

~ 6
]a—” a—’z’)dxdydz

> dFE, =- (Vp) dx dy dz
Thus

Net force acting on the body:
> dF =dF, +dF5 = (- Vp + pg ) dx dy dz
> dF =(-Vp+pg)dv

or, in a per unit volume basis:

>

dF _ _
—=(-Vp+pg) —(2.1)

For a fluid particle , Newton’s second law can be expressed as : df =adm=a p dv

or L=ap 5(2.2)

dv
Comparing 2.1 & 2.2, we have
-Vp+pg=ap
For a static fluid , @ =0 ; Thus we obtain ; - Vp + pg =0

The component equations are ; g=-gk

oy + pgx =0 9x=0=gy

20
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dp —
"5, TPgy =0
op _
=, TP9z=0

Using the value of g, , g, ¢ g,We have

=0,2 =0 &2=—pg ;since P=P(2)

ap _
dy -

ox
We can write —=—Pg
Restrictions: (i) Static fluid
(i) gravity is the only body force

(iii) z axis is vertical upward

Prauge A &

P atm ~
P abs = N -

P=0 J . -

#Pressure variation in a static fluid :

P _ o= nstant
dz—pg consta

P z
> fPOdP =-pngOdZ
» P —Py=-pg(Z-Zy)
» P —Py=-pg(Zo—Z)=pgh

Ex:2.1 A tube of small diameter is dipped into a liquid in an open container. Obtain an
expression for the change in the liquid level within the tube caused by the surface tension.

.
v

Level change (mm)
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Soln:

2.FE, =cI1DcosO - pgAV =0

Neglecting the volume of the liquid above Ah , we obtain
AV =7 D2 Ah

Thus ; cI1Dcos - pg%D2 Ah=0

_ 4ocosb

> Ah=
pgD

Multi Fluid Manometer:

Ex2.2 Find the pressure at ‘A’.

Soln:P, + p,g %0.15 - p,,,0%0.15 + p,g x0.15 - p,,0%0.3 = P,

#Inclined Tube manometer:

Ex2.3 Given : Inclined—tube reservoir manometer .
Find : Expression for ‘L’ in terms of AP.
#General expression for manometer sensitivity

#parameter values that give maximum sensitivity

22
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Soln:

Equilibrium
liquid level

Gage liquid, p,

Equating pressures on either side of Level -2, we have; AP = p; g (h+H)

To eliminate ‘H’ , we recognise that the volume of manometer liquid remains constant i.e the
volume displaced from the reservoir must be equal to the volume rise in the tube.

Thus : Zp2H =242,
4 4

> H=LE)?
1
> AP = p g [Lsind + L(5)?1= gL sind +(5)%] —>
Thus, L= 2

p18[sinb + (%)2]

To obtain an expression for sensitivity , express AP in terms of an equivalent water column
height , h,

AP= py,ghe

Combining equation 1 &2 , we have

pOLLsiNG +()?] = pughe

Thus,S=i=—1 -
e selsino+ &
Where , SG = :)’—

: e . e ) d
The expression ‘S’ for sensitivity shows that to increase sensitivity SG, sin6 and > should be

made as small as possible.
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Hyvdrostatic Force on the plane surface which is inclined at an angle ‘0’ to

horizontal free surface:

We wish to determine the resultant hydrostatic force on the plane surface which is inclined at
angle ‘0’ to the horizontal free surface.

Since there can be no shear stresses in a static fluid , the hydrostatic force on any element of
the surface must act normal to the surface .The pressure force acting on an element dA of the

upper surface is given by dF =-p dA .

The negative sign indicates that the pressure force acts against the surface i.e in the direction
opposite to the area d4 .Fy = [, —pdA
If the free surface is at a pressure ( Py = Pgem), then, p = py + pgh
|Frl = [,(po + pgh)dA =poA+ [ pgy sinddA
> |Fgl=poA +pgsinb [, ydA
But [, ydA = y.dA
Thus, |[Fg| = poA + pgy.Asind = (po + pgy, SiNB)A
Where h,. is the vertical distance between free surface and centroid of the area .

# To evaluate the centre of pressure (c.p) or the point of application of the resultant force

The point of application of the resultant force must be such that the moment of the resultant
force about any axis is equal to the sum of the moments of the distributed force about the
same axis.

If 7* is the position vector of centre pressure from the arbitrary origin , then

T*xFg=[FxdF =- [FxpdA
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Referring to fig 2.3 , we can express

=% *

T=0x"+ ]y
F=xi+vyj ;dA=-dA kand F; = Frk
Substituting into equation , we obtain
(Cx" +jy" )x Fpk = [(x0 + yj) xdF =[,(x{ + yj)xpdAk
Evaluating the cross product , we get
> Jx"Fp+1y'Fg = [,(=] xp+1yp)dA
Equating the components in each direction ,

y*Fr=[,ypdA and x* Fp= [ xpdA #when the ambient (atmospheric) pressure , p, ,

acts on both sides of the surface , then p, makes no contribution to the net hydrostatic force

on the surface and it may be dropped . If the free surface is at a different pressure from the

ambient, then * p,’ should be stated as —_—

e ———

gauge pressure , while calculating the

net force .

y* = [, pydA _ [, pgx?singdA
FRr PGYcA sinf

> y* — pgsind[y? dA
pPIYcA sind

But from parallel axis theorem , I, = I35 + A y,2

Where I;; is the second moment of the area about the centroid al ‘X’ axis . Thus

* 155?
= + —
Y =Yet o
h I3 sin@
Or , y* - ( - C + XX
sin Ah,

Similarly taking moment about ‘y’ axis ;
x* Fp = [ xpdA

> x*pgsiny. A= [ xpgh dA = pgsinB [, xydA
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> x* = [yxydA _ Ly
Ayc Ayc

From the parallel axis theorem, I, = Iy + Ax Y,

Where Iy is the area product of inertia w.r.t centroid al £y axis.
So, x* =x, + By

For surface that is symmetric about ‘y’ axis , x* = x, and hence usually not asked to evaluate.

Example Problem:

Ex 2.4:Rectangular gate , hinged at ‘A’ , w=5m . Find the resultant force , Fy , of the water
and the air on the gate .The inclined surface shown , hinged along edge ‘A’ , is S5Sm wide .

Determine the resultant force , Fx , of the water and air on the inclined surface.

Soln:-

E:ff'lpd,i:—ffpgysinmwdyk

> Ty = _pgw i [ ]4 _ _ 999%9.81x5

= Fy= -588.01 KN

[64-16]k

Force acts in negative ‘z’ direction.

To find the line of action :

Taking moment about x axis through point * O * on the free surface , we obtain :

% o _ r8 )
Y Fp=[,ypdA= ] ypgsin30wdy
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" _ 3.8 _ 5X999%9.81
>y =B =T [8% - 4%]
> y* x(588.01 x10°) = 3658.73x103

» y*=6.22m
#To find x* ; we can take moment about y axis through point ‘o’.
X" Fp=[,xpdA= fow ffx pyg sin30 dx dy

> x* Fg :fow

> x*FR=¥FR

> x*=§=2.5m

x dx ff pgysin30 dy = % ff pgy sin30 .wdy

Alternative way: By directly using equations:

Fr=pgh. A=pg(
2+2sin30) x4x5

wid/12
20X6

* Izz _
=y + 2 =6+
Y =Yt -=6

=6.22m

Thus, x*=x,=25m

Concept of pressure prism:

Fr =volume = % (pgh)hb
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Ex2.5: A pressurised tank contains oil (SG=0.9) and has a square , 0.6 m by 0.6m plate bolted
to its side as shown in fig . The pressure gage on the top of the tank reads 50kpa and the
outside tank is at atmospheric pressure. Find the magnitude & chatvi‘on of the resultant force

onthe attached plate . Pebaldant fyce on fhe @ Bt
]‘1 . g o
Soln :F, = (P, + @p:;om 7,
pghy)X0.36 = 24.4 kN SN 58
( AY \1 /|
Fy =pe(ho-h))x0.36= 3 .
2 3 ) | 4
0.954kN —— T Ve 1 "2
Fr =F, + F,=254kN @3

If ‘Fg ° is the force
acting at a distance y*
for

1A = 7doda

A2 2
Y_,”——\J-/A/./ = Vol e

Ex-2.6

Soln: Basic equations :

2L~ pg: |Fel = [pdA;

>.M =0;Taking moment about the hinge ‘B’ , we have
F,R=[ydF = [ pghy dA

» dA=rdodr;
» y=rsin0 ; h=H-y
> FA:% fonf:rsinepg (H — rsin@) rdrdo

> Fy =L [ [ Hr? -r3sino)dr do
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pgfn HL-—smO]O sino do
=22 f”(ﬂ-—sme)smede

=LY [[TH ing do - J)' = sin?0do ]

3

L9 T - Cosg]n-&"’_ x=[ J,'(1=cos20)do]

R
_ _Pg HR® . . .o pgR®c .\ sin20.p
=20 2T [141] - 225 0 - 22
2pgHR? R3
=
2HR? [R3
> Fy=pg| '_]
» F, =366 kN . (Ans)

Ex-2.7 :- Repeat the example problem
2.4 if the C.S area of the inclined surface
is circular one , with radius R=2.

Soln: Using integration;

Fr=[,dF = [, pghdA =
I pgysin@dr rd¢

nty =6m

= y=6-n=6-rsind
Fr = pgsin30 [7 [(6 — rsing)r dr d¢
_pg 211 R 2 .
==, J, (6r —r’sing)dr d¢
21 2 3, 211 R3 .
= Fp =22 [(T[ (65— = sing)]§ dp =27 [T (3R? — = sing) do
=29 3R% ¢ - (-cos) 13"
=27 [12x211 - 0] = 12pglT = 369.458kN

Similarly for y* we can write
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y* . Fr=[vydF = fozn fOR( 6 — rSing)? pgsind dr r do

By using formula : Fr = pgh. A = pg ( 2+2sin30) I[1R? = 369.458kN

: @
* = ﬁ = + _64‘ —_
y Ye * Ay, 6 (H_‘1'4) ><6
4
y* = 6.166m

# Find Iz, for a circular C.S

dA =drrd¢

Iz2=[r2dA= [ [T r3drdo

4

= ;5= RTXZE

But, Izz + Iy5 = Iz (perpendicular axis theorem)

2I1R*
4
4

N

>

I

= 2z
2 [op=
4

£
# Find I¢4 for a semi-circle:

_ [ydA _ fgffrsinﬁr dr dé
c~ - nRZ
Jaa )

a (R3—3)[— cos 01 _ 4R

TIR2 _31'[
)

I =" (half of the circle)

= 1 0.1098 R*

>
1

=




Fundamentals of Fluid Mechanics

#Hydrostatic Force on a curved submerged surface:

Consider the curved surface as shown in fig. The pressure force acting on the element of area
, dA is given by

dF = —pdA

We can write; Fg = iFpy + jFgy + kFg,
Where, Fg,, Fry&F, are the components of Fx in x, y & z directly respectively.
Fro=kFg=[dF . k=—[ pdAdk=-[, pdA,

Since the direction of the force component can be found by inspection, the use of vectors is
not necessary.

Thus we can write: Fg; = fAlpdAl

Where d4; is the projection of the element dA on a plane perpendicular to the ‘1’ direction.

With the free surface at atmospheric pressure, the vertical component of the resultant
hydrostatic force on a curved submerged surface is equal to the total weight of the liquid
above the surface.

Fry = [ pdA,= [ pgh dA, = [ pgd V= pg¥
Ex:2.9:The gate shown is hinged at ‘O’ and has a constant width w = 5m . The equation of

2
the surface is x= Y /a , Where a= 4m . The depth of water to the right of the is D= 4m.Find

the magnitude of the force , F, , applied as shown, required to maintain the gate in
equilibrium if the weight of the gate is neglected.
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Soln: Horizontal Component of force:-
Fry = pgh. (WD) = pg(0.5) WD = 392kNh*

w. 3
)
(wD xg)

h'=h, +-2£=05D+
Ayc

=0.5D +% =2.67m

Vertical component:

D2 D2 D2

E, = [,* pwdx = [ * pghwdx = pgw [ ¢ hdx

D2
> F,=pgw [*(D - a%x%)dx , (Where h+y =D, h = D-y = D-(ax)'/? )
D2

1 3 =
> E,=pgw][Dx- a5§x5 1& = (pgwD?* /3a)
> F,=261kN

D2

x*F, = f,;xy xpdAy, = [ @ xpghwdx

D2

= 11 5
> x"F, =[ @ x(D — azxz)dx = 222

10 a2

«_ 1 ,pgwD3\ _
> x = ( 0 o2 )=1.2m

Summing moments about ‘O’
>M, =x*E, + Fy(D —h*) —F,=0

= F,=167kN.
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P
P '\ 30 }
/ |\ - = 2
2 6 Q, (/ = X o
S
2 l(‘\>\[_ ‘L‘:’[_‘ i
E = b —>)

Fluids in Rigid-Body Motion:-

Basic equation: — Vp + pg =pa

A fish tank 30cmx60cmx30cm is partially filled with water to be transported in an
automobile. Find allowable depth of water for reasonable assurance that it will not spill
during the trip.

Soln: b=d=30cm= 0.3m
a o F 7
_( p p

op o o N ~ a a a
6_:k) tp (lgx+]gy + kg,)=p (lay + la, + ia,)

But; g, =0=g, & a, =0=a,

——-=P9 (9y=-9) g=-9j
Now we have to find an expression for p(x,y).
-9 9p
dp = aXdx + aydy
But since the force surface is at constant pressure , we have to;
=% p
0= . dx + 3 dy
(dy )Surface —-= ( the free surface is a plane)
= tanf = ﬁ = —(a—")

2 e=- —) 0. 15( {as b=0.3m}

The minimum allowable value of ‘¢’ = (0.3 - d )m
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Thus; 0.3—d=0.15 (%)
Hence , dypqy = 0.3—0.15 (”;—x

#Liquid in rigid body motion with constant angular speed:

A cylindrical container , partially filled with liquid , is rotated at a constant angular speed ,®,
about its axis. After a short time there is no relative motion; the liquid rotates with the
cylinder as if the system were a rigid body .Determine the shape of the free surface.

Soln: In cylindrical co-ordinate;

dp
+ eza

& -Vp+pg=pa

dp |, eydp dap
_(er ; + 796_9 + e, E) + p(ergr + €990 + ezgz) = p(erar + egag+ ezaz)

For the given problem ; g, = gy=0& g, = —g
anday=a, = 0and a, = —a’r
The component equations are:

U P 9 _ _
ar_pwr’ae_oandaz_ Pg

Hence , p(r,z) only
a a
dp =22, dr+ ="}, dz

Taking (14, z,) as reference point , where the pressure is p, and the arbitrary point (r,z)
where the pressure is p, we can obtain the pressure difference as ;

p _ (T op Jdp
fpldp— 7"15 dT+f£dZ

?
= p-p1= P (r? —n?) — pg(z-z,)
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If we take the reference point at the free surface on the cylinder axis , then;
P1=Parm ;71 =0and z; = hy

?
P—Parm = p 1% — pg(z—hy)

Since the free surface is a surface of constant pressure (p= pa:m) » the equation of the free
surface is given by :

o
0=p—7%—pg(z—hy)

Volume of the liquid remain constant . Hence V = I1R?h, ( without rotation)

With rotation :

R @?
v = [0 T 2mr (hy + grz) r.dr

2p4
= v=m[ by R*+ L
49
w?R?
and h1 - hO - 49

Finally: z = hy — “;‘;2 [%— (%)2]

Note that this expression is valid only for h;>0 . Hence the maximum value of w is given by

_ [2gho]*/?
Omax = R

{ (0R)?= (ho—hy) x4g and w? = —(ho—h,) x4g

For,@max ; b1 =0 }
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Buoyancy:

When a stationary body is completely submerged in a fluid or partially immersed in a fluid,
the resultant fluid force acting on the body is called the ‘Buoyancy’ force. Consider a solid
body of arbitrary shape completely submerged in a homogeneous liquid.

dF; =pdA
dFVl = (patm + pl)dAz = (patm + pghl)dAz
dFy; = (Patm + 02)dA; = (Parm + pgh,)dA,

The buoyant force (the net force acting vertically upward) acting on the elemental prism is

T,

dFg= (dFy, — dFy;)= pg(hy-hy)dAz = pgdV

Where, dV =volume of the prism

Hence, the buoyant force F on the entire submerged body is obtained as :
Fg= [,pgdV, ieFz= pgV

Consider a body of arbitrary shape, having a volume V , is immersed in a fluid. We enclose
the body in a parallelepiped and draw a free body diagram of the parallelepiped with the body
removed as shown in fig. The forcesF;, F,, F; &F, are simply the forces acting on the
parallelepiped, wy is the weight of the fluid volume (dotted region); Fy is the force the body
is exerting on the fluid.

Alternate approach:-

The forces on vertical surfaces are equal and opposite in direction and cancel,
i.e,F; —F, =0.

Fi+Fp+w;=F, OorFg=F,—F, —wy

Also; F; = psghiA , F, = prgh, A and wy = peg[A(h, — hy)-V]
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> Fg = prghA - prghiA - prg[A(h, — hy)-Y]

> Fg = psgV , where V is volume of the body
The direction of the buoyant force, which is the force of the fluid on the body, will be opposite to
that of ‘Fg’ shown in fig (FBD of fluid). Therefore, the buoyant force has a magnitude equal to the
weight of the fluid displaced by the body and is directed vertically upward. The line of action of
the buoyant force can be determined by summing moments of the forces w.r.t some

convenient axis. Summing the moments about an axis perpendicular to paper through

point’A’ we have:

by | = B,
%
J A ..
A
-,‘_/ r,t }Tf'
P 22 =2 y
I! _' - 1 |
\ b
s S
F~"; z WV '8~
F s TE v
A * =

FBxB = szl - lel - foz

Substituting the forces; we have

Vxg =Vrx; — (Vr — V)x,

Where V=A(h, — h,). The right hand side is the first moment of the displaced volume Vv
and is equal to the centroid of the volume V.Similarly it can be shown that the ‘Z’ co-ordinate

of buoyant force coincides with ‘Z’ co-ordinate of the centroid.

- vrx1—(Vr—¥)x;
v

7 A

A
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Stability:-

Another interesting and important problem associated with submerged as well as floating
body is concerned with the stability of the bodies.

NCsY T

Yabil Qquilibiuy /7 Unthagg \ Q &

e N

wd L”ﬂ‘“} Newhrod

- ———

1 1 b ..n

When a body is submerged , the equilibrium requires that the weight of the body acting
through its C.G should be collinear with the buoyancy force .However in general, if the body
is not homogeneous in distribution of mass over the entire volume, the location of centre of
gravity ‘G’ don’t coincide with the centre of volume i.e centre of buoyancy, ‘B’ .Depending
upon the relative location of G & B , a floating or submerged body attains different states of
equilibrium , namely (i) Stable equilibrium (ii) Unstable equilibrium (iii) Neutral equilibrium.
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Stability of submerged Bodies

#Stability problem is more complicated for floating bodies, since as the body rotates the
location of centre of Buoyancy (centroid of displaced volume) may change.

GM=BM - BG , where —»Metacentric Height

If GM>0 (M is above G) Stable equilibrium
GM=0 (M coincides with G )Neutral Equilibrium
GM<0 (M is below G) Unstable equilibrium

& saubdtiy” floskey NS

O

# Theoritical Determination of Metacentric Height:

Before Displacement
xgV = [xdV=[x(zdd) —(1)

After Displacement, depth of elemental volume immersed is (z+xtan0) and the new centre of
Buoyancy xz can be expressed as :

xg V=[x(z+ x tan@)dA —(2)
Subtracting eq.1 from eq.2 , we have
V(xg —xp) = [x?tand dA =tano [ x2dA
But [ x* dA =1,

Also, for small angular displacement ; 6 =tan6
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xg —xg=BMtan® (asxz -xz=BMO)

Since , vV BM tan6 = tano I,,,,

> BM= Iy7y #Notice that 1, is the M.I at the plain of floatation

I . . .
> GI\/I+BG:y7y #Notice that V is the immersed volume
I
> GMZ% - BG
- # /"/I 7
X 4 J 7
n, ; /
K (
/,
\ l":‘:(
{ 3
5‘ / W | A/ (I/-Jl\) {\' ‘ (
{
N WA
Ry "\I'!M( L, l ) lv(L"/\’('\ y l")
Cyniten | \/Ol UUann ( "“"“'\)(./ (I\\ ( ‘Nlta |
L 4 Ie; 4 Ui ¢ NLAD  CRAAC :

Fig: Theoritical Determination of Metacentric Height:

#Floating Bodies Containing Liquid:-

If a floating body carrying liquid with free surface undergoes an angular displacement, the
liquid will move to keep the free surface horizontal. Thus not only the centre of buoyancy
moves , but also the centre of gravity ‘G’ moves , in the direction of the movement of ‘B’.

Thus , the stability of the body is reduced. For this reason, liquid which has to be carried in a
ship is put into a number of separate compartments so as to minimize its movement within
the ship.

#Period of oscillation:

From previous discussion we know that restoring couple to bring back the body to its original
equilibrium position is : WGM sin6

Since the torque is equal to mass moment of inertia ; we can write

2
WGM sind =- I, (ZTf), where I, — mass M.I of the body about its of rotation.
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. . . . d?20 A WG.M
If ‘0’ is small, sinf = 6 , and equation can be written as, -t

Im

Eqgn (3) represents an SHM.

The time period, T = 22= 22— 711 (%)z
w (WI;M)E wW.GM

Here time period is the time taken for a complete oscillation from one
side to other and back again. The oscillation of the body results in a flow
of the liquid around it and this flow has been neglected here.

Ex-1

A rectangular barge of width b and a submerged depth of H has its centre
of gravity at its waterline. Find the metacentric height in terms of % &

hence show that for stable equilibrium of the barge % > 6.

Soln:

Given that OG = H

Also from geometry

oB=2 BG=0G-0B=H-Z=1
2 2 2
"
BM= L= L& ( Notice that , V is the
v 12XLbH 3

immersed volume)

2 J
BM= 2= ‘ VAR
12H

GM=BM-BG=-2- =" 22 13

12H 2 2

For stable equilibrium of the barge; MG> 0
H(1/b)\?
;{g (%) - 1} =0

> (%) > 6 proved.

=0 —>(3)

it
5
B |
be
5
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CHAPTER -3

INTRODUCTION TO DIFFERENTIAL ANALYSIS OF FLUID
MOTION

Differential analysis of fluid motion:

Integral equations are useful when we are mattered on the gross behaviour of a flow field and
its effect on various devices .However the integral approach doesn’t enable us to obtain
detailed point by point knowledge of flow field.

To obtain this detailed knowledge, we must apply the equations of fluid motion in differential
form.

Conservation of mass/continuity equation:

The assumption that a fluid could be treated as a continuous distribution of matter — led
directly to a field representation of fluid properties. The property fields are defined by
continuous functions of the space coordinates and time. The density and velocity fields are
related by conservation of mass.

Continuity equation in rectangular co-ordinate system:-

Let us consider a differential control volume of size Ax, Ay and A4z.

Rate of change of mass inside the control volume = mass flux in — mass flux out

1)
Mass fluxes:

At left face: p u Ay Az

At right face: p u Ay Az + WAX

At bottom face: p v Ax Az

d(pv Ax Az)Ay

At top face: p v Ax Az +
a(p w Ax Ay)

2 Az

At back face: p w Ax Ay +

Applying equation (1):

d(pAx Ay Az) _
at B

d(puw) (pv) _9(pw)
~ Ax Ay Az — oy Ax Ay Az “on Ax Ay Az

_9p 9w , 3(pv) | I(pw) _
_>6t+ ax + dy + az =0

=>4 V- (pii)=0 @)
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To find the expression for an incompressible flow:
Z—€+pv-ﬂ+ﬁ-|7p=0
=> (Z—’;+ u-Vp)+pV-i=0

—>D2r U=
=>_-+pV-u=0 3

—

- — u X;
Let us define; u* = A

Uref

V.ii="L (70" ) [Since V- =S4t = Mref 2

O0x; L 0x;
Uref 1Dp
=>—WV"u") =———
L V=00
— * ) = 1 _.1Dbp
=> (V*.u") ——@ o Dt (4)

Eqn (4) may be approximated as (V*.u*) = 0

If [ er -~ 22

2

1«1 ®)

The velocity field is approximately solenoidal if condition (5) is satisfied.

For incompressible flow, p = constant is a wrong statement.(unfortunately such statements
appear in standard books).

For example: Sea water or stratified air where density varies from layer to layer but the flow
is essentially incompressible as the density of the particles along its path line don’t change.

D .
D—i = 0, doesn’t necessarily mean that p = constant

Hence, for incompressible flow;
V- 1 =0, doesn’t matter whether the flow is steady or unsteady.

# If p = constant then the flow is incompressible, but the converse is not true, i.e.
Incompressible flow, the density may or may not be constant.

MOMENTUM EQUATION:

A dynamic equation describing fluid motion may be obtained by applying Newton’s 2" Jaw
to a particle.

Newton’s 2" law for a finite system is given by:

-

apP

ﬁ = E)system (1)

a4 |
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where the linear momentum ‘P’ is given by:

-

Psystem = massV dm (2)

Then, for an infinitesimal system of mass ‘dm’, Newton’s 2" Jaw can be written as:
> av

dF = dm (E) 3)

The total derivative ‘;—‘; in equation (3) can be expressed as:

v v v v

—tV —4+W— +—
u dx v ady Waz at
Hence;

> av v v av

F = — —_— — + — 4
d dmuax+vay+waz+at 4)

Now the force dF acting on the fluid element can be expressed as sum of the surface forces
( both Normal forces and tangential forces) and body forces (includes gravity field, electric
field or magnetic fields) .

T

Ty d
| "t g
' 7, - Yo dg
) zx .JZ 2
o (-(’lrg (lj.l !4- - -
- dx 2 o
N e %+ e

=T
M

To obtain the surface forces in x- direction we must sum the forces in x direction. Thus,
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AFy = (Oyy + aox" dx) dy dz — oy, dy dz + (0y, + ag;x) dxdz — oy, dx dz +

6azx

) dx dy O, OX dy

(azx

On simplifying , we obtain ;

ax.x a X azx
dst:(;x + gz + ;Z)dxdydz

dF, =0+ dFyy = pg, + (222 + 6;’;" + 2225) dx dy dz (5)

Similar expression for the force components in y & z direction are:

a0y P a0,
dF, = pg, +(22 + 2 4 %2 ) dx dy dz (6)
dE,= pg, + (6;7;2 + ag;Z aa” ) dx dy dz (7)

Now writing the differential form of equation of motion:

00xx , 00yx 00,y ou ou ou ou
+ + =p(—+U—+V—+W— (8)
ao-xy 60'yy aazy v ov ov ov
+ + + =p(—+U—+V—+W — (9)
00xz , 00yz | 00, ow ow ow
+ + + = Yo u v (10)
(b8, dx dy az )=p at u ax ay 0z

Newtonian fluid :- Navier-stokes equation:

The stresses may be expressed in terms of velocity gradients & fluid properties in rectangular
co-ordinates as follows :

Oxy = Oyx = (_ + _y
v

Oyz = =u (_+£
_ _ ou . ow
Ozx = Oxz =M\ T 50

axx:-P-é,uV-V)+2yg—Z

—p 2 o 2 dv
Oyy =-P-suV-V+2u—
JZZ=-P-§;1|7-I7+2MZ—Z

Oqp = % (axx + 0yy + 0,4, )
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Op=-P-2uV-V+2uv-V
Bo=P—X(V-V)
Where ‘P’ is the local thermodynamic pressure, and ‘X is co-efficient of bulk viscosity.

Stream function for two dimensional incompressible flow:

It is convenient to have a means of describing mathematically any particular pattern of flow.

A mathematical device that serves this purpose is the stream function, y . The stream function

is formulated as a relation between the streamlines and the statement of conservation of mass.

The stream function (X, y,t) is a single mathematical function that replaces two velocity
components, u(x,y,t)and v(x,y,t).

For a two dimensional incompressible flow in the xy plane, conservation of mass can be

written as :8—u+@=0.
oxX oy

If a continuous function w(X,y,t) called stream function is defined such that u :%// and

v

v , then the continuity equation is satisfied exactly.

2 2
Then 8_u+@_8 v_ov

OX Oy OXoy oyox

=0 and the continuity equation is satisfied exactly.

If ds is an element of length along the stream line, the equation of streamline is given by:

Vxds=0= (iu+ jv)x (idx+ jdy)=k(udy - vdx)

Thus equation of streamline in a two dimensional flow is: udy—vdx=0

Then we can write:a—wdx+a—'//dy=0 ........... (1)
OX oy

Since v//=z//(x, y,t) then at any instantt, 1//=w(x, y,to). Thus at a given instant a change in  may be

evaluated as y = 1//(x, y).

. oy oy
Thus at any instant, dy = ——dx+—d
Y 4 X oy Yy
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Comparing Eqn.1 and 2, we see that along an instantaneous streamline dy =0 or ¥ is constant

along a streamline. Since differential of ¥ is exact, the integral of dy between any two pointsin a

flow field depends on the end points only, i.e. ¥, —V¥;.

Example problem: Stream Function flow in a corner:

The velocity field for a steady, incompressible flow is given as;\7 = Axi— Ayj with A=0.3s

Determine the stream function that will yield this velocity field. Plot and interpret the streamlines in

the first quadrant of xy plane:

Solution:u = Ax= a—'//

oy

Integration ~ with  respect to y vyields:

v :I%dy+ f(x)= Axy+ f(x);

where f(x) is an arbitrary function of x.

f(x) can be evaluated using the expression for v.

Thus we can write, "y A
0
V= _6_{// = _Ay_ﬂ .
OX dx
df

But from the velocity field description, v=—Ay.Hence vl 0 or f(x) =constant.
X

Thus, ¥ = AXy+C . The c is arbitrary constant and can be chosen as zero without any loss in
generality. With c=0 and A=0.3s", we have, ¥ = AXY . The streamlines in the 1° quadrant is shown

in Fig.Regions of high speed flow occur where the streamlines are close together. Lower-speed flow
occurs near the origin, where the streamline spacing is wider. The flow looks like flow in a corner

formed by a pair of walls.
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Before formulating the effects of force on fluid motion (dynamics), let us consider first the
motion (kinematics) of a fluid element on a flow field. For convenience, we follow a
infinitesimal element of a fixed identity (mass)

X Rotation

Translation

— X

———x
Angular deformation Linear deformation

As the infinitesimal element of mass ‘dm’ moves in a flow field, several things may happen
to it. Certainly the element translates, it undergoes a linear displacement from x,y,z to X1,y1,21.
The element may also rotate (no change in the included angle in adjacent sides). In addition
the element may deform i.e. it may undergo linear and angular deformation. Linear
deformation involves a deformation in which planes of element that were originally
perpendicular remain perpendicular. Angular deformation involves a distortion of the element
in which planes that were originally perpendicular do not remain perpendicular. In general a
fluid element may undergo a combination of translation, rotation, linear deformation and
angular deformation during the course of its motion.

For pure translation or rotation, the fluid element retains its shape, there is no deformation.

Thus shear stress doesn’t arise as a result of pure translation or rotation (since for a
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Newtonian fluid the shear stress is directly proportional to the rate of angular deformation).

We shall consider fluid translation, rotation and deformation in turn.

Fluid translation:  Acceleration of a fluid particle in a velocity field. A general

description of a particle acceleration can be obtained by considering a particle moving in a
velocity field. The basic hypothesis of continuum fluid mechanics has led us to a field
description of fluid flow in which the properties of flow field are defined by continuous
functions of space and time. In particular, the velocity field is given by V=V (xy,zt). The
field description is very powerful, since information for the entire flow is given by one
equation.

The problem, then is to retain the field description for the fluid properties and obtain an
expression for acceleration of a fluid particle as it moves in a flow field. Stated simply, the
problem is:

Given the velocity field V=V (x,y,z,t), find the acceleration of a fluid particle, @, .

Consider the particle moving in a velocity field. At time ‘t’, the particle is at the position X,y,z
and has velocity corresponding to velocity at that point in space at time ‘t’, i.e.
Vp]tZV(x,y,z,t).

At ‘t+dt’, the particle has moved to a new position with co-ordinates x+dx, y+dy, z+dz and

has a velocity given by: V, Juar=V (x+dx,y+dy,z+dz,t+dt).

Particle path

Particle at

Particle at
F+dr time,t+df

[ SRS

Fig4.1
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This is shown in pictorial fig 4.1

d—V,; ,the change in velocity of the particle , in moving from location 7" to 7’ +dr | is given by:

— oV F1% v v
dV,= —dx, + —dy, + —dz, +—dt
Poax P 9y Yo 5797 T

The total acceleration of the particle is given by :

av, _avd avdy,  ovdz, oV
X Z
Py T M,

a,=—L=— —
P 4t o9x dt 9y dt 09z dt ot
dx dy
Since—E=u,—£=v and —£=w,
dt dt d
_, av av
a=—L=y—+ ﬂ.y v, ov
P d ox dy dz at
DV __,_dv, _ 9V, oV ., vV, v
— =—=Uu—+V—+W —+— 4.1
Y dx dy dz ot (4.1)

The derivative % is commonly called substantial derivative to remind us that it is computed

for a particle of substance. It is often called material derivative or particle derivative.

From equation 4.1 we recognize that a fluid particle moving in a flow field may undergo
acceleration for either of the two reasons. It may be accelerated because it is convected into a
region of higher (lower) velocity. For example, the steady flow through a nozzle, in which
by definition, the velocity field is not a function of time, a fluid particle will accelerate as it
moves through the nozzle. The particle is convected into a region of higher velocity. If a flow
field is unsteady the fluid particle will undergo an additional “local” acceleration, because
the velocity field is a function of time.

The physical significance of the terms in the equation 4.1 is :

v v v _ .
u —+ v — +W —= convective acceleration
ox dy 0z

v .
E: local acceleration.

Therefore equation 4.1 can be written as:

— —

SN DV — — av
=—=(V. + —
a, oL v o

For a steady and three dimensional flow the equation 4.1 becomes:
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DV v v v N .
— = U —+ V—+W —; which is not necessarily zero.
Dt ox dy 0z

Equation 4.1 may be written in scalar component equation as:

a _Du_u6u+vau+wau+6u (42&)
Xp pt " ox dy 9z ot '
Dv ov ov ov ov
a, =——=uU—+V—+W—+ — (4.2 b
Y»~ Dt dx dy 9z ot \ )
Dw ow ow ow ow
R | + v + W + — 42
aZP Dt u ox dy 0z ot ( ©)

We have obtained an expression for the acceleration of a particle anywhere in the flow field;
this is the Eularian method of description. One substitutes the coordinates of the point into the
field expression for acceleration.

In the Lagrangian method of description, the motion (position, velocity and acceleration) of a
fluid particle is described as a function of time.

Fluid rotation: A fluid particle moving in a general three dimensional flow field may

rotate about all three coordinate axes. The particle rotation is a vector quantity and in general
w=Tlox+ jo,+ k ®, ; where @, is the rotation about x axis.
To evaluate the components of particle rotation vector, we define the angular velocity about

an axis as the average angular velocity of two initially perpendicular differential line

segments in a plane perpendicular to the axis of rotation.

—

To obtain a mathematical expression for ®, , the component of fluid rotation about the z axis,
consider motion of fluid in x-y plane. The components of velocity at every point in the field
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are given by u(x,y) and v(x,y). Consider first the rotation of line segment oa of length Ax.
Rotation of this line is due to the variation of ‘y’ component of velocity. If the ‘y’ component
of the velocity at point ‘0’ is taken as V, , then the ‘y’ component velocity at point ‘@’ can be
written using Taylor expansion series as:

ov
V=V, +—Ax
dx

A
Moy =lim fa — lim “_Z
0a At—0 7 At—0 "5

. a
since An=(Va-V,) At =£szlt

(FH)wxat) _ av

Woa =liMyg AxAt  ox

The angular velocity of ‘ob’ is obtained similarly. If the x- component of velocity at point ‘b’
. ou
+— -
IS Uo 3y Ay
A

Ay

—1; AB — g;
Woh =limpgo i limpo At

Up Zﬁdy; which will rotate the fluid element in clock-wise direction, thus —ve sign is

multiplied to make it counter clock-wise direction.

a _ .
But 4 = — %Ayzlt (-ve sign is used to give +ve value of wgp )

_(g—;)(AyAt) __ou

Thus wgp =limAt_,0 T, 5

The rotation of fluid element about z- axis is the average angular velocity of the two mutually
perpendicular line segments, oa and ob, in the x-y plane.

Thus w; == ox 9y

1 [617 ou
2

By considering the rotation about other axes :

*“2lay oz Y7210z  ox
— 1[/ow av\ . ou ow\ . v au\ ¢ ] . .
Then :—[(———) (———) (———) ];Whlh n be written in
en W =23 &) TS, ) T G 6yk ch can be writte
vector notation as :
— 1 e
w :E VxV
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Under what conditions might we expect to have a flow without rotation ( irrotational flow ) ?

A fluid particle moving, without any rotation, in a flow field cannot develop rotation under
the action of body force or normal surface forces. Development of rotation in fluid particle,
initially without rotation, requires the action of shear stresses on the surface of the particle.
Since shear stress is proportional to the rate of angular deformation, then a particle that is
initially without rotation will not develop a rotation without simultaneous angular
deformation. The shear stress is related to the rate of angular deformation through viscosity.
The presence of viscous force means the flow is rotation.

The condition of irrotationality may be a valid assumption for those regions of a flow in
which viscous forces are negligible. (For example , such a region exists outside the boundary
layer in the flow over a solid surface.)

A term vorticity is defined as twice of the rotation as:
[=2@=VxV

The circulation,I” is defined as the line integral of the tangential velocity component about a
closed curve fixed in the flow ; I' = §V - dS

where dS elemental vector tangent to the curve , a positive sense corresponds to a counter
clock-wise path of integration around the curve. A relation between circulation and vorticity
can be obtained by considering the fluid element as shown:

‘ A |

V'l W an

| T\/’( %
4 a

0 u

ar =udx +(v + = ax) 4 — (u+ Z—;Ay) Ax —vAy

_f(dv du B
=(Z- E) AxAy = 2w, Axdy

r=¢Ar=¢v-ds

=[,2wz dA

=>|I"=[,(VxV) dA
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Angular deformation: Angular deformation of a fluid element involves changes in the
perpendicular line segments on the fluid.

Sy

L3 -

F}. 2y /i/\\( i (Aéf\

-

We see that the rate of angular deformation of the fluid element in the xy plane is the rated of
decrease of angle “y” between the line oa and ob. Since during interval Az,

Ay=9p-90=-(da+tdp)

dy _ da | dp

= w s w T w
Now;

da dv d du
do & gng -k
dt dx dt dy
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INCOMPRESSIBLE INVISCID FLOW

All real fluids posses viscosity. However, in many flow cases it is reasonable to neglect the
effect of viscosity. It is useful to investigate the dynamics of an ideal fluid that is
incompressible and has zero viscosity. The analysis of ideal fluid motion is simpler because
no shear stresses are present in inviscid flow. Normal stresses are the only stresses that must
be considered in the analysis. For a non viscous fluid in motion, the normal stress at a point is
same in all directions (scalar quantity) and equals to the negative of the thermodynamic

pressure, o,, = —P.

Momentum equation for frictionless flow: Euler’s equations:

The equations of motion for frictionless flow, called Euler’s equations, can be obtained from
the general equations of motion, by putting u = 0 and opy = -p.

pgx—z—l;=p(% +u Z—Z+vg—; + WZ—Z)
pgy—g—§=p(% +u g—z+vz—; + WZ—Z)
pgz—g—;}:p(% +u 2_‘;1—'_7]2_:/ + W(Z_‘Z)
In vector form it can be written as:
p§—VP=p(Z—‘Z +u Z—z+vs—j + WZ_Z)
=>p§—VP=p(Z—f +(I_/)V)I_/))

=> pE—VF’:pz—f

In cylindrical co-ordinates:

] P av, v, Vg 9V, avz)
Z: - = —+ = == —
P9 0z p(6t+vrar+r ae+Vzaz

56



Fundamentals of Fluid Mechanics

Euler’s equations in streamline co-ordinates:

€ AN - '
( ¥ \ 1;?} ('{";",,'_,/) ds du ‘
. ‘ .
; Zni —‘\ L |
2 i‘j‘, L{E')('n.{‘l (‘() ?* 5%5{%] N -dy

P 55 s

BN B

Fluid Poyrice Y\M)\/N*?i

Applying Newton’s 2" Jaw in streamwise (the ‘s’) direction to the fluid element of volume
ds x dn x dx, and neglecting viscous forces we obtain:

Lo -

opP d oP d .
(P—g ?S) dn dx—(P+g ?S)dndx—pg sinffdsdndx = p ag ds dn dx
Simplifying the equation we have:
oP

—5 —Pgsinf=pa,

. . 0z .
Since sinf = 55 We can write:

SO g E oy (W I
ds ps ds Dt p at ds
1 0P 0z ov av
= —_—_-— = —_—= — V—
> p 0s gas 6t+ ds

To obtain Euler’s equation in a direction normal to the streamlines, we apply Newton’s 2
law in the ‘n’ direction to the fluid element. Again, neglecting viscous forces; we obtain:

oP d oP d
(P—ag)dsdx—(P+£7n)dsdx—pg cosfdndxds =pa, dndx ds

where ‘B’ is the angle between ‘n’ direction and vertical and ‘a,’ is the acceleration of the
fluid particle in ‘n’ direction.
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_op _ _
5, — P8 cosf=pay

. 0z .
Since cosf = 5, We can write:

1 0P 0z —a
p on g on "
The normal acceleration of the fluid element is towards the centre of curvature of the
. . o V2
streamline; in the negative ‘n’ direction. Thus a,, = — =
|1 oP n 0z _ V?
- p on g on R

For steady flow on a horizontal plane, Euler’s equation normal to the streamline can be
written as:

=>- — = —

Above equation indicates that pressure increases in the direction outward from the centre of
curvature of streamlines.

Bernoulli’s equation: Integration of Euler’s equation along a stream line for
steady flow( Derivation using stream line co-ordinates):

Euler’s equation for steady flow will be:

1 0P 0z _ ov
p O0s g ds ds

If a fluid particle moves a distance ‘ds’ along a streamline, then

opP

N ds =dp (the change in pressure along ‘s’)
d . .

a_j ds =dz (the change in elevation along ‘s’)
av . .

. ds =dV (the change in velocity along ‘s”)

d
Thus; —7P —gdz=VdV

d
=>?P+VdV+gdz=0
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d
—>f F + + gz = constant(along 's") (5.1)

For an incompressible flow, i.e. 'P’ is not a function of 'p ; we can write:

VZ
; _|_ + gz = constant(along 's")

Restrictions:

i Steady flow
ii.  Incompressible flow
iii.  Inviscid
iv.  Flow along a stream line

* In general the constant has different values along different streamlines.

* For derivation using rectangular co-ordinates, refer page-7.

Unsteady Bernoulli’s equation( Integration of Euler’s equation along a stream line):

1 — _ DV
—=VP—-g=— or

p Dt

1 0P dz _ dv ov
————g — V—

p 0s ds 6t

Multiplying ds and integrating along a stream line between two points ‘1’ and ‘2,

flzdpp+ +g(22—zl)+f1—ds =0

For an incompressible flow, the above equation reduces to :

Py, Vf _P VF
St tgn=—+ 7+922+f1—d3

Restrictions:

I.  Incompressible flow
ii.  Frictionless flow
iii.  Flow along a stream line
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EX: A long pipe is connected to a large reservoir that initially is filled with water to a depth
of 3 m. The pipe is 150 mm in diameter and 6 m long. Determine the flow velocity leaving
the pipe as a function of time after a cap is removed from its free end.

AnNS: Applying Bernoulli”’s equation between 1 and 2 we have:
PV g P 20v
. + - +gu= . + - +g22+f1 atds

Assumptions:

I.  Incompressible flow

ii.  Frictionless flow
iii.  Flow along a stream line for ‘1’ and ‘2’
iv. P1=P2=Pam

V. V=0
Vi. Z,=0
vii.  Z;=h
viii.  Neglect velocity in reservoir, except for small region near the inlet to the tube.
gz=oh=Y 12
Then; gz;=gh == +J] — s (1)

In view of assumption ‘viii’, the integral becomes

20V LoV
fl Edszfo Eds

In the tube, V = V,, everywhere, so that

dav.
ds= L —2

fL v L av,
0 dt dt

OEdS—

Substituting in the equation (1),
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dav,
gh= +L ”

Separating the variables we obtain:

av, _ dt
2gh-V# 2L

Integrating between limitsV=0att=0and V=V, att=t,

v, dv,
fO 2gh—-V2
v,
_| 1 -1(_V -t
_[./Zgh tanh (,/2gh>]0 2L «\
Since tanh~1(0) = 0, we obtain \/
2
1 (v \_t
\2gh tanh (,/Zgh) 2L

=> J% = tanh (i 1/Zgh)

M

A(o

?q

M

ot RN

Bernoulli’s equation using rectanqular coordinates:

—%VP— gk= (V-v)V

Using the vector identity:

V-V =—v(V-V)- Vx (VxV)
For irrotational flow: Vx V = 0

So (V- V)V ==V (V-V)

1 ~ 1 = =2 1
— - VP-gk= vV -V)= V()
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-

Consider a displacement in the flow field from position #"to ‘7 +d7’, the displacement ‘d7’
being an arbitrary infinitesimal displacement in any direction . Taking the dot product of
d7 =dx i+ dyj + dz k with each of the terms, we have

—%VP-dF—gI?- dF = —V (V2) - dF

And hence —%P —gdz= %d(VZ)

=> %P + %d(VZ) + gdz =0
p, vV
=> - + 7 + g z = constant (5.2)

Since ‘di’ was an arbitrary displacement, equation ‘5.2’ is valid between any two points in a
steady, incompressible and inviscid flow that is irrotational.

If <dt> =ds’ i.e. the integration is to be performed along a stream line, then taking the dot
product of ds, we get:

(I_/)-V)I_/)-dszle(l_/)-I_/)) ds—Vx (VxV)-ds
Here even though (V x V) is not zero, the product V x (Vx V) - ds

will be zero as V x (V X 17) is perpendicular to V and hence perpendicular to ds.
# A fluid that is initially irrotational may become rotational if:-

1. There are significant viscous forces induced by jets, wakes or solid boundaries. In
these cases Bernoulli’s equation will not be valid in such viscous regions.

2. There are entropy gradients caused by shock waves.

3. There are density gradients caused by stratification (uneven heating) rather than by
pressure gradients.

4. There are significant non inertial effects such as earth’s rotation (The Coriolis
component).

HGL and EGL.:

Hydraulic Grade Line (HGL) corresponds to the pressure head and elevation head i.e. Energy
Grade Line(EGL) minus the velocity head.

2

P 74
EGL=—+ — + Zz =H (Total Bernoulli’s constant)
pPg 2g
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Principles of a hydraulic Siphon: Consider a container T containing some liquid. If

one end of the pipe S completely filled with same liquid, is dipped into the container with the
other end being open and vertically below the free surface of the liquid in the container T,
then liquid will continuously flow from the container T through pipe S and get discharged at
the end B. This is known as siphonic action and the justification of flow can be explained by

applying the Bernoulli’s equation.

Applying the Bernoulli’s equation between point A and B, we can write

The pressure at A and B are same and equal to atmospheric pressure. Velocity at A is
negligible compared to velocity at B, since the area of the tank T is very large compared to
that of the tube S. Hence we get,

Vg =1/29(Zp-Z5) =/29AZ
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The above expression shows that a velocity head at B is created at the expenses of the

potential head difference between A and B.

Applying the Bernoulli’s equation between point A and B, we can write

2
ﬂ+0+ZA:P—C+VL+ZC
pg pg 29

Considering the pipe cross section to be uniform, we have, from continuity, Vg=Vc

R _Pum V&’
pg  pg 29

Thus we can write; -h
Therefore pressure at C is below atmospheric and pressure at D is the lowest as the potential
head is maximum here. The pressure at D should not fall below the vapor pressure of the

liquid, as this may create vapor pockets and may stop the flow.
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CHAPTER4

Laminar flow through a pipe.
Assumptions:

a) Steady
b) Parallel flow in Z- direction V,=0and V,=u#0
c) Constant property fluid (p & p are constant)

. .
d) Axisymmetric; 0= 0 Vg=0

¢)

Continuity Equation:

Since 1. = 0 = Vy; we have;

Vg . .
But ET) = 0 (Axisymmetric)

= Vz =V, (r) = V(r)

Consider a differential annular control volume:

Applying the force balance in Z-direction, we have
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(P 2mr Ar); + (2nr Az T)pspr — (P 27r Ar),ia; — 2ur Az 1), =0

= (PZ - Pz+Az) 2nr Ar + 21 Az [(T r) r+Ar © (T r) r] =0

Pz+Az—- Pz 19(tr)

=4 —(T) +

0

r or

N 1 (T dv) oP dapP N ¢ t)
- _— )= = —= d constan
H dr 0z dz (

Atr=R; V=0 (NoslipBC)
Atr = 0; V = finite

The RHS of the equation will be finite only if C; = 0.

X 12
Thus; v = ;Z-I‘ Cy

x 12
Atr—R,O— ;I-I_ Cy

ap\ (R* r\?
=v=— (@) (@) - @]
HW-EvaluateQ = [7 — dA = fORv 2nr dr

“0--Z ()

8u dz
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Head loss- the friction factor

<i+av_—12+z>=<&+av_iz+z>+h
124 1 g 229 2 £

a, = a, and v; = v, [velocity profile is not changing from 1 to 2 & c.s area is constant]

Thus hy = (z, — z5) + (j_g_ :_g) —)

Applying the momentum relation to the control volume
(P,mR? — P,mR?) — 1, 2nRL + pg (mR?L)sin = m(v; = 7,) =0

P, —P; 2Tty L 4ty L
pg pg R pg D

.................................... ©)

Comparing eqn. (1) & (2), we have;

4t,, L
hy = — D
2

o= (O 1]

Vav = %IVdA: ﬁ_(z_i)(i_:)

R r?
Jo (1 — F) 2m dr
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oy = & ( dP)[RZ R*
av " oy dz) L2 4Rr?

2
e, = o CDEEL D6

1 ( dP)(RZ)(4 _ 4ub v
T 2u P ANY AV A S

_4t, L4 L 8uv
"~ pg D pg D D
32ulLv
= hf_ pgDZ ------------------------------------------------------ (3)

Long back, Julius Weisback, a German Prof. In 1850, had shown that hf x %. Hagen in his
experiment had found that hf « v2(approx.). H. Darey a French engineer prposed a

€
dimensionless parameter, ‘f> which is a function of (Reg, 7 duct shape).

L v2

he=f55e e ()

D 2g

Rewriting Eqgn. (3) in form of Eqgn. (4), we have

Lv? (/,1 64) _L? (64)
pvD) 29D \Rep

by = 59D

(Pe — Pyyay)2mr Ar + 21w Ax [(27)yynr — (zr), ] + p(2mr Ar Ax)g sinf =0

Dividing by 2mr Ar Ax

. P,— P x 1 0 . —Az
= limgy o (2225 + = 2(r) + Jim pg (55) =0
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dpP dz 10
S TPt 5 D=0
dpP dz 10
= (;"‘Pga) el L (1)

LetP =p + pgz where P- modified pressure

ar dp+ dz
dx ~ dx Py dx

Putting in Eqgn. (1), we can write;

Thus; v = — (Z—i) (i—;) [1 — ;—z

Because of the gravity the local or/and average velocity increases for the above situation i.e

dp _ d .
both =2 & == are negative.
dx — dx

£ .
i Relative roughness

Example:- Determine the head loss in friction when water flows at 15°C through a 300 mm

long galvanized pipe d = 150 mm & Q = 0.05 m%s. v=1.14 x10® m%s, &£ = 0.15 mm. Also
find the pumping power required.
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TvD

Solution:- R, = *> = 22 =3.72x10° f=0.02

Power = pQghs
The head lost due to friction is called major loss.

Minor losses:- Due to abrupt changes in geometry, shape of the pipes (i.e sudden expansion,
contraction etc.), loss in mechanical energy occurs. In long ducts these losses are very small
compared to the frictional loss, & hence they are termed as minor losses.

52
The minor head losses may be expressed as hy = K ”? where K is determined
experimentally.

(a) Sudden contraction & Enlargements

|

2

/‘MJYMM T

(b) Entry & Exit losses (c) Pipe bends (d) Valve & fittings

Total loss = Is + h,,

Four cases for solving pipe problems:-

a) L, Q & D known, AP unknown
b) AP, Q & D known; L unknown
c) AP, L & D known; Q unknown
d) AP, L & Q known, D unknown

Flow through Branched pipes:-

(1) Pipes in series:
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Qa=0p=0Qc¢

hy = th + hen + th + heone. + hfc

Where hsy =

L4vi .
J1aY4 & 50 on, other pipes.
29Dy

(V4-Vp)? V[ 1
hen = AZ—gB & heone. = E(C_c_l)

(2) Pipes in parallel:-

8 |
) 1‘ ’
:—; == e - ;ch —_———— ;,_gﬁ»/
- 1 { 2 —
s
Q=04+0s
2 2
ht:H1—H2:fAL_Av_A_fLBvB

Dis2g '®Dy2g

Sudden Enlargement :

p141 +p'(A; — A1) — pA; = pQ (v, — vy)

From experimental evidencep’ = p,; where p’ is the mean pressure of the eddying fluid over
the annular face g-d.

Thus;
p14; +p1(Az — A1) — p2Az = pQ (v, — vy)
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But; Q = A,;v; = A,v, (from continuity)
= (p2 — P1)Az = pAyv,(vy — vy)

= py;—p1 = pr(vy — vy)

From SFEE;
2 2
p1 Vi b2 V3
—_— == —4+—= h
) + > ) + > + gh,
P2—P1 vi-v} _
=4 P = > th
V%‘”z
= v,(v; —v,) = T_ghz

= 2v,v, — 2v3 = v —v5 — 2gh,

= 2gh, = (v —v,)?

= h _ (vl_UZ)Z _ 'U_% [1 _
2 29 - 29

4
1)
b A
- =2
L — = 2
£ = -
| B
ST ST
, Ve
L — |
, = =77 AC'
. —>
; ——
i) E r o P

O R e
27 29 A, Az T2l a4,

:h2=ﬁ (ﬁ)—1]2= v l—1]

2g Ac 5 Ce

Where C, = % = Coefficient of contraction
2
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# MEASUREMENT OF FLOW RATE THROUGH PIPE:

Flow rates in a pipe are usually measured by providing a co-axial area contraction within the
pipe & by recording the pressure drop across the contraction. The flow rate can be
determined from the pressure drop by straight forward application o0f Bernoulli’s Eqn. Three
such flow meters operate on this principle i.e

(i) Venturimeter (ii) Orificemeter (iii) Flow nozzle

1. Venturimeter:

0(2 <°<1

Figure shows a venturimeter inserted in a inclined pipe to measure the flow rate through pipe.

Let us consider a steady, ideal and one dimensional flow of fluid.

Applying Bernoulli’s Equation.:

2
P11 Vi
A AL, =R 2,
pg 29 ' pg 29 ?
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vivi _P17P2 )= (P (P2 ) e
= 20 pg + (% Zz)—(pg+Z1) (pg+22) €]

From pressure balance at section 0-0:-

p1+pg(z1 = ho) = p2 +pg(zz —h = ho) + prgh

:(Z—;+zl) = (Z—;+Zz)+(Pm—p)h><%

= (B421) = (B +2,) = (pm = pIh X wormmmmmmesemmrnmmmmmseeeee e ©)

Putting the above value in Eqn. (1);

vi — vy

1

= —p)h X —

29 (om — p) P
From continuity; A;v; = A,v,

Ayv,
Ul =
Aq

Thus; V2 — (;2)2 V2 =2g ("7’“ ~1)h

oz

-G ]

=V, = —2 \/Zg(%"—l)h

2 2
Al_ AZ

>VE=

QA3 = L [0 (22— 1) e ©
1~ 42

The above value is the theoretical discharge/flow rate.

Measured value of ‘h’, in actual situation will always be greater than that assumed in case of
ideal case due to friction. Thus overestimates the flow rate. To take this into account, a
multiplying factor Cgq , is incorporated in equation (3), i.e.,

Ay Az

Quct = cdm\/Zg(me—1)h

Value of Cq4 for venturimeter usually lies between 0.95 to 0.98. It is interesting to note that
‘Q’ remains same whether the pipe is inclined or horizontal.
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2. Orificemeter:

Ce= % : Where A, is the area of the orifice.

o

Applying Bernoulli’s Equation between 1 and c.:

pooviL P %
pg 29 pg 29

From pressure balance at section 0-0:-
p1+pg(z1 — ho) = P2+ pg(z; —h = z,) + pmgh

=>(Z_;+Zl)= (2—2+zz)+(pm—p)hx%

=>(Z_;+Z1)—(Z_;+Zz)=(ﬁ7m—ﬂ)hx% """"""""""

Putting the above value in Eqn. (1);

ve —vi

2g

1
= (pm_P)hXE

................... 2)
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Qqct= Ac Vcact = CcAo Vcac = C.CyA,

ooy
-G

Where C4 = C.C,

= Qqct= CaAp

e
N =

Orificemeters are less accurate than venturimeters.
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CHAPTER-5
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