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Formal language 

The alphabet of a formal language is the set of symbols, letters, or tokens from which the strings 

of the language may be formed; frequently it is required to be finite. The strings formed from this 

alphabet are called words, and the words that belong to a particular formal language are 

sometimes called well-formed words or well-formed formulas. A formal language is often 

defined by means of a formal grammar such as a regular grammar or context-free grammar, also 

called its formation rule. 

The field of formal language theory studies the purely syntactical aspects of such languages—

that is, their internal structural patterns. Formal language theory sprang out of linguistics, as a 

way of understanding the syntactic regularities of natural languages. In computer science, formal 

languages are often used as the basis for defining programming languages and other systems in 

which the words of the language are associated with particular meanings or semantics. 

A formal languageL over an alphabet Σ is a subset of Σ*, that is, a set of words over that 

alphabet. 

In computer science and mathematics, which do not usually deal with natural languages, the 

adjective "formal" is often omitted as redundant. 

While formal language theory usually concerns itself with formal languages that are described by 

some syntactical rules, the actual definition of the concept "formal language" is only as above: a 

(possibly infinite) set of finite-length strings, no more nor less. In practice, there are many 

languages that can be described by rules, such as regular languages or context-free languages. 

The notion of a formal grammar may be closer to the intuitive concept of a "language," one 

described by syntactic rules. 

Formal language 

A formal grammar (sometimes simply called a grammar) is a set of formation rules for strings in 

a formal language. The rules describe how to form strings from the language's alphabet that are 



valid according to the language's syntax. A grammar does not describe the meaning of the strings 

or what can be done with them in whatever context—only their form. 

A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which 

rewriting must start. Therefore, a grammar is usually thought of as a language generator. 

However, it can also sometimes be used as the basis for a "recognizer"—a function in computing 

that determines whether a given string belongs to the language or is grammatically incorrect. To 

describe such recognizers, formal language theory uses separate formalisms, known as automata 

theory. One of the interesting results of automata theory is that it is not possible to design a 

recognizer for certain formal languages. 

 

Alphabet  

An alphabet, in the context of formal languages, can be any set, although it often makes sense to 

use an alphabet in the usual sense of the word, or more generally a character set such as ASCII. 

Alphabets can also be infinite; e.g. first-order logic is often expressed using an alphabet which, 

besides symbols such as^, ¬, � and parentheses, contains infinitely many elements x0, x1, x2, … 

that play the role of variables. The elements of an alphabet are called its letters. 

word 

A word over an alphabet can be any finite sequence, or string, of letters. The set of all words 

over an alphabet Σ is usually denoted by Σ* (using the Kleene star). For any alphabet there is 

only one word of length 0, the empty word, which is often denoted by e, ε or λ. By concatenation 

one can combine two words to form a new word, whose length is the sum of the lengths of the 

original words. The result of concatenating a word with the empty word is the original word. 

Operations on languages 

Certain operations on languages are common. This includes the standard set operations, such as 

union, intersection, and complement. Another class of operation is the element-wise application 

of string operations. 



Examples: suppose L1 and L2 are languages over some common alphabet. 

• The concatenation L1L2 consists of all strings of the form vw where v is a string from L1 

and w is a string from L2. 

• The intersection L1 ∩ L2 of L1 and L2 consists of all strings which are contained in both 

languages 

• The complement ¬L of a language with respect to a given alphabet consists of all strings 

over the alphabet that are not in the language. 

• The Kleene star: the language consisting of all words that are concatenations of 0 or more 

words in the original language; 

• Reversal:  

o Let e be the empty word, then eR = e, and 

o for each non-empty word w = x1…xn over some alphabet, let wR = xn…x1, 

o then for a formal language L, LR = {wR | w � L}. 

• String homomorphism 

Such string operations are used to investigate closure properties of classes of languages. A class 

of languages is closed under a particular operation when the operation, applied to languages in 

the class, always produces a language in the same class again. For instance, the context-free 

languages are known to be closed under union, concatenation, and intersection with regular 

languages, but not closed under intersection or complement. The theory of trios and abstract 

families of languages studies the most common closure properties of language families in their 

own right. 

Language 

“A language is a collection of sentences of finite length all constructed from a finite alphabet of 

symbols.In general, if is an alphabet and L is a subset of *, then L is said to be a languageover 

, or simply a language if is understood. Each element of L is said to be a sentenceor a word or a 

stringof the language.  



Example 1   {0, 11, 001}, { , 10}, and {0, 1}* are subsets of {0, 1}*, and so they are languages 

over the alphabet {0, 1}.  

The empty set Ø and the set { } are languages over every alphabet. Ø is a language that contains 

no string. { } is a language that contains just the empty string.  

The unionof two languages L1 and L2, denoted L1 L2, refers to the language that consists of all 

the strings that are either in L1 or in L2, that is, to { x | x is in L1 or x is in L2 }. The intersectionof 

L1 and L2, denoted L1 L2, refers to the language that consists of all the strings that are both in L1 

and L2, that is, to { x | x is in L1 and in L2 }. The complementationof a language L over , or just 

the complementation of L when is understood, denoted , refers to the language that consists of 

all the strings over that are not in L, that is, to { x | x is in * but not in L }.  

Example 2   Consider the languages L1 = { , 0, 1} and L2 = { , 01, 11}. The union of these 

languages is L1 L2 = { , 0, 1, 01, 11}, their intersection is L1 L2 = { }, and the complementation 

of L1 is = {00, 01, 10, 11, 000, 001, . . . }. 

Ø L = L for each language L. Similarly, Ø L = Ø for each language L. On the other hand, = 

* and = Ø for each alphabet .  

The differenceof L1 and L2, denoted L1 - L2, refers to the language that consists of all the strings 

that are in L1 but not in L2, that is, to { x | x is in L1 but not in L2 }. The crossproduct of L1 and 

L2, denoted L1 × L2, refers to the set of all the pairs (x, y) of strings such that x is in L1 and y is in 

L2, that is, to the relation { (x, y) | x is in L1 and y is in L2 }. The compositionof L1 with L2, 

denoted L1L2, refers to the language { xy | x is in L1 and y is in L2 }.  

Example 3   If L1 = { , 1, 01, 11} and L2 = {1, 01, 101} then L1 - L2 = { , 11} and L2 - L1 = {101}.  

On the other hand, if L1 = { , 0, 1} and L2 = {01, 11}, then the cross product of these languages 

is L1 × L2 = {( , 01), ( , 11), (0, 01), (0, 11), (1, 01), (1, 11)}, and their composition is L1L2 = {01, 

11, 001, 011, 101, 111}.  

L - Ø = L, Ø - L = Ø, ØL = Ø, and { }L = L for each language L.  



Li will also be used to denote the composing of i copies of a language L, where L0 is defined as {

}. The set L0 L1 L2 L3 . . . , called the Kleeneclosure or just the closure of L, will be denoted 

by L*. The set L1 L2 L3 , called the positiveclosure of L, will be denoted by L+.  

Li consists of those strings that can be obtained by concatenating i strings from L. L* consists of 

those strings that can be obtained by concatenating an arbitrary number of strings from L.  

Example 4   Consider the pair of languages L1 = { , 0, 1} and L2 = {01, 11}. For these 

languages L1
 2 = { , 0, 1, 00, 01, 10, 11}, and L2

 3 = {010101, 010111, 011101, 011111, 110101, 

110111, 111101, 111111}. In addition, is in L1*, in L1
 +, and in L2* but not in L2

 +.  

The operations above apply in a similar way to relations in * × *, when and are alphabets. 

Specifically, the unionof the relations R1 and R2, denoted R1 R2, is the relation { (x, y) | (x, y) is 

in R1 or in R2 }. The intersectionof R1 and R2, denoted R1 R2, is the relation { (x, y) | (x, y) is in 

R1 and in R2 }. The compositionof R1 with R2, denoted R1R2, is the relation { (x1x2, y1y2) | (x1, 

y1) is in R1 and (x2, y2) is in R2 }.  

Grammar 

It is often convenient to specify languages in terms of grammars. The advantage in doing so 

arises mainly from the usage of a small number of rules for describing a language with a large 

number of sentences. For instance, the possibility that an English sentence consists of a subject 

phrase followed by a predicate phrase can be expressed by a grammatical rule of the form 

<sentence> <subject><predicate>. (The names in angular brackets are assumed to belong to the 

grammar metalanguage.) Similarly, the possibility that the subject phrase consists of a noun 

phrase can be expressed by a grammatical rule of the form <subject> <noun>. 

G is defined as a mathematical system consisting of a quadruple <N, , P, S>, where  

N : is an alphabet, whose elements are called nonterminalsymbols.  

 : is an alphabet disjoint from N, whose elements are called terminalsymbols.  

P :is a relation of finite cardinality on (N )*, whose elements are called productionrules. 

Moreover, each production rule ( , ) in P, denoted , must have at least one nonterminal 



symbol in . In each such production rule, 

and is said to be the right-handsi

S is a symbol in N called the start, or sentence, symbol.

Types of grammars 

Prescriptive: prescribes authoritative norms for a language

Descriptive: attempts to describe actual usage rather thanenforce arbitrary rules

Formal: a precisely defined grammar, such as context

Generative: a formal grammar that can generate naturallanguage expressions

 

 

Chomsky hierarchy of languages.

The Chomsky hierarchy consists of the following levels:

Type-0 grammars (unrestricted grammars

all languages that can be recognized by a 

the recursively enumerable languages

which can be decided by an always

Type-1 grammars (context-sensitive grammars

grammars have rules of the form 

terminals and nonterminals. The strings 

is allowed if does not appear on the right side of any rule. The languages described by 

these grammars are exactly all languages that can be recognized by a 

(a nondeterministic Turing machine whose tape is bounded by a constant times the length of the 

input.) 

Type-2 grammars (context-free grammars

defined by rules of the form 

nonterminals. These languages are exactly all languages that can be recognized by a non

. In each such production rule, is said to be the left-handside of the production rule, 

handside of the production rule.  

S is a symbol in N called the start, or sentence, symbol. 

prescribes authoritative norms for a language 

attempts to describe actual usage rather thanenforce arbitrary rules

a precisely defined grammar, such as context-free 

a formal grammar that can generate naturallanguage expressions

Chomsky hierarchy of languages. 

The Chomsky hierarchy consists of the following levels: 

unrestricted grammars) include all formal grammars. They generate exactly 

all languages that can be recognized by a Turing machine. These languages are also known as 

umerable languages. Note that this is different from the recursive languages

always-halting Turing machine. 

sensitive grammars) generate the context-sensitive languages

grammars have rules of the form with a nonterminal and 

terminals and nonterminals. The strings and may be empty, but must be no

does not appear on the right side of any rule. The languages described by 

these grammars are exactly all languages that can be recognized by a linear bounded automaton

(a nondeterministic Turing machine whose tape is bounded by a constant times the length of the 

free grammars) generate the context-free languages

with a nonterminal and a string of terminals and 

ese languages are exactly all languages that can be recognized by a non

handside of the production rule, 

attempts to describe actual usage rather thanenforce arbitrary rules 

a formal grammar that can generate naturallanguage expressions 

include all formal grammars. They generate exactly 

. These languages are also known as 

recursive languages 

sensitive languages. These 

a nonterminal and , and strings of 

must be nonempty. The rule 

does not appear on the right side of any rule. The languages described by 

linear bounded automaton 

(a nondeterministic Turing machine whose tape is bounded by a constant times the length of the 

free languages. These are 

a string of terminals and 

ese languages are exactly all languages that can be recognized by a non-



deterministic pushdown automaton

syntax of most programming languages

Type-3 grammars (regular grammars

its rules to a single nonterminal on the left

terminal, possibly followed (or preceded, but not both in the same grammar) by a single 

nonterminal. The rule 

rule. These languages are exactly all languages th

Additionally, this family of formal languages can be obtained by 

languages are commonly used to define search patterns and the lexical structure of programming 

languages. 

 

 

 

Examples: 

1. The language consists of all strings begin with 0.

{0}{0, 1}* 

2. The language consists of all strings begin with 0, and end 

{0}{0, 1}*{1} 

3. The language consists of all strings with odd lengths.

{0, 1}2n−1, n = 1, 2, . . . 

pushdown automaton. Context-free languages are the theoretical basis for the 

programming languages. 

regular grammars)generate the regular languages. Such a grammar restricts 

its rules to a single nonterminal on the left-hand side and a right-hand side consisting of a single 

terminal, possibly followed (or preceded, but not both in the same grammar) by a single 

is also allowed here if does not appear on the right side of any 

rule. These languages are exactly all languages that can be decided by a finite state automaton

Additionally, this family of formal languages can be obtained by regular expressions

languages are commonly used to define search patterns and the lexical structure of programming 

 

The language consists of all strings begin with 0. 

l strings begin with 0, and end with 1. 

The language consists of all strings with odd lengths. 

free languages are the theoretical basis for the 

. Such a grammar restricts 

side consisting of a single 

terminal, possibly followed (or preceded, but not both in the same grammar) by a single 

does not appear on the right side of any 

finite state automaton. 

regular expressions. Regular 

languages are commonly used to define search patterns and the lexical structure of programming 



4. The language consists of all strings with substring of three consecutive 0. 

{0, 1}*000{0, 1}* 

5. The language consists of all strings without substring of three consecutive 0. 

{001, 01, 1}* 

Regular grammar  

A regular grammar is any right-linear or left-linear grammar. 

A right regular grammar (also called right linear grammar) is a formal grammar (N, Σ, P, S) such 

that all the production rules in P are of one of the following forms: 

B → a - where B is a non-terminal in N and a is a terminal in Σ 

B → aC - where B and C are in N and a is in Σ 

B → ε - where B is in N and ε denotes the empty string, i.e. the string of length 0. 

In a left regular grammar (also called left linear grammar), all rules obey the forms 

A → a - where A is a non-terminal in N and a is a terminal in Σ 

A → Ba - where A and B are in N and a is in Σ 

A → ε - where A is in N and ε is the empty string. 

An example of a right regular grammar G with N = {S, A}, Σ = {a, b, c}, P consists of the 

following rules 

S → aS 

S → bA 

A → ε 

A → cA 

andS is the start symbol. This grammar describes the same language as the regular expression 

a*bc*. 

Extended regular grammars 

An extended right regular grammar is one in which all rules obey one of 

1. B → a - where B is a non-terminal in N and a is a terminal in Σ 

2. A → wB - where A and B are in N and w is in Σ* 

3. A → ε - where A is in N and ε is the empty string. 

Some authors call this type of grammar a right regular grammar (or right linear grammar) and the 

type above a strictly right regular grammar (or strictly right linear grammar). 



An extended left regular grammar is one in which all rules obey one of 

1. A → a - where A is a non-terminal in N and a is a terminal in Σ 

2. A → Bw - where A and B are in N and w is in Σ* 

3. A → ε - where A is in N and ε is the empty string. 

Regular expression  

A regular expression (or regexp, or pattern, or RE) is a text string that describes some 

(mathematical) set of strings. A RE r matches a string s if s is in the set of strings described by r. 

Regular Expressions have their own notation. Characters are single letters for example ‘a’, ‘ 

’(single blank space), ‘1’ and ‘-’ (hyphen). Operators are entries in a RE that match one or more 

characters. 

Regular expressions consist of constants and operator symbols that denote sets of strings and 

operations over these sets, respectively. The following definition is standard, and found as such 

in most textbooks on formal language theory. Given a finite alphabet Σ, the following constants 

are defined as regular expressions: 

• (empty set)∅ denoting the set ∅. 

• (empty string) ε denoting the set containing only the "empty" string, which has no 

characters at all. 

• (literal character) a in Σ denoting the set containing only the character a. 

Given regular expressions R and S, the following operations over them are defined to produce 

regular expressions: 

• (concatenation) RS denoting the set { αβ | α in set described by expression R and β in set 

described by S }. For example {"ab", "c"}{"d", "ef"} = {"abd", "abef", "cd", "cef"}. 

• (alternation) R | S denoting the set union of sets described by R and S. For example, if R 

describes {"ab", "c"} and S describes {"ab", "d", "ef"}, expression R | S describes {"ab", 

"c", "d", "ef"}. 

• (Kleene star) R* denoting the smallest superset of set described by R that contains ε and 

is closed under string concatenation. This is the set of all strings that can be made by 

concatenating any finite number (including zero) of strings from set described by R. For 



example, {"0","1"}* is the set of all finite binary strings (including the empty string), and 

{"ab", "c"}* = { ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "abcab", ... }. 

To avoid parentheses it is assumed that the Kleene star has the highest priority, then 

concatenation and then alternation. If there is no ambiguity then parentheses may be omitted. For 

example, (ab)c can be written as abc, and a|(b(c*)) can be written as a|bc*.  

Examples: 

• a|b* denotes {ε, "a", "b", "bb", "bbb", ...} 

• (a|b)* denotes the set of all strings with no symbols other than "a" and "b", including the 

empty string: {ε, "a", "b", "aa", "ab", "ba", "bb", "aaa", ...} 

• ab*(c|ε) denotes the set of strings starting with "a", then zero or more "b"s and finally 

optionally a "c": {"a", "ac", "ab", "abc", "abb", "abbc", ...} 

Deterministic finite automaton (D.F.A) 

• In the automata theory, a branch of theoretical computer science, a deterministic finite 

automaton (DFA)—also known as deterministic finite state machine—is a finite state 

machine that accepts/rejects finite strings of symbols and only produces a unique 

computation (or run) of the automaton for each input string. 'Deterministic' refers to the 

uniqueness of the computation. 

• A DFA has a start state (denoted graphically by an arrow coming in from nowhere) 

where computations begin, and a set of accept states (denoted graphically by a double 

circle) which help define when a computation is successful. 

• A DFA is defined as an abstract mathematical concept, but due to the deterministic nature 

of a DFA, it is implementable in hardware and software for solving various specific 

problems. For example, a DFA can model a software that decides whether or not online 

user-input such as email addresses are valid.  

• DFAs recognize exactly the set of regular languageswhich are, among other things, useful 

for doing lexical analysis and pattern matching. DFAs can be built from nondeterministic 

finite automata through the powerset construction. 



Formal definition 

A deterministic finite automaton M is a 5

• a finite set of states (Q)

• a finite set of input symbols called the 

• a transition function (δ

• a start state (q0∈ Q) 

• a set of accept states (F 

Let w = a1a2 ... an be a string over the alphabet 

if a sequence of states, r

• r0 = q0 

• ri+1 = δ(ri, ai+1), for i = 0, ..., n

• rn∈ F. 

In words, the first condition says that the machine starts in the start state q

condition says that given each character of string 

state to state according to the transition function 

machine accepts w if the last input of w causes the machine to halt in one of the accepting 

states. Otherwise, it is said that the a

accepts is the language

 

Transition Function Of DFA

A deterministic finite automaton without accept states and without a starting state is known as a 

transition system or semi automaton

Given an input symbol 

the simple trick of currying, that is, writing 

transition function can be seen in simpler terms: it's just something that "acts" on a state in Q, 

yielding another state. One may then consider the result of 

applied to the various functions 

A deterministic finite automaton M is a 5-tuple, (Q, Σ, δ, q0, F) consisting of

(Q) 

a finite set of input symbols called the alphabet (Σ) 

(δ : Q × Σ → Q) 

(F ∈ Q) 

Let w = a1a2 ... an be a string over the alphabet Σ. The automaton M accepts the string w 

if a sequence of states, r0,r1, ..., rn, exists in Q with the following conditions:

), for i = 0, ..., n−1 

In words, the first condition says that the machine starts in the start state q

condition says that given each character of string w, the machine will transition from 

state to state according to the transition function δ. The last condition says that the 

machine accepts w if the last input of w causes the machine to halt in one of the accepting 

states. Otherwise, it is said that the automaton rejects the string. The set of strings M 

language recognized by M and this language is denoted by L(M).

Transition Function Of DFA  

A deterministic finite automaton without accept states and without a starting state is known as a 

semi automaton. 

, one may write the transition function as 

, that is, writing for all 

nsition function can be seen in simpler terms: it's just something that "acts" on a state in Q, 

yielding another state. One may then consider the result of function composition

applied to the various functions , , and so on. Using this notion we define 

consisting of 

. The automaton M accepts the string w 

, exists in Q with the following conditions: 

In words, the first condition says that the machine starts in the start state q0. The second 

w, the machine will transition from 

. The last condition says that the 

machine accepts w if the last input of w causes the machine to halt in one of the accepting 

utomaton rejects the string. The set of strings M 

recognized by M and this language is denoted by L(M). 

A deterministic finite automaton without accept states and without a starting state is known as a 

, using 

. This way, the 

nsition function can be seen in simpler terms: it's just something that "acts" on a state in Q, 

omposition repeatedly 

, and so on. Using this notion we define 



. Given a pair of letters 

insisting that , where 

recursively continued. So, we have following recursive definition

where is empty string and

 is defined for all words 

Advantages and disadvantages

• DFAs were invented to model 

of a Turing machine, which was too general to study properties of real world machines.

• DFAs are one of the most practical models of computation, since there is a trivial linear 

time, constant-space, online algorithm

there are efficient algorithms to find a DFA recognizing:

1. the complement of the language 

2. the union/intersection of the languages recognized by two given DFAs.

• Because DFAs can be reduced to a 

efficient algorithms to determine:

1. whether a DFA accepts any strings

2. whether a DFA accepts all strings

3. whether two DFAs recognize the same language

4. the DFA with a minimum number of states for a particular regular language

• DFAs are equivalent in computing

This is because, firstly any DFA is also an NFA, so an NFA can do what a DFA can do. 

Also, given an NFA, using the 

. Given a pair of letters , one may define a new function 

, where denotes function composition. Clearly, this process can be 

ively continued. So, we have following recursive definition 

is empty string and 

where and . 

is defined for all words  

Advantages and disadvantages 

DFAs were invented to model real world finite state machines in contrast to the concept 

, which was too general to study properties of real world machines.

DFAs are one of the most practical models of computation, since there is a trivial linear 

online algorithm to simulate a DFA on a stream of input. Also, 

there are efficient algorithms to find a DFA recognizing: 

the complement of the language recognized by a given DFA. 

the union/intersection of the languages recognized by two given DFAs.

Because DFAs can be reduced to a canonical form (minimal DFAs), there are als

efficient algorithms to determine: 

whether a DFA accepts any strings 

whether a DFA accepts all strings 

whether two DFAs recognize the same language 

the DFA with a minimum number of states for a particular regular language

DFAs are equivalent in computing power to nondeterministic finite automata

This is because, firstly any DFA is also an NFA, so an NFA can do what a DFA can do. 

given an NFA, using the powerset construction one can build a DFA that 

, one may define a new function , by 

denotes function composition. Clearly, this process can be 

 

finite state machines in contrast to the concept 

, which was too general to study properties of real world machines. 

DFAs are one of the most practical models of computation, since there is a trivial linear 

to simulate a DFA on a stream of input. Also, 

the union/intersection of the languages recognized by two given DFAs. 

), there are also 

the DFA with a minimum number of states for a particular regular language 

nondeterministic finite automata (NFAs). 

This is because, firstly any DFA is also an NFA, so an NFA can do what a DFA can do. 

one can build a DFA that 



recognizes the same language as the NFA, although the DFA could have exponentially 

larger number of states than the NFA. 

• On the other hand, finite state automata are of strictly limited power in the languages they 

can recognize; many simple languages, including any problem that requires more than 

constant space to solve, cannot be recognized by a DFA. 

•  The classical example of a simply described language that no DFA can recognize is 

bracket language, i.e., language that consists of properly paired brackets such as word "(( 

)( ))".  

• No DFA can recognize the bracket language because there is no limit to recursion, i.e., 

one can always embed another pair of brackets inside.  

• It would require an infinite amount of states to recognize. Another simpler example is the 

language consisting of strings of the form anbn—some finite number of a's, followed by 

an equal number of b's. 

Nondeterministic finite automaton (N.F.A) 

• In the automata theory, a nondeterministic finite automaton (NFA) or nondeterministic 

finite state machine is a finite state machine where from each state and a given input 

symbol the automaton may jump into several possible next states.  

• This distinguishes it from the deterministic finite automaton (DFA), where the next 

possible state is uniquely determined.  

• Although the DFA and NFA have distinct definitions, a NFA can be translated to 

equivalent DFA using powerset construction, i.e., the constructed DFA and the NFA 

recognize the same formal language. Both types of automata recognize only regular 

languages 

• A NFA is represented formally by a 5-tuple, (Q, Σ, ∆, q0, F), consisting of 

1. a finite set of states Q 

2. a finite set of input symbols Σ 

3. a transition relation ∆ : Q × Σ → P(Q). 

4. an initial (or start) state q0  



5. a set of states F distinguished as accepting (or final) states F .

• Here, P(Q) denotes the 

The automaton M accepts the word w if a sequence of states, r0,r1, ..., rn, exists in Q with 

the following conditions:

1. r0 = q0 

2. ri+1 ∈ ∆(ri, ai+1), for i = 0, ..., n

3. rn∈ F. 

Implementation 

There are many ways to implement a NFA:

• Convert to the equivalent DFA. In som

size of the automaton and thus auxiliary space proportional to the number of states in the 

NFA (as storage of the state value requires at most one bit for every state in the NFA)

• Keep a set data structure

consumption of the last input symbol, if one of these states is a final state, the machine 

accepts the string.  

• In the worst case, this may require auxiliary space proportional to the number of

the NFA; if the set structure uses one bit per NFA state, then this solution is exactly 

equivalent to the above.

• Create multiple copies. For each n way decision, the NFA creates up to 

the machine. Each will enter a separate state. 

• If , upon consuming the last input symbol, at least one copy of the NFA is in the accepting 

state, the NFA will accept. (This, too, requires linear storage with respect to the number 

of NFA states, as there can be one machine for every NFA state.)

• Explicitly propagate tokens through the transition structure of the NFA and match 

whenever a token reaches the final state. This is sometimes useful when the NFA should 

encode additional context about the events that triggered the transition. 

a set of states F distinguished as accepting (or final) states F . 

Here, P(Q) denotes the power set of Q. Let w = a1a2 ... an be a word over the alphabet 

ton M accepts the word w if a sequence of states, r0,r1, ..., rn, exists in Q with 

the following conditions: 

(ri, ai+1), for i = 0, ..., n−1 

There are many ways to implement a NFA: 

Convert to the equivalent DFA. In some cases this may cause exponential blowup in the 

size of the automaton and thus auxiliary space proportional to the number of states in the 

NFA (as storage of the state value requires at most one bit for every state in the NFA)

set data structure of all states which the machine might currently be in. On the 

consumption of the last input symbol, if one of these states is a final state, the machine 

In the worst case, this may require auxiliary space proportional to the number of

the NFA; if the set structure uses one bit per NFA state, then this solution is exactly 

equivalent to the above. 

Create multiple copies. For each n way decision, the NFA creates up to 

the machine. Each will enter a separate state.  

, upon consuming the last input symbol, at least one copy of the NFA is in the accepting 

state, the NFA will accept. (This, too, requires linear storage with respect to the number 

of NFA states, as there can be one machine for every NFA state.) 

Explicitly propagate tokens through the transition structure of the NFA and match 

whenever a token reaches the final state. This is sometimes useful when the NFA should 

encode additional context about the events that triggered the transition. 

of Q. Let w = a1a2 ... an be a word over the alphabet Σ. 

ton M accepts the word w if a sequence of states, r0,r1, ..., rn, exists in Q with 

e cases this may cause exponential blowup in the 

size of the automaton and thus auxiliary space proportional to the number of states in the 

NFA (as storage of the state value requires at most one bit for every state in the NFA)[4] 

of all states which the machine might currently be in. On the 

consumption of the last input symbol, if one of these states is a final state, the machine 

In the worst case, this may require auxiliary space proportional to the number of states in 

the NFA; if the set structure uses one bit per NFA state, then this solution is exactly 

Create multiple copies. For each n way decision, the NFA creates up to copies of 

, upon consuming the last input symbol, at least one copy of the NFA is in the accepting 

state, the NFA will accept. (This, too, requires linear storage with respect to the number 

Explicitly propagate tokens through the transition structure of the NFA and match 

whenever a token reaches the final state. This is sometimes useful when the NFA should 

encode additional context about the events that triggered the transition.  



Decision property of Regular Language 

A decision property for a class of languages is an algorithm that takes a formal description of a 

language (e.g., a DFA) and tells whether or not some property holds. 

• Example: Is language L empty? 

• You might imagine that the language isdescribed informally, so if the description is “the 

empty language”then yes, otherwise no.But the representation is a DFA (or aRE that you 

will convert to a DFA). 

Closure Properties 

• A closure property of a language classsays that given languages in the class,an operator 

(e.g., union) producesanother language in the same class. 

• Example: the regular languages areobviously closed under union,concatenation, and 

(Kleene) closure.Use the RE representation of languages. 

• The principal closure properties of regular languages are: 

1.The union of two regular languages is regular. 

If L and M are regular languages, then so is L ∪ M.  

2. The intersection of two regular languages is regular. 

If L and M are regular languages, then so is L ∩ M.  

3. The compliment of two regular languages is regular. 

If L is a regular language over alphabet Σ, then Σ*-L is also regular language. 

4. The difference of two regular languages is regular. 

If L and M are regular languages, then so is L - M.  

5. The reversal of a regular language is regular. 

The reversal of a string means that the string is written backward, i.e. reversal of abcde is 

edcba.  

The reversal of a language is the language consisting of reversal of  all its strings, i.e. if 

L={001,110} then  

L = {100,011}. 

6.The closure of a regular language is regular. 

If L is a regular language, then so is L*. 



7. The concatenation of regular languages is regular. 

If L and M are regular languages, then so is L M.  

8.The homomorphism of a regular language is regular. 

A homomorphism is a substitution of strings for symbol. Let the function h be defined by 

h(0) = a and h(1) = b then h applied to 0011 is simply aabb. 

If h is a homomorphism on alphabet Σ and a string of symbols w = abcd…z then                            

    h (w) = h (a) h (b) h(c) h (d)…h (z)   

The mathematical definition for homomorphism is  

    h: Σ*→Γ* such that ∀ x, y ∈Σ* 

A homomorphism can also be applied to a language by applying it to each of strings in 

the language. Let L be a language over alphabet Σ, and h is a homomorphism on Σ, then  

    h (L) = { h(w) | w is in L } 

The theorem can be  stated as “ If L is a regular language over alphabet Σ, and h is a 

homomorphism on Σ, then h(L) is also regular ” . 

9. The inverse homomorphism of two regular languages is regular. 

Suppose h be a homomorphism from some alphabet Σ to strings in another alphabet Τ 

and L be a language over Τ then   h inverse of L, h′ (L) is set of strings w inΣ* such that 

h(w) is in L.     

The theorem states that “ If h is a homomorphism from alphabet Σ to alphabet T , and L 

is aregular language on T , then h′(L) is also a regular language. 

Pumping lemma for regular languages 

• The pumping lemma for regular languages describes an essential property of all regular 

languages.  

• Informally, it says that all sufficiently long words in a regular language may be pumped 

— that is, have a middle section of the word repeated an arbitrary number of times — to 

produce a new word which also lies within the same language. 

• Specifically, the pumping lemma says that for any regular language L there exists a 

constant p such that any word w in L with length at least p can be split into three 

substrings, w = xyz, where the middle portion y must not be empty, such that the words 



xz, xyz, xyyz, xyyyz, … constructed by repeating y an arbitrary number of times 

(including zero times) are still in L. This process of repetition is known as "pumping". 

• Moreover, the pumping lemma guarantees that the length of xy will be at most p, 

imposing a limit on the ways in which w may be split.  

• Finite languages trivially satisfy the pumping lemma by having p equal to the maximum 

string length in L plus one. 

Let L be a regular language. Then there exists an integer p ≥ 1 depending only on L such 

that every string w in L of length at least p (p is called the "pumping length") can be 

written as w = xyz (i.e., w can be divided into three substrings), satisfying the following 

conditions: 

1. |y| ≥ 1 

2. |xy| ≤ p 

3. for all i ≥ 0, xy
i
z∈ L 

y is the substring that can be pumped (removed or repeated any number of times, and the 

resulting string is always in L). (1) means the loop y to be pumped must be of length at 

least one; (2) means the loop must occur within the first p characters. There is no 

restriction on x and z. 

In simple words, For any regular language L, any sufficiently long word w(in L) can be 

split into 3 parts. i.e w = xyz , such that all the strings xy
k
z for k≥0 are also in L. 

Proof of the pumping lemma 

For every regular language there is a finite state automaton (FSA) that accepts the language. The 

number of states in such an FSA are counted and that count is used as the pumping length p. For 

a string of length at least p, let s0 be the start state and let s1, ...,spbe the sequence of the next p 

states visited as the string is emitted. Because the FSA has only p states, within this sequence of 

p + 1 visited states there must be at least one state that is repeated. Write S for such a state. The 

transitions that take the machine from the first encounter of state S to the second encounter of 

state S match some string. This string is called y in the lemma, and since the machine will match 

a string without the y portion, or the string y can be repeated any number of times, the conditions 

of the lemma are satisfied. 



For example, the following image shows an FSA.

 

The FSA accepts the string: abcd

number of states, which is four, the 

repeated state among the start state and the next four visited states. In this example, only q1 is a 

repeated state. Since the substring bc takes the machine through transitions that start at state q1 

and end at state q1, that portion could be repeated and the FSA would still accept, giving the 

string abcbcd. Alternatively, the 

giving the string ad. In terms of the pumping lemma, the string 

a, a y portion bc and a z portion 

DFA minimization 

• DFA minimization is the task of transforming a given 

(DFA) into an equivalent DFA that has minimum number of states. Here, two DFAs are 

called equivalent if they describe the same 

• For each regular language that can be accepted by a DFA, there exists a DFA with a 

minimum number of states (and thus a minimum programming effort to create and use) 

and this DFA is unique (except that states can be given different names.) 

For example, the following image shows an FSA. 

 

abcd. Since this string has a length which is at least as large as the 

states, which is four, the pigeonhole principle indicates that there must be at least one 

repeated state among the start state and the next four visited states. In this example, only q1 is a 

ated state. Since the substring bc takes the machine through transitions that start at state q1 

portion could be repeated and the FSA would still accept, giving the 

. Alternatively, the bc portion could be removed and the FSA would still accept 

. In terms of the pumping lemma, the string abcd is broken into an 

portion d. 

DFA minimization is the task of transforming a given deterministic finite automaton

(DFA) into an equivalent DFA that has minimum number of states. Here, two DFAs are 

called equivalent if they describe the same regular language. 

For each regular language that can be accepted by a DFA, there exists a DFA with a 

minimum number of states (and thus a minimum programming effort to create and use) 

d this DFA is unique (except that states can be given different names.) 

. Since this string has a length which is at least as large as the 

indicates that there must be at least one 

repeated state among the start state and the next four visited states. In this example, only q1 is a 

ated state. Since the substring bc takes the machine through transitions that start at state q1 

portion could be repeated and the FSA would still accept, giving the 

the FSA would still accept 

is broken into an x portion 

deterministic finite automaton 

(DFA) into an equivalent DFA that has minimum number of states. Here, two DFAs are 

For each regular language that can be accepted by a DFA, there exists a DFA with a 

minimum number of states (and thus a minimum programming effort to create and use) 

d this DFA is unique (except that states can be given different names.)  



• There are three classes of states that can be removed/merged from the original DFA 

without affecting the language it accepts. 

• Unreachable states are those states that are not reachable from the initial state of the 

DFA, for any input string. 

• Dead states are those nonaccepting states whose transitions for every input character 

terminate on themselves. These are also called Trap states because once entered there is 

no escape. 

• Nondistinguishable states are those that cannot be distinguished from one another for any 

input string. 

• DFA minimization is usually done in three steps, corresponding to the removal/merger of 

the relevant states. Since the elimination of nondistinguishable states is computationally 

the most expensive one, it's usually done as the last step. 

Left and right linear grammars. 

A linear language is a language generated by some linear grammar. 

Example 

A simple linear grammar is G with N = {S}, Σ = {a, b}, P with start symbol S and rules 

S → aSb 

S → ε 

Two special types of linear grammars are the following: 

• the left-linear or left regular grammars, in which all nonterminals in right hand sides are 

at the left ends; 

• the right-linear or right regular grammars, in which all nonterminals in right hand sides 

are at the right ends. 



Collectively, these two special types of linear grammars are known as the regular grammars; 

both can describe exactly the regular languages. 

Another special type of linear grammar is the following: 

• linear grammars in which all nonterminals in right hand sides are at the left or right ends, 

but not necessarily all at the same end. 

By inserting new nonterminals, every linear grammar can be brought into this form without 

affecting the language generated. For instance, the rules of G above can be replaced with 

S → aA 

A → Sb 

S → ε 

Hence, linear grammars of this special form can generate all linear languages. 

Left linear Grammar 

A -> B a or A -> a,where A and B are in N and a is in S 

Right linearGrammar 

A -> a B or A -> a,  

where A and B are in N and a is in S 

Example:                                           

 

 

 

S -> a T 
S -> b T 
S -> a 
S -> b 
T -> a T 
T -> b T 

T -> 1 
T 
T -> 2 
T 
T -> a 
T -> b 
T -> 1 
T -> 2 

S => a 
S => a T => a 1 
S => a T => a 1 T 



 

 

 

 

Constructing a Nondeterministic Finite State Automaton from a 

Right Linear Grammar 

Let G = (N, S, P, S). 

Construct a nondeterministic finite state automaton  

M = (Q, S, d, S, F), where 

Q = N U {X}, X not in N or S 

F = {X} 

d is constructed by 

If A -> a B is in P, then B  is in d(A,a)  

If A -> a is in P, then X is in d (A,a) 

 

 

 

 

 

 

 

 

 

S -> a T 
S -> b T 
S -> a 
S -> b 
T -> a T 
T -> b T 

T -> 1 T 
T -> 2 T 
T -> a 
T -> b 
T -> 1 
T -> 2 

d(S,a) = {T, X} 
d(S,b) = {T,X} 
d(S,1) = F 
d(S,2) = F 
d(T,a) = {T,X} 
d(T,b) = {T,X} 
d(T,1) = {T,X} 
d(T,2) = {T,X} 



 

A Left Linear Grammar for Identifiers 

Example: 

 

 

 

 

Constructing a Nondeterministic Finite State Automaton from a 

Left Linear Grammar 

 

 

 

 

 

 

 

 

 

S -> S a 
S -> S b 
S -> S 1 
S -> S 2 
S -> a 
S -> b 
 

S => a 
S => S 1 => a 1 
S => S 2 => S b 2  
=>  S 1 b 2 => a 1 b 2 

Let G = (N, S, P, S). 
Construct a nondeterministic finite state automaton M = (Q, S, d, X, F), where 
Q = N U {X}, X not in N or S 
F = {S} 
d is constructed by 
If A ->  B a is in P, then A  is in d(B,a)  
If A -> a is in P, then A is in d (X,a) 

S -> S a 
S -> S b 
S -> S 1 
S -> S 2 
S -> a 
S -> b 
 
 

d(X,a) = {S} 
d(X,b) = {S} 
d(X,1) = F 
d(X,2) = F 
d(S,a) = {S} 
d(S,b) = {S} 
d(S,1) = {S} 
d(S,2) = {S} 



 

Context free grammars 

A context-free grammar G is defined by the 4-tuple:  

G=(V,T,P,S) where 

1. V is a finite set; each element v ∈V is called a non-terminal character or a variable. Each 

variable represents a different type of phrase or clause in the sentence. Variables are also 

sometimes called syntactic categories. Each variable defines a sub-language of the 

language defined by G. 

2. T is a finite set of terminals, disjoint from  V, which make up the actual content of the 

sentence. The set of terminals is the alphabet of the language defined by the grammar G. 

3. P is a set of production rule. 

4. S is the start variable (or start symbol), used to represent the whole sentence (or 

program). It must be an element of V. 

Example: 

1. S → x 

2. S → y 

3. S → z 

4. S → S + S 

5. S → S - S 

6. S → S * S 

7. S → S / S 

8. S → ( S ) 

This grammar can, for example, generate the string 

( x + y ) * x - z * y / ( x + x ) 



as follows: 

S (the start symbol) 

→ S - S (by rule 5) 

→ S * S - S (by rule 6, applied to the leftmost S) 

→ S * S - S / S (by rule 7, applied to the rightmost S) 

→ ( S ) * S - S / S (by rule 8, applied to the leftmost S) 

→ ( S ) * S - S / ( S ) (by rule 8, applied to the rightmost S) 

→ ( S + S ) * S - S / ( S ) (etc.) 

→ ( S + S ) * S - S * S / ( S ) 

→ ( S + S ) * S - S * S / ( S + S ) 

→ ( x + S ) * S - S * S / ( S + S ) 

→ ( x + y ) * S - S * S / ( S + S ) 

→ ( x + y ) * x - S * y / ( S + S ) 

→ ( x + y ) * x - S * y / ( x + S ) 

→ ( x + y ) * x - z * y / ( x + S ) 

→ ( x + y ) * x - z * y / ( x + x ) 

Problem 1. Give a context-free grammar for the language 

L = {anbm : n ≠ 2m}. 

Is your grammar ambiguous? 

Ans: 

A grammar for the language is 

S →aaSb | A | B | ab 

A →aA | a 

B →bB | b 

This grammar is unambiguous; it is not hard to prove that every string in the langauge has 

one 

and only one parse tree. 

Problem 2. Give a context-free grammar for the language 

L = {x ∈{0, 1}_ : x has the same number of 0’s and 1’s} 

Is your grammar ambiguous? 



Ans:  

A grammar for the language is 

S →S0S1S | S1S0S | ε 

This grammar is ambiguous; for example, 0101 has two different parse trees 

Problem 3. Prove that L = {aibjck : j = max{i, k}} is not context free. 

Ans: 

Suppose for contradiction that L were context free. Let N be the “N” of the pumping 

lemma 

for context-free languages. Consider the string w = aNbNcN. Suppose w = uvxyz, where 

|vxy| ≤ N and |vy| ≥ 1. If vy contains only a’s or vy contains only c’s, then pump up: the 

string uv2xy2z ∉ L. Suppose vy contains only b’s. Then we can pump either way to get a 

string not in L. Suppose v contains two different letters or y contains two different letters. 

Then uv2xy2z is not even of the form a*b*c*, so certainly it is not in L. Finally, suppose 

(v ∈a+ and) y ∈b+, or v ∈ b+ (and y ∈ c+). Then we can pump down and there will be 

too few b’s. By |vwy| ≤ N, these are all the possible cases. So in all cases there is some i 

for which uvixyiz∉ L, a contradiction. 

Theorem : L ⊆⊆⊆⊆A* is CF iff∃∃∃∃NPDA M that accepts L. 

Proof ->: Given CFL L, consider any grammar G(L) for L. Construct NPDA M that simulates all 

possible derivations of G. M is essentially a single-state FSM, with a state q that applies one of 

G’s rules at a time. The start state q0 initializes the stack with the content S ¢, where S is the start 

symbol of G, and ¢ is the bottom of stack symbol. This initial stack content means that M aims to 

read an input that is an instance of S. In general, the current stack content is a sequence of 

symbols that represent tasks to be accomplished in the characteristic LIFO order (last-in first-

out). The task on top of the stack, say a non-terminal X, calls for the next characters of the input 

string to be an instance of X. When these characters have been read and verified to be an 

instance of X, X is popped from the stack, and the new task on top of the stack is started. When ¢ 

is on top of the stack, i.e. thestack is empty, all tasks generated by the first instance of S have 

been successfully met, i.e. the input string read so far is an instance of S. M moves to the accept 

state and stops. 

The following transitions lead from q to q: 



1) �, X-> w for each rule X -> w. When X is on top of the stack, replace X by a right-hand side 

for X. 

2) a, a ->�for each a ∈A. When terminal a is read as input and a is also on top of the stack, pop 

the stack. 

Rule 1 reflects the following fact: one way to meet the task of finding an instance of X as a 

prefix of the inputstring not yet read, is to solve all the tasks, in the correct order, present in the 

right-hand side w of the productionX -> w. M can be considered to be a non-deterministic parser 

for G. A formal proof that M accepts precisely Lcan be done by induction on the length of the 

derivation of any w ∈L.  

Ambiguous Grammar; 

A grammar is said to be ambiguous if more than two parse trees can be constructed from it. 

Example 1:  

 

 



Example 2 :Show that the following grammar is ambigious 

 

 

Answer : 

 

 



 

As you can see we can have two corresponding parse trees for the above grammar, so the 

grammar is ambiguous. 

Removal of Ambiguity 

For compiling applications we need to design unambiguous grammar, or to use ambiguous 

grammar with additional rules to resolve the ambiguity. 

1. Associativity of operators. 

2. Precedence of operators. 

3. Separate rules or Productions. 

1. Associativity of Operators:  

    If operand has operators on both side then by connection, operand should be associated with 

the operator on the left. 

In most programming languages arithmetic operators like addition, subtraction, multiplication, 

and division are left associative. 

• Token string: 9 - 5 + 2 

• Production rules 

list   → list - digit | digit 

digit → 0 | 1 | 2 | . . . | 9 

In the C programming language the assignment operator, =, is right associative. That is, token 

string a = b = c should be treated as a = (b = c). 

• Token string: a = b =c. 

• Production rules:  

right   →  letter = right | letter 

letter  →  a | b | . . . | z 



2. Precedence of Operators: 

    An expression 9 + 5 * 2 has two possible interpretation: 

(9 + 5) * 2 and 9 + (5 * L) 

The associativity of '+' and '*' do not resolve this ambiguity. For this reason, we need to know the 

relative precedence of operators. 

The convention is to give multiplication and division higher precedence than addition and 

subtraction. 

Only when we have the operations of equal precedence, we apply the rules of associative. 

So, in the example expression: 9 + 5 * 2. 

We perform operation of higher precedence i.e., * before operations of lower precedence i.e., +. 

Therefore, the correct interpretation is 9 + (5 *). 

3. Separate Rule: 

    Consider the following grammar and language again. 

S  →  IF b THEN S ELSE S 

               |    IF b THEN S 

               |    a 

An ambiguity can be removed if we arbitrary decide that an ELSE should be attached to the last 

preceding THEN. 

We can revise the grammar to have two nonterminals S1 and S2. We insist that S2 generates IF-

THEN-ELSE, while S1 is free to generate either kind of statements. 

The rules of the new grammar are: 

S1  →   IF b THEN S1 

         |      IF b THEN S2 THEN S1 

         |     a 

S2  → IF b THEN S2 ELSE S2 

         |     a 



Although there is no general algorithm that can be used to determine if a given grammar is 

ambiguous, it is certainly possible to isolate rules which leads to ambiguity or ambiguous 

grammar. 

Example: 

Show that the given grammar is ambiguous and also remove the ambiguity. 

 

Answer : 

 

E. 

 

 
As two parse trees can be possible so the above given grammar is ambigious. 



 

 

Now the same parse tree can be drawn as follows. 



Inherent Ambiguity 

A context-free language L is said to be inherently ambiguous 

If even one grammar for L is unambiguous, then L 

Example : 

 

free language L is said to be inherently ambiguous if all its grammars 

If even one grammar for L is unambiguous, then L is an unambiguous language.

 

 

if all its grammars are ambiguous. 

language. 

 

 



 

 

Pumping Lemma For CFL 

For every CFL L there is a constant n such that every z ∈ L of length |z| ≥ n can be written as 

z = u v w x y such that the following holds: 

1) v x ≠ �  

2) |v w x| ≤ n, and  

3) uvk w xk y ∈ L for all k ≥ 0. 

Proof: 

Given CFL L, choose any G = G(L) in Chomsky NF. This implies that the parse tree of any z ∈  

L is a binary tree, as shown in the figure below at left. The length n of the string at the leaves and 

the height h of a binary tree are related by h ≥ log n, i.e. a long string requires a tall parse tree. 

By choosing the critical length n = 2 |V | + 1 we force the height of the parse trees considered to 

be h ≥ |V| + 1. On a root-to-leaf path of length ≥ |V| + 1 we encounter at least |V| + 1 nodes 

labeled by non-terminals. Since G has only |V| distinct non-terminals, this implies that on some 

long root-to-leaf path we must encounter 2 nodes labeled with the same non-terminal, say W, as 

shown at right. 

 

For two such occurrences of W (in particular, the two lowest ones), and for some u, v, y, x, w  

∈A*, we have: S ->* u W y, W ->* v W x and W ->* w. But then we also have W ->* v2 W x2, 

and in general, W ->* vkWxk, and S ->* u vk W xk y and S ->* u vk w xk y for all k ≥ 0, 

 



Example-1 :Let G be a CFG in Chomsky normal form that contains b variables. Show that, if G 

generates some string with a derivation having at least 2b steps, L(G) is infinite. 

Answer: 

Since G is a CFG in Chomsky normal form, every derivation can generate at most two non-

terminals, so that in any parse tree using G, an internal node can have at most two children. This 

implies that every parse tree with height k has at most 2k–1 internal nodes.If G generates some 

string with a derivation having at least 2b steps, the parse tree of that string will have at least 2b 

internal nodes. Based on the above argument, this parse tree has height is at least b + 1, so that 

there exists a path from root to leaf containing b + 1 variables. By pigeonhole principle, there is 

one variable occurring at least twice. So, we can use the technique in the proof of the pumping 

lemma to construct infinitely many strings which are all in L(G). 

 

 

Example-2 : 

Let C = {xy | x, y 2 {0, 1}_, |x| = |y|, and x 6= y}. Show that C is a context-free language. 

Answer: 

We observe that a string is in C if and only if it can be written as xywith |x| = |y| such that for 

some i, the ith character of x is different from the ith character of y. To obtain such a string, we 

start generating the corresponding ithcharacters, and fill up the remaining characters. Based on 

the above idea, we define the CFG for C is as follows: 

S → AB | BA 

A →XAX | 0 

B → XBX | 1 

X → 0 | 1 

Let A = 

Example-3 : 

 Let A= {wtwR| w, t ∈{0, 1}*and |w| = |t| }Prove that A is not a context-free language. 

Answer: 

Suppose on the contrary that A is context-free. Then, let p be the pumping 

length for A, such that any string in A of length at least p will satisfy the pumping lemma. 

Now, we select a string s in A with s = 02p0p1p02p. For s to satisfy the pumping lemma, 



there is a way that s can be written as uvxyz, with |vxy| ≤ p and |vy| ≥1, and for any i, 

uvixyiz is a string in A. There are only three cases to write s with the above conditions: 

 

Case 1: vy contains only 0s and these 0s are chosen from the last 02p of s. Let i be a 

number with 7p > |vy| × (i + 1) ≥ 6p. Then, either the length of uvixyizis not a multiple of 3, or 

this string is of the form wtw0 such that |w| = |t| = |w′| with w′is all 0s and w is not all 0s (this is, 

w′ = wR). 

Case 2: vy does not contain any 0s in the last 02p of s. Then, either the length of uv2xy2z 

is not a multiple of 3, or this string is of the form wtw′ such that |w| = |t| = |w′| with 

w is all 0s and w′ is not all 0s (that is, w′ = wR). 

Case 3: vy is not all 0s, and some 0s are from the last 02p of s. As |vxy| _ p, vxy in this 

case must be a substring in 1p′p. Then, either the length of uv2xy2z is not a multiple 

of 3, or this string is of the form wtw′such that |w| = |t| = |w′| with w is all 0s and 

w′ is not all 0s (that is, w′ 6= wR). 

In summary, we observe that there is no way s can satisfy the pumping lemma. Thus, a 

contradiction occurs (where?), and we conclude that A is not a context-free language. 

Theorem : L1 = { 0k 1k 2k / k ≥ 0 } is not context free. 

Pf (by contradiction): Assume L is CF, let n be the constant asserted by the pumping lemma. 

Consider z = 0n 1n 2n = u v w x y. Although we don’t know where vwx is positioned within z, 

the assertion |vw x| ≤ n implies that v w x contains at most two distinct letters among 0, 1, 2. In 

other words, one or two of thethree letters 0, 1, 2 is missing in vwx. Now consider u v2 w x2 y. 

By the pumping lemma, it must be in L. Theassertion |v x| ≥ 1 implies that u v2 w x2 y is longer 

than u v w x y. But u v w x y had an equal number of 0s, 1s,and 2s, whereas u v2 w x2 y cannot, 

since only one or two of the three distinct symbols increased in number. Thiscontradiction 

proves the theorem. 

Theorem : L2 = { w w / w ∈{0, 1} } is not context free. 

Proof (by contradiction): Assume L is CF, let n be the constant asserted by the pumping lemma. 

Consider z = 0n+1 1n+1 0n+1 1n+1 = u v w x y. Using k = 0, the lemma asserts z0 = u w y ∈ L, 

but we showthat z0 cannot have the form t t, for any string t, and thus that z0 ∈ L, leading to a 

contradiction. Recall that |v wx| ≤ n, and thus, when we delete v and x, we delete symbols that 



are within a distance of at most n from eachother. By analyzing three cases we show that, under 

this restriction, it is impossible to delete symbols in such away as to retain the property that the 

shortened string z0 = u w x has the form t t. We illustrate this using theexample n = 3, but the 

argument holds for any n.Given z = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1, slide a window of length n = 3 

across z, and delete any characters youwant from within the window. Observe that the blocks of 

0s and of 1s within z are so long that the truncated z,call it z’, still has the form “0s 1s 0s 1s”. 

This implies that if z’ can be written as z’ = t t, then t must have theform t = “0s 1s”. Checking 

the three cases: the window of length 3 lies entirely within the left half of z; thewindow straddles 

the center of z; and the window lies entirely within the right half of z, we observe that in noneof 

these cases z’ has the form z’ = t t, and thus that z0 = u w y ∉L. 

Context sensitive grammars and languages 

The rewriting rules B -> w of a CFG imply that a non-terminal B can be replaced by a word w ∈ 

(V � A)* “in any context”. In contrast, a context sensitive grammar (CSG) has rules of the form: 

u B v -> u w v, where u, v, w ∈ (V � A)*, implying that B can be replaced by w only in the 

context “u on the left, v on the right”. It turns out that this definition is equivalent (apart from the 

nullstring�) to requiring that any CSG rule be of the form v -> w, where v, w ∈ (V � A)*, and 

|v| ≤ |w|. This monotonicity property (in any derivation, the current string never gets shorter) 

implies that the word problem for CSLs: “given CSG G and given w, is w ∈L(G)?” is decidable. 

An exhaustive enumeration of all derivations up to the length |w| settles the issue. As an example 

of the greater power of CSGs over CFGs, recall that we used the pumping lemma to prove that 

the language 0k 1k 2k is not CF. 

 

Parikh's theorem 

Parikh's theorem in theoretical computer science says that if we look only at the relative number of 

occurrences of terminal symbols in a context-free language, without regard to their order, then the 

language is indistinguishable from a regular language. It is useful for deciding whether or not a string 

with given number of some terminals is accepted by a context-free grammar. It was first proved by Rohit 

Parikh in 1961 and republished in 1966.  



 

Cantor's theorem 

Cantor's theorem states that, for any setA, the set of all subsets of A (the power set of A) has a 

strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be seen to be true by 

a much simpler proof than that given below, since in addition to subsets of A with just one 

member, there are others as well, and since n < 2n for all natural numbers n. But the theorem is 

true of infinite sets as well. In particular, the power set of a countably infinite set is uncountably 

infinite. 

Proof: 



 

Godel Numbering: 

In mathematical logic, a Godel numbering is a function that assigns to each symbol and well-

formed formula of some formal language a unique natural number, called its Gödel number. The 

concept was famously used by Kurt Godel for the proof of his incompleteness theorems. (Gödel 

1931) 

A Gödel numbering can be interpreted as an encoding in which a number is assigned to each 

symbol of a mathematical notation, after which a sequence of natural numbers can then represent 

a sequence of strings. These sequences of natural numbers can again be represented by single 

natural numbers, facilitating their manipulation in formal theories of arithmetic. 

Since Godel's paper was published in 1931, the term "Godel numbering" or "Godel code" has 

been used to refer to more general assignments of natural numbers to mathematical objects. 



 

Example: 

Pushdown automaton (PDA)  

• In computer science, a pushdown automaton (PDA) is a type of automaton that uses a 

stack for temporary data storage. 

• The PDA is used in theories about what can be computed by machines. The PDA is more 

capable than finite-state machines but less capable than Turing machines. Because its 

input can be described with a formal grammar, it can be used in parser design. There are 

two classes of PDAs: 

• In deterministic PDAs, the machine has only one possible choice of action for all 

situations. Their application is limited to deterministic context-free grammars. 

• In nondeterministic PDAs, the automaton can have two or more possible choices of 

action for some or all situations. The choices may or may not be mutually exclusive. 

• When they are not, the automaton will create branches, each following one of the correct 

choices. If more than one of the branches created during the execution of the automaton 

complete successfully multiple outputs will be produced. This kind of PDAs can handle 

all context-free grammars. 



Operation 

• Pushdown automata differ from finite state machines in two ways: 

• They can use the top of the stack to decide which transition to take. 

• They can manipulate the stack as part of performing a transition. 

• Pushdown automata choose a transition by indexing a table by input signal, current state, 

and the symbol at the top of the stack. This means that those three parameters completely 

determine the transition path that is chosen. Finite state machines just look at the input 

signal and the current state: they have no stack to work with. Pushdown automata add the 

stack as a parameter for choice. 

 

a diagram of the pushdown automaton 

 

• Pushdown automata can also manipulate the stack, as part of performing a transition. 

Finite state machines choose a new state, the result of following the transition. The 

manipulation can be to push a particular symbol to the top of the stack, or to pop off the 

top of the stack. The automaton can alternatively ignore the stack, and leave it as it is. 

The choice of manipulation (or no manipulation) is determined by the transition table. 

• Put together: Given an input signal, current state, and stack symbol, the automaton can 

follow a transition to another state, and optionally manipulate (push or pop) the stack. 

• In general, pushdown automata may have several computations on a given input string, 

some of which may be halting in accepting configurations while others are not. Thus we 

have a model which is technically known as a "nondeterministic pushdown automaton" 

(NDPDA or NPDA).  



• Nondeterminism means that there may be more than just one transition available to 

follow, given an input signal, state, and stack symbol. If in every situation only one 

transition is available as continuation of the computation, then the result is a deterministic 

pushdown automaton (DPDA), a strictly weaker device. Unlike finite-state machines, 

there is no mechanical way to turn a NDPDA into an equivalent DPDA. 

• If we allow a finite automaton access to two stacks instead of just one, we obtain a more 

powerful device, equivalent in power to a Turing machine. A linear bounded automaton 

is a device which is more powerful than a pushdown automaton but less so than a Turing 

machine. 

• Nondeterministic pushdown automata are equivalent to context-free grammars: for every 

context-free grammar, there exists a pushdown automaton such that the language 

generated by the grammar is identical with the language generated by the automaton, 

which is easy to prove. The reverse is true, though harder to prove: for every pushdown 

automaton there exists a context-free grammar such that the language generated by the 

automaton is identical with the language generated by the grammar. 

 

 

 

 

 

 



 



PDA Transitions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second:  

δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)} 
– Current state is q 
– Current input symbol is not considered 
– Symbol currently on top of the stack z 
– Move to state pi from q 
– Replace z with γi on the stack (leftmost symbol on top) 
– No input symbol is read 

                :

Two types of PDA transitions: 
First: 
 δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)} 

– Current state is q 
– Current input symbol is a 
– Symbol currently on top of the stack z 
– Move to state pi from q 
– Replace z with γi on the stack (leftmost symbol on top) 
– Move the input head to the next input symbol 

                :



 

 

 



 

 

 



 

 



 

 

 

 

 



 

 

 

 

 



 

 

 



 

 

Example 4 : 

 

 

(b)  

(c)  

 

Answer: 



(a)  

 

(b)  

 



 

 

 

 

 

(c) 

 

 

 

 

Parsing: 



• In computer science and linguistics, parsing, or, more formally, syntactic analysis, is the 

process of analyzing a text, made of a sequence of tokens (for example, words), to 

determine its grammatical structure with respect to a given (more or less) formal 

grammar.  

• Parsing is also an earlier term for the diagramming of sentences of natural languages, and 

is still used for the diagramming of inflected languages, such as the Romance languages 

or Latin.  

• Parsing is a common term used in psycholinguistics when describing language 

comprehension.  

• In this context, parsing refers to the way that human beings, rather than computers, 

analyze a sentence or phrase (in spoken language or text) "in terms of grammatical 

constituents, identifying the parts of speech, syntactic relations, etc." This term is 

especially common when discussing what linguistic cues help speakers to parse garden-

path sentences. 

Types Of Parsing 

Top Down Parsing: 

• Top-down parsing is a parsing strategy where one first looks at the highest level of the 

parse tree and works down the parse tree by using the rewriting rules of a formal 

grammar. LL parsers are a type of parser that uses a top-down parsing strategy. 

• Top-down parsing is a strategy of analyzing unknown data relationships by hypothesizing 

general parse tree structures and then considering whether the known fundamental 

structures are compatible with the hypothesis. It occurs in the analysis of both natural 

languages and computer languages. 

• Top-down parsing can be viewed as an attempt to find left-most derivations of an input-

stream by searching for parse-trees using a top-down expansion of the given formal 

grammar rules. Tokens are consumed from left to right. Inclusive choice is used to 

accommodate ambiguity by expanding all alternative right-hand-sides of grammar rules.  



• In top-down parsing, you start with the start symbol and apply the productions until you 

arrive at the desired string.  

• As an example, let’s trace through the two approaches on this simple grammar that 

recognizes strings consisting of any number of a’s followed by at least one (and possibly 

more) b’s: 

S –> AB 

A –>aA | ε 

B –> b | bB 

Here is a top-down parse of aaab. We begin with the start symbol and at each step, expand one of 

the remaining nonterminals by replacing it with the right side of one of its  productions. We 

repeat until only terminals remain. The top-down parse produces a  leftmost derivation of the 

sentence. 

S 

AB                                                        S –> AB 

aAB                                                      A –>aA 

aaAB                                                    A –>aA 

aaaAB                                                  A –>aA 

aaaεB                                                    A –>ε 

aaab                                                      B –> b 

 

Bottom Up Parsing 

A bottom-up parse works in reverse. We begin with the sentence of terminals and each step 

applies a production in reverse, replacing a substring that matches the right side with the 

nonterminal on the left. We continue until we have substituted our way back to the start symbol. 

If you read from the bottom to top, the bottom-up parse prints out a rightmost derivation of the 

sentence. 

 

 

 

aaab 

aaaεb                               (insert ε) 



aaaAb                              A –>ε 

aaAb                               A –>aA 

aAb                                 A –>aA 

Ab                                   A –>aA 

AB                                   B –> b 

S                                     S –> AB 

Ogden's lemma 

In the theory of formal languages, Ogden's lemma (named after William F. Ogden) provides an 

extension of flexibility over the pumping lemma for context-free languages. 

Ogden's lemma states that if a language L is context-free, then there exists some number p > 0 

(where p may or may not be a pumping length) such that for any string w of length at least p in L 

and every way of "marking" p or more of the positions in w, w can be written as 

w = uxyzv 

with strings u, x, y, z, and v, such that 

1. xz has at least one marked position, 

2. xyz has at most p marked positions, and 

3. uxiyziv is in L for every i ≥ 0. 

Ogden's lemma can be used to show that certain languages are not context-free, in cases where 

the pumping lemma for context-free languages is not sufficient. An example is the language 

{aibjckdl : i = 0 or j = k = l}. It is also useful to prove the inherent ambiguity of some languages. 

Proof: 

Let b be the maximum number of symbols in the right-hand side of a rule. For any parse tree T 

of string z, and z has at least p marked positions. We say a leaf in T is marked if its 

corresponding position in z is marked. We say an internal node of T is marked if the subtrees 

rooted at two or more of its children each contains a marked leaf. We claim that if every (root-to-



leaf) path in T contains at most i marked internal nodes, T has at most bi marked leaves. Assume 

that this claim is true (which will be proved shortly by induction). To prove Ogden’s lemma, we 

set p = b|V |+1. Then, the minimum marked internal nodes in a path is |V | + 1. By pigeonhole 

principle, there exists some variable appearing at least twice on that path. Then, by a similar way 

of proving the original pumping lemma, we can show that z can be written as uvwxy satisfying 

Ogden’s lemma. We now go back to prove the claim. The claim is true for i = 0, since if every 

path inT has at most 0 marked nodes, T has no marked nodes. Thus, there must be at most 

b0 = 1 marked leaves (why?). For i ≥1, let q be the unique marked internal node whose 

ancestors (if exist) are not marked. Then, the number of marked leaves in T is equal to 

the total number of marked leaves under the children of q. Also, as q is a marked node, 

in the subtree rooted at any child of q, every path has at most i − 1 marked nodes. By 

induction, every subtree has at most bi−1 marked leaves. As q has at most b children, T 

thus has at most bi marked leaves. 

 

C(Cocke)Y(Younger)K(Kasami) Algorithm: 

• The Cocke–Younger–Kasami (CYK) algorithm (alternatively called CKY) is a 

parsingalgorithm for context-free grammars. It employs bottom-up parsing and dynamic 

programming. 

• The standard version of CYK operates only on context-free grammars given in Chomsky 

normal form (CNF). However any context-free grammar may be transformed to a CNF 

grammar expressing the same language . 

• The importance of the CYK algorithm stems from its high efficiency in certain situations.  

• The algorithm requires the context-free grammar to be rendered into Chomsky normal 

form (CNF), because it tests for possibilities to split the current sequence in half. Any 

context-free grammar that does not generate the empty string can be represented in CNF 

using onlyproduction rules of the forms .  

Algorithm: 



 

Example: 



Turing Machine:  

A Turing machine is a device that manipulates symbols on a strip of tape according to a table of 

rules. Despite its simplicity, a Turing machine can be adapted to simulate the logic of any 

computeralgorithm, and is particularly useful in explaining the functions of a CPU inside a 

computer. 

The "Turing" machine was described in 1936 by Alan Turingwho called it an "a-machine" 

(automatic machine). The Turing machine is not intended as practical computing technology, but 



rather as a hypothetical device representing a computing machine. Turing machines help 

computer scientists understand the limits of mechanical computation. 

A Turing machine that is able to simulate any other Turing machine is called a universal Turing 

machine (UTM, or simply a universal machine). A more mathematically oriented definition with 

a similar "universal" nature was introduced by Alonzo Church, whose work on lambda calculus 

intertwined with Turing's in a formal theory of computation known as the Church–Turing thesis. 

The thesis states that Turing machines indeed capture the informal notion of effective method in 

logic and mathematics, and provide a precise definition of an algorithm or 'mechanical 

procedure'. 

A Turing machine consists of: 

• A tape which is divided into cells, one next to the other. Each cell contains a symbol 

from some finite alphabet. The alphabet contains a special blank symbol (here written as 

'B') and one or more other symbols. The tape is assumed to be arbitrarily extendable to 

the left and to the right, i.e., the Turing machine is always supplied with as much tape as 

it needs for its computation. Cells that have not been written to before are assumed to be 

filled with the blank symbol. In some models the tape has a left end marked with a 

special symbol; the tape extends or is indefinitely extensible to the right.  

• A head that can read and write symbols on the tape and move the tape left and right one 

(and only one) cell at a time. In some models the head moves and the tape is stationary.  

• A state register that stores the state of the Turing machine, one of finitely many. There is 

one special start state with which the state register is initialized. These states, writes 

Turing, replace the "state of mind" a person performing computations would ordinarily 

be in.  

• A finite table (occasionally called an action table or transition function ) of instructions 

(usually quintuples [5-tuples] : qiaj→qi1aj1dk, but sometimes 4-tuples) that, given the 

state(qi) the machine is currently in and the symbol(aj) it is reading on the tape (symbol 

currently under the head) tells the machine to do the following in sequence (for the 5-

tuple models):  



• Either erase or write a symbol (replacing aj with aj1), and then 

• Move the head (which is described by dk and can have values: 'L' for one step left or 'R' 

for one step right or 'N' for staying in the same place), and then 

• Assume the same or a new state as prescribed (go to state qi1). 

• Formally a Turing machine can be defined as follows.  

 

Decision problems, optimization problems 

Hamiltonian cycle in a graph G = (V, E): a cycle that contains each of the vertices in V (exactly 

once) 

Traveling salesman problem (TSP): 

Weighted graph G = (V, E, w: E ->Reals), V = {1, .., n}, E = { (i, j) | i < j } (often the complete 

graph Kn).Weight (or length) of a path or cycle = sum of the weights of its edges. 

Given G= (V, E, w) find a shortest Hamiltonian cycles, if any exist. 

A clique in a graph G = (V, E): a subset V’ � V such that for all u, v � V’, (u, v) � E. 

|V’| is the size of the clique. A clique of size k is called a k-clique. 

Clique problems: Given G= (V, E), answer questions about the existence of cliques, find 

maximumclique, enumerate all cliques. 

 

Examples: 



 

 

 

Ex: the graph a) shown at left has exactly 1 Hamiltonian cycle, highlighted in b). The graph c) 

has none. Thecomplete graph K4 has 3 Hamiltonian cycles. d) The complete graph Kn has (n-1)! 

/ 2 Hamiltonian cycles 

Ex: Graph a) has three maximum 3-cliques. The only cliques in graph c) are the vertices and the 

edges, i.e. the1-cliques and the 2-cliques. Graph d) is a 4-clique, and every subset of its vertices 

is a clique. 

Decision problems: 

• Given G, does G have a Hamiltonian cycle? Given G and k, does G have a k-clique? 

Given G = (V, E, w) and a real number B, does G have a Hamiltonian cycle of length ≤ B? 

Finding the answer to a decision problem is often hard, whereas verifying a positive answer is 

often easy: weare shown an object and merely have to verify that it meets the specifications (e.g. 

trace the cycle shown in b).Decision problems are naturally formalized in terms of machines 

accepting languages, as follows: probleminstances (e.g. graphs) are coded as strings, and the 

code words of all instances that have the answer YES (e.g.have a Hamiltonian cycle) form the 

language to be accepted. 

Optimization problems: 

• Given G, construct a maximum clique. 

• TSP: Given Kn = (V, E, w) find a Hamiltonian cycle of minimal total length. 

Both problems, of finding the answer and verifying it, are usually hard. If I claim to show you a 

maximumclique, and it contains k vertices, how do you verify that I haven’t missed a bigger 

one? Do you have toenumerate all the subsets of k+1 vertices to be sure that there is no (k+1)-

clique? Nevertheless, verifying isusually easier than finding a solution, because the claimed 

solution provides a bound that eliminates manysuboptimal candidates. 

Enumeration problems: 



• Given G, construct all Hamiltonian cycles, or all cliques, or all maximum cliques. 

Enumeration problems are solved by exhaustive search techniques such as backtrack. They are 

time consumingbut often conceptually simple, except when the objects must be enumerated in a 

prescribed order. Enumerationis the technique of last resort for solving decision problems or 

optimization problems that admit no efficientalgorithms, or for which no efficient algorithm is 

known. It is an expensive technique, since the number ofobjects to be examined often grows 

exponentially with the length of their description. 

 

 

Theorem 

The class P of problems solvable in polynomial time 

Practically all standard combinatorial algorithms presented in a course on Algorithms and Data 

Structures runin polynomial time. They are sequential algorithms that terminate after a number 

of computational steps that isbounded by some polynomial p(n) in the size n of the input data, as 

measured by the number of data items thatdefine the problem. A computational step is any 

operation that takes constant time, i.e. time independent of n. 

In practical algorithm analysis there is a fair amount of leeway in the definition of 

“computational step” and“data item”. For example, an integer may be considered a single data 

item, regardless of its magnitude, and anyarithmetic operation on integers as a single step. This is 

reasonable when we know a priori that all numbersgenerated are bounded by some integer 

“maxint”, and is unreasonable for computations that generate numbersof unbounded magnitude. 

In complexity theory based on Turing machines the definition is clear: a computational step is a 

transitionexecuted, a data item is a character of the alphabet, read or written on a square of tape. 

The alphabet is usuallychosen to be {0, 1} and the size of data is measured in bits. When 

studying the class P of problems solvable inpolynomial time, we only consider deterministic 

TMs that halt on all inputs. 

Let tM: A* -> Integers be the number of steps executed by M on input x � A*. 

This chapter deals with TMs whose running time is bounded by some polynomial in the length of 

the input. 

TM M is or runs in polynomial time iff � polynomial p such �x � A*: tM( x ) ≤ p( |x| ) 

P = { L � A* | � TM M, � polynomial p such that L = L(M) and �x � A*: tM ( x ) ≤ p( |x| ) } 



Notice that we do not specify the precise version of TM to be used, in particular the number of 

tapes of M isleft open. This may be surprising in view of the fact that a multi-tape TM is much 

faster than a single-tape TM. 

A detailed analysis shows that “much faster” is polynomially bounded: a single-tape TM S can 

simulate anymulti-tape TM M with at most a polynomial slow-down: for any multi-tape TM M 

there is a single-tape TM Sand a polynomial p such that for all x � A*, tS ( x ) ≤ p( tM ( x ) ). 

This simulation property, and the fact thata polynomial of a polynomial is again a polynomial, 

makes the definition of the class P extremely robust. 

The question arises whether the generous accounting that ignores polynomial speed-ups or slow-

downs is ofpractical relevance. After all, these are much greater differences than ignoring 

constant factors as one doesroutinely in asymptotics. The answer is a definite YES, based on 

several considerations: 

1) Practical computing uses random access memory, not sequential storage such as tapes. Thus, 

the issue ofhow many tapes are used does not even arise. The theory is formulated in terms of 

TMs, rather than morerealistic models of computation such as conventional programming 

languages, for the sake of mathematicalprecision. And it turns out that the slowness of tape 

manipulation gets absorbed, in comparison with a RAM model, by the polynomial 

transformations we ignore so generously. 

2) Most practical algorithms are of low degree, such as O( n), O( n log n), O( n2 ), or O( n3 ). 

Low-degreepolynomials grow slowly enough that the corresponding algorithms are 

computationally feasible for manyvalues of n that occur in practice. E.g. for n = 1000, n3 = 109 

is a number of moderate size when compared toprocessor clock rates of 1 GHz and memories of 

1 GByte. Polynomial growth rates are exceedingly slowcompared to exponential growth 

(consider 21000 ). 

 

3) This complexity theory, like any theory at all, is a model that mirrors some aspects of reality 

well, and otherspoorly. It is the responsibility of the programmer or algorithm designer to 

determine in each specific case,whether or not an algoritm “in P” is practical or not. 

Examples of problems (perhaps?) in P: 

1) Every context-free language is in P. In Ch5 we saw an O( n3 ) parsing algorithm that solves 

the wordproblem for CFLs, where n is the length of the input string. 



2) The complexity of problems that involve integers depends on the representation. Fortunately, 

with the usualradix representation, the choice of radix r > 1 is immaterial (why?). But if we 

choose an exotic notation,everything might change. For example, if integers were given as a list 

of their prime factors, many arithmeticproblems would become easier. Paradoxically, if integers 

were given in the unwieldy unary notation, somethings might also become “easier” according to 

the measure of this chapter. This is because the length of theunary representation < k >1 of k is 

exponential in the length of the radix r ≥ 2 representation < k > r. Given anexponentially longer 

input, a polynomial-time TM is allowed to use an exponentially longer computation timeas 

compared to the “same” problem given in the form of a concise input. 

The following example illustrates the fact that the complexity of arithmetic problems depends on 

the numberrepresentation chosen. The assumed difficulty of factoring an integer lies at the core 

of modern cryptography.Factoring algorithms known today require, in the worst case, time 

exponential in the length, i.e. number of bits,of the radix representation of the number to be 

factored. But there is no proof that factoring is NP-hard -according to today’s knowledge, there 

might exist polynomial-time factoring algorithms. This possibilitygained plausibility when it was 

proven that primality, i.e. the problem of determining whether a natural number(represented in 

radix notation) is prime or composite. 

Theorem : 

The class NP of problems solvable in non-deterministic polynomial time 

“NP” stands for “non-deterministic polynomial”. It is instructive to introduce two different but 

equivalentdefinitions of NP, because each definition highlights a different key aspect of NP. The 

original definitionexplicitly introduces non-deterministic TMs: 

NP = { L � A* | � NTM N, � polynomial p such that L = L(N) and �x � A*: tN ( x ) ≤ p( |x| ) 

} 

Notice that this differs from the definition of P only in the single letter “N” in the phrase “ � 

NTM N ..”,indicating that we mean non-deterministic Turing machines. We had seen that 

deterministic and nondeterministicTMs are equally powerful in the presence of unbounded 

resources of time and memory. But thereis a huge difference in terms of the time they take for 

certain computations. A NTM pursues simultaneously anumber of computation paths that can 

grow exponentially with the length of the computation.Because of many computation paths 



pursued simultaneously we must redefine the function tN: A* -> Integersthat measures the 

number of steps executed. An input x � A* may be accepted along a short path as well as 

along a long path, and some other paths may not terminate. Therefore we define tN(x) as the 

minimumnumber of steps executed along any accepting path for x. 

Whereas the original definition of NP in terms of non-deterministic TMs has the intuitive 

interpretation viaparallel computation, an equivalent definition based on deterministic TMs is 

perhaps technically simpler tohandle. The fact that these two definitions are equivalent provides 

two different ways of looking at NP.The motivation for this second definition of NP comes from 

the observation that it may be difficult to decidewhether a string meeting certain specifications 

exists; but that it is often easier to decide whether or not a givenstring meets the specifications. In 

other words, finding a solution, or merely determining whether a solution 

exists, is harder than checking a proposed solution’s correctness. The fact that this intuitive 

argument leads to arigorous definition of NP is surprising and useful! 

In the following definition, the language L describes a problem class, e.g. all graphs with a 

desired property ;the string w describes a problem instance, e.g. a specific graph G; the string c = 

c(w), called a “certificate forw” or a witness, plays the role of a key that “unlocks w”: the pair w, 

c is easier to check than w alone! 

Example: for the problems of Hamiltonian cycles and cliques, w = <G> is the representationof 

graph G, and the certificate c is the representation of a cycle or a clique, respectively. Given c, it 

is easy toverify that c represents a cycle or a clique in G. 

a verifier for L � A* is a deterministic TM V with the property thatL = { w | � c(w) � A* such 

that V accepts < w, c> }The string c = c(w) is called a certificate for w’s membership in L. <w, 

c> denotes a representation of the pair(w, c) as a single string, e.g. w#c, where a reserved symbol 

# separates w from its certificate. The idea behindthis concept of certificate is that it is easy to 

verify w � L if you are given w’s certificate c. If not, you wouldhave to try all strings in the 

hope of finding the right vertificate, a process that may not terminate. We formalizethe phrase 

“easy to verify” by requiring that a verifier V is (or runs in) polynomial-time. 

 

Polynomial time reducibility, NP-hard, NP-complete 

Df: A function f: A* -> A* is polynomial-time computable iff there is a polynomial p and a 

DTM M which,when started with w on its tape, halts with f(w) on its tape, and tM( w ) ≤ p( |w| ). 



L is polynomial-time reducible to L’, denoted by L ≤p L’ iffthere is polynomial-time 

computable f: A* -> A* such that �w � A*, w � L ifff(w) � L’. 

In other words, the question w � L?can be answered by deciding f(w) � L’. Thus, the 

complexity of decidingmembership in L is at most the complexity of evaluating f plus the 

complexity of deciding membership in L’. 

Since we generously ignore polynomial times, this justifies the notation L ≤p L’ . 

A remarkable fact makes the theory of NP interesting and rich. With respect to the class NP and 

the notion ofpolynomial-time reducibility, there are “hardest problems” in the sense that all 

decision problems in NP arereducible to any one of these“hardest problems”. 

L’ is NP-hardiff �L � NP, L ≤p L’ 

L’ is NP-completeiff L’ � NP and L’ is NP-hard 

Theorem : 

Satisfiability of Boolean expressions (SAT) is NP-complete 

SAT = satisfiability of Boolean expressions: given an arbitrary Boolean expression E over 

variablesx1, x2, .. , xd, is there an assignment of truth values to x1, x2, ..that makes E true? 

It does not matter what Boolean operators occur, conventionally one considers And �, Or �, Not 

¬.SAT is the prototypical “hard problem”. I.e. the problem that is generally proven to be NP-

complete “fromscratch”, whereafter all other problems to be proven NP-complete are reduced to 

SAT. The theory of NPcompletenessbegan with the key theorem (Cook 1971): SAT is NP-

complete.Given this central role of SAT it is useful to develop an intuitive understanding of the 

nature of the problem,including details of measurement and “easy” versions of SAT. 

1) It does not matter what Boolean operators occur, conventionally one considers And �, Or �, 

Not ¬. Specialforms, eg CNF 

2) The length n of E can be measured by the number of characters of E. It is more convenient, 

however, to firsteliminate “Not-chains” ¬¬¬ ..using the identity ¬ ¬ x = x, and to measure the 

length n of E by thenumber n of occurences of variables (d denotes the number of distinct 

variables x1, x2, .. xd in E, d ≤ n). It isconvenient to avoid mentioning the unary operator ¬ 

explicitly by introducing, for each variable x, its negation¬ x as a dependent variable. A variable 

and its negation are called literals. Thus, an expression E with d 

variables has 2d distinct literals that may occur in E. 



3) Any Boolean expression E can be evaluated in linear time. Given truth values for x1, x2, ..xd, 

the noccurrences of literals are the leaves of a binary tree with n -1 internal nodes, each of which 

represents a binaryBoolean operator. The bottom-up evaluation of this tree requires n-1 

operations. 

4) Satisfiability of expressions over a constant number d of distinct variables can be decided in 

linear time. Bytrying all 2d assignments of truth values to the variables, SAT can be decided in 

time O( 2d n), a bound that islinear in n and exponential in d. If we consider d constant, 2d is 

also a constant - hence this version of thesatisfiability problem can be solved in linear time! This 

argument shows that, if SAT turns out to be a difficultproblem, this is due to an unbounded 

growth of the number of distinct variables. Indeed, if d growsproportionately to n, the argument 

above yields an exponential upper bound of O( 2n ). 

5) In order to express SAT as a language, choose a suitable alphabet A and a coding scheme that 

assigns to anyexpression E a word code(E) � A*, and define: SAT = { code(E) | E is a satisfiable 

Boolean expression } 

Theorem : 

3-CNF SAT is NP-complete 

Pf idea: reduce SAT to 3-CNF SAT, SAT ≤p 3-CNF SAT. To any Boolean expression E we 

assign inpolynomial time a 3-CNF expression F that is equivalent in the weak sense that either 

both E and F aresatisfiable, or neither is. Notice that E and F need not be equivalent as Boolean 

expressions, i.e. they need notrepresent the same function! They merely behave the same w.r.t. 

satisfiability.Given E, we construct F in 4 steps, illustrated using the example E = ¬ ( ¬ x � ( y � 

z ) ) 

1) Use de Morgan’s law to push negations to the leaves of the expression tree: 

E1 = x � ¬ ( y � z ) = x � ( ¬ y � ¬ z ) 

2) Assign a new Boolean variable to each internal node of the expression tree, i.e. to each 

occurrence of anoperator, and use the Boolean operator ‘equivalence’ � to state the fact that this 

variable must be the resultof the corresponding operation: u � ( ¬ y � ¬ z ) , w � x � u 

3) Construct an expression E2 that states that the root of the expression tree must be true, traces 

the evaluationof the entire tree, node by node, and combines all these assertions using ANDs: 

E2 = w � ( w � ( x � u ) ) � ( u � ( ¬ y � ¬ z ) ). 



E2 and E are equivalent in the weak sense of simultaneous satisfiability. If E is satisfiable, then 

E2 is also, bysimply assigning to the new variables u and w the result of the corresponding 

operation. Conversely, if E2 issatisfiable, then E is also, using the same values of the original 

variables x, y, z as appear in E2.Notice that E2 is in conjunctive form at the outermost level, but 

its subexpressions are not, so we need a lasttransformation step. 

4) Recall the Boolean identity for implication: a � b = ¬ a � b to derive the identities: 

a � ( b � c ) = ( a � ¬ b ) � ( a � ¬ c ) � ( ¬ a � b � c ) 

a � ( b � c ) = ( ¬ a � b ) � ( ¬ a � c ) � ( a � ¬ b � ¬ c ) 

Using these identities on the subexpressions, E2 gets transformed into F in 3-CNF: 

F = w � ( w � ¬ x ) � ( w � ¬ u ) � ( ¬ w � x � u ) � ( ¬ u � x ) � ( ¬ u � z ) � ( u � y � z ) 

Each of the four transformation steps can be done in linear time and lengthens the expression by 

at most aconstant factor. Thus, the reduction of a Boolean expression E in general form to one, F, 

in 3-CNF can be donein polynomial time.  

Notice the critical role of the integer ’3’in 3-CNF: we need to express the result of a binary 

operator, such asw � x � u, which naturally involves three literals. Thus, it is no surprise that the 

technique used in the proofabove fails to work for 2-CNF. Indeed, 2-CNF is in P . 

In analogy to CNF we define the disjunctive normal form DNF as an OR of terms, each of which 

is anAND of literals: E = T1 � T2 � T3 � ... where Ti = ( L1 � L2 � L3 � ..) 

Theorem : 

CLIQUE is NP-complete 

Proof: Show that 3-CNF ≤p CLIQUE. Given a 3-CNF expression F, construct a graph G = (V, E) 

and an integerk such that F is satisfiableiff G has a k-clique. 

Let F = (z11 � z12 � z13) � (z21 � z22 � z23) � ... � (zm1 � zm2 � zm3), where each zij is 

a literal.To each occurrence of a literal we assign a vertex, i.e. V = { (1,1), (1,2), (1,3), ... , (m, 

1), (m, 2), (m, 3) } 

We introduce an edge ( (i, j) (p, q) ) iff i ≠ p (the two literals are in different clauses) 

andzij ≠ ¬zpq(the 2 literals do not clash, i.e. both can be made true under the same assignment). 

Finally, let k, the desired clique size, be = m, the number of clauses. 

With this construction of G we observe that F is satisfiable via an assignment A 

iff 1) each clause contains a literal that is true under A, say z1, j1, z2, j2, ... , zm, jm 

iff 2) there are literals z1, j1, z2, j2, ... , zm, jm no 2 of which are negations of each other 



iff 3) there are vertices (1, j1), (2, j2), ... , (m, jm) that are pairwise connected by an edge 

iff 4) G has a k-clique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some more Examples: 

 



 

 

 



 

 

 

 

 



 

 

Church Turing Thesis: 

In computability theory, the Church–Turing thesis (also known as the Turing-Church thesis, the 

Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a 

combined hypothesis ("thesis") about the nature of functions whose values are effectively 

calculable; or, in more modern terms, functions whose values are algorithmically computable. In 

simple terms, the Church–Turing thesis states that a function is algorithmically computable if 

and only if it is computable by a Turing machine. 

Several attempts were made in the first half of the 20th Century to formalize the notion of 

computability: 

• American mathematician Alonzo Church created a method for defining functions called 

the λ-calculus, 



• British mathematician Alan Turing created a theoretical model for a machine, now called 

a universal Turing machine, that could carry out calculations from inputs, 

• Church, along with mathematician Stephen Kleene and logician J.B. Rosser created a 

formal definition of a class of functions whose values could be calculated by recursion. 

All three computational processes (recursion, the λ-calculus, and the Turing machine) were 

shown to be equivalent—all three approaches define the same class of functions. This has led 

mathematicians and computer scientists to believe that the concept of computability is accurately 

characterized by these three equivalent processes. Informally the Church–Turing thesis states 

that if some method (algorithm) exists to carry out a calculation, then the same calculation can 

also be carried out by a Turing machine (as well as by a recursively definable function, and by a 

λ-function). 

The thesis can be stated as follows: 

• Every effectively calculable function is a computable function. 

Turing stated it this way: 

• "It was stated ... that 'a function is effectively calculable if its values can be found by 

some purely mechanical process.' We may take this literally, understanding that by a 

purely mechanical process one which could be carried out by a machine. The 

development ... leads to ... an identification of computability† with effective 

calculability." 

 


