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MCA-209                        Analysis and Design of Algorithm         L-T-P: 3-1-0 

 
Prerequisite: Familiarity with Discrete Mathematical Structures, and Data Structures. 
 

UNIT I: (10 Hours) 
Algorithms and Complexity: Asymptotic notations, orders, worst-case and average-case, 
amortized complexity. 
Basic Techniques: divide & conquer, dynamic programming, greedy method, 
backtracking. 
 

UNIT II: (10 Hours) 
Branch and bound, randomization. 
Data Structures: heaps, search trees, union-find problems. 
Applications: sorting & searching, combinatorial problems. 
 

UNIT III: (10 Hours) 
Optimization problems, computational geometric problems, string matching. 
Graph Algorithms: BFS and DFS, connected components. 
 
UNIT IV: (10 Hours) 
Spanning trees, shortest paths, MAX-flow. 
NP- completeness, Approximation algorithms. 
 
Text Book: 

1. Introduction to Algorithms, 2/e ,T.H.Cormen,C.E.Leiserson, R.L.Rivest and 
C.Stein, PHI Pvt. Ltd. / Pearson Education 
 
Reference Books: 
1. Algorithm Design: Foundations, Analysis and Internet examples, M.T.Goodrich 
and R.Tomassia, John Wiley and sons. 
 
2. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and 
Rajasekharam, Galgotia Publications Pvt. Ltd. 
  
Course outcomes: 
1. To be able to analyze correctness and the running time of the basic algorithms for 
those classic problems in various domains and to be able to apply the algorithms 
and design techniques for advanced data structures. 
2. To be able to analyze the complexities of various problems in different domains. 
and to be able to demonstrate how the algorithms are used in different problem 
domains.  
3. To be able to design efficient algorithms using standard algorithm design 
techniques and demonstrate a number of standard algorithms for problems in 
fundamental areas in computer science and engineering such as sorting, searching 
and problems involving graphs. 
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ANALYSIS AND DESIGN OF ALGORITHM  

Module I 

Algorithm:-  

 Informally an algorithm is any well-defined computational procedure that takes some 
value or set of values as input and produces some value or set of values as output. 

Running time:- 

 The running time of an algorithm on a particular input is the number of primitive 
operations or steps executed. 

 When we look at input sizes large enough to make only the order of growth of the 
running time relevant we are studying the asymptotic efficiency of algorithms. 

Asymptotic notation:- 

  They are used to describe the asymptotic running time of an algorithm. They 
are defined in terms of function whose domains are the set of natural numbers N={0,1,2,...}. 
Such notations are convenient for describing the worst case running time function which is 
defined only on integer input sizes. There are 5 notations :- 

• (Theta)θ-notation 
• (big-oh)O-notation 

• (big-omega)Ω-notation 
• (small-oh)o-notation 

• (small-omega)ω-notation 

(Theta)θ-notation:- 

 This notation asymptotically bounds a function from above and below. For a given 
function g(n) we denote by θ(g(n)) is given by 

θ(g(n)) ={f(n): there exist  positive constants c1,c2 and n0 such that 0≤c1g(n)≤f(n)≤c2g(n)                  
for all n≥n0 }. 

 For all values of n to the right of n0 the value of f(n) lies at or above c1g(n) or at 
below c2g(n). We say that g(n) is an asymptotically tight bound for f(n) where c1g(n) is the 
lower bound and  c2g(n) is the upper bound. Definition of Ɵ(g(n))  is required by every 
member f(n) which is element of θ(g(n))  asymptotically non-negative. 

(Big-oh)O-notation:- 

 This notation used when we have only an asymptotic upper bound. For a given 
function g(n) we denote by O(g(n)) the set of functions , 
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O(g(n))={f(n): there exist a positive constant c and n0 such that 0≤f(n)≤cg(n) for all n≥n0 }. 

(Big-omega)Ω-notation:- 

 It provides an asymptotic lower bound. For a given function g(n) we denote by 
Ω(g(n)) the set of functions  

Ω(g(n))={f(n): there exist a positive constant c and n0 such that 0≤cg(n) ≤f(n)for all n≥n0 }. 

  O and Ɵ notation are used for average and worst case. Ω notation are used for 
best case running time.  

(small-oh)o-notation:- 

 The asymptotic upper bound provided by big-oh notation may or may not be 
asymptotically tight. 

Example:- The  bound 2n2=o(n2) is asymptotically tight but 2n= o(n2) is not. 

 We use small-oh notation to denote an upper bound that is not asymptotically tight. 
We define o(g(n)) as the set of functions  

o(g(n))={f(n): for any  positive constant c>0 there exist a constant  n0>0 such that 0≤f(n)< 
cg(n) for all n≥n0 }. 

(small-omega)ω-notation:- 

 We use this notation to denote a lower bound that is not asymptotically tight. We 
define  ω(g(n)) as the set  

ω(g(n))={f(n): for any  positive constant c>0 there exist a constant  n0>0  such that 0≤cg(n) 
≤f(n)for all n≥n0 }. 

Order of growth:-  

Example:-Arrange the following  

  O(n2),O(2n),O(log n),O(n log n),O(n2log n),O(n) 

Answer:-order of growth is 

  O(log n),O( n),O(n log n),O(n2),O(n2log n),O(2n) 

Rate of growth:- It refers to the change in the running time of an algorithm as the input size 
increases. 
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Amortized analysis:- 

 Here the time require to perform a sequence of data structure operations is averaged 
over all the operations performed. Here probability is not involved. The 3 common 
techniques for amortized analysis are :- 

• Aggregate analysis 
• Accounting method 
• Potential method 

General analysis:- 

 Here an upper bound T(n) on the total cost of a sequence of ‘n’ operations 

determined. The average cost for operation is
�(�)

�
. 

Example:- Stack operations 

 2 stack operations are PUSH(s, x) that pus x onto stack s & POP(s) that pops the top 
most element of stack. Another operation is MULTIPOP(s, k) that simultaneously pop k 
items from the stack  

1. PUSH(s, x) 
2. POP(s) 
3. MULTIPOP(s, k) 

While not STACK_EMPTY(s) and k≠0 do POP(s) 
K.←k-1 
 

Aggregate analysis:- 

Using this we can get a better upper bound that considers the entire sequence of ‘n’ 
operations. Although a single multipop operation can be expensive. Any sequence of n push, 
pop, and multipop operation on an initial empty stack and cost at most O(n) because each 
object can be pop at most once for each time it is pushed.  

  For any value of n, any sequence of n push, pop and multipop operations 

takes a total of O(n) time. So avg. cost of an operation is 
�(�)

�
 =O(1). This is equal to the 

amortized cost of each operation. 

Accounting method:- 

In this method we assign different charges to different operation with some 
operations charged more or less than they actually cost. The amount we charge an operation 
is called amortized cost. When an operation’s amortized cost exceeds its actual cost the 
difference is assigned to specific objects in the data structure as credit.  
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Example:- 

  StackActual costAmortized cost 

  PUSH                 1                            2 

  POP                    1                            0 

        MULTIPOP      min(k, s)                      0 

This credit can be used to later on to help pay for operations whose amortized cost is 
less than their actual cost. If we denote the actual cost of the ithoperation by Ciand amortized 
cost of the operation by Ĉi 

∑ Ĉi �

�� ≥∑  Ci �


�� we require this for all operations. 

The total credit stored in the data structure is the difference between the total 
amortized cost and the total actual cost. 

Total credit= Total amortized cost-Total actual cost 

As the amortized cost is greater than or equal to actual cost the total credit associated 
with the data structure must be non-negative at all times.  

 Potential method:- 

 Instead of representing prepaid work as credit stored with specific objects in the data 
structure this method represents the prepaid work as potential energy or just potential that 
can be released to pay for future operation. 

 This potential is associated with the data structure as a whole rather than with 
specific object within the data structure. We start with an initial data structure ‘D0’ on which 
n operations are performed. For each i=1, 2 ... n. Let Ci is the actual cost of the operation & 
Di is the data structure that results after applying the ith operation to the data structure Di-1.  

  A potential function Ø maps each data structure Di   to a real number Ø (Di) 
which is the potential associated with data structure Di. The amortized costof the ith 
operation with respect to potential function is defined by :- 

 Amortized cost= actual cost + increase in potential 

• Ĉi=Ci+ Ø (Di) - Ø (Di-1)  

The total amortized cost of n operations is 

� ∑ Ĉi �

�� =∑ �Ci +  Ø (Di) −  Ø (Di − 1)�

�

��  

        =∑
Ci

�

��  + Ø (Dn) - Ø (D0) 
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Example:- Stack operations 

Recurrences:- 

  When an algorithm contains a recursive call to itself its running time can be 
described by recurrence. A recurrence is an equation on inequality hat describes a function in 
terms of its value on smaller inputs. T

1. Recursion tree method 
2. Substitution method 
3. Master theorem 

Master theorem:- 

  It provide a cook book method for solving recurrences of the form is  

 

Where a≥1 and b>1 are constants and f (n) is an asymptotically positive function. 

 This equation describes the running time of an algorithm that divides a problem of 
size ‘n’ into ‘a’ sub problems each of size n/b. The cost of dividing the problem and 
combining the results of the sub problems is given by the function f (n). Then T (n) can be 
bounded asymptotically as follows:

Case-1  

 If f (n) = O (nlogb(a)-ε)for some constant 

Case-2 

 If f (n)=θ (nlogb(a)), then T (n) = 

Case-3 

 If f (n)= Ω (nlogb(a)+ε)for some constant 

and sufficiently large ‘n’ then T (n)= 

 

Substitution method:- 

 It consists of 2 steps:- 

• Guess the form of the solution

• Use mathematical induction to 

Example: 

  Use the substitution method to show that T(n) 

  

When an algorithm contains a recursive call to itself its running time can be 
described by recurrence. A recurrence is an equation on inequality hat describes a function in 
terms of its value on smaller inputs. There are 3 methods to solve a recurrence 

It provide a cook book method for solving recurrences of the form is   

1 are constants and f (n) is an asymptotically positive function. 

This equation describes the running time of an algorithm that divides a problem of 
size ‘n’ into ‘a’ sub problems each of size n/b. The cost of dividing the problem and 

ts of the sub problems is given by the function f (n). Then T (n) can be 
bounded asymptotically as follows: 

)for some constant ε>0 then T (n) = θ (nlogb(a)) 

), then T (n) = θ (nlogb(a)
lgn) 

)for some constant ε>0  & if  af(n/b)≤cf(n)for some constant c<1 

and sufficiently large ‘n’ then T (n)= θ (f (n)) 

 

Guess the form of the solution 

Use mathematical induction to find the constant and show that the solution works

Use the substitution method to show that T(n) ∈ O(n) 

When an algorithm contains a recursive call to itself its running time can be 
described by recurrence. A recurrence is an equation on inequality hat describes a function in 

here are 3 methods to solve a recurrence  

1 are constants and f (n) is an asymptotically positive function.  

This equation describes the running time of an algorithm that divides a problem of 
size ‘n’ into ‘a’ sub problems each of size n/b. The cost of dividing the problem and 

ts of the sub problems is given by the function f (n). Then T (n) can be 

)  

cf(n)for some constant c<1 

find the constant and show that the solution works 
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T(1) = 3    
T(n) = 2T( n/2 ) + 5 

1. Guess: 

T(n) = O(n) 

By definition of Big-O, must find c>0 and n ≥ n0 

0 ≤ T(n) ≤ cn 

2. 0 ≤ T( k/2 ) ≤ c k/2 

Show:T(k) = 2T(k/2) + 5 ≤ ck             

3. Substitution 

T(k) = 2T( k/2 ) + 5   Recurrence definition 

  ≤ 2 [ c k/2 ] + 5   IH substitution 

  = 2c k/2 + 5   

  = ck + 5   

  ≤  ck Show   T(k) ≤  ck 

 

 

 

 

 

Algorithm and design technique:- 

There are different techniques to design an algorithm: 

1. Divide and conquer 
2. Dynamic programming 
3. Greedy method 
4. Backtracking 
5. Branch and bound 

 

Find constant c so the last two lines hold.   

ck + 5 ≤  ck   Not possible for c > 0 and k ≥ 1 

5 ≤ 0   Subtract ck 

Fails to satisfy the substitution 
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1. Divide and conquer:- 

 Many algorithms are recursive in structure. To solve a given problem they 
call themselves recursively one or more time to deal with closely related sub problems. 
These algorithms follow a divide and conquer approach. It involves 3 steps  

• Divide 
• Conquer  
• Combine 

Divide: - divide the problem into a number of sub problem. 

Conquer: - Conquer the sub problems by solving them recursively. 

Combine the solution to the sub problems into the solution for the original problem. 

Example: - Merge sort 

  Let T (n) be the running time of an problem of size n. If the problem 
size is small for some constant c that is n<=c, the straight forward solution takes constant 
time θ (1).  

  Suppose our division of the problem gives a sub problem each of 
which is (1/b)th size. Let D (n) be the time to divide the problem into sub problem and C(n) 
be the time to combine the solution to the sub problem into the solution to the original sub 
problem. The recurrence is given by:- 

 T (n) = {θ (1) if n ≤ c 

    {aT (n/b) + D(n) + C(n)  otherwise 

Dynamic programming:- 

  Divide and conquer algorithm partition the problem into independent 
sub problem. Solve the sub problems recursively and then combine their solution to solve the 
original sub problem. But the dynamic programming is applicable when the sub problems 
are not independent that is when sub problems share sub sub problems. 

  A DPA algorithm solves every sub sub problems just once and saves 
its answers in a table avoiding the work of re-computation. It applies to optimization 
problems in which in which a set of choices must be in order to arrive at an optimal solution. 
The development of DP algorithm can be broken into a sequence of 4 steps. 

• Characterize the structure of n optimal solution 

• Recursively define the value of an optimal solution 
• Compute the value of an optimal solution in a bottom up fashion 
• Construct the optimal solution from computed information  
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Elements of dynamic programming:-  

  The 2 key ingredients that an optimization problem must have in order 
for DP to be applicable are  

• Optimal substructure 
  A problem exhibits optimal substructure if an optimal solution to the 
problem contains within it optimal solution to sub problems 
 

• Overlapping sub problem 
  When a recursive algorithm revisits a same problem over and over 
again we say that the optimization problem has overlapping sub problems. 

Matrix chain multiplication:-  

  It can be stated as given a chain of ‘n’ matrices <A1 A2 ... An> where 
for i=1,2, ... n, matrix Ai has dimensions Ai←pi-1 × pi  fully parenthesize the product A1, A2 ... 
An in way that minimizes the number of scalar multiplication. 

Step-1:structure of an optimal parenthesizes   

  The optimal substructure of this problem is suppose optimal 
parenthesizes of Ai, Ai+1 ...A jsplits the product betweenAkand Ak+1. Then the parenthesize of 
the prefix sub chainAi, Ai+1 ...Akwithin the optimal parenthesize of Ai, Ai+1 ...A jmust be 
optimal. Also the parenthesize of the sub chainof Ak+1, Ak+2 ...A j must be optimal. 

Step-2: Recursive solution  

  Let m [i, j] be the minimum number of scalar multiplications needed 
to compute the matrix Ai.....Aj. The recursive formula is  

 M [i, j] = {0      if i=j 

       { min
����{m[i, k] + m[k + 1, j] + pi − 1pkpj}if i < j 

Step-3: computing the optimal cost 

  It is done by a tabular bottom approach 
optimal parenthesize algorithm 

o Pop(s, i, j) 
o If (i=j) 

 Then print Ai 

o Else print ( 
 Pop(s, i, s[i, j]) 
 Pop(s, s[i, j]+1, j) 

o Print ) 
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Longest common sub-sequences (LCS):- 

 Given 2 sequences X and Y , we say that a sequence Z is a common sub-
sequence of X and Y if Z is a sub-sequence of both X and Y. In LCS problem given 2 
sequences X and Y , we wish to find a maximum length common sub-sequence of X and Y. 

Step-1: characterizing a longest common sub-sequence 

  Let X=<x1, x2....xn> and Y=<y1, y2 ...yn> be sequences.                      
Let Z=<z1, z2 ... zn> be any LCS of X and Y. 

Case-1: If xm=yn then zk=xm=ynand zk-1 is an LCS of xm-1 and yn-1. 

Case-2: xm≠yn then zk≠xmand z is an LCS of xm-1 and y. 

Case-3: xm≠yn then zk≠ynand z is an LCS of x and yn-1. 

 

Step-2: recursive solution 

  Let c[i, j] be the length of an LCS of sequences xi, yj. optimal sub-
structure of the LCS problem gives the recursive formula. 

 C[i, j]={0 if i=0 or j=0 

  C[i-1, j-1]+1 if i, j>0 and xi= yj 

 Max(c[i, j-1], c[i-1, j]) if i, j>0 and xi≠yj}  

Step-3: computing the length  of an LCS 

  It takes 2 sub sequences as inputs. It sores the c[i, j] values in a table 
entries are computed in RMO. 

   

Optimal binary search tree:- 

  We are given a sequence k={k1, k2, ..}of n distinct keys in sorted order 
such that k1< k2 < ...<knand we wish to build a binary search tree from these keys . for each 
key we have a probability pi that a search will be for ki. Some searches may be for values not 
in k, so we have (n+1) dummy keys {d0.....dn} representing values not in k. 

  d0 represents all value less than k1. dnrepresents all value greater than 
kn. For each dummy key di we have probability qi that a search will correspond to di .each 
key ki is an internal node and each dummy key is a leaf. Every search is either successful 
(finding some key) or unsuccessful (finding some dummy key). 
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  For given set of probabilities our goal is to construct BST whose 
expected search cost is smallest such a tree is called as an optimal BST.  

Step-1: structure of an optimal BST 

  The optimal sub structure property is given by if an optimal BST has a 
sub tree containing keys ki to kjthen this sub tree must be optimal for the sub problem with 
keys ki to kjand dummy keys di-1 to dj. 

Step-2: Recursive solution 

  The e[i, j] values gives the expected search cost in optimal BST. The 
recursive formula is given by 

Greedy algorithm:- 

  A greedy algorithm always makes the choice that looks best at the 
moment. That is it makes a locally optimal choice in the hope that this choice will lead to a 
globally optimal solution. These algorithms do not always yield optimal solution.  

Example:-Minimum spanning tree algorithms 

Elements of greedy strategy   

1. Optimal substructure:- a problem exhibits optimal sub structure if an optimal solution to the 
problem contains within it optimal solution to sub problems. 

2. Greedy choice property:- a globally optimal solution can be arrived at by making a locally 
optimal greedy choice. When we are considering which choice to make we make the choice 
that looks best in the current problem without considering results from sub problems.  

Design of greedy algorithm 

• Subset paradigm 
  The greedy method suggest that one can devise an algorithm that 
works in stages considering one input at a time. At each decision is made regarding whether 
a particular input is in an optimal solution. This is done by considering the inputs in order 
determined by some selection procedure.  
 If the inclusion of the next input into the partially constructed optimal 
solution will result in an infeasible solution then this input is not added to the partial solution 
otherwise it is added. This version of the greedy technique is called the subset paradigm. 
 Example: knapsack problem 
 
 

• Ordering paradigm 
 For problems that do not call for the selection of an optimal subset in the 
greedy method we make decisions by considering the inputs in some order. Each decision is 
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made using an optimization criterion that can be computed using decisions already made. 
This version of greedy method is called ordering paradigm.  
 Example: single source shortest path problem 

Huffman codes:- 
 They are widely used and very effective technique for data. We consider 
the data to be sequence of characters. Huffman greedy algorithm uses a table of the 
frequencies of occurrence of the characters to build up an optimal way of representing each 
character as a binary string.  
Example: 

Let’s say you have a set of numbers and their frequency of use and want to create a 
Huffman encoding for them: 
 FREQUENCY VALUE 
        ---------       ----- 
 5            1 
             7            2 
            10            3 
            15            4 
            20            5 
            45            6 

 
Creating a Huffman tree is simple. Sort this list by frequency and make the two-

lowest elements into leaves, creating a parent node with a frequency that is the sum of the 
two lower element's frequencies: 
  12:* 
  /  \ 
  5:1 7:2 

 
The two elements are removed from the list and the new parent node, with frequency 

12, is inserted into the list by frequency. So now the list, sorted by frequency, is: 
 10:3 
 12:* 
 15:4 
 20:5 
 45:6 

 
You then repeat the loop, combining the two lowest elements. This results in: 

  22:* 
  /   \ 
      10:3 12:* 
     /  \ 
    5:1 7:2 

And the list is now: 
  15:4 
  20:5 
  22:* 
  45:6 
You repeat until there is only one element left in the list. 
 



15 | P a g e  

 

 35:* 
 /   \ 
15:4 20:5 
 
 22:* 
 35:* 
 45:6 
 
 
     57:* 
 ___/    \___ 
       /            \ 
     22:*          35:* 
    /   \          /   \ 
 10:3   12:*     15:4   20:5 
        /   \ 
      5:1   7:2 
 
 45:6 
 57:* 
 
                                   102:* 
                __________________/    \__ 
               /                          \ 
     57:*                         45:6 
 ___/    \___ 
       /            \ 
     22:*          35:* 
    /   \          /   \ 
 10:3   12:*     15:4   20:5 
        /   \ 
      5:1   7:2 
 Decoding a Huffman encoding is just as easy as you read bits in from your 
input stream you traverse the tree beginning at the root, taking the left hand path if you read 
a 0 and the right hand path if you read a 1. When you hit a leaf, you have found the code. 
 

Backtracking:-  
 Many problem which deal with searching for a set of solutions or which 
asks for an optimal solution satisfying some constraints can be solved using the backtracking 
formula. The name backtracking was first coined by D.H. Lehman in 1950s.  
 Many application of the backtrack method the desired solution is 
expressible as an n-tuple (x1, x2 ...xn) where the xi are chosen from some finite set si. Often 
the problem to be solved calls for finding one vector that maximizes or minimizes a criterion 
function p(x1, x2 ...xn ). 
The basic idea of backtracking algorithm is to build up the solution vector one component at 
a time and to use modified criterion functions to test whether the vector being formed has 
any chance of success. The major advantage is that if it is realised that the partial vector can 
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no way lead to an optimal solution then the rest of the test vectors can be ignored 
completely. 
Example: N-Queens Problem 

Given an N x N sized chess board 
Objective: Place N queens on the board so that no queens are in danger 

    
One option would be to generate a tree of every possible board layoutThis 
would be an expensive way to find a solution 

  

Backtracking prunes entire sub trees if their root node is not a viable solution. The 
algorithm will “backtrack” up the tree to search for other possible solutions 

 

  

 



17 | P a g e  

 

Module- 2 

 

Branch and bound:- 

 The  term branch and bound refers to all state space search method in 
which all children of the E-node are generated before any other live node can become the E-
node. A BFS like state space search will be called FIFO search as the list of live nodes is a 
FIFO list or queue. A DFS search like state space search is called LIFO search as the list of 
live nodes is a LIFO list or a stack. 

 Least-cost search: Here a function is used to select the live node. The node 
with least cost function value is selected as the live node. Bounding functions are used to 
help avoid the generations of sub trees that do not contain an answer node. 

 In both LIFO and FIFO branch & bound the selection rule for the next      
E-node is rigid and in a sense blind. It does not give any preference to a node that very good 
chance of getting the search to a answer node quickly.  

 The search for an answer node can be speeded by using an intelligent 
ranking function for live nodes. Here the next E-node is selected on the basis of this ranking 
function. The ideal way to assign ranks to nodes is on the basis of the additional 
computational effort or cost needed to reach an answer node from the live node. 

 For any node x the cost could be: 

1. The number of nodes in the sub tree x that need to be generated before an answer 
node is generated. 

2. The number of levels the nearest answer node is from x. 
 Let ĝ(x) be an estimate of the additional effort needed to reach an answer 
node from x. Node x is assigned a rank using a function Ĉ () such that 

  Ĉ (x) = f(h(x)) + ĝ(x)   
Where h(x) is the cost of reaching x from the root and f () is any non-decreasing 
function. 
 A search strategy that uses such a cost function select the next E-node 
would always choose the node with least value of Ĉ (x) as a live node. So such a 
search strategy is called a LC-search.  

  

Let us consider an example of 15-puzzle. We are defined with the start state and goal state as 
shown in the figure below.  

1 2 3 4 
5 6  8 
9 10 7 11 
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                Start state    goal state 

Solution:  

 

  

 

Step1 step-2 

 

 

 

 Step-3step-4(target state) 

 

Randomization: - 

 A randomized algorithm is an algorithm that employs a degree of randomness as part 
of its logic. The algorithm typically uses uniformly bits as an auxiliary input to guide its 
behaviour, in the hope of achieving good performance in the "average case" over all possible 
choices of random bits. Formally, the algorithm's performance will be a random 
variable determined by the random bits; thus either the running time, or the output (or both) 
are random variables. Example of randomized algorithm is Quicksort. 

Quicksort:- 

Quicksort is a familiar, commonly used algorithm in which randomness can be 
useful. Any deterministic version of this algorithm requires O(n2) time to sort n numbers for 
some well-defined class of degenerate inputs (such as an already sorted array), with the 
specific class of inputs that generate this behaviour defined by the protocol for pivot 
selection. However, if the algorithm selects pivot elements uniformly at random, it has a 
provably high probability of finishing in O(n log n) time regardless of the characteristics of 
the input. 

 

 

 

13 14 15 12 1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15  

1 2 3 4 
5 6 7 8 
9 10  11 
13 14 15 12 

1 2 3 4 
5  6  8 
9 10 7 11 
13 14 15 12 

1 2 3 4 
5 6 7 8 
9 10 11  
13 14 15 12 

1 2 3 4 
5 6 7 8 
9 10 11 12 
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Data Structure:- 

Heap Sort:-  

If you have values in a heap and remove them one at a time they come out in 
(reverse) sorted order. Since a heap has worst case complexity of O(log(n)) it can get 
O(nlog(n)) to remove n value that are sorted. 

There are a few areas that we want to make this work well: 

• how do we form the heap efficiently? 
• how can we use the input array to avoid extra memory usage? 
• how do we get the result in the normal sorted order? 

If we achieve it all then we have a worst case O(nlog(n)) sort that does not use extra 
memory. This is the best theoretically for a comparison sort. 

The steps of the heap sort algorithm are: 

1. Use data to form a heap 
2. remove highest priority item from heap (largest) 
3. reform heap with remaining data 

You repeat steps 2 & 3 until you finish all the data. 

You could do step 1 by inserting the items one at a time into the heap: 

• This would be O(nlog(n)). Turns out we can do in O(n). This does not change the 
overall complexity but is more efficient. 

• You would have to modify the normal heap implementation to avoid needing a 
second array. 

Instead we will enter all values and make it into a heap in one pass. 

As with other heap operations, we first make it a complete binary tree and then fix up so the 
ordering is correct. We have already seen that there is a relationship between a complete 
binary tree and an array. 

Our standard sorting example becomes: 
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Now we need to get the ordering correct. 

It will work by letting the smaller values percolate down the tree. 

To make into a heap you use an algorithm that fixes the lower part of the tree and works it 
way toward the root: 

• Go from lowest right parent (non-leaf) and proceed to left. When finish one level go 
to next starting again from right. 

• at each node, percolate down the item to its proper place in this part of the subtree, 
e.g., subheap.Here is how the example goes: 
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This example has very few swaps. In some cases you have to percolate a value down by 
swapping it with several children. 

The Weiss book has the details to show that this is worst case O(n) complexity. It isn't 
O(nlog(n)) because each step is log(subtree height currently considering) and most of the 
nodes root subtrees with a small height. For example, about half the nodes have no children 
(are leaves). 

Now that we have a heap, we just remove the items one after another. 

The only new twist here is to keep the removed item in the space of the original array. To do 
this you swap the largest item (at root) with the last item (lower right in heap). In our 
example this gives: 

 

The last value of 5 is no longer in the heap. 

Now let the new value at the root percolate down to where it belongs. 

 

Now repeat with the new root value (just chance it is 5 again): 
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And keep continuing: 

 

Heap Complexity:- 

The part just shown very similar to removal from a heap which is O(log(n)). You do 
it n-1 times so it is O(nlog(n)). The last steps are cheaper but for the reverse reason from the 
building of the heap, most are log(n) so it is O(nlog(n)) overall for this part. The build part 
was O(n) so it does not dominate. For the whole heap sort you get O(nlog(n)). 

There is no extra memory except a few for local temporaries. 
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Thus, we have finally achieved a comparison sort that uses no extra memory and is 
O(nlog(n)) in the worst case. 

In many cases people still use quick sort because it uses no extra memory and is 
usually O(nlog(n)). Quick sort runs faster than heap sort in practice. The worst case of O(n2) 
is not seen in practice. 

Search Tree:- 

Search tree is a tree data structure used for locating specific values from within a set. 
In order for a tree to function as a search tree, the key for each node must be greater than any 
keys in subtrees on the left and less than any keys in subtrees on the right.  

The advantage of search trees is their efficient search time given the tree is 
reasonably balanced, which is to say the leaves at either end are of comparable depths. 
Various search-tree data structures exist, several of which also allow efficient insertion and 
deletion of elements, which operations then have to maintain tree balance. 

 

Optimal substructure of a shortest path:- 

 Shortest path algorithm relay on the property that a shortest path between two verties 
contain other shortest path with in it. 

• Dijkstra’s algorithm 

• Floyd-warshall algorithm 

 

Dijkstra’s algorithm:-  

Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. 
Like Prim’s MST, we generate a SPT (shortest path tree) with given source as root. We 
maintain two sets, one set contains vertices included in shortest path tree, other set includes 
vertices not yet included in shortest path tree. At every step of the algorithm, we find a 
vertex which is in the other set (set of not yet included) and has minimum distance from 
source. 

Below are the detailed steps used in Dijkstra’s algorithm to find the shortest path 
from a single source vertex to all other vertices in the given graph. 
Algorithm:- 
1)Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest 
path tree, i.e., whose minimum distance from source is calculated and finalized. Initially, this 
set is empty. 
2) Assign a distance value to all vertices in the input graph. Initialize all distance values as 
INFINITE. Assign distance value as 0 for the source vertex so that it is picked first. 
3) While sptSet doesn’t include all vertices 
….a) Pick a vertex u which is not there in sptSetand has minimum distance value. 
….b) Include u to sptSet. 
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….c) Update distance value of all adjacent vertices of u. To update the distance values, 
iterate through all adjacent vertices. For every adjacent vertex v, if sum of distance value of 
u (from source) and weight of edge u-v, is less than the distance value of v, then update the 
distance value of v. 

Let us understand with the following example: 

 

 

The set sptSetis initially empty and distances assigned to vertices are {0, INF, INF, INF, 
INF, INF, INF, INF} where INF indicates infinite. Now pick the vertex with minimum 
distance value. The vertex 0 is picked, include it in sptSet. So sptSet becomes {0}. After 
including 0 to sptSet, update distance values of its adjacent vertices. Adjacent vertices of 0 
are 1 and 7. The distance values of 1 and 7 are updated as 4 and 8. Following subgraph 
shows vertices and their distance values, only the vertices with finite distance values are 
shown. The vertices included in SPT are shown in green color. 

 

Pick the vertex with minimum distance value and not already included in SPT (not in 
sptSET). The vertex 1 is picked and added to sptSet. So sptSet now becomes {0, 1}. Update 
the distance values of adjacent vertices of 1. The distance value of vertex 2 becomes 12. 

 

Pick the vertex with minimum distance value and not already included in SPT (not in 
sptSET). Vertex 7 is picked. So sptSet now becomes {0, 1, 7}. Update the distance values of 
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adjacent vertices of 7. The distance value of vertex 6 and 8 becomes finite (15 and 9 
respectively). 

 

 

Pick the vertex with minimum distance value and not already included in SPT (not in 
sptSET). Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 6}. Update the distance values 
of adjacent vertices of 6. The distance value of vertex 5 and 8 are updated. 

 

We repeat the above steps until sptSet doesn’t include all vertices of given graph. Finally, we 
get the following Shortest Path Tree (SPT). 

 

Floyd-warshall algorithm:-  

 
This algorithm simply applies the rule n times, each time considering a new vertex 

through which possible paths may go. At the end, all paths have been discovered. 

Let's look at an example of this algorithm. Consider the following graph: 
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So we have V = { 1, 2, 3, 4, 5, 6 } and E = { (1, 2), (1, 3), (2, 4), (2, 5), (3, 1), (3, 6), (4, 6), 
(4, 3), (6, 5) }. Here is the adjacency matrix and corresponding t(0): 

down = "from" 
across = "to" 
 
adjacency matrix for G:               
 

1 2 3 4 5 6                         1 2 3 4 5 6 
1 0 1 1 0 0 0                       1 1 1 1 0 0 0 
2 0 0 0 1 1 0                       2 0 1 0 1 1 0 

  t(0):3 1 0 0 0 0 1                       3 1 0 1 0 0 1 
4 0 0 1 0 0 1                       4 0 0 1 1 0 1 
5 0 0 0 0 0 0                       5 0 0 0 0 1 0 
6 0 0 0 0 1 0                       6 0 0 0 0 1 1 

Now let's look at what happens as we let k go from 1 to 6: 
k = 1 
add (3,2); go from 3 through 1 to 2 

1 2 3 4 5 6 
1 1 1 1 0 0 0 
2 0 1 0 1 1 0 

   t(1) =3 1 1 1 0 0 1 
4 0 0 1 1 0 1 
5 0 0 0 0 1 0 
6 0 0 0 0 1 1 

k = 2 
add (1,4); go from 1 through 2 to 4 
add (1,5); go from 1 through 2 to 5 
add (3,4); go from 3 through 2 to 4 
add (3,5); go from 3 through 2 to 5 

1 2 3 4 5 6 
1 1 1 1 1 1 0 
2 0 1 0 1 1 0 

   t(2) =3 1 1 1 1 1 1 
4 0 0 1 1 0 1 
5 0 0 0 0 1 0 
6 0 0 0 0 1 1 

k = 3 
add (1,6); go from 1 through 3 to 6 
add (4,1); go from 4 through 3 to 1 
add (4,2); go from 4 through 3 to 2 
add (4,5); go from 4 through 3 to 5 

 
1 2 3 4 5 6 

1 1 1 1 1 1 1 
2 0 1 0 1 1 0 

   t(3) =3 1 1 1 1 1 1 
4 1 1 1 1 1 1 
5 0 0 0 0 1 0 
6 0 0 0 0 1 1 
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k = 4 
add (2,1); go from 2 through 4 to 1 
add (2,3); go from 2 through 4 to 3 
add (2,6); go from 2 through 4 to 6 

1 2 3 4 5 6 
1 1 1 1 1 1 1 
2 1 1 1 1 1 1 

   t(4) =3 1 1 1 1 1 1 
4 1 1 1 1 1 1 
5 0 0 0 0 1 0 
6 0 0 0 0 1 1 

k = 5 
1 2 3 4 5 6 

1 1 1 1 1 1 1 
2 1 1 1 1 1 1 

   t(5) =3 1 1 1 1 1 1 
4 1 1 1 1 1 1 
5 0 0 0 0 1 0 
6 0 0 0 0 1 1 

k = 6 
1 2 3 4 5 6 

1 1 1 1 1 1 1 
2 1 1 1 1 1 1 

   t(6) =3 1 1 1 1 1 1 
4 1 1 1 1 1 1 
5 0 0 0 0 1 0 
6 0 0 0 0 1 1 

At the end, the transitive closure is a graph with a complete subgraph (a clique) involving 
vertices 1, 2, 3, and 4. You can get to 5 from everywhere, but you can get nowhere from 5. 
You can get to 6 from everwhere except for 5, and from 6 only to 5. Analysis This algorithm 
has three nested loops containing a (1) core, so it takes (n3) time. 

What about storage? It might seem with all these matrices we would need (n3) storage; 
however, note that at any point in the algorithm, we only need the last two matrices 
computed, so we can re-use the storage from the other matrices, bringing the storage 
complexity down to (n2). 

Sorting & Searching:- 

Sorting:- 

Several algorithms are presented, including insertion sort, shell sort, and quicksort.  
Sorting byinsertion is the simplest method, and doesn’t require any additional storage.  Shell 
sort is asimple modification that improves performance significantly.  Probably the most 
efficient andpopular method is quicksort, and is the method of choice for large arrays 

Insertion Sort:- 

One of the simplest methods to sort an array is an insertion sort.  An example of an 
insertion sortoccurs in everyday life while playing cards.  To sort the cards in your hand you 
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extract a card,shift the remaining cards, and then insert the extracted card in the correct 
place.  This process isrepeated until all the cards are in the correct sequence.  Both average 
and worst-case time isO(n2). 

Shell Sort:- 

Shell sort, developed by Donald L. Shell, is a non-stable in-place sort.  Shell sort 
improves onthe efficiency of insertion sort by quickly shifting values to their destination.  
Average sort timeis O(n1.25), while worst-case time is O(n1.5). 

Quicksort:- 

Although the shell sort algorithm is significantly better than insertion sort, there is 
still room forimprovement.  One of the most popular sorting algorithms is quicksort.  
Quicksort executes inO(n lg n) on average, and O(n2) in the worst-case.  However, with 
proper precautions, worst-casebehaviour is very unlikely.  Quicksort is a non-stable sort.  It 
is not an in-place sort as stack species required. 

Searching:- 

Hash Tables:- 

Hash tables are a simple and effective method to implement dictionaries.  Average 
time to searchfor an element is O(1), while worst-case time is O(n). 

Binary Search Trees:- 

In the Introduction, we used the binary search algorithm to  find  data  stored  in  an  
array.    Thismethod is very effective, as eachiteration reduced the number of items to search 
by one-half.However, since data was stored in an array, insertions and deletions were not 
efficient.  Binarysearch trees store data in nodes that are linked in a tree-like fashion.  For 
randomly inserted data,search time is O(lg n).  Worst-case behaviour occurs when ordered 
data is inserted.  In this casethe search time is O(n). 
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Optimization Problem:-

An optimization problem
solutions. Optimization problems can be divided into two categories depending on whether 
the variables are continuous or discrete. An optimization proble
known as a combinatorial optimization problem

Combinatorial Optimization Problem

Formally, a combinatorial optimization

•  is a set of instances; 

• given an instance ,

• Given an instance  and a feasible solution
which is usually a positive real.

•  is the goal function, and is either

The goal is then to find for some instance
 with 

For each combinatorial optimization problem, there is a corresponding
problem that asks whether there is a feasible solution for some particular measure
example, if there is a graph 
might be "find a path from 
answer of, say, 4. A corresponding decision problem would be "is there a path from
 that uses 10 or fewer edges?" This problem can be answered with a simple 'yes' or 'no

In the field of approximation algorithms
solutions to hard problems. The usual decision version is then an inad
problem since it only specifies acceptable solutions. Even though we could introduce 
suitable decision problems, the problem is more naturally characterized as an optimization 
problem. 

 

Computational Geometric P

This the branch of computer science 
problem. It has application in computer graphics, robotics, VLSI design, computer aid design 
and statistic. They input to a computational geometric problem is a description set
geometric object such a set of point of a set of line segment or vertices of polygon in count 
as clockwise order. The output is open a response to a query about an object such whether 
any of the line intersects or a new geometric object such as a conve

Module III  

-  

optimization problem is the problem of finding the best solution from all
. Optimization problems can be divided into two categories depending on whether 

are continuous or discrete. An optimization problem with discrete variables is 
combinatorial optimization problem. 

Combinatorial Optimization Problem:- 

combinatorial optimization problem  is a quadruple 

,  is the set of feasible solutions; 

and a feasible solution  of ,  denotes the measure of
which is usually a positive real. 

is the goal function, and is either  or . 

some instance  an optimal solution, that is, a feasible solution

 

For each combinatorial optimization problem, there is a corresponding
hether there is a feasible solution for some particular measure

  which contains vertices  and, an optimization problem 
 to  that uses the fewest edges". This problem might have an 

answer of, say, 4. A corresponding decision problem would be "is there a path from
that uses 10 or fewer edges?" This problem can be answered with a simple 'yes' or 'no

approximation algorithms, algorithms are designed to find near
solutions to hard problems. The usual decision version is then an inadequate definition of the 
problem since it only specifies acceptable solutions. Even though we could introduce 
suitable decision problems, the problem is more naturally characterized as an optimization 

Computational Geometric Problems:- 

This the branch of computer science that study algorithms for solving geometric 
problem. It has application in computer graphics, robotics, VLSI design, computer aid design 
and statistic. They input to a computational geometric problem is a description set
geometric object such a set of point of a set of line segment or vertices of polygon in count 
as clockwise order. The output is open a response to a query about an object such whether 
any of the line intersects or a new geometric object such as a convex null(small enclose 

solution from all feasible 
. Optimization problems can be divided into two categories depending on whether 

m with discrete variables is 

, where 

denotes the measure of , 

, that is, a feasible solution 

For each combinatorial optimization problem, there is a corresponding decision 
hether there is a feasible solution for some particular measure . For 

, an optimization problem 
that uses the fewest edges". This problem might have an 

answer of, say, 4. A corresponding decision problem would be "is there a path from  to 
that uses 10 or fewer edges?" This problem can be answered with a simple 'yes' or 'no'. 

, algorithms are designed to find near-optimal 
equate definition of the 

problem since it only specifies acceptable solutions. Even though we could introduce 
suitable decision problems, the problem is more naturally characterized as an optimization 

that study algorithms for solving geometric 
problem. It has application in computer graphics, robotics, VLSI design, computer aid design 
and statistic. They input to a computational geometric problem is a description set of 
geometric object such a set of point of a set of line segment or vertices of polygon in count 
as clockwise order. The output is open a response to a query about an object such whether 

x null(small enclose 
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convex polygon) of a set of points. Each input object is represented as a set of points{P1, 
P2,…} where is Pi={x i, yi} and xi, yi € R, R= set of real number. 

 

Line Segment Properties:- 

Cross Product:- 

Computing cross products is at the heart of our line-segment methods. Consider 
vectors p1 and p2, shown in Figure (a). The cross product p1 x p2 can be interpreted as the 
signed area of the parallelogram formed by the points (0, 0), p1, p2, and p1 + p2 = (x1 + 
x2, y1 + y2). An equivalent, but more useful, definition gives the cross product as the 
determinant of 

 

Figure 35.1 (a) The cross product of vectors p1 and p2 is the signed area of the parallelogram. 
(b) The lightly shaded region contains vectors that are clockwise from p. The darkly shaded 
region contains vectors that are counterclockwise from p. 

a matrix:1 

 

1 Actually, the cross product is a three-dimensional concept. It is a vector that is 
perpendicular to both p1 and p2 according to the "right-hand rule" and whose magnitude is 
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|x1y2 - x2y1|. In this chapter, however, it will prove convenient to treat the cross product 
simply as the value x1y2 - x2y1. 

If p1 X p2 is positive, then p1 is clockwise from p2 with respect to the origin (0, 0); if this 
cross product is negative, then p1 is counter clockwise from p2. Figure (b) shows the 
clockwise and counter clockwise regions relative to a vector p. A boundary condition arises 
if the cross product is zero; in this case, the vectors are collinear, pointing in either the same 
or opposite directions. 

To determine whether a directed segment  is clockwise from a directed segment 
 with respect to their common endpoint p0, we simply translate to use p0 as the origin. That 
is, we let p1 - p0 denote the vector p'1= (x'1, y'1), where x'1 = x1 - x0 and y'1 = y1 - y0, and we 
define p2 - p0 similarly. We then compute the cross product 

(p1 - p0) x (p2 - p0) = (x1 - x0) (y2 - y0) - (x2 - x0) (y1 - y0). 

If this cross product is positive, then  is clockwise from ; if negative, it is counter 
clockwise. 

Determining whether consecutive segments turn left or right:- 

Two consecutive line segments  turn left or right at point pl. Equivalently, we 
want a method to determine which way a given angle p0p1p2 turns. Cross products allow 
us to answer this question without computing the angle. As shown in Figure 35.2, we simply 

check whether directed segment  is clockwise or counter clockwise relative to directed 

segment . To do this, we compute the cross product (p2 - p0) X (p1 - p0). If the sign of 

this cross product is negative, then  is counter clockwise with respect to , and thus 
we make a left turn at P1. A positive cross product indicates a clockwise orientation and a 
right turn. A cross product of 0 means that points p0, p1, and p2 are collinear. 
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Figure 35.2 Using the cross product to determine how consecutive line segments 

 turn at point p1. We check whether the directed segment  is clockwise or counter clockwise 

relative to the directed segment . (a) If counter clockwise, the points make a left turn. (b) If 

clockwise, they make a right turn. 

Determining whether two line segments intersect:- 

We use a two-stage process to determine whether two line segments intersect. The first stage 
is quick rejection: the line segments cannot intersect if their bounding boxes do not intersect. 
The bounding box of a geometric figure is the smallest rectangle that contains the figure and 
whose segments are parallel to the x-axis and y-axis. The bounding box of line 

segment  is represented by the rectangle  with lower left point  and 
upper right point

where . Two rectangles, represented by lower left and upper right 

points , intersect if and only if the conjunction 

 

is true. The rectangles must intersect in both dimensions. The first two comparisons above 
determine whether the rectangles intersect in x; the second two comparisons determine 
whether the rectangles intersect in y. 

The second stage in determining whether two line segments intersect decides whether 

each segment "straddles" the line containing the other. A segment  straddles a line if 
point p1 lies on one side of the line and pointp2 lies on the other side. If p1 or p2 lies on the 
line, then we say that the segment straddles the line. Two line segments intersect if and only 
if they pass the quick rejection test and each segment straddles the line containing the other. 
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Ordering segments:- 

Since we assume that there are no vertical segments, any input segment that 
intersects a given vertical sweep line intersects it at a single point. We can thus order the 
segments that intersect a vertical sweep line according to the y-coordinates of the points of 
intersection. 

To be more precise, consider two nonintersecting segments s1 and s2  these segments 
are comparable at x if the vertical sweep line with x-coordinate x intersects both of them. We 
say that sl is above s2 at x, written s1 > X s2, if s1 and s2 are comparable at x and the 
intersection of s1 with the sweep line at x is higher than the intersection of s2 with the same 
sweep line. In Figure (a), for example, the relationships a >r c, a >t b, b >t c, a >t c, and b 
>u c. Segment d is not comparable with any other segment. 

 

For any given x, the relation ">x" is a total order on segments that intersect the sweep 
line at X. The order may differ for differing values of x, however, as segments enter and 
leave the ordering. A segment enters the ordering when its left endpoint is encountered by 
the sweep, and it leaves the ordering when its right endpoint is encountered. 

Their positions in the total order are reversed. Sweep lines v and w are to the left and right, 
respectively, of the point of intersection of segments e and f, and we have e >v f and f 
>w e. Note that because we assume that no three segments intersect at the same point, there 
must be some vertical sweep line x for which intersecting 
segments e and f are consecutive in the total order >x. Any sweep line that passes through the 
shaded region of Figure (b), such as z, has e and f consecutive in its total order. 

Graham's scan:- 

Graham's scan is a method of computing the convex hull of a finite set of points in 
the plane with time complexity O(n log n). It is named after Ronald Graham, who published 
the original algorithm in 1972.[1] The algorithm finds all vertices of the convex hull ordered 
along its boundary. 

The algorithm proceeds by considering each of the points in the sorted array in 
sequence. For each point, it is determined whether moving from the two previously 
considered points to this point is a "left turn" or a "right turn". If it is a "right turn", this 
means that the second-to-last point is not part of the convex hull and should be removed 
from consideration. This process is continued for as long as the set of the last three points is 
a "right turn". As soon as a "left turn" is encountered, the algorithm moves on to the next 
point in the sorted array. (If at any stage the three points are collinear, one may opt either to 
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discard or to report it, since in some applications it is required to find all points on the 
boundary of the convex hull.) 

 

String Matching:-  

String matching algorithm used to search for particular pattern in string sequences. 
The string matching problem can be treated as assume that the text array and pattern is arry 
of length m<=n.  

 

Naive Algorithm:- 

suppose n = length(T), m = length(P); 

for shift s=0 through n-m do 

 if  (P[1..m] = = T[s+1 .. s+m])  then  // actually a for-loop runs here 

  print shift s; 

End algorithm. 

 

Complexity: O((n-m+1)m) 

A special note: we allow O(k+1) type notation in order to avoid O(0) term, rather, we want 
to have O(1) (constant time) in such a boundary situation. 

Rabin-Karp Algorithm:- 

Consider a character as a number in a radix system, e.g., English alphabet as in radix-26.  

Pick up each m-length "number" starting from shift=0 through (n-m). 
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General formula: ts+1 = d (ts - dm-1 T[s+1])  +  T[s+m+1], in radix-d, where ts is the 
corresponding number for the substring T[s..(s+m)]. Note, m is the size of P.  

The first-pass scheme: (1) pre-process for (n-m) numbers on T and 1 for P, (2) compare the 
number for P with those computed on Input: Text string T, Pattern string to search for P, 
radix to be used d (= |∑|, for alphabet ∑), a prime q

 

However, if the translated numbers are large (i.e., m is large), then even the number 
matching could be O(m). In that case, the complexity for the worst case scenario is when 
every shift is successful ("valid shift"), e.g., T=an and P=am. For that case, the complexity is 
O(nm) as before. 

But actually, for c  hits, O((n-m+1) + cm) = O(n+m), for a small  c, as is expected in the real 
life. 

String-matching automata:- 

There is a string-matching automaton for every pattern P; this automaton must be 
constructed from the pattern in a pre-processing step before it can be used to search the text 
string. Figure 34.6 illustrates this construction for the pattern P = ababaca. From now on, we 
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shall assume that P is a given fixed pattern string; for brevity, we shall not indicate the 
dependence upon P in our notation. 

 

Knuth-Morris-Pratt Algorithm:-  

  The Knuth–Morris–Pratt string searching algorithm (or KMP algorithm) searches for 

occurrences of a "word" W  within a main "text string" S  by employing the observation that 

when a mismatch occurs, the word itself embodies sufficient information to determine where 
the next match could begin, thus bypassing re-examination of previously matched characters. 
Thus, P=ababababca, when S=P6=ababab, largest K is abab, or Pi(6)=4. 

An array Pi[1..m] is first developed for the whole set for S, Pi[1] through Pi[10] above.
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The array Pi actually holds a chain for transitions, e.g., Pi[8] = 6, Pi[6]=4, …, 

always ending with 0. 

Algorithm KMP-Matcher(T, P) 

n = length[T];  m = length[P]; 

Pi = Compute-Prefix-Function(P); 

q = 0;  // how much of P has matched so far, or could match possibly 

for  i=1 through n do 

 while  (q>0  &&  P[q+1] ≠ T[i])  do 

  q = Pi[q]; // follow the Pi-chain, to find next smaller available symmetry, 
until 0 

 if  (P[q+1] = = T[i])  then 

  q = q+1; 

 if  (q = = m)  then 

  print valid shift as (i-m); 

  q = Pi[q];  // old matched part is preserved, & reused in the next iteration 

end if; 

end for; 

End algorithm. 

Algorithm Compute-Prefix-Function (P) 

m = length[P]; 

Pi[1] = 0; 

k = 0; 

for  q=2 through m do 

 while  (k>0  &&  P[k+1] =/= P[q])  do  // loop breaks with k=0 or next if succeeding 

  k = Pi[k]; 

 if  (P[k+1] = = P[q])  then // check if the next pointed character extends previously 
identified symmetry 

  k = k+1; 
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 Pi[q] = k;  // k=0 or the next character matched 

return Pi; 

End algorithm. 

Complexity of second algorithm Compute-Prefix-Function: O(m), by amortized analysis (on 
an average). 

Complexity of the first, KMP-Matcher: O(n), by amortized analysis. 

In reality the inner while loop runs only a few times as the symmetry may not be so 
prevalent. Without any symmetry the transition quickly jumps to q=0, e.g., P=acgt, every Pi 
value is 0. 

Graph Algorithms – BFS and DFS:- 

Breadth-first search (BFS):- 

Breadth-first search (BFS) is a strategy for searching in a graph when search is 
limited to essentially two operations: (a) visit and inspect a node of a graph; (b) gain access 
to visit the nodes that neighbour the currently visited node. The BFS begins at a root node 
and inspects all the neighbouring nodes. Then for each of those neighbour nodes in turn, it 
inspects their neighbour nodes which were unvisited, and so on.  

Algorithm:- 

• The algorithm uses a queue data structure to store intermediate results as it traverses 
the graph, as follows: 

• Enqueue the root node 

• Dequeue a node and examine it 
o If the element sought is found in this node, quit the search and return a result. 
o Otherwise enqueue any successors (the direct child nodes) that have not yet 

been discovered. 

• If the queue is empty, every node on the graph has been examined – quit the search 
and return "not found". 

• If the queue is not empty, repeat from Step 2. 

Example: The following figure (from CLRS) illustrates the progress of breadth-first 
search on the undirected sample graph. 

a. After initialization (paint every vertex white, set d[u] to infinity for each vertex u,  and 
set the parent of every vertex to be NIL), the source vertex is discovered in line 5. Lines 
8-9 initialize Q to contain just the source vertex s. 
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b. The algorithm discovers all vertices 1 edge from s i.e., discovered all vertices 
(w and r) at level 1. 

 

c. 

 

d. The algorithm discovers all vertices 2 edges from s i.e., discovered all vertices (t, x, 
and v) at level 2. 

 

e. 

 

f. 

 

g. The algorithm discovers all vertices 3 edges from s i.e., discovered all vertices 
(u and y) at level 3. 
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h. 

i. The algorithm terminates when every vertex has been fully explored.

Depth-first search(DFS):- 

Depth-first search, or
allows visiting vertices of the graph only, but there are hundreds of algorithms for graphs, 
which are based on DFS. Therefore, understanding the principles of depth
quite important to move ahead into the graph theory. The principle of the algorit
simple: to go forward (in depth) while there is such possibility, otherwise to backtrack.

Algorithm:- 

In DFS, each vertex has three possible colors representing its state:

white: vertex is unvisited;

gray: vertex is in progress;

black: DFS has finished processing the vertex.

NB. For most algorithms boolean classification
show general case here. 

Initially all vertices are white (unvisited). DFS starts in arbitrary vertex and runs as follows:

1. Mark vertex u as gray (visited).
2. For each edge (u, v), where

 

 

. The algorithm terminates when every vertex has been fully explored.

 

, or DFS, is a way to traverse the graph. Initially it 
vertices of the graph only, but there are hundreds of algorithms for graphs, 

which are based on DFS. Therefore, understanding the principles of depth
quite important to move ahead into the graph theory. The principle of the algorit
simple: to go forward (in depth) while there is such possibility, otherwise to backtrack.

In DFS, each vertex has three possible colors representing its state: 

white: vertex is unvisited; 

progress; 

as finished processing the vertex. 

For most algorithms boolean classification unvisited / visited is quite enough, but we 

Initially all vertices are white (unvisited). DFS starts in arbitrary vertex and runs as follows:

as gray (visited). 
, where u is white, run depth-first search for u recursively.

. The algorithm terminates when every vertex has been fully explored. 

, is a way to traverse the graph. Initially it 
vertices of the graph only, but there are hundreds of algorithms for graphs, 

which are based on DFS. Therefore, understanding the principles of depth-first search is 
quite important to move ahead into the graph theory. The principle of the algorithm is quite 
simple: to go forward (in depth) while there is such possibility, otherwise to backtrack. 

is quite enough, but we 

Initially all vertices are white (unvisited). DFS starts in arbitrary vertex and runs as follows: 

recursively. 
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3. Mark vertex u as black and backtrack to the parent.

Example. Traverse a graph shown below, using DFS. Start from a vertex with number 1.

 

Source 

 

Mark a vertex

 

There is an edge

 

Mark the vertex

 

There is an edge

 

Mark the vertex

as black and backtrack to the parent. 

Traverse a graph shown below, using DFS. Start from a vertex with number 1.

Source graph. 

Mark a vertex 1 as grey. 

There is an edge (1, 4) and a vertex 4 is unvisited. Go there.

Mark the vertex 4 as gray. 

There is an edge (4, 2) and vertex a 2 is unvisited. Go there.

Mark the vertex 2 as gray. 

Traverse a graph shown below, using DFS. Start from a vertex with number 1. 

is unvisited. Go there. 

is unvisited. Go there. 
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There is an edge

 

Mark the vertex

 

There is an edge

 

Mark the vertex

 

There are no ways to go from the vertex
backtrack to the vertex

 

There is an edge

There is an edge (2, 5) and a vertex 5 is unvisited. Go there.

Mark the vertex 5 as gray. 

There is an edge (5, 3) and a vertex 3 is unvisited. Go there.

Mark the vertex 3 as gray. 

There are no ways to go from the vertex 3. Mark it as black and 
backtrack to the vertex 5. 

There is an edge (5, 4), but the vertex 4 is gray. 

is unvisited. Go there. 

is unvisited. Go there. 

. Mark it as black and 
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There are no ways to go from the vertex
backtrack to the vertex

 

There are no more edges, adjacent to vertex
backtrack to the vertex

 

There is an edge

 

There are no more edges, adjacent to the vertex
and backtrack to the vertex

 

There are no more edges, adjacent to the vertex
DFS is over.

As you can see from the example, DFS doesn't go through all edges. The vertices and 
edges, which depth-first search has visited is a
graph (if it is connected) and is called
the recursive calls of DFS. 

If a graph is disconnected, DFS won't visit all of its vertices. For details, see
connected components algorithm

 

 

 

There are no ways to go from the vertex 5. Mark it as black and 
backtrack to the vertex 2. 

There are no more edges, adjacent to vertex 2. Mark it as black and 
backtrack to the vertex 4. 

There is an edge (4, 5), but the vertex 5 is black. 

There are no more edges, adjacent to the vertex 4.
and backtrack to the vertex 1. 

There are no more edges, adjacent to the vertex 1.
DFS is over. 

rom the example, DFS doesn't go through all edges. The vertices and 
first search has visited is a tree. This tree contains all vertices of the 

graph (if it is connected) and is called graph spanning tree. This tree exactly corresponds to

If a graph is disconnected, DFS won't visit all of its vertices. For details, see
connected components algorithm. 

Mark it as black and 

Mark it as black and 

 

4. Mark it as black 

1. Mark it as black. 

rom the example, DFS doesn't go through all edges. The vertices and 
. This tree contains all vertices of the 

. This tree exactly corresponds to 

If a graph is disconnected, DFS won't visit all of its vertices. For details, see finding 
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Module IV  

Spanning tree:- 

A spanning tree for a graph G is a sub-graph of G which isa tree that includes every 
vertex of G.A spanning tree of a graph G is a “maximal” treecontained in the graph G.When 
you have a spanning tree T for a graph G, youcannot add another edge of G to T without 
producing acircuit. 
Example: 

Consider the following graph, G, representing pairs ofpeople (A, B, C, D and E) who 
areacquainted with eachother. 

 
 

We wish to install the minimum number of phone lines sothat communication 
between these people is maintained. Asan adviser, you need to find a spanning tree T for G. 
 
Kruskal's Algorithm:- 

Find the minimal spanning tree for the following connectedweighted graph G.The 
starting point of Kruskal's Algorithm is to make an“edge” list, in which the edges are listed 
in order ofincreasing weights. 
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Kruskal's Algorithm for finding minimum spanning treesfor weighted graphs (Epp's 
version) is then: 
Input: G a connected weighted graph with n vertices. 
Algorithm Body:(Build a sub-graph T of G to consist of all of the vertices ofG with edges 
added in order of increasing weight. At eachstage, let mbe the number of edges of T.) 
1. Initialise T to have all of the vertices of G and noedges. 
2. Let Ebe the set of all edges of G and let m = 0.(pre-condition: G is connected.) 
3. While (m <n −1) 

a. Find an edge e in E of least weight. 
b. Delete e from E. 
c. If addition of e to the edge set of T does notproduce a circuit then add e to the edge 

setof T and set m = m +1 
End While (post-condition: T is a minimum spanning tree 
forG.) 
Output: T (a graph) 
End Algorithm 
 
Prim's algorithm:- 
 

Prim's algorithm is an algorithm that finds a minimum spanning tree for 
connected weighted undirected graph. This means it finds a subset of the edges that forms 
a tree that includes every vertex, where the total weight of all the edges in the tree is 
minimized. Prim's algorithm is an example of greedy. The only spanning tree of the empty 
graph (with an empty vertex set) is again the empty graph. The following description 
assumes that this special case is handled separately. The algorithm continuously increases 
the size of a tree, one edge at a time, starting with a tree consisting of a single vertex, until it 
spans all vertices. 
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• Input: A non-empty connected weighted graph with vertices V and edges E(the 
weights can be negative). 

• Initialize: Vnew = {x}, where x is an arbitrary node (starting point) from V, Enew= {} 
• Repeat until Vnew = V: 

o Choose an edge (u, v) with minimal weight such that u is in Vnew and vis not 
(if there are multiple edges with the same weight, any of them may be picked) 

o Add v to Vnew, and (u, v) to Enew 
• Output: Vnew and Enew describe a minimal spanning tree 

Dijkstra's Algorithm:- 

Djikstra's algorithm (named after its discover, E.W. Dijkstra) solves the problem of 
finding the shortest path from a point in a graph (the source) to a destination. It turns out that 
one can find the shortest paths from a given source to all points in a graph in the same time; 
hence this problem is sometimes called the single-source shortest paths problem. 

The somewhat unexpected result that all the paths can be found as easily as one 
further demonstrates the value of reading the literature on algorithms! 

This problem is related to the spanning tree one. The graph representing all the paths 
from one vertex to all the others must be a spanning tree - it must include all vertices. There 
will also be no cycles as a cycle would define more than one path from the selected vertex to 
at least one other vertex. For a graph, 

G = (V,E) where • V is a set of vertices and 
• E is a set of edges. 

The other data structures needed are: 
d array of best estimates of shortest path to each vertex 

pi an array of predecessors for each vertex 
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The basic mode of operation is: 

1. Initialise d and pi, 
2. Set S to empty, 
3. While there are still vertices in V-S, 

• Sort the vertices in V-S according to the current best estimate of their distance 
from the source, 

• Add u, the closest vertex in V-S, to S, 
• Relax all the vertices still in V-S connected to u 

Maximum flow:-  

  We can also interpret a directed graph as a flow network and use it to answer 
questions about material flows. Consider a material flowing through a system from a source 
where the material is produced to a sink where it is consumed. The source produces the 
material at some study rate and the sink consumes it at the same rate. 

  The flow of the material at any point in the system is the rate at which the 
material moves. Flow networks can be used to model liquids flowing through pipes parts 
through assembly lines, current through electrical network, information through 
communication networks. 

Flow conservation property:-The rate at which a material enters a vertex must equal to the 
rate at which it leaves the vertex. This is called as the flow conservation property. 

Maximum flow problem:- Here we wish to compute the greatest rate at which material can 
be shipped from the source to the sink without violating any capacity constraint. 

  A flow network G = (V, E) is a directed graph in which each edge        (u, 
v) ∈ E has a non-negative capacity c(u, v)≥0.   

Definition of flow: Let G(V, E) be a flow network with a capacity function C. Let ‘s’ be the 
source of the network and ‘t’ be the sink.  

A flow in G is a real valued function f: v×v→R where R is a set of real number that satisfies 
the following 3 property. 

1. Capacity constraint property:-It says that the flow from one vertex to another must 
not exceed the given capacity. 

For all u, v∈V, we require f(u, v) ≤ c(u, v) 
2. Skew symmetry property:- it says that the flow from a vertex u to a vertex v is the 

negative of the flow in the reverse direction. 
For all u, v∈ V, we require f(u, v) = -f(u, v) 

3. Flow conservation property:- It says that the total flow out of a vertex other then the 
source or sink is zero. 

For all u ∈ V-{s, t}, we require ∑ %(&, ')(∈) =0 
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The Ford-Fulkerson method;- 

Given a graph which represents a flow network where every edge has a capacity. 
Also given two vertices source ‘s’ and sink ‘t’ in the graph, find the maximum possible flow 
from s to t with following constraints: 

a) Flow on an edge doesn’t exceed the given capacity of the edge. 

b) Incoming flow is equal to outgoing flow for every vertex except s and t. 

For example, consider the following graph from CLRS book. 

 

The maximum possible flow in the above graph is 23. 

 

Ford-Fulkerson Algorithm :- 
 
The following is simple idea of Ford-Fulkerson algorithm: 
1) Start with initial flow as 0. 
2) While there is a augmenting path from source to sink.  
           Add this path-flow to flow. 
3) Return flow. 
 

Augmenting path:- 

  Given a flow network G=(V, E) and a flow ‘f’ and an augmenting path p is a 
simple path from s to t in the residual network Gf. Each edge (u, v)on an augmenting path 
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admits some additional positive from u to v without violating the capacity constraints on the 
edge.The residual capacity of the path p is given by: 

  Cf(p) = min{Cf(u, v): (u, v)  is on p} 

Cuts of flow network:- 

Definition: A cut (S, T) of a flow network G=(V, E) is a partition v into s and T=v-s, such 
that s ∈ S and t ∈ T. The capacity of the cut (s, t) is c(s, t). 

 

 

NP-complete (polynomial time algorithm):- 

  They are algorithms which on inputs of size n have a worst case running time 
of O (nk) for some constant ‘k’.  

Example: Quick sort running time =O (n2) so its algorithm is called NP-complete algorithm. 

There are three classes of problem:- 

• P-class 

• NP-class 
• NPC-class 

P-class:  

  The class P consist of those problems that are solvable in polynomial time 
that is in time O (nk) for some constant’ k’ where n is input size. 

Example: Quick sort running time =O (n2) 

NP-class: 

  The class NP consist of those problems that are verifiable in polynomial time 
that is given a certificate of a solution use could verify that the certificate is correct in time 
polynomial in the size of the input to the problem. 

Example: Hamilton cycle 

NPC-class: 

  The class NP-complete consist of those problems that are in NP and are as 
hard as any problem in NP. Any NP-complete problem can not be solved in polynomial 
time. 
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Polynomial time reduction algorithm:- 

  Suppose there is a decision problem ‘A’ which we like to solve in polynomial 
time. Suppose there is a different decision problem ’B’ that we already know how to solve in 
polynomial time. Procedure that transforms any instance ‘*’ of A into some instance ‘+’ of 
B should have the following characteristics: 

1. The transformation take polynomial time 
2. The answers are the same that is the answer of * is yes if and only if answer for + 

is also yes 

 This procedure is called as a polynomial time reduction algorithm.  

 

Steps 

1. Given an instance * of problem use polynomial time reduction algorithm to 
transform it to an instance + of problem B. 

2. Run the polynomial time decision algorithm for B on the instance + 
3. Use the answer for + as the answer for *. 

A finite NP-complete problem:- 

  Because the technique of reduction relies on having a problem already known 
to be NP-complete in order to prove a different problem NP-complete we need a fast NP-
complete problem. For the problem we will use is the circuit satisfiability problem in which 
we are given a Boolean combinational circuit composed of AND, OR & NOT gates and we 
wish to know whether there is any set of Boolean inputs to this circuit that causes its output 
to be one. 

  The circuit satisfiability problem is given Boolean combinational circuit 
composed of AND, OR, NOT gates is it satisfiable. This problem arises in the area of 
computer added hardware optimization. 

Example: if a sub circuit always produces 0 then that sub circuit can be replaced by a simpler 
sub circuit that omits all logic gates and provides the constant value 0 as its output. 

  The three basic logic gates that we use in this problem are: 

AND gate 
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This gate’s output is 1, if all its inputs are 1 and output is 0 otherwise.  
 

  
OR gate 

   

This gate’s output is 1, if any of  its input is 1 and output is 0 otherwise.  
  

 

 

NOT gate 

   

  It takes a single binary input either 0 or 1 and produces a binary output whose 
value is opposite to that of the input value. 

  A Boolean combinational circuit consist of one or more Boolean 
combinational elements interconnected by wires. A wire connects the output of one element 
to the input of another. The number of element inputs fed by wire is called the fan-out of the 
wire. A one output Boolean combinational circuit is satisfiable if it has a satisfying 
assignment that is a truth assignment that causes the output of the circuit to be1. 

 

3-CNF (conjunctive normal form):- 

  A Boolean formula is in CNF if it is expressed as an AND of clauses each of 
which is the OR of one or more literals. A Boolean formula is in 3-CNF is each clause has 
exactly 3 distinct literals. 

Example: 

 (x1˅ ⌐x4˅ ⌐x2)˅ (x3 ˅ x2˅ x4)˅ (⌐x1 ˅ ⌐x3˅ ⌐x4) 

In 3-CNF satisfiability we are asked whether a given Boolean formula in 3-CNF is 
satisfiable or not. 

 



52 | P a g e  

 

Approximation algorithms :-  

  Many problems of practical significance are NP-complete but are too 
important to abandon nearly because obtaining an optimal solution is intractable. If a 
problem is NP-complete it is unlikely to find a polynomial time algorithm for solving it 
exactly.  

  There are 3 approaches to getting around NP-completeness: 

I. If the actual inputs are small an algorithm with exponential running time may 
be perfectly satisfactory.  

II.  We may be able to isolate important special cases that are solvable in 
polynomial time. 

III.  It may be possible to find near optimal solutions in polynomial time either in 
the worst case or an average. 

An algorithm that returns near optimal solution is called an approximation algorithm. 

Performance ratio for approximation algorithms: 

  Suppose we are working on an optimization problem in which each potential 
solution has a positive cost and we wish to find a near optimal solution. Depending on the 
problem an optimal solution may be defined as one with minimum possible cost. That is a 
problem may be either a minimization or maximization problem.  

  An algorithm for a problem has an approximation ratio of ,(-) if for any 
input of size n the cost ‘C’ of a solution produced by the algorithm is within a factor of  ,(-) 
of the first C* of an optimal solution. 

  Max ((C/C*), (C*/C)) ≤  ,(-) 

We called such an algorithm that achieves an approximation ratio of ,(-) approximation 
algorithm. For a maximization problem optimal solution is maximum that is 0<C≤C*. For a 
minimization problem0<C*≤ C. So the approximation ratio is never less than 1 since 

(C/C*)<1=>(C*/C)>1   

Approximation scheme: 

  An approximation scheme for an optimization problem is an approximation 
algorithm that takes as input not only an instance of the problem but also a value ε>0, such 
that for any fixed ε  the scheme is a 1+ε   approximation algorithm. 

  This scheme as polynomial time approximation scheme if for any fixed ε >0 
the scheme runs in time polynomial in the size of its input that is ‘n’  

  O (n2/ ε) whereε >0 
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Vertex cover problem:- 

     A vertex-cover of an undirected graph G=(V, E) is a subset of VƟsubset of V such 
that if edge (u, v) is an edge of G then either u in Vor v in V`Ɵ (or both). 

       The vertex cover problem is to find a vertex-cover of maximum size in a given 
undirected graph. This optimal vertex-cover is the optimization version of an NP-complete 
problem but it is not too hard to find a vertex-cover that is near optimal. 

APPROX-VERTEX_COVER (G: Graph):-  

1. c ← { } 
2. E` ← E[G] 
3. while E` is not empty do 
4.     Let (u, v) be an arbitrary edge of E` 
5.     c ← c U {u, v} 
6.     Remove from E` every edge incident on either u or v 
7. return c 

Example 
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