Department of MCA

LECTURE NOTE
ON
ANALYSIS AND DESIGN OF ALGORITHMS
(MCA 4™ Sem)

COURSE CODE: MCA-209

Prepared by :
Mrs. Sasmita Acharya
Assistant Professor
Department of MCA

VSSUT, Burla.

1|Page

MCA-209 Analysis and Design of Algorithm L-T-P: 3-1-0

Prerequisite: Familiarity with Discrete Mathematical Structures, and Data Structures.

UNIT I: (10 Hours)

Algorithms and Complexity: Asymptotic notations, orders, worst-case and average-case,
amortized complexity.

Basic Techniques: divide & conquer, dynamic programming, greedy method,
backtracking.

UNIT II: (10 Hours)

Branch and bound, randomization.

Data Structures: heaps, search trees, union-find problems.
Applications: sorting & searching, combinatorial problems.

UNIT III: (10 Hours)
Optimization problems, computational geometric problems, string matching.
Graph Algorithms: BFS and DFS, connected components.

UNIT IV: (10 Hours)
Spanning trees, shortest paths, MAX-flow.
NP- completeness, Approximation algorithms.

Text Book:
1. Introduction to Algorithms, 2/e ,T.H.Cormen,C.E.Leiserson, R.L.Rivest and
C.Stein, PHI Pvt. Ltd. / Pearson Education

Reference Books:
1. Algorithm Design: Foundations, Analysis and Internet examples, M.T.Goodrich
and R.Tomassia, John Wiley and sons.

2. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and
Rajasekharam, Galgotia Publications Pvt. Ltd.

Course outcomes:

1. To be able to analyze correctness and the running time of the basic algorithms for
those classic problems in various domains and to be able to apply the algorithms
and design techniques for advanced data structures.

2. To be able to analyze the complexities of various problems in different domains.
and to be able to demonstrate how the algorithms are used in different problem
domains.

3. To be able to design efficient algorithms using standard algorithm design
techniques and demonstrate a number of standard algorithms for problems in
fundamental areas in computer science and engineering such as sorting, searching
and problems involving graphs.

2|Page

Contents

Module |

Algorithms and CoOmMPIEXITY.......ou e e e e e e e 3
BaSIC TECNNIQUES. it e e e e e e e e e e e e e e e 8
Module I

Branch and DOUNd..........o i e 14

Data SIUCIUIESo ee ettt e e e e et ne e e 2218

SOrtiNg & SEAICNING.u vttt e e e e e e 26

Module 111

Optimization ProblemMS.v e 28

Computational geometric problems...............coiiiiii .28

SNG MALCNING. ..o e e e e e e et e e ettt b nnanaeeenna s 33
Graph AlgOorithmsS. e e e e e BT
Module IV

SPANNING TrEES ... ettt et e e e e e e e e et et e 43
MaX-TIOW... . e a0 A0

NP — COMPIBTENESS. ..o ettt e e e e e e e e e e e e 48

3|Page

ANALYSIS AND DESIGN OF ALGORITHM

Module |

Algorithm:-

Informally an algorithm is any well-defined comatibnal procedure that takes some
value or set of values as input and produces s@iue vr set of values as output.

Running time:-

The running time of an algorithm on a particulaput is the number of primitive
operations or steps executed.

When we look at input sizes large enough to makg the order of growth of the
running time relevant we are studying the asymeteficiency of algorithms.

Asymptotic notation:-

They are used to describe the asymptotic runtimg of an algorithm. They
are defined in terms of function whose domainstlageset of natural numbers N={0,1,2,...}.
Such notations are convenient for describing thestvoase running time function which is
defined only on integer input sizes. There are tatians :-

(Thetap-notation
(big-oh)O-notation
(big-omegad2-notation
(small-oh)o-notation
(small-omegay-notation

(Theta)d-notation:-

This notation asymptotically bounds a functionnfrabove and below. For a given
function g(n) we denote B(g(n)) is given by

8(g(n)) ={f(n): there exist positive constants @ and B such that 8c;g(n)<f(n)<c.g(n)
for all n>ng }.

For all values of n to the right of nO the valuef(m) lies at or above ;g(n) or at
below ¢g(n). We say that g(n) is an asymptotically tightibd for f(n) where g(n) is the
lower bound and »g(n) is the upper bound. Definition o6f(g(n)) is required by every
member f(n) which is element 6fg(n)) asymptotically non-negative.

(Big-oh)O-notation:-

This notation used when we have only an asymptgpiger bound. For a given
function g(n) we denote by O(g(n)) the set of fimts ,

4|Page

O(g(n))={f(n): there exist a positive constant damp such that 8f(n)<cg(n) for all reny }.

(Big-omega¥)-notation:-

It provides an asymptotic lower bound. For a gifanction g(n) we denote by
Q(g(n)) the set of functions

Q(g(n))={f(n): there exist a positive constant ¢ agcuch that 8cg(n)<f(n)for all n>ng }.

O andl notation are used for average and worst casetation are used for
best case running time.

(small-oh)o-notation:-

The asymptotic upper bound provided by big-oh tmtamay or may not be
asymptotically tight.

Example:- The bound 2ro(rf) is asymptotically tight but 2n= o{nis not.

We use small-oh notation to denote an upper bolbatis not asymptotically tight.
We define o(g(n)) as the set of functions

o(g(n))={f(n): for any positive constant c>0 thezrist a constant (rO such that €f(n)<
cg(n) for all reng }.

(small-omegat»-notation:-

We use this notation to denote a lower bound hatot asymptotically tight. We
define w(g(n)) as the set

o(g(n))={f(n): for any positive constant c>0 thegrist a constant ;r0 such that €cg(n)
<f(n)for all n>ng }.

Order of growth:-

Example:-Arrange the following

O(rf),0(2"),0(log n),0(n log n),O(fiog n),0(n)
Answer:-order of growth is

O(log n),0(n),0(n log n),0thO(rFlog n),0(Z)

Rate of growth:- It refers to the change in theniog time of an algorithm as the input size
increases.

5|Page

no

Amortized analysis:-

Here the time require to perform a sequence of skateture operations is averaged
over all the operations performed. Here probabildynot involved. The 3 common
techniques for amortized analysis are :-

Aggregate analysis
Accounting method
Potential method

General analysis:-

Here an upper bound T(n) on the total cost of queece of ‘n’ operations
determined. The average cost for operatiggl—)ts

Example:- Stack operations

2 stack operations are PUSH(s, x) that pus x stack s & POP(s) that pops the top
most element of stack. Another operation is MULTHKS k) that simultaneously pop k
items from the stack

PUSH(s, x)

POP(s)

MULTIPOP(s, k)

While not STACK_EMPTY(s) and#0 do POP(s)
K.<k-1

Aggregate analysis:-

Using this we can get a better upper bound thasiders the entire sequence of ‘n’
operations. Although a single multipop operation ba expensive. Any sequence of n push,
pop, and multipop operation on an initial emptycktand cost at most O(n) because each
object can be pop at most once for each timeptghed.

For any value of n, any sequence of n push, pap raultipop operations
20 ~0(1). This is equal to the

n

takes a total of O(n) time. So avg. cost of an afen is
amortized cost of each operation.

Accounting method:-

In this method we assign different charges to chfié operation with some
operations charged more or less than they actoaflyf The amount we charge an operation
is called amortized cost. When an operation’s amextcost exceeds its actual cost the
difference is assigned to specific objects in thdtructure as credit.

6|Page

Example:-

StackActual costAmortized cost

PUSH 1 2
POP 1 0
MULTIPOP min(k, s) 0

This credit can be used to later on to help payfmerations whose amortized cost is
less than their actual cost. If we denote the &cist of the Toperation by @nd amortized
cost of the operation b,

n, Ci>¥™, Ciwe require this for all operations.

The total credit stored in the data structure is thifference between the total
amortized cost and the total actual cost.

Total credit= Total amortized cost-Total actualtcos

As the amortized cost is greater than or equattoah cost the total credit associated
with the data structure must be non-negative dtraés.

Potential method:-

Instead of representing prepaid work as crediestovith specific objects in the data
structure this method represents the prepaid wsrgadential energy or just potential that
can be released to pay for future operation.

This potential is associated with the data stmectas a whole rather than with
specific object within the data structure. We stéth an initial data structure gon which
n operations are performed. For each i=1, 2 LehG is the actual cost of the operation &
Di is the data structure that results after applyfregi" operation to the data structure;D

A potential function @ maps each data structuretd a real number @ (P
which is the potential associated with data stmectD. The amortized costof thé" i
operation with respect to potential function isided by :-

Amortized cost= actual cost + increase in poténtia
Ci=Ci+ @ (D) - @ (D.1)
The total amortized cost of n operations is
n A —\n
2i=1 G=2i%1 (¢i + @ (D) - @ (Di— 1))

Tt o + P () -2 (D)
1

7|Page

N

Example:- Stack operations

Recurrences:-

When an algorithm contains a recursive call tdfité® running time can b
described by recurrence. A recurrence is an equatianequality hat describes a functior
terms of its value on smaller inputshere are 3 methods to solve a recurre

Recursion tree method
Substitution method
Master theorem

Master theorem:-

It provide a cook book method for solving recureshof the form is
I'(n)—all (%) + fln)
Where &1 and b4 are constants and f (n) is an asymptoticallytp@sfunction.

This equation describes the running time of anrélyo that divides a problem
size ‘n’ into ‘a’ sub problems each of size n/b.eTbost of dividing the problem ai
combining the restd of the sub problems is given by the functiom) Then T (n) can b
bounded asymptotically as follov

Case-1

If f (n) = O ("°®@*)for some constant>0 then T (n) = (n°&*)
Case-2

If f (n)=0 (N°®®), then T (n) =0 (N°®Ign)

Case-3

If f (n)= Q (N°®**)for some constant>0 & if af(n/bcf(n)for some constant c<
and sufficiently large ‘n’ then T (n)& (f (n))

Substitution method:-

It consists of 2 steps:-

Guess the form of the soluti
Use mathematical induction find the constant and show that the solution w

Example:

Use the substitution method to show that "€ O(n)

8|Page

T(1) = 3
T(n) =2T(n/2)+5

Guess:

T(n) = O(n)

By definition of Big-O, must find ¢>0 and>ng
0<T(n)<cn

0<T(k/i2)<ck/2

Show:T(k) = 2T(k/2) + 5 ck

3. Substitution

abr e

T(k) =2T(k/i2)+5 Recurrence definition
<2[ck/2]+5 IH substitution
=2ckl2+5
=ck+5
< ck Show T(kx ck

Find constant so the last two lines hold.
ck+5 < ck Not possible for ¢ > 0 and>il

5 < 0 Subtract ck

Fails to satisfy the substitution

Algorithm and design technigue:-

There are different techniques to design an algorit

Divide and conquer
Dynamic programming
Greedy method
Backtracking

Branch and bound

9|Page

1. Divide and conquer:-

Many algorithms are recursive in structure. To savgiven problem they
call themselves recursively one or more time tol dégth closely related sub problems.
These algorithms follow a divide and conquer apgho#t involves 3 steps

e Divide
* Conquer
* Combine

Divide: - divide the problem into a number of sub problem.

Conquer: -Conquer the sub problems by solving them recuisive

Combinethe solution to the sub problems into the soluf@rthe original problem.
Example: - Merge sort

Let T (n) be the running time of an problem afesn. If the problem
size is small for some constant c that is n<=c,dn@ight forward solution takes constant
time 6 (1).

Suppose our division of the problem gives a suiblpm each of
which is (1/bY" size. Let D (n) be the time to divide the problieno sub problem and C(n)
be the time to combine the solution to the sub lerakinto the solution to the original sub
problem. The recurrence is given by:-

TMm)={@Q)ifn<c
{aT (n/b) + D(n) + C(n) otherwise

Dynamic programming:-

Divide and conquer algorithm partition the problarto independent
sub problem. Solve the sub problems recursivelytaad combine their solution to solve the
original sub problem. But the dynamic programmisgpplicable when the sub problems
are not independent that is when sub problems shérsub problems.

A DPA algorithm solves every sub sub problems gue and saves
its answers in a table avoiding the work of re-catapon. It applies to optimization
problems in which in which a set of choices musirberder to arrive at an optimal solution.
The development of DP algorithm can be broken @nsequence of 4 steps.

» Characterize the structure of n optimal solution

* Recursively define the value of an optimal solution

* Compute the value of an optimal solution in a baottgp fashion
» Construct the optimal solution from computed infatimn

10| Page

Elements of dynamic programming:-

The 2 key ingredients that an optimization problaust have in order
for DP to be applicable are

Optimal substructure
A problem exhibits optimal substructure if aniol solution to the
problem contains within it optimal solution to sptmblems

Overlapping sub problem
When a recursive algorithm revisits a same prab&ver and over
again we say that the optimization problem haslapping sub problems.

Matrix chain multiplication:-

It can be stated as given a chain of ‘n’ matricés A, .. A,> where
fori=1,2, ... n, matrix Ahas dimensions;iA-pi.1 X p; fully parenthesize the produci A ..
A, in way that minimizes the number of scalar multation.

Step-1:structure of an optimal parenthesizes

The optimal substructure of this problem is swggpooptimal
parenthesizes of iAA;.1 . Ajsplits the product betweepand A1 Then the parenthesize of
the prefix sub chainA A1 Agwithin the optimal parenthesize of Ahi;1 Ajmust be
optimal. Also the parenthesize of the sub chaingf Aw.2 .A; must be optimal.

Step-2: Recursive solution

Let m [i, j] be the minimum number of scalar nqplitations needed
to compute the matrix;A...A. The recursive formula is

M, j]={0 ifig
{minisksj{m[i, k] + m[k + 1,j] + pi — 1pkpj}ifi <]

Step-3: computing the optimal cost

It is done by a tabular bottom approach
optimal parenthesize algorithm

Pop(s, i, J)
If (i=))
Then print A
Else print (
Pop(s, i, s, j])
Pop(s, s[i, j]+1, J)
Print)

11| Page

Longest common sub-sequences (LCS):-

Given 2 sequences X and Y , we say that a sequémc@ common sub-
sequence of X and Y if Z is a sub-sequence of botind Y. In LCS problem given 2
sequences X and Y , we wish to find a maximum keegimmon sub-sequence of X and Y.

Step-1: characterizing a longest common sub-seguenc

Let X=<x, X2..Xp> and Y=<y vV, ..\»> be sequences.
Let Z=<z, 2% ... Zz>be any LCS of X and Y.

Case-1: If %=y, then z=xm=ynand z.1 is an LCS of ¥.;and y;.
Case-2: %#Yn then z#xmand z is an LCS ofxsand y.

Case-3: %#Yn then z#ynand z is an LCS of x ang.y.

Step-2: recursive solution

Let c[i, J] be the length of an LCS of sequengeg;. optimal sub-
structure of the LCS problem gives the recursivenida.

Cli, jI={0 if i=0 or j=0
Cli-L, j-1]+1 ifi, j>0 and & y,
Max(c[i, j-1], c[i-1, j]) if i, >0 and xy;}

Step-3: computing the length of an LCS

It takes 2 sub sequences as inputs. It soreg[ithg¢ values in a table
entries are computed in RMO.

Optimal binary search tree:-

We are given a sequence kz{ka, ..}of n distinct keys in sorted order
such that k< k, < ...<k,and we wish to build a binary search tree froméhe=ys . for each
key we have a probability that a search will be for.KSome searches may be for values not
in k, so we have (n+1) dummy keys{d..d} representing values not in k.

dy represents all value less than &represents all value greater than
kn. For each dummy key; dve have probability iqthat a search will correspond tp.dach
key k is an internal node and each dummy key is a Eaéry search is either successful
(finding some key) or unsuccessful (finding somency key).

12| Page

For given set of probabilities our goal is to swact BST whose
expected search cost is smallest such a treeléesice an optimal BST.

Step-1: structure of an optimal BST

The optimal sub structure property is given barifoptimal BST has a
sub tree containing keys to kthen this sub tree must be optimal for the sub lprolwith
keys k to kand dummy keys;d to d.

Step-2: Recursive solution

The e]i, j] values gives the expected search icosptimal BST. The
recursive formula is given by

Greedy algorithm:-

A greedy algorithm always makes the choice thakdobest at the
moment. That is it makes a locally optimal choiedhe hope that this choice will lead to a
globally optimal solution. These algorithms do abtays yield optimal solution.

Example:-Minimum spanning tree algorithms

Elements of greedy strategy

. Optimal substructure:- a problem exhibits optimal sub structure if gtimal solution to the
problem contains within it optimal solution to sptmblems.

. Greedy choice property:- a globally optimal solution can be arrived atrnogking a locally
optimal greedy choice. When we are considering istwoice to make we make the choice
that looks best in the current problem without cdeisng results from sub problems.

Design of greedy algorithm

Subset paradigm

The greedy method suggest that one can devisalgamithm that
works in stages considering one input at a timeeakh decision is made regarding whether
a particular input is in an optimal solution. Tiésdone by considering the inputs in order
determined by some selection procedure.

If the inclusion of the next input into the pallifaconstructed optimal
solution will result in an infeasible solution th#ms input is not added to the partial solution
otherwise it is added. This version of the greeatyhhique is called the subset paradigm.

Example: knapsack problem

Ordering paradigm
For problems that do not call for the selectioranfoptimal subset in the
greedy method we make decisions by consideringnih#s in some order. Each decision is

13| Page

made using an optimization criterion that can bmmated using decisions already made.
This version of greedy method is called orderingagam.

Example: single source shortest path problem
Huffman codes:-

They are widely used and very effective techniquedata. We consider
the data to be sequence of characters. Huffmandgre&orithm uses a table of the
frequencies of occurrence of the characters tallupl an optimal way of representing each
character as a binary string.

Example:

Let's say you have a set of numbers and their #agy of use and want to create a

Huffman encoding for them:
FREQUENCY VALUE

10
15
20
45

DU WN

Creating a Huffman tree is simple. Sort this ligt frequency and make the two-
lowest elements into leaves, creating a parent mattea frequency that is the sum of the
two lower element's frequencies:

12: *
[\
5:1 7:2

The two elements are removed from the list anchtéve parent node, with frequency
12, is inserted into the list by frequency. So nbe/list, sorted by frequency, is:

10: 3
12: *
15: 4
20: 5
45: 6
You then repeat the loop, combining the two lovedsinents. This results in:
22 *
/ \
10: 3 12:*
I\
5:1 7:2
And the list is now:
15: 4
20: 5
22 *
45: 6

You repeat until there is only one element lefthie list.

14| Page

35: *

/ \
15:4 20:5
22 %
35:*
45: 6
57:.*
_ \
/ \
22 % 35 *
/ \ / \
10: 3 12:* 15: 4 20: 5
/ \
51 7.2
45: 6
57:.*
102: *
/ \
/ \
57.* 45: 6
__ \
/ \
22 % 35 *
/ \ / \
10: 3 12: * 15: 4 20: 5
/ \

5:1 7.2

Decoding a Huffman encoding is just as easy asrgad bits in from your
input stream you traverse the tree beginning atdbg taking the left hand path if you read
a0 and the right hand path if you read.aVhen you hit a leaf, you have found the code.

Backtracking:-

Many problem which deal with searching for a sesolutions or which
asks for an optimal solution satisfying some caists can be solved using the backtracking
formula. The name backtracking was first coinedil. Lehman in 1950s.

Many application of the backtrack method the a®kirsolution is
expressible as an n-tuple; (X ...x,) where the xare chosen from some finite setGften
the problem to be solved calls for finding one wet¢hat maximizes or minimizes a criterion
function p(x, Xz ...%n).

The basic idea of backtracking algorithm is to ¢bwip the solution vector one component at
a time and to use modified criterion functions @sttwhether the vector being formed has
any chance of success. The major advantage i#f ih&t realised that the partial vector can

15| Page

no way lead to an optimal solution then the restth# test vectors can be ignored
completely.
Example: N-Queens Problem

Given an N x N sized chess board

Objective: Place N queens on the board so thatueerts are in danger

One option would be to generate a tree of evergiples board layoutThis
would be an expensive way to find a solution

L
5 B T

Backtracking prunes entire sub trees if their noode is not a viable solution. The
algorithm will “backtrack” up the tree to search taher possible solutions

_ HH

e e

Rl ot Bl B

16 |Page

Module- 2

Branch and bound-

The term branch and bound refers to all stateesgearch method in
which all children of the E-node are generated teeémy other live node can become the E-
node. A BFS like state space search will be caflg® search as the list of live nodes is a
FIFO list or queue. A DFS search like state spaeech is called LIFO search as the list of
live nodes is a LIFO list or a stack.

Least-cost search: Here a function is used tas#ie live node. The node
with least cost function value is selected as the hode. Bounding functions are used to
help avoid the generations of sub trees that deotain an answer node.

In both LIFO and FIFO branch & bound the selectrafe for the next
E-node is rigid and in a sense blind. It does ind gny preference to a node that very good
chance of getting the search to a answer node Iguick

The search for an answer node can be speededity ais intelligent
ranking function for live nodes. Here the next Elads selected on the basis of this ranking
function. The ideal way to assign ranks to nodesornis the basis of the additional
computational effort or cost needed to reach awansode from the live node.

For any node x the cost could be:

1. The number of nodes in the sub tree x that nedattgenerated before an answer
node is generated.
2. The number of levels the nearest answer nodens X0
Let g(x) be an estimate of the additional effort neetbedeach an answer
node from x. Node x is assigned a rank using atiom€ () such that
C (x) = f(h(x)) +2(x)
Where h(x) is the cost of reaching x from the raotl f () is any non-decreasing
function.
A search strategy that uses such a cost funcetectsthe next E-node
would always choose the node with least valu€ k) as a live node. So such a
search strategy is called a LC-search.

Let us consider an example of 15-puzzle. We armel@fwith the start state and goal state as
shown in the figure below.

1 12|34
5 | 6 8
9 1107 |11

17| Page

[13]14]15]12] 1234
516 |78
9 | 10|11|12
13|14 15
Start state goal state
Solution:
1 (2 (3|4 1 2 134
516 A 8 5 6 |7 |8
9 |10|7 |11 9 10| <11
1314|1512 13 | 14| 15|12
Stepl step-2
112|134 112 |3 |4
516 |78 516 |78
9 10|11, 9 | 101112
13]14]15["12 13|14 15

Step-3step-4(target state)

Randomization: -

A randomized algorithm is an algorithm that emplaydegree of randomness as part
of its logic. The algorithm typically uses unifoiyrbits as an auxiliary input to guide its
behaviour, in the hope of achieving good perforneandhe "average case" over all possible
choices of random bits. Formally, the algorithm'srfprmance will be arandom
variable determined by the random bits; thus eitherrunning time, or the output (or both)
are random variables. Example of randomized algoris Quicksort.

Quicksort:-

Quicksort is a familiar, commonly used algorithm which randomness can be
useful. Any deterministic version of this algorittrequiresO(n?) time to sorin numbers for
some well-defined class of degenerate inputs (f&clan already sorted array), with the
specific class of inputs that generate this behavidefined by the protocol for pivot
selection. However, if the algorithm selects pietements uniformly at random, it has a
provably high probability of finishing i®(n logn) time regardless of the characteristics of
the input.

18| Page

Data Structure:-

Heap Sort-

If you have values in a heap and remove them oadiate they come out in
(reverse) sorted order. Since a heap has worstcoasglexity ofO(log(n)) it can get
O(nlog(n)) to remove n value that are sorted.

There are a few areas that we want to make thik wel:
- how do we form the heap efficiently?
« how can we use the input array to avoid extra mgmsage?

- how do we get the result in the normal sorted &rder

If we achieve it all then we have a worst c&@log(n)) sort that does not use extra
memory. This is the best theoretically for a congmar sort.

The steps of the heap sort algorithm are:
1. Use data to form a heap
2. remove highest priority item from heap (largest)
3. reform heap with remaining data
You repeat steps 2 & 3 until you finish all theadat
You could do step 1 by inserting the items onetanha into the heap:
« This would beO(nlog(n)). Turns out we can do i®(n). This does not change the
overall complexity but is more efficient.
« You would have to modify the normal heap implemgotato avoid needing a
second array.
Instead we will enter all values and make it infeeap in one pass.
As with other heap operations, we first make ibmplete binary tree and then fix up so the
ordering is correct. We have already seen thaetiel relationship between a complete

binary tree and an array.

Our standard sorting example becomes:

19| Page

Now we need to get the ordering correct.
It will work by letting the smaller values percaadown the tree.

To make into a heap you use an algorithm that fikeslower part of the tree and works it
way toward the root:

« Go from lowest right parent (non-leaf) and proceeteft. When finish one level go
to next starting again from right.

- at each node, percolate down the item to its prpfsre in this part of the subtree,
e.g., subheap.Here is how the example goes:

i K= S N CH

E

start at 5 (in second level)
Ttis larger than all values
in subtree so ol

1 5 ElEl2B]0]

fixz 1: swap with 4 since
largest child

o 0 0 O N

= B & 6

fiz 5 (root): not smaller
than chil dren so ok

20| Page

This example has very few swaps. In some caseshgwa to percolate a value down by
swapping it with several children.

The Weiss book has the details to show that thiwasst caseO(n) complexity. It isn't
O(nlog(n)) because each step is log(subtree height currentigidering) and most of the
nodes root subtrees with a small height. For exagidout half the nodes have no children
(are leaves).

Now that we have a heap, we just remove the itamsafter another.
The only new twist here is to keep the removed iiiethe space of the original array. To do

this you swap the largest item (at root) with thstlitem (lower right in heap). In our
example this gives:

OB 1112 1215
—

The last value of 5 is no longer in the heap.

Now let the new value at the root percolate dowwttere it belongs.

E
heap sorted

Now repeat with the new root value (just change & again):

e

awap root T with

last location 0 ok Bl Iz16 5
i locaons EEELEEE]

J/\\L_ N Y

Df_ﬁ M [5 J i heap sorted

frot he ap

(2]
prricolale new
value 0 at rootto ﬁ/ ?’ Bzl p|o]s |5]
-: ", I'\-

correcl localion A
e "

"
heap sarted

21| Page

And keep continuing:

swap root 4 with
last location 0
which 15 removed
from heap. Let

2
1

swap root 3 with

last location 1

which is removed E |2 |'l ||:| 2 |4 |5 |5
I\H—Y—J

from heap. Let
new root percol ate R

to correct locat on M EJ [5_] hieap sorted

Bl o s s

swap root 2 with

last location O

which iz remowed m |1 |':I E |3 |‘)"1 |5 |5J

from heap. Let k_\fJ s

1
o correctiocsion)) [heap | seree

swap root 1 with [D

last lecation 0

hich i d 1 2 ohplllsls]
i o ceone S ——
new root percol ate - sorted

to correct locat on M EJ M heap

o]
one wvalue leftin
heap zo done |I:I |1 |2 |3 I')"1 I5 |5 |
L -~

g

sorted
Heap Complexity:-

The part just shown very similar to removal frorheap which i€(log(n)). You do
it n-1 times so it iO(nlog(n)). The last steps are cheaper but for the reversemdaom the
building of the heap, most are log(n) so iO&log(n)) overall for this part. The build part
was O(n) so it does not dominate. For the wholgseat you geO(nlog(n)).

There is no extra memory except a few for localgeraries.

22| Page

Thus, we have finally achieved a comparison sat tises no extra memory and is
O(nlog(n)) in the worst case.

In many cases people still use quick sort becausses no extra memory and is
usuallyO(nlog(n)). Quick sort runs faster than heap sort in praciite worst case dd(n?)
is not seen in practice.

Search Tree-

Search tree is a tree data structure used foritmcapecific values from within a set.
In order for a tree to function as a search tiee key for each node must be greater than any
keys in subtrees on the left and less than any ikeygbtrees on the right.

The advantage of search trees is their efficierrcke time given the tree is
reasonably balanced, which is to say the leavestaer end are of comparable depths.
Various search-tree data structures exist, sewénahich also allow efficient insertion and
deletion of elements, which operations then havadmtain tree balance.

Optimal substructure of a shortest path:-

Shortest path algorithm relay on the property thahortest path between two verties
contain other shortest path with in it.

» Dijkstra’s algorithm

* Floyd-warshall algorithm

Dijkstra’s algorithm:-

Dijkstra’s algorithm is very similar to Prim’s algthm for minimum spanning tree.
Like Prim's MST, we generate 3T (shortest path tree) with given source as root. We
maintain two sets, one set contains vertices iredud shortest path tree, other set includes
vertices not yet included in shortest path tree.e@eéry step of the algorithm, we find a
vertex which is in the other set (set of not yetluded) and has minimum distance from
source.

Below are the detailed steps used in Dijkstra’eaillgm to find the shortest path
from a single source vertex to all other verticethie given graph.
Algorithm:-
1)Create a sedptSet (shortest path tree set) that keeps track ofeastincluded in shortest
path tree, i.e., whose minimum distance from soigcalculated and finalized. Initially, this
set is empty.
2) Assign a distance value to all vertices in thautrgraph. Initialize all distance values as
INFINITE. Assign distance value as O for the souredex so that it is picked first.
3) While sptSet doesn’t include all vertices
....a) Pick a vertex u which is not theregptSetand has minimum distance value.
....b) Include u tosptSet.

23| Page

....C) Update distance value of all adjacent vertices. o update the distance values,
iterate through all adjacent vertices. For evefjp@eht vertex v, if sum of distance value of
u (from source) and weight of edge u-v, is less tine distance value of v, then update the
distance value of v.

Let us understand with the following example:

The sewpttis initially empty and distances assigned to vegiare {0, INF, INF, INF,
INF, INF, INF, INF} where INF indicates infinite. & pick the vertex with minimum
distance value. The vertex 0 is picked, includeigptSet. SosptSet becomes {0}. After
including O tosptSet, update distance values of its adjacent vertidegacent vertices of O
are 1 and 7. The distance values of 1 and 7 arategpchs 4 and 8. Following subgraph
shows vertices and their distance values, onlyvéréices with finite distance values are
shown. The vertices included in SPT are shown éegrcolor.

A

Pick the vertex with minimum distance value and abveady included in SPT (not in
SptSET). The vertex 1 is picked and added to sp&esptSet now becomes {0, 1}. Update
the distance values of adjacent vertices of 1.disnce value of vertex 2 becomes 12.

o

e

Pick the vertex with minimum distance value and abveady included in SPT (not in
SPtSET). Vertex 7 is picked. So sptSet now becdide$, 7}. Update the distance values of

24| Page

adjacent vertices of 7. The distance value of xefieand 8 becomes finite (15 and 9
respectively).

& 12
@

Pick the vertex with minimum distance value and abveady included in SPT (not in
SPtSET). Vertex 6 is picked. So sptSet now becdje$, 7, 6}. Update the distance values
of adjacent vertices of 6. The distance value ofexe5 and 8 are updated.

,/l_
& &
o o o

] S 11

We repeat the above steps ughiSet doesn’t include all vertices of given graph. Figale
get the following Shortest Path Tree (SPT).

4 12 15

14 21
9

8 11

Floyd-warshall algorithm:-

This algorithm simply applies the rutetimes, each time considering a new vertex
through which possible paths may go. At the erldhaths have been discovered.

Let's look at an example of this algorithm. Consitie following graph:

e

25| Page

Sowe have/={1, 2, 3,4,5,6}ant&={(1, 2), (1, 3), (2, 4?, (2,5), (3,1), (3,4, 6),
(4, 3), (6, 5) }. Here is the adjacency matrix @odresponding'®"

down = "from"
across = "to"

adjacency matrix for G:

123456 123456
1011000 1111000
2000110 2010110
23100001 3101001
4001001 4001101
5000000 5000010
6000010 6000011
Now let's look at what happens as wekigb from 1 to 6:
k=1
add (3,2); go from 3 through 1 to 2
123456
1111000
2010110
tV=3111001
4001101
5000010
6000011
k=2
add (1,4); go from 1 through 2 to 4
add (1,5); go from 1 through 2 to 5
add (3,4); go from 3 through 2 to 4
add (3,5); go from 3 through 2 to 5
123456
1111110
2010110
?=3111111
4001101
5000010
6000011
k=3
add (1,6); go from 1 through 3 to 6
add (4,1); go from 4 through 3to 1
add (4,2); go from 4 through 3 to 2
add (4,5); go from 4 through 3to 5
123456
1111111
2010110
=3111111
4111111
5000010
6000011

26| Page

k=4

add (2,1); go from 2 through 4 to 1

add (2,3); go from 2 through 4 to 3

add (2,6); go from 2 through 4 to 6
123456
1111111
2111111

“=3111111

4111111
5000010
6000011

123456
1111111
2111111

9=3111111
4111111
5000010
6000011

123456

1111111

2111111

®=3111111

4111111

5000010

6000011
At the end, the transitive closure is a graph withomplete subgraph ¢ique) involving
vertices 1, 2, 3, and 4. You can get to 5 from ywbere, but you can get nowhere from 5.
You can get to 6 from everwhere except for 5, anthfé only to 5Analysis This algorithm
has three nested loops containing a (1) core,ta@éss (°) time.

What about storage? It might seem with all thesérioes we would needl n}) storage;
however, note that at any point in the algorithne wanly need the last two matrices
computed, so we can re-use the storage from ther ottatrices, bringing the storage
complexity down ta 1f?).

Sorting & Searching:-

Sorting:-

Several algorithms are presented, including insersiort, shell sort, and quicksort.
Sorting byinsertion is the simplest method, andsddgequire any additional storage. Shell
sort is asimple modification that improves perfonta significantly. Probably the most
efficient andpopular method is quicksort, and esittrethod of choice for large arrays

Insertion Sort:-

One of the simplest methods to sort an array ims@rtion sort. An example of an
insertion sortoccurs in everyday life while playicgrds. To sort the cards in your hand you

27 |Page

extract a card,shift the remaining cards, and timsert the extracted card in the correct
place. This process isrepeated until all the cardsin the correct sequence. Both average
and worst-case time isGn

Shell Sort:-

Shell sort, developed by Donald L. Shell, is a stable in-place sort. Shell sort
improves onthe efficiency of insertion sort by ddycshifting values to their destination.
Average sort timeis Ofrf?), while worst-case time is O(B.

Quicksort:-

Although the shell sort algorithm is significanthetter than insertion sort, there is
still room forimprovement. One of the most popukrting algorithms is quicksort.
Quicksort executes inO(n Ig n) on average, and’)d¢nthe worst-case. However, with
proper precautions, worst-casebehaviour is verikelyl Quicksort is a non-stable sort. It
is not an in-place sort as stack species required.

Searching:-
Hash Tables:-

Hash tables are a simple and effective method mement dictionaries. Average
time to searchfor an element is O(1), while woestectime is O(n).

Binary Search Trees:-

In the Introduction, we used the binary searchralgm to find data stored in an
array. Thismethod is very effective, as eachtten reduced the number of items to search
by one-half.However, since data was stored in aayainsertions and deletions were not
efficient. Binarysearch trees store data in ndties are linked in a tree-like fashion. For
randomly inserted data,search time is O(lg n). &oase behaviour occurs when ordered
data is inserted. In this casethe search timé&n$.O

28| Page

Module it

Optimization Problem: -

An optimization probler is the problem of finding thieest solution from al feasible
solutions Optimization problems can be divided into twoecatries depending on whett
the variablesre continuous or discrete. An optimization prm with discrete variables
known as a&ombinatorial optimization probile.

Combinatorial Optimization Problem:-

Formally, acombinatorial optimizatic problemA is a quadrupld s '+ 7%, 9), where

- [is a set of instances;
. given aninstancg € 1, ﬂI) is the set of feasible solutions;

. Given an instanca and a feasible solutii ¥ of iz, m(x, y} denotes the measure ¥,
which is usually a positive re
. Y is the goal function, and is eitl MmN ormax

The goal is then to find f@ome instancx anoptimal solution, that is, a feasible soluti ¥
with
. ., , .
m(x,y) = g{m(z,y) | y" € f(z)}.

For each combinatorial optimization problem, these a correspondir decision
problem that asks mether there is a feasible solution for some padgicmeasur’fto. For
example, if there is a gra(7 which contains vertices andan optimization probler
might be "find a path frony to v that uses the fewest edges"”. This problem mighe lzen

answer of, say, 4. A corresponding decision problamald be "is there a path frct tov
that uses 10 or fewer edges?" This problem cambe&ered with a simple 'yes' or .

In the field ofapproximation algorithn, algorithms are designed to find r-optimal
solutions to hard problems. The usual decisionierns then an incequate definition of th
problem since it only specifies acceptable solioBven though we could introdu
suitable decision problems, the problem is moreina#ly characterized as an optimizat
problem.

Computational Geometric Froblems:-

This the branch of computer scienthat study algorithms for solving geomel
problem. It has application in computer graphicgatics, VLSI design, computer aid des
and statistic. They input to a computational geommgiroblem is a description ¢ of
geometric object such a set of point of a setre Begment or vertices of polygon in co
as clockwise order. The output is open a respamseduery about an object such whei
any of the line intersects or a new geometric dbgech as a conx null(small enclos:

29| Page

convex polygon) of a set of points. Each input obje represented as a set of poinis{P
P,,...} where is R={x;, yi} and X, ¥ € R, R= set of real number.

Py * i
ll'J” -

Line Segment Properties:-

Cross Product:-

Computing cross products is at the heart of oue-§agment methods. Consider
vectors p and p, shown in Figure (a). The cross produckg, can be interpreted as the
signed area of the parallelogram formed by the tpo(, 0),p, 2, and p+ k= (X +
X2, Y1+ Y2). An equivalent, but more useful, definition givédse cross product as the
determinant of

09

- ¥

i) k)

Figure 35.1 (a) The cross product of vectaramd p is the signed area of the parallelogram.
(b) The lightly shaded region contains vectors #ratclockwise from p. The darkly shaded
region contains vectors that are counterclockwigenp.

a matrix’
X X
wpe = det -
IR, (l’: v)
= Xp¥r— X2
= Pz =

! Actually, the cross product is a three-dimensiopahcept. It is a vector that is
perpendicular to both;@mnd p according to the "right-hand rule” and whose magls is

30|Page

[X1y2 - X2y1|. In this chapter, however, it will prove converttido treat the cross product
simply as the valuepy, - Xoy1.

If p1 X p2is positive, then pis clockwise from pwith respect to the origin (0, 0); if this
cross product is negative, thenip counter clockwise fromyp Figure (b) shows the
clockwise and counter clockwise regions relativa teector p. A boundary condition arises
if the cross product is zero; in this case, theomscare collinear, pointing in either the same
or opposite directions.

To determine whether a directed segn 07! is clamddriom a directed segme 7072
with respect to their common endpoipf e simply translate to usg @s the origin. That
is, we let p - pp denote the vector (X', Y1), where X = X1 - Xoand yi = y1 - Yo, and we
define p - p similarly. We then compute the cross product

(P1 - Po) X (P2 - Po) = (X1~ Xo) (Y2 - Yo) - (X2 - X0) (Y1 - Yo)-

If this cross product is positive, th 7071 is clockevirom P07 : jf negative, it is counter
clockwise.

Determining whether consecutive segments turrolefight:-

o and 7 ps . : :
Two consecutive line segmer.‘?f"‘{':l bz turn left or righp@int p. Equivalently, we

want a method to determine which way a given aaghgp:p. turns. Cross products allow
us to answer this question without computing thglems shown in Figure 35.2, we simply

check whether directed segmi Pop3 Is clockwise ontmwclockwise relative to directed

segmen ™1 To do this, we compute the cross progdctp) X (p1 - po). If the sign of
e —

this cross product is negative, tr 7072 is countackalise with respect t#71 | and thus

we make a left turn at;PA positive cross product indicates a clockwisertation and a
right turn. A cross product of 0 means that popgig, and p are collinear.

31|Page

'] ' ' ' Fop and gy
Figure 35.2 Using the cross product to determine how consecutive line segments

turn at point p1. We check whether the directed segment """ is clockwise or counter clockwise

—
relative to the directed segment oy (a) If counter clockwise, the points make a left turn. (b) If
clockwise, they make a right turn.

Determining whether two line segments intersect:-

We use a two-stage process to determine whethelinergegments intersect. The first stage
is quick rejection: the line segments cannot irgere their bounding boxes do not intersect.
The bounding box of a geometric figure is the sastlfectangle that contains the figure and
whose segments are parallel to the x-axis andg-aXihe bounding box of line
segmen. s represented by the rectalP. /1) withritefepoint 7! = - Y1) gnd
upper right point

-

1 = (X2, F2), where X, = min{x,,x3), ¥i = min(y,¥2), %, = max(x;, x:), and 7 = max(y;, ¥2)

where P1:P2) and (B3.5s) g4 rectangles, represented by lower lefil apper right

p2) and (P35, Pa)

points (&1, , intersect if and only if the conjunction

- 3 - - IR

(X2 2 X3) A (X 2 X)) A (Ve = Vs A (Ve 2 1)

is true. The rectangles must intersect in both dsis. The first two comparisons above
determine whether the rectangles intersect ine;dbcond two comparisons determine
whether the rectangles intersect in y.

The second stage in determining whether two ligengats intersect decides whether
each segment "straddles" the line containing therotA segmer . | straddles a line if
point p lies on one side of the line and poinlips on the other side. Ifr p lies on the
line, then we say that the segment straddles tiee Tiwo line segments intersect if and only
if they pass the quick rejection test and each segistraddles the line containing the other.

Loy =, 1 |:_.'J3 —_,'JI] < 0

Py =P = (py (py—p) *ip,—p <0

.”i.._-

(P =P d sy =) =]

r s Py
Py . 2

: AP
7 (o —p)xip,—p) =0 .-'J-_/

() e} (el

[!':'.'. ":r':'i I rd"_*

(py—p) ®{p,—p) =10

32|Page

Ordering segments:-

Since we assume that there are no vertical segmanis input segment that
intersects a given vertical sweep line intersect ia single point. We can thus order the
segments that intersect a vertical sweep line doogito the y-coordinates of the points of
intersection.

To be more precise, consider two nonintersectiggneats sand s these segments
are comparable at x if the vertical sweep line witoordinate x intersects both of them. We
say thatgis above sat x, writteng> X, ifs;and sare comparable atxand the
intersection of swith the sweep line at x is higher than the irdet®n of g with the same
sweep line. In Figure (a), for example, the relalips a >c, a xb, b 3¢, a ¥c,and b
>, ¢. Segment d is not comparable with any other segm

ia))]

For any given X, the relation y>is a total order on segments that intersect weep
line at X The order may differ for differing values ofhowever, as segments enter and
leave the ordering. A segment enters the orderingnwits left endpoint is encountered by
the sweep, and it leaves the ordering when itd ggldpoint is encountered.

Their positions in the total order are reversede&wlines v and w are to the left and right,
respectively, of the point of intersection of segises and f, and we have g f-and f

>,, €. Note that because we assume that no three seggmeersect at the same point, there
must be some vertical sweep line x for which ireeting
segments e and f are consecutive in the total cxdé&ny sweep line that passes through the
shaded region of Figure (b), such as z, has e aaddecutive in its total order.

Graham's scan-

Graham's scan is a method of computing the conuéboha finite set of points in
the plane with time complexit}/ @(ogn). It is named after Ronald Graham, who published
the original algorithm in 1972 The algorithm finds all vertices of the convexltaridered
along its boundary.

The algorithm proceeds by considering each of tbitp in the sorted array in
sequence. For each point, it is determined whetheving from the two previously
considered points to this point is a "left turn"af'right turn”. If it is a "right turn”, this
means that the second-to-last point is not pathefconvex hull and should be removed
from consideration. This process is continued ®fomg as the set of the last three points is
a "right turn". As soon as a "left turn" is encaenetd, the algorithm moves on to the next
point in the sorted array. (If at any stage thedhpoints are collinear, one may opt either to

33|Page

discard or to report it, since in some applicatiings required to find all points on the
boundary of the convex hull.)

String Matching:-

String matching algorithm used to search for paldic pattern in string sequences.
The string matching problem can be treated as asshiat the text array and pattern is arry
of length m<=n.

text T Fj_b|c|a!h|l|l|b'ﬂc|a|h|alltﬂ
! |

patiem P ——>=la[bla]a

Naive Algorithm:-

suppose n = length(T), m = length(P);
for shift s=0 through n-m do
if (P[1..m]==T[s+1..s+m]) then &ttually a for-loop runs here
print shift s;

End algorithm.

Complexity: O((n-m+1)m)

A special note: we allow O(k+1) type notation inlerto avoid O(0) term, rather, we want
to have O(1) (constant time) in such a boundapasin.

Rabin-Karp Algorithm:-

Consider a character as a number in a radix sygtem,English alphabet as in radix-26.
Pick up each m-length "number"” starting from stiftarough (n-m).

3|Page

General formula:t; = d (& - d™* T[s+1]) + T[s+m+1], in radix-d, where ts the
corresponding number for the substring T[s..(s+Myte, m is the size of P.

The first-pass scheme: (1) pre-process for (n-nmbers on T and 1 for P, (2) compare the
number for P with those computed on Input: TexingtiT, Pattern string to search for P,
radix to be used d (= 2|, for alphabet), a prime q

(23] [olol2[3]a]aluls] 2673 e s]2]1]

mod 13

{a)

| 2 3 4 5 & 7T & 9 IO L1 13 13 14 15 16 17 1E 19
2lals[elol2aa]a]1]s]2]6]7]a]o]9]2 1]
"—“-:_—-_v-_—_j_:__.-f"——- — e
,L M mad 13
Y]
slofsulo]1[7]s]a]slofuf7]e]n]
wvitlid SPUCIUS
match hiit
(b}
ald THw elel AW
high-order levwe-aicier high-order low-arder
dig]t digi :ligilll shift ,.-di'gu
\ y 3 Y ¥
[3

: IW 14152 = (31415 - 3-10000)- 10 + 2 (mod 13)
= - (7-33310+2 (mod 13)

. ::;__ -
¥
i)

However, if the translated numbers are large (nes large), then even the number
matching could be O(m). In that case, the comp}dwit the worst case scenario is when
every shift is successful ("valid shift"), e.g.,&=and P=8. For that case, the complexity is
O(nm) as before.

& (muod 13)

el

But actually, for ¢ hits, O((n-m+1) + cm) = O(n+ngr a small c, as is expected in the real
life.

String-matching automata:-

There is a string-matching automaton for everygma®; this automaton must be
constructed from the pattern in a pre-processiag before it can be used to search the text
string. Figure 34.6 illustrates this construction the patterd® = ababaca. From now on, we

35|Page

shall assume th&tis a given fixed pattern string; for brevity, whall not indicate the

dependence upddin our notation.

e T -
T — A
a ~ _a _'“3\ o
b b A [+ a
— b I
—_— 5
{a)
input
state a b & I
o [1]o]o]| a
L [1]2]o0] »
2 |3|0|0)] a
3 [1]a]o] b
4 [s]olo]| a
S |1/4]6] < i — 1231 45 6 7 8 91011
ﬁ?[[lﬁa Ti] — a b a b abaacatlba
T o[i]z2]0 sueg(Ty 0123 45 45 o[z 3
(I} (<)

Knuth-Morris-Pratt Algorithm:-

The Knuth—Morris—Pratt string searching algorithmK®P algorithm) searches for
occurrences of a "word" W within a main "text stfInS by employing the observation that
when a mismatch occurs, the word itself embodiéfgcgnt information to determine where
the next match could begin, thus bypassing re-exation of previously matched characters.
Thus, P=ababababca, when S=P6=ababab, largesthalis or Pi(6)=4.

An array Pi[1..m] is first developed for the whalet for S, Pi[1] through Pi[10] above

Yo Fhe Knwth-NMorves-Fratl al gored o

i ‘ 1| 2] 1[s[e[7]8[9]10
Fli b | 1 =1 | k a o (= a2
]] 0 1 s i 5 O) 1
La)
Py ! o] | I | B x| b
~, | b al|lhb 3 B 1 &
| [T
4 3 bla | jo T | k 1
f l =1 o] | k 1 I I 1
P, £ 21 k k 1 k 1

[§a)]

36| Page

The array Pi actually holds a chain for transitiang., Pi[8] = 6, Pi[6]=4, ...,
always ending with 0.
Algorithm KMP-Matcher(T, P)
n = length[T]; m = length[P];
Pi = Compute-Prefix-Function(P);
g=0; /[l how much of P has matched so far, ofccmatch possibly
for i1=1 through n do
while (g>0 && P[g+1]# T[i]) do

g = Pi[q]; /I follow the Pi-chain, to find nexinaller available symmetry,
until O

if (P[g+1] ==TI[i]) then
q=0a+l;
if (Q==m) then
print valid shift as (i-m);
g = Pi[q]; // old matched part is preserved,efised in the next iteration
end if;
end for;
End algorithm.
Algorithm Compute-Prefix-Function (P)
m = length[P];
Pi[1] = 0;
k=0;
for g=2 through m do
while (k>0 && P[k+1] =/=P[q]) do //loop beks with k=0 or next if succeeding
k = Pi[k];

if (P[k+1] == P[q]) then // check if the nexbipted character extends previously
identified symmetry

k = k+1;

37| Page

Pi[q] = k; /I k=0 or the next character matched
return Pi;
End algorithm.

Complexity of second algorithm Compute-Prefix-Fumet O(m), by amortized analysis (on
an average).

Complexity of the first, KMP-Matcher: O(n), by aniaed analysis.

In reality the inner while loop runs only a few &8mas the symmetry may not be so
prevalent. Without any symmetry the transition glyigumps to q=0, e.g., P=acgt, every Pi
value is 0.

Graph Algorithms — BES and DES:-

Breadth-first search (BFS):-

Breadth-first search (BFS) is_a strategy for saagchn a graptwhen search is
limited to essentially two operations: (a) visitdanspect a node of a graph; (b) gain access
to visit the nodes that neighbour the currentlytegs node. The BFS begins at a root node
and inspects all the neighbouring nodes. Then dehef those neighbour nodes in turn, it
inspects their neighbour nodes which were unviséed so on.

Algorithm:-

* The algorithm uses @ueuedata structure to store intermediate results taaverses
the graph, as follows:

* Enqueue the root node

» Dequeue a node and examine it
o If the element sought is found in this node, dué $earch and return a result.
o Otherwise enqueue any successors (the directmhdds) that have not yet
been discovered.

» If the queue is empty, every node on the graplbkas examined — quit the search
and return "not found".
» If the queue is not empty, repeat from Step 2.

Example: The following figure (from CLRS) illustest the progress of breadth-first
search on the undirected sample graph.

a. After initialization (paint every vertex whiteet dJ] to infinity for each vertexi, and

set the parent of every vertex to be NIL), the sewertex is discovered in line 5. Lines
8-9 initialize Q to contain just the source versex

38| Page

¥ I u

—~
mel

)
T o3
=) o
,.

¥

@u.

e
(8
=(8

b. The algorithm discovers all vertices 1 edge fmire., discovered all vertices
(wandr) at level 1.

d. The algorithm discovers all vertices 2 edgesnfsa.e., discovered all vertices, ,
andv) at level 2.

r X ! i
u
2)}—(e)
oo [e]x]v]
Pt
2 (=) 12 2

g. The algorithm discovers all vertices 3 edgesnfsd.e., discovered all vertices
(u andy) at level 3.

39| Page

Depth-first search(DES):-

Depth-first search ot DFS is a way to traverse the graph. Initially
allows visitingvertices of the graph only, but there are hundedalgorithms for graph:
which are based on DFS. Therefore, understandiagptinciples of dep-first search is
quite important to move ahead into the graph thedme principle of the algohm is quite
simple: to go forward (in depth) while there is lsyossibility, otherwise to backtra

Algorithm:-

In DFS, each vertex has three possible colors septang its stat
Owhite: vertex is unvisite
Ogray: vertex is irprogress

.black: DFS las finished processing the ver

NB. For most algorithms boolean classifica unvisited / visiteds quite enough, but w
show general case here.

Initially all vertices are white (unvisited). DF&#ds in arbitrary vertex and runs as follo

1. Mark vertex uas gray (visited
2. For each edge (u, where u is white, run depth-first search forecursively

40| Page

3. Mark vertex uas black and backtrack to the par

Example.Traverse a graph shown below, using DFS. Start &iorartex with number

Sourcegraph.

@

Mark a verte 1 as grey.

|

There is an ed((1, 4) and a vertex ¥ unvisited. Go ther

1

Mark the verte 4 as gray.

e There is an ed((4, 2) and vertex ai® unvisited. Go ther

e Mark the verte 2 as gray.

41| Page

There is an ed((2, 5) and a vertex 5 unvisited. Go ther

Mark the verte 5 as gray.

o There is an ed((5, 3) and a vertex 8 unvisited. Go ther

Mark the verte 3 as gray.

There are no ways to go from the ve 3. Mark it as black ar
backtrack to the vert(5.

There is an ed((5, 4), but the vertex 4 is gray

42 |Page

There are no ways to go from the ve 5.Mark it as black an
backtrack to the vert(2.

There are no more edges, adjacent to v 2. Mark it as black an
backtrack to the vert 4.

There is an ed((4, 5), but the vertex 5 is blac

There are no more edges, adjacent to the \4. Mark it as blacl
and backtrack to the veri 1.

There are no more edges, adjacent to the \ 1. Mark it as black
DFS is ovel

As you can seadm the example, DFS doesn't go through all edbes.vertices an
edges, which deptfirst search has visited istree This tree contains all vertices of t
graph (if it is connected) and is cal graph spanning tredhis tree exactly corresponds
the recursive calls of DFS.

If a graph is disconnected, DFS won't visit all itsf vertices. For details, <finding
connected components algorit.

43 |Page

Module IV

Spanning tree:-

A spanning tree for a graph G is a sub-graph ofi&kvisa tree that includes every
vertex of G.A spanning tree of a graph G is a “maali treecontained in the graph G.When
you have a spanning tree T for a graph G, youcaaddtanother edge of G to T without
producing acircuit.

Example:

Consider the following grapl@, representing pairs ofpeopl&, B, C, D andE) who

areacquainted with eachother.

(1

L3

®
.
,

1
.JJ
o

Fig. 7.4. A graph and spanning tree.

3

We wish to install the minimum number of phone dingothat communication
between these people is maintained. Asan adviearnged to find a spanning trééor G.

Kruskal's Algorithm:-

Find the minimal spanning tree for the followingnoectedweighted grapB.The
starting point of Kruskal's Algorithm is to make*adge” list, in which the edges are listed
in order ofincreasing weights.

feh

(&)

il

44 |Page

Kruskal's Algorithm for finding minimum spanninge@sfor weighted graphs (Epp's
version) is then:
Input: G a connected weighted graph witlvertices.
Algorithm Body:(Build a sub-grapfi of G to consist of all of the vertices Gfwith edges
added in order of increasing weight. At eachstégjenbe the number of edges B
1. InitialiseT to have all of the vertices @ and noedges.
2. LetEbe the set of all edges Gfand letm = 0.(pre-conditionG is connected.)
3. While (n<n-1)
a. Find an edgein E of least weight.
b. Deletee from E.
c. If addition ofe to the edge set df does notproduce a circuit then aslb the edge
setof T and sem=m+1
End While (post-conditionl is a minimum spanning tree
forG.)
Output:T (a graph)
End Algorithm

Prim's algorithm:-

Prim's algorithmis an algorithm that finds a miom spanning tree for
connected weighted undirected graph. This meafiads a subset of the edges that forms
atree that includes every vertex, where the totalght of all the edgesin the tree is
minimized. Prim's algorithm is an example of greetllye only spanning tree of the empty
graph (with an empty vertex set) is again the engrgph. The following description
assumes that this special case is handled separéted algorithm continuously increases
the size of a tree, one edge at a time, startitig aviree consisting of a single vertex, until it
spans all vertices.

(mj {

45| Page

« Input: A non-empty connected weighted graph withitivesV and edgeg&(the
weights can be negative).

« Initialize: Vhew = {X}, wherex is an arbitrary node (starting point) fromEnew= {}

+ Repeat untiVpew=V:
o Choose an edgei,(v) with minimal weight such thatis inV,eyandvis not

(if there are multiple edges with the same weighy; of them may be picked)

o AddVtoVhew and (I, V) to Epew

« Output:Vhew andEney describe a minimal spanning tree

Dijkstra's Algorithm:-

Djikstra's algorithm (named after its discover, ED¥kstra) solves the problem of
finding the shortest path from a point in a gragbte ource) to a destination. It turns out that
one can find the shortest paths from a given sairedl points in a graph in the same time;
hence this problem is sometimes called the singleeg shortest paths problem.

The somewhat unexpected result that all the pathde found as easily as one
further demonstrates the value of reading thedlitee on algorithms!

This problem is related to the spanning tree ohe. graph representing all the paths
from one vertex to all the others must be a spantnge - it must include all vertices. There
will also be no cycles as a cycle would define ntbea one path from the selected vertex to
at least one other vertex. For a graph,

G=(V,E) where « Vs a set of vertices and
- Eis asetof edges.

The other data structures needed are:
d array of best estimates of shortest path to earbx
pi an array of predecessors for each vertex

46 |Page

The basic mode of operation is:

1. Initialise d and pi,
2. Set S to empty,
3. While there are still vertices in V-S,

» Sort the vertices in V-S according to the curresgtltestimate of their distance
from the source,

* Add u, the closest vertex in V-S, to S,

* Relax all the vertices still in V-S connected to u

Maximum flow:-

We can also interpret a directed graph as a flowverk and use it to answer
guestions about material flows. Consider a matéipaling through a system from a source
where the material is produced to a sink where itansumed. The source produces the
material at some study rate and the sink consunatshie same rate.

The flow of the material at any point in the gystis the rate at which the
material moves. Flow networks can be used to mbgeids flowing through pipes parts
through assembly lines, current through electricatwork, information through
communication networks.

Flow conservation propertyihe rate at which a material enters a vertex mgsaleto the
rate at which it leaves the vertex. This is calledhe flow conservation property.

Maximum flow problem Here we wish to compute the greatest rate athvimaterial can
be shipped from the source to the sink withoutatioy any capacity constraint.

A flow network G = (V, E) is a directed graphwhich each edge (u,
V) € E has a non-negative capacity c(x0r)

Definition of flow: Let G(V, E) be a flow network ith a capacity function C. Let ‘s’ be the
source of the network and ‘t’ be the sink.

A flow in G is a real valued function fxv—R where R is a set of real number that satisfies
the following 3 property.

1. Capacity constraint property:-It says that the flow from one vertex to anotharst
not exceed the given capacity.
For all u, \eV, we require f(u, vk c(u, v)
2. Skew symmetry property:- it says that the flow from a vertex u to a verteis the
negative of the flow in the reverse direction.
For all u, \e V, we require f(u, v) = -f(u, v)
3. Flow conservation property:- It says that the total flow out of a vertex atligen the
source or sink is zero.
For all ue V-{s, t}, we require},cv f (u, v)=0

47 |Page

The Ford-Fulkerson method:-

Given a graph which represents a flow network wherery edge has a capacity.
Also given two verticesource ‘'s’ andsink ‘t’ in the graph, find the maximum possible flow
from s to t with following constraints:

a) Flow on an edge doesn't exceed the given capatitye edge.
b) Incoming flow is equal to outgoing flow for evergrtex except s and t.

For example, consider the following graph from CLRSbook.
12

Source: 0
Sink: 5

20

14

The maximum possible flow in the above graph is 23.
12

Maximum Flow
in the above
graph is 23

19

11

Ford-Fulkerson Algorithm :-

The following is simple idea of Ford-Fulkerson aigfam:

1) Start with initial flow as 0.

2) While there is a augmenting path from source tk.sin
Add this path-flow to flow.

3) Return flow.

Augmenting path:-

Given a flow network G=(V, E) and a flow ‘f" arah augmenting path p is a
simple path from s to t in the residual network Each edge (u, v)on an augmenting path

48 |Page

admits some additional positive from u to v witheigdlating the capacity constraints on the
edge.The residual capacity of the path p is giwen b

G(p) = min{C(u, v): (u, v) is on p}

Cuts of flow network:-

Definition: A cut (S, T) of a flow network G=(V, B} a partition v into s and T=v-s, such
that se S and & T. The capacity of the cut (s, t) is c(s, t).

NP-complete (polynomial time algorithm):-

They are algorithms which on inputs of size n haweorst case running time
of O () for some constant ‘k'.

Example: Quick sort running time =O?rso its algorithm is called NP-complete algorithm.

There are three classes of problem:-

e P-class

« NP-class

* NPC-class
P-class:

The class P consist of those problems that dralde in polynomial time
that is in time O (F) for some constant’ k' where n is input size.

Example: Quick sort running time =0%[n
NP-class

The class NP consist of those problems that eri@able in polynomial time
that is given a certificate of a solution use coudify that the certificate is correct in time
polynomial in the size of the input to the problem.

Example: Hamilton cycle
NPC-class

The class NP-complete consist of those probldrasdre in NP and are as
hard as any problem in NP. Any NP-complete probtsm not be solved in polynomial
time.

49 |Page

Polynomial time reduction algorithm:-

Suppose there is a decision problem ‘A’ which ke lio solve in polynomial
time. Suppose there is a different decision probERnthat we already know how to solve in
polynomial time. Procedure that transforms anyains¢ &’ of A into some instances’ of
B should have the following characteristics:

1. The transformation take polynomial time
2. The answers are the same that is the answeiyes if and only if answer fg#t
is also yes

This procedure is called as a polynomial time o&idn algorithm.

Steps

1. Given an instancex of problem use polynomial time reduction algorithim
transform it to an instange of problem B.

2. Run the polynomial time decision algorithm for B tte instance

3. Use the answer fgf as the answer far.

A finite NP-complete problem:-

Because the technique of reduction relies on haaipgpblem already known
to be NP-complete in order to prove a differentopgmn NP-complete we need a fast NP-
complete problem. For the problem we will use B ¢ircuit satisfiability problem in which
we are given a Boolean combinational circuit consgosf AND, OR & NOT gates and we
wish to know whether there is any set of Boolegiuta to this circuit that causes its output
to be one.

The circuit satisfiability problem is given Boale combinational circuit
composed of AND, OR, NOT gates is it satisfiabl&isTproblem arises in the area of
computer added hardware optimization.

Example: if a sub circuit always produces 0 thext fub circuit can be replaced by a simpler
sub circuit that omits all logic gates and provitles constant value 0 as its output.

The three basic logic gates that we use in ttublpm are:

AND gate
2 Input AND gate
A B A8
o a o
g —} AB 1 1] o
1 a o
AND 1 1 1

50| Page

This gate’s output is 1, if all its inputs are dautput is O otherwise.

OR gate
2 Input OR gate
A B A+B
0 0 0
5] >——Ab O T
1 a 1
OR 1 1 1
This gate’s output is 1, if any of its input imdd output is O otherwise.
NOT gate
_ NOT gate
A 4|>07 A A A
ad 1
NOT 1 0

It takes a single binary input either O or 1 analduces a binary output whose
value is opposite to that of the input value.

A Boolean combinational circuit consist of one onore Boolean
combinational elements interconnected by wires.ie wonnects the output of one element
to the input of another. The number of element igped by wire is called the fan-out of the
wire. A one output Boolean combinational circuit satisfiable if it has a satisfying
assignment that is a truth assignment that cahgesutput of the circuit to bel.

3-CNF (conjunctive normal form):-

A Boolean formula is in CNF if it is expressed asAND of clauses each of
which is the OR of one or more literals. A Booldammula is in 3-CNF is each clause has
exactly 3 distinct literals.

Example:
(X1" ~Xa® ™X2)* (X3 " X2* Xa)* (X1 ~X3" ~Xa)

In 3-CNF satisfiability we are asked whether a givBoolean formula in 3-CNF is
satisfiable or not.

51|Page

Approximation algorithms :-

Many problems of practical significance are NP-ctetep but are too
important to abandon nearly because obtaining amap solution is intractable. If a
problem is NP-complete it is unlikely to find a pebmial time algorithm for solving it
exactly.

There are 3 approaches to getting around NP-czipm#ss:

l. If the actual inputs are small an algorithm wittperential running time may
be perfectly satisfactory.
. We may be able to isolate important special cabes are solvable in
polynomial time.
[ll. It may be possible to find near optimal solutiongolynomial time either in
the worst case or an average.

An algorithm that returns near optimal solutioadled an approximation algorithm.

Performance ratio for approximation algorithms

Suppose we are working on an optimization prohlenvhich each potential
solution has a positive cost and we wish to fingear optimal solution. Depending on the
problem an optimal solution may be defined as oite minimum possible cost. That is a
problem may be either a minimization or maximizagwoblem.

An algorithm for a problem has an approximatiatior of p(n) if for any
input of size n the cost ‘C’ of a solution produdsdthe algorithm is within a factor gf(n)
of the first C of an optimal solution.

Max ((C/C) C'/C)) < p(n)

We called such an algorithm that achieves an apmetion ratio ofp(n) approximation
algorithm. For a maximization problem optimal s@ntis maximum that is 0<@C". For a
minimization problem0<& C. So the approximation ratio is never less thamae

(CIC)<1=>(C/C)>1

Approximation scheme:

An approximation scheme for an optimization peoblis an approximation
algorithm that takes as input not only an instamicthe problem but also a val(®0, such
that for any fixet the scheme is a ¢+ approximation algorithm.

This scheme as polynomial time approximation sehé for any fixede >0
the scheme runs in time polynomial in the sizdainput that is ‘n’

O (rf'¥) where >0

52| Page

Vertex cover problem:-

A vertex-cover of an undirected graPh(V, E) is a subset of subset oV such
that if edge |, v) is an edge of then eitheu in Vorvin V'[1 (or both).

The vertex cover problem is to find a vertexer of maximum size in a given
undirected graph. This optimal vertex-cover is diptimization version of an NP-complete
problem but it is not too hard to find a vertex-epthat is near optimal.

APPROX-VERTEX COVER (G: Graph):-

1. c—{}

2. E < E[G]

3. while E" is not empty do

4. Let (, v) be an arbitrary edge &

5 c—cU{u,v}

6 Remove fronk™ every edge incident on eitheor v
7. returnc

Example

53| Page

54| Page

