AUTOMATA THEORY

Digital Notes By
BIGHNARAJ NAIK
Assistant Professor

Department of Master in Computer Application
VSSUT, Burla

Syllabus

4" SEMESTER MCA

F.M:70
MCA 207 AUTOMATA THEORY (3-1-0)Cr.-4

Module — |

Introduction to Automata: The Methods Introduction to Finite Automata, Structural
Representations, Automata and Complexity.

Proving Equivalences about Sets, The Contraposifik@of by Contradiction,

Inductive Proofs General Concepts of Automata Theory: Alphabeten@, Languages,
Applications of Automata Theory.

Module — 11

Finite Automata: The Ground Rules, The Protocol, Deterministic EirMutomata: Definition
of a Deterministic Finite Automata, How a DFA Prsses Strings, Simpler Notations for
DFA’s, Extending the Transition Function to Stringse Language of a DFA

Nondeterministic Finite AutomataAn Informal View. The Extended Transition Functiol he
Languages of an NFA, Equivalence of Deterministid Blondeterministic Finite Automata.
Finite Automata With Epsilon-Transitions: Usesl®fTransitions, The Formal Notation for an
[0-NFA, Epsilon-Closures, Extended Transitions anddieges forfl-NFA'’s, Eliminating (-
Transitions.

Module — 111

Reqular _Expressions and Languages Regular Expressions: The Operators of regular
Expressions, Building Regular Expressions, Preaszleof Regular-Expression Operators,
Precedence of Regular-Expression Operators

Finite Automata and Regular Expressions: From DF#&'sRegular Expressions, Converting
DFA’s to Regular Expressions, Converting DFA’s tegalar Expressions by Eliminating States,
Converting Regular Expressions to Automata.

Algebraic Laws for Regular Expressions:

Properties of Reqular Languagd$ie Pumping Lemma for Regular Languages, Appboat of
the Pumping Lemma Closure Properties of Regulaguages, Decision Properties of Regular
Languages, Equivalence and Minimization of Automata

Module — IV

Context-Free Grammars and LanguagesDefinition of Context-Free Grammars, Derivations

Using a Grammars Leftmost and Rightmost Derivatidie Languages of a Grammarr,

Parse Trees: Constructing Parse Trees, The Yiekl Barse Tree, Inference Derivations, and
Parse Trees, From Inferences to Trees, From ToeBsrivations, From Derivation to Recursive

Inferences,

Applications of Context-Free Grammars: Parsers, @mty in Grammars and Languages:
Ambiguous Grammars, Removing Ambiguity From Gramsnaeftmost Derivations as a Way
to Express Ambiguity, Inherent Anbiguity

Module -V

Pushdown Automata Definition Formal Definition of Pushdown Automata, Graphical
Notation for PDA’s, Instantaneous Descriptions &fl2A,

The Languages of a PDAcceptance by Final State, Acceptance by EmpaglStFrom Empty
Stack to Final State, From Final State to EmptylSta

Equivalence of PDA’'s and CFG’s: From Grammars teHéiown Automata, From PDA’s to
Grammars

Deterministic Pushdown AutomatBefinition of a Deterministic PDA, Regular Langs and
Deterministic PDA’s, DPDA’'s and Context-Free Langes, DPDA’s and Ambiguous
Grammars

Module — VI

Properties of Context-Free Languages Normal Forms for Context-Free Grammars, The
Pumping Lemma for Context-Free Languages, Closuopdfties of Context-Free Languages,
Decision Properties of CFL’s

Module - VII

Introduction to Turing Machines: The Turing Machine: The Instantaneous Descriptions
Turing Machines, Transition Diagrams for Turing Maws, The Language of a Turing
Machine, Turing Machines and Halting

Programming Techniques for Turing Machines, Extmsito the Basic Turing Machine,
Restricted Turing Machines, Turing Machines and Goters,

Module - VIII

Undecidability: A Language That is Not Recursively Enumerable, Eenatmg the Binary
Strings, Codes for Turing Machines, The DiagongiliralLanguage

An Undecidable Problem That Is RE: Recursive LagggaComplements of Recursive and RE
languages, The Universal Languages, Undecidalofitile Universal Language

Undecidable Problems About Turing Machines: Redunstj Turing Machines That Accept the
Empty Language

Post’s Correspondence Problem: Definition of PoStsrespondence Problem, The “Modified”
PCP

Other Undecidable Problems: Undecidability of Ambig for CFG’s

REFERENCE BOOKS

1. Hopcroft, Ullman “ Theory of Computation & Formahhguages”, TMH.

2. FORMAL LANGUAGES AND AUTOMATA THEORY,H S Behera Janmenjoy

Nayak , Hadibandhu Pattnayak, Vikash Publishing, New Delhi.
3. Anand Sharma, “Theory of Automata and Formal Laggsa Laxmi Publisher.

Formal language

The alphabet of a formal language is the set ofoe}s letters, or tokens from which the strings
of the language may be formed; frequently it isuregf to be finite. The strings formed from this
alphabet are called words, and the words that gaioa particular formal language are
sometimes calledel|-formed words or well-formed formulas. A formal language is often
defined by means of a formal grammar such as daegtammar or context-free grammar, also

called its formation rule.

The field offormal language theorystudies the purely syntactical aspects of suchuages—
that is, their internal structural patterns. Fortaaguage theory sprang out of linguistics, as a
way of understanding the syntactic regularitiesatural languages. In computer science, formal
languages are often used as the basis for defimogramming languages and other systems in

which the words of the language are associatedpaithcular meanings or semantics.

A formal languagel over an alphalieis a subset df*, that is, a set of words over that

alphabet.

In computer science and mathematics, which do swwally deal with natural languages, the

adjective "formal” is often omitted as redundant.

While formal language theory usually concerns fitadh formal languages that are described by
some syntactical rules, the actual definition @f thncept "formal language" is only as above: a
(possibly infinite) set of finite-length stringsp more nor less. In practice, there are many
languages that can be described by rules, sudgatar languages or context-free languages.
The notion of a formal grammar may be closer toihgtive concept of a "language,” one
described by syntactic rules.

Formal language

A formal grammar (sometimes simply called a gram)rigaa set of formation rules for strings in

a formal language. The rules describe how to fdrings from the language's alphabet that are

valid according to the language's syntax. A gramtho@s not describe the meaning of the strings
or what can be done with them in whatever contexthy-their form.

A formal grammatr is a set of rules for rewritingrsgjs, along with a "start symbol" from which
rewriting must start. Therefore, a grammar is uguhbught of as a language generator.
However, it can also sometimes be used as the foasis'recognizer'—a function in computing
that determines whether a given string belongheédanguage or is grammatically incorrect. To
describe such recognizers, formal language theseyg separate formalisms, known as automata
theory. One of the interesting results of autontiagary is that it is not possible to design a

recognizer for certain formal languages.

Alphabet

An alphabet, in the context of formal languages, lba any set, although it often makes sense to
use an alphabet in the usual sense of the wordpog generally a character set such as ASCII.
Alphabets can also be infinite; e.g. first-ordegitois often expressed using an alphabet which,
besides symbols such as”,[+and parentheses, contains infinitely many elemedts1, x2, ...
that play the role of variables. The elements chlphabet are called its letters.

word

A word over an alphabet can be any finite sequenrcstring, of letters. The set of all words
over an alphabél is usually denoted hy* (using the Kleene star). For any alphabet there i
only one word of length 0, the empty word, whicloften denoted by e,orA. By concatenation
one can combine two words to form a new word, whesgth is the sum of the lengths of the

original words. The result of concatenating a wwitth the empty word is the original word.

Operations on languages

Certain operations on languages are common. Tbligsdas the standard set operations, such as
union, intersection, and complement. Another ctdssperation is the element-wise application

of string operations.

Examples: suppose L1 and L2 are languages over sommon alphabet.

« The concatenation L1L2 consists of all stringshef form vw where v is a string from L1
and w is a string from L2.
« The intersection LI L2 of L1 and L2 consists of all strings which amntained in both
languages
- The complement -L of a language with respect tivargalphabet consists of all strings
over the alphabet that are not in the language.
- The Kleene star: the language consisting of alldsdhat are concatenations of O or more
words in the original language;
« Reversal:
o Let e be the empty word, then eR = e, and
o for each non-empty word w = x1...xn over some alphdbewR = xn...x1,
o then for a formal language L, LR = {WwR | wL}.

String homomorphism

Such string operations are used to investigataisosroperties of classes of languages. A class
of languages is closed under a particular operatioen the operation, applied to languages in
the class, always produces a language in the skas®again. For instance, the context-free
languages are known to be closed under union, tematon, and intersection with regular
languages, but not closed under intersection optament. The theory of trios and abstract
families of languages studies the most common oéogroperties of language families in their

own right.
Language

“A language is a collection of sentences of fihgegth all constructed from a finite alphabet of
symbols.In general, ¥ is an alphabet and L islasstioft *, then L is said to bdanguageover
%, or simply a languagesf is understood. Each eldgroéh is said to be aentenceor aword or a

stringof the language.

Example 1 {0, 11, 001}, {¢, 10}, and {0, 1}* are subsets of {0, 1}*, and so they are languages
over the alphabet {0, 1}.

The empty set @ and the set { } are languages oxayealphabet. @ is a language that contains

no string. £} is a language that contains just ¢mepty string.

Theunionof two languages 1and L, denoted LL,, refers to the language that consists of all
the strings that are either in brin Ly, that is, to { x | x is in Lor X is in L, }. The intersectionof

L; and Ly, denoted LIL,, refers to the language that consists of all thiegs that are both in;L
and L, that is, to { x | x is in Land in L, }. The complementationof a language L ovex , or just
the complementation of L wheh is understood, dehbterefers to the language that consists of

all the strings ovex that are not in L, that is{ to| x is inZ* but notin L }.

Example 2 Consider thelanguagesL; ={s, O, 1} and L, = {¢, 01, 11}. The union of these
languagesisLiJL, ={¢ 0O, 1, 01, 11}, their intersection is LinL, = {z}, and the complementation
of Ly is T+ ={00, 01, 10, 11, 000, 001, . .. }.

@ JL = L for each language L. Similarly,®@ L = & feach language L. On the other hahdg =
andx = @ for each alphabet .

Thedifferenceof L1 and L, denoted L - Ly, refers to the language that consists of all thegs
that are in k. but not in L, that is, to { x | x is in Lbut not in L }. The crossproduct of L; and
L,, denoted L x L,, refers to the set of all the pairs (x, y) ofrayg such that x is injland y is in
L,, that is, to the relation { (x, ¥) | X isinland y is in L }. The compositionof L; with Ly,

denoted LL,, refers to the language { xy | xisipénd yisin L }.
Example 3 IfL;={:, 1,01, 11} andL,={1,01, 101} thenL; - Lo ={¢, 11} and L, - L; = {101}.

On the other hand, ifil= {3, 0, 1} and L, = {01, 11}, then the cross product of these lamgsa
is Ly x L, ={(s, 01), ¢, 11), (O, 01), (O, 11), (2, 01), 1)}, and their composition is;L, = {01,
11, 001, 011, 101, 111}.

L-@=L,0-L=0,dL =0, and{}L = L for eaclanguage L.

L' will also be used to denote the composing of ie®pf a language L, wherd Is defined as {
-}, The set UL*JL2UL3 . . . | called th&leeneclosure or just theclosure of L, will be denoted
by L*. The set EJL2L>_, called thepositiveclosure of L, will be denoted by L

L' consists of those strings that can be obtainetbbgatenating i strings from L. L* consists of

those strings that can be obtained by concatenatiraybitrary number of strings from L.

Example 4 Consider the pair of languagesLi = {¢, 0, 1} and L, = {01, 11}. For these
languages L1 ={z, 0, 1, 00, 01, 10, 11}, and L, > = {010101, 010111, 011101, 011111, 110101,
110111, 111101, 111111}. In addition, disin L,*,in L, ", and in Ly* but notin L,".

The operations above apply in a similar way totrefs int * X A *, whent ancd are alphabets.
Specifically, theunionof the relations Rand R, denoted RIRy, is the relation { (x, y) | (X, y) is
in Ry or in R }. Theintersectionof R; and R, denoted Ry, is the relation { (X, y) | (X, y) is in
R; and in R }. The compositionof R; with R,, denoted Ry, is the relation { (x<2, y1y2) | (X,
yi)isin Rgand (%, y») isin R }.

Grammar

It is often convenient to specify languages in eohgrammars. The advantage in doing so
arises mainly from the usage of a small numbeulgisrfor describing a language with a large
number of sentences. For instance, the possiliilgyan English sentence consists of a subject
phrase followed by a predicate phrase can be esgudsy a grammatical rule of the form
<sentence> <subject><predicate>. (The names in anftdckets are assumed to belong to the
grammar metalanguage.) Similarly, the possibiligtthe subject phrase consists of a noun

phrase can be expressed by a grammatical ruledbtin <subject> <noun>.
G is defined as a mathematical system consistirsggpfadruple <Ng , P, S>, where

N : is an alphabet, whose elements are called noimtalsymbols.
¥ : is an alphabet disjoint from N, whose elemeng¢scalled terminalsymbols.
P :is a relation of finite cardinality on (N:)*, whe elements are called productionrules.

Moreover, each production rule §,)in P, denotefi must have at least one nonterminal

symbol ine. In each such production ruwis said to be the leftandside of the production ru
and# is said to be the righandsde of the production rule.

S is a symbol in N called the start, or sentengmj®l.
Types of grammars

Prescriptive: prescribes authoritative norms for a langt
Descriptive: attempts to describe actual usage rather thanenéobitrary rule
Formal: a precisely defined grammar, such as co-free

Generative: a formal grammar that can generate naturallangeggeessior

Chomsky hierarchy of languages

The Chomsky hierarchy consists of the followingelisy

Type-0 grammars (unrestricted grammars) include all formal grammars. They generate exe

all languages that can be recognized Turing machineThese languages are also knowi
the recursively emmerable languag. Note that this is different from threcursive languag
which can be decided by atways<halting Turing machine.

Type-1 grammars (context-sensitive grammars) generate the contegensitive languag. These

grammars have rules of the fo aAS — avyBwith Aa nonterminal ancy, Sand? strings of

terminals and nonterminals. The stritccandJ may be empty, bttmust be nnempty. The rule
5 — ¢is allowed ifS'does not appear on the right side of any rule.l@hguages described
these grammars are exactly all languages thateaedognized by linear bounded automat

(a nondeterministic Turing machine whose tape imded by a constant times the length of
input.)

Type-2 grammars (context-free grammars) generate the contekiee language. These are

defined by rules of the formt —* Ywith .4 a nonterminal and a string of terminals an

nonterminals. Tase languages are exactly all languages that ceecbgnized by a n«-

deterministigpushdown automat. Contextfree languages are the theoretical basis fo
syntax of mosprogramming languag.

Type-3 grammars (reqular grammars)generate the regular languag8sich a grammar restric

its rules to a single nonterminal on the-hand side and a right-hasitle consisting of a sing
terminal, possibly followed (or preceded, but nothbin the same grammar) by a sin
nonterminal. The rul& — €is also allowed here does not appear on the right side of
rule. These languages are exactly all languact can be decided byfiaite state automatt.
Additionally, this family of formal languages caa bbtained bregular expressio. Regular
languages are commonly used to define search pat@d the lexical structure of programm

languages.

- LS

- recursively enumerable -

-t -

- b
| - contextsensitive |
- - = == - i I

-'..

| context-free I

a0 regular e e

Examples:

1. The language consists of all strings begin wi

{0X0, 1}

2. The language consists of strings begin with 0, and emwith 1.
{0XO, 1}{1}

3. The language consists of all strings with odd |as
{0,1}2n-1,n=1, 2, ..

4. The language consists of all strings with suhgtof three consecutive 0.
{0, 1}*000{0, 1}*

5. The language consists of all strings withoutsstig of three consecutive 0.
{001, 01, 1}*

Regular grammar

A regular grammar is any right-linear or left-limggammar.

A right regular grammar (also called right lineaammar) is a formal grammar (N, P, S) such
that all the production rules in P are of one effibllowing forms:

B — a - where B is a non-terminal in N and a is a teahin =

B — aC - where B and C arein N and a iXin

B — ¢ - where B is in N and denotes the empty string, i.e. the string of lbrijgt

In a left regular grammar (also called left linggammar), all rules obey the forms

A — a - where Ais a non-terminal in N and a is a teahin =

A — Ba - where A and B are in N and a iin

A — ¢-where Ais in N and is the empty string.

An example of a right regular grammar G with N 5 £§, £ = {a, b, c}, P consists of the
following rules

S— aS

S— DbA

A—c¢

A — CcA

andS is the start symbol. This grammar describesdme language as the regular expression
a*bc*.

Extended regular grammars

An extended right regular grammar is one in whikinudes obey one of
1. B — a-where B is anon-terminal in N and a is a teann X
2. A— wB -where A and B are in N and w is3h
3. A —¢-where Aisin N and is the empty string.
Some authors call this type of grammar a right leggrammar (or right linear grammar) and the

type above a strictly right regular grammar (orcsity right linear grammar).

An extended left regular grammar is one in whidhdés obey one of
1. A — a-where Ais anon-terminal in N and a is a teahin >
2. A — Bw -where A and B are in N and w is3f

3. A —¢-where Aisin N and is the empty string.
Regular expression

A regular expression (or regexp, or pattern, or RE)text string that describes some
(mathematical) set of strings. A RE r matchesiags if s is in the set of strings described by r.
Regular Expressions have their own notation. Chars@are single letters for example ‘a’, *
'(single blank space), ‘1’ and *-’ (hyphen). Openat are entries in a RE that match one or more

characters.

Regular expressions consist of constants and apexanbols that denote sets of strings and
operations over these sets, respectively. Theviotig definition is standard, and found as such
in most textbooks on formal language theory. Giadimite alphabek, the following constants

are defined as regular expressions:

+ (empty setp denoting the sed.
« (empty string) € denoting the set containing only the "empty" friwhich has no
characters at all.

 (literal character) a inX denoting the set containing only the character a.

Given regular expressions R and S, the followingrafions over them are defined to produce

regular expressions:

« (concatenation) RS denoting the setof3 | o in set described by expression R 8rid set
described by S }. For example {"ab", "c"{"d", "ef'= {"abd", "abef", "cd", "cef"}.

+ (alternation) R | S denoting the set union of sets describeld bypd S. For example, if R
describes {"ab", "c"} and S describes {"ab", "d&f"}, expression R | S describes {"ab",
“c", "d", "ef"}.

+ (Kleene stan R* denoting the smallest superset of set desgrifyeR that contains and
is closed under string concatenation. This is #tetall strings that can be made by

concatenating any finite number (including zero¥wings from set described by R. For

example, {"0","1"}* is the set of all finite binargtrings (including the empty string), and

{"ab", "c"}* = { ¢, "ab", "c", "abab", "abc", "cab", "cc", "abababBabcab", ... }.

To avoid parentheses it is assumed that the Klseménas the highest priority, then
concatenation and then alternation. If there ismbiguity then parentheses may be omitted. For

example, (ab)c can be written as abc, and a|(b¢ef))be written as albc*.
Examples:

- a|b* denotes4q, "a", "b", "bb", "bbb", ...}

« (a|b)* denotes the set of all strings with no sylalmther than "a" and "b", including the
empty string: ¢, "a", "b", "aa", "ab", "ba", "bb", "aaa", ...}

« ab*(cg) denotes the set of strings starting with "a"ntkero or more "b"s and finally

optionally a "c": {"a", "ac", "ab", "abc", "abb"dbbc", ...}
Deterministic finite automaton (D.F.A)

- In the automata theory, a branch of theoreticalmaer science, a deterministic finite
automaton (DFA)—also known as deterministic firstate machine—is a finite state
machine that accepts/rejects finite strings of syimbnd only produces a unique
computation (or run) of the automaton for each trgtring. 'Deterministic’ refers to the
uniqueness of the computation.

+ A DFA has a start state (denoted graphically bgrmow coming in from nowhere)
where computations begin, and a set of accepsstaémoted graphically by a double
circle) which help define when a computation iscassful.

- A DFA s defined as an abstract mathematical caindep due to the deterministic nature
of a DFA, it is implementable in hardware and saeftevfor solving various specific
problems. For example, a DFA can model a softwaaedecides whether or not online
user-input such as email addresses are valid.

- DFAs recognize exactly the set of regular languabesh are, among other things, useful
for doing lexical analysis and pattern matchingABIan be built from nondeterministic

finite automata through the powerset construction.

Formal definition

A deterministic finite automaton M is «tuple,(Q, X, 8, go, F) consisting o

+ afinite set of state®)

+ afinite set of input symbols called talphabetX)

« atransition functiorfé : Q XX — Q)

+ astart state (g Q)

+ aset of accept statéds e Q)
Letw = ala? ... an be a string over the alphZb&he automaton M accepts the strin
if a sequence of statey,r, ..., k, exists in Q with the following conditior

c =@

e riz1=90(r, 8+41), fori=0, ..., -1

- ImnekF.
In words, the first condition says that the mactstaets in the start stato. The second
condition says that given each character of siw, the machine will transition frot
state to state according to the transition funcdiofhe last condition says that t
machine accepts w if the last input of w causesrtaehine to halt in one of the accept
states. Otherwise, it is said that tlutomaton rejects the string. The set of string

accepts is thlanguag recognized by M and this language is denoted by)l

Transition Function Of DFA

A deterministic finite automaton without accepttetaand without a starting state is known

transition system aemi automatc.

Given an input symbat € 2 one may write the transition function@®s: & — Q, using

the simple trick of curryingthat is, writing‘s(gr a) = da(@for all ¢ € Q. This way, the
transition function can be seen in simpler termsjust something that "acts" on a state ir

yielding another state. One may then considerahalt offunction @mpositior repeatedly

applied to the various functioﬁ'u, f'ta, and so on. Using this notion we def

6:Qx X" —Q Givena pair of letter®; b € X one may define a new functiﬁ, by

insisting thatlab = 0q © 5b, whereudenotes function composition. Clearly, this proaess be

recursvely continued. So, we have following recursivdigiéon

)

(4, €) = Qwhereis empty string ar

0(q, wa) = 8a(0(q, w)) wherar € *,a € angr € Q .
5 is defined for all wordw € %°
Advantages and disadvantage

» DFAs were invented to modreal worldfinite state machines in contrast to the con
of a Turing machinewhich was too general to study properties of veald machine:

» DFAs are one of the most practical models of corjput, since there is a trivial line
time, constant-spacenline algorithnto simulate a DFA on a stream of input. Al

there are efficient algorithms to find a DFA recagng:

1. the complement of the languarecognized by a given DFA.

2. the union/intersection of the languages recogni@etivo given DFA¢

» Because DFAs can be reduced canonical form (minimal DFAsthere are ao

efficient algorithms to determir

1. whether a DFA accepts any stri
whether a DFA accepts all strir

whether two DFAs recognize the same lang

A 0N

the DFA with a minimum number of states for a martr regular languas

» DFAs are equivalent in computi power tonondeterministic finite autome (NFAS).
This is because, firstly any DFA is also an NFAasd\FA can do what a DFA can (

Also, given an NFA, using thpowerset constructioone can build a DFA thi

recognizes the same language as the NFA, althtnegBEA could have exponentially
larger number of states than the NFA.

On the other hand, finite state automata are whisttimited power in the languages they
can recognize; many simple languages, includingpaalglem that requires more than
constant space to solve, cannot be recognizedliyfa

The classical example of a simply described lagguhat no DFA can recognize is
bracket language, i.e., language that consistsopigply paired brackets such as word "((
)"

No DFA can recognize the bracket language bec#se ts no limit to recursion, i.e.,
one can always embed another pair of bracketsansid

It would require an infinite amount of states toagnize. Another simpler example is the
language consisting of strings of the forgh,a—some finite number of a's, followed by

an equal number of b's.

Nondeterministic finite automaton (N.F.A)

P W dp P

In the automata theory, a nondeterministic finiioanaton (NFA) or nondeterministic
finite state machine is a finite state machine wHesm each state and a given input
symbol the automaton may jump into several possibl states.

This distinguishes it from the deterministic findatomaton (DFA), where the next
possible state is uniquely determined.

Although the DFA and NFA have distinct definitio@sNFA can be translated to
equivalent DFA using powerset construction, ilee, ¢onstructed DFA and the NFA
recognize the same formal language. Both typesitoihaata recognize only regular
languages

A NFA is represented formally by a 5-tuple, @A, g0, F), consisting of

a finite set of states Q

a finite set of input symbols

a transition relation : Q xX — P(Q).
an initial (or start) state g0

5. a set of states F distinguished as acceptingrial)fstates F

* Here, P(Q) denotes tlpower sebf Q. Let w = ala?2 ... an be a word over the alphak
The automeon M accepts the word w if a sequence of stafggl r..., rn, exists in Q wit
the following conditions

1. r0=q0
2. ri+l € A(ri, ai+l), fori=0, ..., -1
3. e F.

Implementation

There are many ways to implement a N

« Convert to the equivalent DFA. In se cases this may cause exponential blowup il
size of the automaton and thus auxiliary space@tmmal to the number of states in
NFA (as storage of the state value requires at owstit for every state in the NF[4]

« Keep aset data structu of all states which the machine might currentlyiroeOn the
consumption of the last input symbol, if one ofshetates is a final state, the mact
accepts the string.

« In the worst case, this may require auxiliary sgaroportional to the number states in
the NFA,; if the set structure uses one bit per Nfigite, then this solution is exac

equivalent to the abo\

- Create multiple copies. For each n way decisiomNRA creates up tn. — lcopies of
the machine. Each will enter a separate s

+ If, upon consuming the last input symbol, at least@py of the NFA is in the accepti
state, the NFA will accept. (This, too, requiregehr storage with respect to the nurnr
of NFA states, as there can be one machine foydVEA state.

« Explicitly propagate tokens through the transitstructure of the NFA and mat:
whenever a token reaches the final state. Thismsetimes useful when the NFA shoi

encode additional context about the events thgderied the transitiol

Decision property of Regular Language

A decision property for a class of languages islgorithm that takes a formal description of a

language (e.g., a DFA) and tells whether or notesproperty holds.

Example: Is language L empty?
You might imagine that the language isdescribedrmally, so if the description is “the
empty language”then yes, otherwise no.But the sspration is a DFA (or aRE that you

will convert to a DFA).

Closure Properties

A closure property of a language classsays thangi@nguages in the class,an operator
(e.g., union) producesanother language in the sdass.

Example: the regular languages areobviously close@r union,concatenation, and
(Kleene) closure.Use the RE representation of laggs.

The principal closure properties of regular langsagre:

1.The union of two regular languages is regular.

If L and M are regular languages, then so IS M.

2. The intersection of two regular languages isilaag

If L and M are regular languages, then so is M.

3. The compliment of two regular languages is ragul

If L is a regular language over alphakethenZ*-L is also regular language.

4. The difference of two regular languages is ragul

If L and M are regular languages, then sois L - M.

5. The reversal of a regular language is regular.

The reversal of a string means that the stringrigem backward, i.e. reversal of abcde is
edcba.

The reversal of a language is the language comgisfireversal of all its strings, i.e. if
L={001,110} then

LO = {100,011}

6.The closure of a regular language is regular.

If L is a regular language, then so is L*.

7. The concatenation of regular languages is regula
If L and M are regular languages, then so is L M.
8.The homomorphism of a regular language is regular
A homomorphism is a substitution of strings for &ah Let the function h be defined by
h(0) = a and h(1) = b then h applied to 0011 igpmaabb.
If h is a homomorphism on alphal¥®and a string of symbols w = abcd...z then
h (w) = h (a) h (b) h(c) h (d)...h (2)
The mathematical definition for homomorphism is
h:2* - '* such that] x, y 0x*
A homomorphism can also be applied to a languaggpblying it to each of strings in
the language. Let L be a language over alphapand h is a homomorphism anthen
h(L)={h(w)|wisinL}
The theorem can be stated as “ If L is a regalagliage over alphabBtand h is a
homomorphism oix, then h(L) is also regular ” .
9. The inverse homomorphism of two regular langsageegular.
Suppose h be a homomorphism from some alptabestrings in another alphabkt
and L be a language ovErthen h inverse of L,'i{L) is set of strings w &* such that
h(w) isin L.
The theorem states that “ If h is a homomorphissmfalphabek to alphabet T, and L

is aregular language on T , theéfLh is also a regular language.
Pumping lemma for regular languages

* The pumping lemma for regular languages describessential property of all regular
languages.

* Informally, it says that all sufficiently long wosdn a regular language may be pumped
— that is, have a middle section of the word repeain arbitrary number of times — to
produce a new word which also lies within the s¢éanguage.

» Specifically, the pumping lemma says that for aegutar language L there exists a
constant p such that any word w in L with lengtlheatst p can be split into three

substrings, w = xyz, where the middle portion y tmet be empty, such that the words

Xz, Xyz, Xyyz, Xyyyz, ... constructed by repeatingryarbitrary number of times
(including zero times) are still in L. This procedgepetition is known as "pumping"”.

» Moreover, the pumping lemma guarantees that thgthesf xy will be at most p,
imposing a limit on the ways in which w may be spli

» Finite languages trivially satisfy the pumping lemby having p equal to the maximum
string length in L plus one.
Let L be a regular language. Then there existai@ger p> 1 depending only on L such
that every string w in L of length at least p (g&led the "pumping length”) can be
written as w = xyz (i.e., w can be divided intoa@rsubstrings), satisfying the following

conditions:
1. ly=1
2. |xy|<p

3. foralli>0, xyze L

y is the substring that can be pumped (removedpeated any number of times, and the
resulting string is always in L). (1) means thedgoto be pumped must be of length at
least one; (2) means the loop must occur withirfitsep characters. There is no
restriction on x and z.

In simple words, For any regular language L, arffigently long word w(in L) can be

split into 3 parts. i.e w = xyz , such that all 8tengs x;ll(z for k>0 are also in L.

Proof of the pumping lemma

For every regular language there is a finite statematon (FSA) that accepts the language. The
number of states in such an FSA are counted andobat is used as the pumping length p. For
a string of length at least p, let sO be the state and let s1, ...,spbe the sequence of thepnext
states visited as the string is emitted. Becaus&8A has only p states, within this sequence of
p + 1 visited states there must be at least one ttat is repeated. Write S for such a state. The
transitions that take the machine from the firstaemter of state S to the second encounter of
state S match some string. This string is calledtite lemma, and since the machine will match
a string without the y portion, or the string y danrepeated any number of times, the conditions

of the lemma are satisfied.

For example, the following image shows an F

O

The FSA accepts the stringpcc. Since this string has a length which is at leadfrge as th
number ofstates, which is four, trpigeonhole principléndicates that there must be at least
repeated state among the start state and themextibited states. In this example, only g1
repated state. Since the substring bc takes the matmiaugh transitions that start at state
and end at state g1, thadrtion could be repeated and the FSA would stitept, giving the
string abcbcdAlternatively, thebc portion could be removed atite FSA would still accey
giving the string adin terms of the pumping lemma, the strabcdis broken into aix portion

a, a y portion bc and agortiond.

DFA minimization

« DFA minimization is the task of transforming a gindeterministic finite automatc
(DFA) into an equivalent DFA that has minimum numbgstates. Here, two DFASs &
called equivalent if they describe the seregular language.

* For each regular language that can be acceptediiAathere exists a DFA with
minimum number of states (and thus a minimum prognang effort to create and us

ard this DFA is unique (except that states can bergoifferent names

There are three classes of states that can be egiimerged from the original DFA
without affecting the language it accepts.

Unreachable states are those states that areanbiatgle from the initial state of the
DFA, for any input string.

Dead states are those nonaccepting states whoséitias for every input character
terminate on themselves. These are also calledsladgs because once entered there is
no escape.

Nondistinguishable states are those that canndisbi@guished from one another for any
input string.

DFA minimization is usually done in three stepsyesponding to the removal/merger of
the relevant states. Since the elimination of nethtjuishable states is computationally

the most expensive one, it's usually done as #iestap.

Left and right linear grammars.

A linear language is a language generated by smmarlgrammar.

Example

A simple linear grammar is G with N = {S§, = {a, b}, P with start symbol S and rules

S— aShb

S—e¢

Two special types of linear grammars are the falhgw

the left-linear or left regular grammars, in whadhnonterminals in right hand sides are
at the left ends;

the right-linear or right regular grammars, in whadl nonterminals in right hand sides
are at the right ends.

Collectively, these two special types of linearmgnaars are known as the regular grammars;

both can describe exactly the regular languages.
Another special type of linear grammar is the failog:

+ linear grammars in which all nonterminals in riglaind sides are at the left or right ends,

but not necessarily all at the same end.

By inserting new nonterminals, every linear gramoar be brought into this form without

affecting the language generated. For instancautbse of G above can be replaced with

S— aA
A — Sb

S—e¢

Hence, linear grammars of this special form caregge all linear languages.
Left linear Grammar

A->BaorA->awhere Aand B are in N and &i$

Right linearGrammar

A->aBorA->a,

where Aand Barein Nandaisin S

Example:
S->aT T->1
S>bT T
S->a T->2
S->b T
T->aT T->a
T->bT T->b
T->1
T->2
S=>a
S=>aT=>al

S=aT=>alT

Constructing a Nondeterministic Finite State Automaon from a

Right Linear Grammar

LetG=(N, S, P, S).

Construct a nondeterministic finite state automaton
M=(Q, S, d, S, F), where
Q=NU{X},XnotinNorS

F={X}

d is constructed by

IfA->aBisinP,then B isind(A,a)

If A->aisin P, then Xisind (A,a)

S>aT T>1T
S>DbT T->2T
S->a T->a
S->b T->b
T->aT T->1
T->bT T->2

d(s,a) ={T, X}

d(S,b) ={T,X}

d(S,1)=F

d(s,2) =F

d(T,a) ={T,X}

d(T,b) ={T,X}

d(T,1) ={T,X}

d(T,2) ={T,X}

A Left Linear Grammar for Identifiers

Example:
S->Sa
S->Sb S=>a
S->S1 S=>S§1=>al
S->S?2 S=>S52=>SDb2
S->a =>S1b2=>a1lb?2
S->Db

Constructing a Nondeterministic Finite State Automaon from a

Left Linear Grammar
LetG=(N, S, P, S).
Construct a nondeterministic finite state automatbn (Q, S, d, X, F), where
Q=NU{X},XnotinNorS
F={S}
d is constructed by
If A-> BaisinP,then A isind(B,a)
If A->aisin P, then Aisind (X,a)

S->Sa d(X,a) = {S}
S->Sb d(X,b) = {S}
S>S1 d(X,1) =F
S.>S2 d(X,2) =F
S->a d(S,a) = {S}
S->b d(S,b) = {S}
d(s,1) = {S}

d(S,2) = {S}

Context free grammars

A context-free grammar G is defined by the 4-tuple:
G=(V,T,P,S) where

1. Vs afinite set; each elementi¥ is called a non-terminal character or a variaBlgch
variable represents a different type of phrasdaurse in the sentence. Variables are also
sometimes called syntactic categories. Each varidélines a sub-language of the
language defined by G.

2. Tis afinite set of terminals, disjoint from Vhieh make up the actual content of the
sentence. The set of terminals is the alphabéteofanguage defined by the grammar G.

3. P s a set of production rule.

4. S is the start variable (or start symbol), usecepresent the whole sentence (or
program). It must be an element of V.

Example:

S— X
S—y
S—z
S—»>S+S
S—S-S
S—»S*S
S—SI/S
S—(S)

© N o o bk~ w0 Dd P

This grammar can, for example, generate the string

(x+y)*x-z*y/l(x+Xx)

as follows:

S (the start symbol)
— S-S (byrule 5)
— S*S - S (byrule 6, applied to the leftmost S)
— S*S-S/S (byrule 7, applied to the rightm8}t
— (S)*S-S/S (byrule 8, applied to the ledshS)
— (S)*S-S/(S) (by rule 8, applied to tightmost S)
—(S+S)*S-S/(S) (etc.)
—-(S+S)*S-S*S/(S)
—(S+S)*S-S*S/(S+S)
—(X+S)*S-S*S/(S+S)
—(X+y)*S-S*S/(S+S)
—(x+y)*x-S*y/(S+S)
—(X+y)*x-S*y/(x+S)
—(x+y)*x-z*y/(x+S)
= (X+y)*x-z*y/(x+X)
Problem 1. Give a context-free grammar for the language
L={a"b™: n#2m}.
Is your grammar ambiguous?
Ans:
A grammar for the language is
S—aaSb|A|B|ab
A —aAla
B—-bB|b
This grammar is unambiguous; it is not hard to prthat every string in the langauge has
one
and only one parse tree.
Problem 2. Give a context-free grammar for the language
L ={x 0{0, 1} :x has the same number of 0’'s and 1's}

Is your grammar ambiguous?

Ans:
A grammar for the language is
S—S0S1S | S1S0S |
This grammar is ambiguous; for example, 0101 hasdifferent parse trees

Problem 3. Provethat L = {aibjck :] = max{i, k}} is not context free.
Ans:
Suppose for contradiction that L were context ftext.N be the “N” of the pumping
lemma
for context-free languages. Consider the stringaib¥c". Suppose w = uvxyz, where
[vxy|< N and |vyp 1. If vy contains only a’s or vy contains only cken pump up: the
string uvxy?z 0 L. Suppose vy contains only b’s. Then we can peitier way to get a
string not in L. Suppose v contains two differegttdrs or y contains two different letters.
Then u¥xy?z is not even of the form a*b*c*, so certainlystriot in L. Finally, suppose
(v Oa+ and) yb+, or v b+ (and y{1 c+). Then we can pump down and there will be

too few b’s. By [vwyk N, these are all the possible cases. So in afiscéheere is some i
for which uxy'z0 L, a contradiction.

Theorem : L [A* isCF iff ZNPDA M that acceptsL.

Proof ->: Given CFL L, consider any grammar G(L) fo Construct NPDA M that simulates all
possible derivations of G. M is essentially a sgagflate FSM, with a state g that applies one of
G’s rules at a time. The start state qO initialittesstack with the content S ¢, where S is the sta
symbol of G, and ¢ is the bottom of stack symbaisTinitial stack content means that M aims to
read an input that is an instance of S. In gentralcurrent stack content is a sequence of
symbols that represent tasks to be accomplish#teioharacteristic LIFO order (last-in first-
out). The task on top of the stack, say a non-teah¥, calls for the next characters of the input
string to be an instance of X. When these chammtiave been read and verified to be an
instance of X, X is popped from the stack, andritée task on top of the stack is started. When ¢
is on top of the stack, i.e. thestack is emptytamks generated by the first instance of S have
been successfully met, i.e. the input string reathsis an instance of S. M moves to the accept
state and stops.

The following transitions lead from q to q:

1) [, X-> w for each rule X -> w. When X is on top bktstack, replace X by a right-hand side
for X.
2) a, a - Jfor each dJA. When terminal a is read as input and a is alstop of the stack, pop

the stack.

Rule 1 reflects the following fact: one way to mtet task of finding an instance of X as a
prefix of the inputstring not yet read, is to soalethe tasks, in the correct order, present @& th
right-hand side w of the productionX -> w. M candmmsidered to be a non-deterministic parser
for G. A formal proof that M accepts precisely Ldadone by induction on the length of the

derivation of any wWL.
Ambiguous Grammar;

A grammar is said to be ambiguous if more thanpase trees can be constructed from it.

Example 1:

The context free grammar
A—A+AlA-Ala
iz amhiguous since there are two leftmaost derivations for the string a +a +a:
Ao A+A Ao A+ A
—ath = A+A+A First Als replaced by A+A Replacement of the second A wauld yield & similar derivation)
—atA+A —atA+A
—a+ath —a+ath

—atata —at+ata
Az another example, the grammar is ambiguous since there are two parse trees for the sting a +a - &
(A) A

4 + | = d 4 + d = d
The language that it generates, however, is nat inherently ambiguous; the following is a non-ambiguous grammar generating the same language:

Aobh+alh-ala

Example 2 Show that the following grammar is ambigious

B HHE A H W
!

L
L
LE
it B Eelse E
it B E
X
y
()
1
5
L
E
If)EN
if B E else ‘E
if T T." else ¥
iff 1 x else vy

5
L
E
/ X
f B E else E
|
If B E else v
I B E/DE else ¥y
If !:] if ‘l ‘:-: else v

As you can see we can have two corresponding praxse for the above grammar, so the

grammar is ambiguous.

Removal of Ambiguity

For compiling applications we need to design ungoniuis grammar, or to use ambiguous
grammar with additional rules to resolve the amitygu

1. Associativity of operators.
2. Precedence of operators.

3. Separate rules or Productions.

1. Associativity of Operators:
If operand has operators on both side therobypection, operand should be associated with
the operator on the left.

In most programming languages arithmetic operdilcesaddition, subtraction, multiplication,
and division are left associative.

« Tokenstring: 9-5+2
« Production rules
list — list - digit | digit
digit—0]1]2]...]9

In the C programming language the assignment agreratis right associative. That is, token
string a = b = ¢ should be treated as a = (b = ¢).

« Token string: a =b =c.
« Production rules:
right — letter = right | letter

letter - a|b]|...|z

2. Precedence of Operators:
An expression 9 + 5 * 2 has two possible intetigtion:

(9+5)*2and 9+ (5* L)

The associativity of '+ and *' do not resolvestambiguity. For this reason, we need to know the
relative precedence of operators.

The convention is to give multiplication and diwisihigher precedence than addition and
subtraction.

Only when we have the operations of equal precexjeme apply the rules of associative.

So, in the example expression: 9 + 5 * 2.

We perform operation of higher precedence i.egfbte operations of lower precedence i.e., +.

Therefore, the correct interpretation is 9 + (5 *).

3. Separate Rule:
Consider the following grammar and languagemga

S — IFb THEN SELSE S
| IFbTHENS

| a

An ambiguity can be removed if we arbitrary dediust an ELSE should be attached to the last
preceding THEN.

We can revise the grammar to have two nontermiBadgd $. We insist that Sgenerates IF-

THEN-ELSE, while $is free to generate either kind of statements.
The rules of the new grammar are:

S, — IFbTHEN $
| IF b THEN STHEN S
| a

S, - IFbTHEN S ELSE S

| a

Although there is no general algorithm that cambed to determine if a given grammar is
ambiguous, it is certainly possible to isolate sulhich leads to ambiguity or ambiguous
grammar.

Example:

Show that the given grammar is ambiguous and also remove the ambiguity.

E— I/E+E/E « E/(E)
[— a/b/Ia/Ib/I0/I1

Answer :

Consider the sentential form E + E = E. It has two derivations from
E.

2. B = Foa = F 1 B s F.

E/—l]f\E E/E\E
1T S
E e E E -+ E
() ®)

As two parse trees can be possible so the aboea grammar is ambigious.

The solution to the problem of enforcing precedence is to introduce several different
variables, each of which represents those expressions that share a level of binding
strength. Specially:

1. A factor is an expression that can not be broken apart by any adjacent oper-
ator, either a * or a +. The only factors in our expression language are:

(a) Identifiers. It is not possible to separate the letters of an identifier by
attaching an operator.

(b) Any parenthesized expression, no matter what appears inside the paren-
theses. It is the purpose of parentheses to prevent what is inside from
becoming the operand of any operator outside the parentheses.

2. A term is an expression that cannot be broken by the + operator. In our
example, where + and * are the only operators, a term is a product of one
or more factors. For instance, the term a = b can be broken if we use left
associativity and place al* to its left. That is, al * a=* b is grouped (al =a) = b,
which breaks apart the a +* b. However, placing additive term, such as al+ to
its left or +al to its right cannot break a =b. The proper grouping of al +a=b
is al + (a * b), and the proper grouping of a « b+ al is (a*b)+al.

3. An expression will henceforth refer to any possible expression, including those
that can be broken by either an adjacent * or an adjacent +. Thus, an ex-
pression for our example is a sum of one or more terms.

An unambiguous expression grammar

B—T]E+T

T — F/T«F

F — I/(E)

I — a/b/Ia/Ib/I0/I1

Now the same parse tree can be drawn as follows.

\,
/

E + T
T T * F
I I |
F F I
| I I
I I a
I I
a a

Inherent Ambiguity

A contextfree language L is said to be inherently ambigtif all its grammarsare ambiguous.

If even one grammar for L is unambiguous, theis an unambiguousnguage
Example :

A grammar for an inherently ambiguous language

S - AB/C

A — aAb/ab

B — cBd/ed
C — aCdj/aDd
D — bDec/be

This grammar is ambiguous. For example, the string aabbcedd has the two leftmost
derivations:

1. S=4, AB =,, aAbB =, aabbB =, aabbcBd =,, aabbcedd.

2. 8=, C =, aCd =,, aaDdd =,,, aabDdd =,,, aabbeedd

N I
AN I I

a A be B d a ¢ d

AN DN
a b c b//[l)\;
N

b c

Two parse trees for aabbeedd

Pumping Lemma For CFL

For every CFL L there is a constant n such thatyexél L of length |zp n can be written as

z = u v w X y such that the following holds:

1) v x0T

2) l[vwx[<n, and

3) uvk w xk yOI L for all k> 0.

Proof:

Given CFL L, choose any G = G(L) in Chomsky NF.<srimplies that the parse tree of anyl z

L is a binary tree, as shown in the figure belowett The length n of the string at the leaves and
the height h of a binary tree are related lyylbg n, i.e. a long string requires a tall pargetr

By choosing the critical length n =2 |V | + 1 weede the height of the parse trees considered to
be h> |V| + 1. On a root-to-leaf path of lengthV| + 1 we encounter at least |V| + 1 nodes
labeled by non-terminals. Since G has only |Vjmishon-terminals, this implies that on some
long root-to-leaf path we must encounter 2 nodesl&d with the same non-terminal, say W, as

shown at right.

=IVI + 1

For two such occurrences of W (in particular, the towest ones), and for some u, v, y, X, w
OA*, we have: S ->* u Wy, W ->*v W x and W ->* vBut then we also have W ->* v2 W x2,
and in general, W ->* vkWxk, and S ->* u vk W xlapd S ->* u vk w xk y for all i O,

Example-1 Let G be a CFG in Chomsky normal form that containgriables. Show that, if G
generates some string with a derivation havingadtl 2b steps, L(G) is infinite.

Answer:

Since G is a CFG in Chomsky normal form, every\@gion can generate at most two non-
terminals, so that in any parse tree using G, temnal node can have at most two children. This
implies that every parse tree with height k hamast 2—1 internal nodes.|f G generates some
string with a derivation having at leadtseeps, the parse tree of that string will haveast 2
internal nodes. Based on the above argument, éngefree has height is at least b + 1, so that
there exists a path from root to leaf containing bvariables. By pigeonhole principle, there is
one variable occurring at least twice. So, we canthe technique in the proof of the pumping

lemma to construct infinitely many strings whicle atl in L(G).

Example-2 :

LetC={xy|x,y2{0, 1}, |x| = |yl, and x 63.\6how that C is a context-free language.
Answer:

We observe that a string is in C if and only i¢ain be written as xywith [x| = |y| such that for
some i, the'f character of x is different from th® character of y. To obtain such a string, we
start generating the correspondifigharacters, and fill up the remaining charactesse on
the above idea, we define the CFG for C is asvdlo

S - AB|BA

A - XAX |0

B - XBX|1

X-0]|1

Let A=

Example-3:

Let A= {wtw"| w, t0{0, 1}*and |w| = |t| }Prove that A is not a contdkée language.
Answer:

Suppose on the contrary that A is context-freenThet p be the pumping

length for A, such that any string in A of lengthieast p will satisfy the pumping lemma.

Now, we select a string s in A with s 20°1°0%". For s to satisfy the pumping lemma,

there is a way that s can be written as uvxyz, witly|< p and |vyp1, and for any i,

uvxy'z is a string in A. There are only three casesritevs with the above conditions:

Case 1: vy contains only Os and these Os are cliosarthe last & of s. Let i be a

number with 7p > |vy| x (i + B 6p. Then, either the length of'xy'zis not a multiple of 3, or
this string is of the form wtwO such that |w| =|{{v| with wis all Os and w is not all Os (this is,
w' = wh).

Case 2: vy does not contain any 0s in the [gs00s. Then, either the length ofuy?’z

is not a multiple of 3, or this string is of thedowtw such that |w| = |t| = {jwvith

w is all 0s and wis not all Os (that is, = wWP).

Case 3: vy is not all 0s, and some Os are fronestedp of s. As |vxy| _ p, vxy in this

case must be a substring in@dprhen, either the length of uv2xy2z is not a plét

of 3, or this string is of the form wtauch that |w| = |t| = [\wvith w is all Os and

w' is not all Os (that is, W6= WJ).

In summary, we observe that there is no way s atasfg the pumping lemma. Thus, a
contradiction occurs (where?), and we concludeAhiatnot a context-free language.
Theorem : L1 = { Ok 1k 2k / k>0 } is not context free.

Pf (by contradiction): Assume L is CF, let n be tloastant asserted by the pumping lemma.
Consider z = 0n 1n 2n = u v w X y. Although we ddmow where vwx is positioned within z,
the assertion |vw x| n implies that v w x contains at most two distiletters among 0, 1, 2. In
other words, one or two of thethree letters 0, ik, rdissing in vwx. Now consider u v2 w x2 y.
By the pumping lemma, it must be in L. Theasserpox|> 1 implies that u v2 w x2 y is longer
than uv w x y. But uv w x y had an equal numbedsy 1s,and 2s, whereas u v2 w x2 y cannot,
since only one or two of the three distinct symbotseased in number. Thiscontradiction
proves the theorem.

Theorem : L2 = {w w /w[}0, 1} } is not context free

Proof (by contradiction): Assume L is CF, let nthe constant asserted by the pumping lemma.
Consider z = On+1 1n+1 On+1 1n+1 = u v w x y. Uding0, the lemma asserts z0 = u Wy,
but we showthat z0O cannot have the form t t, for string t, and thus that Z0O L, leading to a

contradiction. Recall that |v wx|n, and thus, when we delete v and x, we deletdsigihat

are within a distance of at most n from eachotBgranalyzing three cases we show that, under
this restriction, it is impossible to delete synsowml such away as to retain the property that the
shortened string z0 = u w x has the form t t. Wesitate this using theexample n = 3, but the
argument holds for any n.Givenz=00001 10101001 1 1 1, slide a window of length n =3
across z, and delete any characters youwant frahinithe window. Observe that the blocks of
Os and of 1s within z are so long that the truretateall it ', still has the form “Os 1s Os 1s”.
This implies that if z’ can be written as z’ = thien t must have theform t = “Os 1s”. Checking
the three cases: the window of length 3 lies dgtirgthin the left half of z; thewindow straddles
the center of z; and the window lies entirely witkhe right half of z, we observe that in noneof
these cases z’' has the form z' =t t, and thuszbat u w ylIL.

Context sensitive grammars and languages

The rewriting rules B -> w of a CFG imply that anaterminal B can be replaced by a wordw
(V [0 A)* “in any context”. In contrast, a context seng grammar (CSG) has rules of the form:
uBv->uwyv, whereu, v, W (V [J A)* implying that B can be replaced by w onlythre
context “u on the left, v on the right”. It turnatahat this definition is equivalent (apart fronet
nullstring 1) to requiring that any CSG rule be of the form»wy, where v, W (V (1 A)*, and

[v|< |w|. This monotonicity property (in any derivatidhe current string never gets shorter)
implies that the word problem for CSLs: “given C8&nd given w, is WIL(G)?” is decidable.
An exhaustive enumeration of all derivations ughi length |w| settles the issue. As an example
of the greater power of CSGs over CFGs, recallweatised the pumping lemma to prove that
the language'01* 2 is not CF.

Parikh's theorem

Parikh's theorem in theoretical computer science says that if we look only at the relative number of
occurrences of terminal symbols in a context-free language, without regard to their order, then the
language is indistinguishable from a regular language. It is useful for deciding whether or not a string
with given number of some terminals is accepted by a context-free grammar. It was first proved by Rohit

Parikh in 1961 and republished in 1966.

Definitions

Let X = {a.l_. g, ... ,ﬂ.k} he an alphabet. The Pankh vector of a word is defined as the function p RN Nk, given by

p(w) = (#ﬂ-l (w), #a.g(w), . ,#a.k(w)), where #a‘!-(w) gives the number of accurrences of the letter €1; in the ward 701
Further, for a language [, p(L) = {p(w)|w - L}

A subset of Nk i5 5aid 1o be fnear it is of the form

Uy + (H.l, ceay um} = {uﬂ +au +...+ ﬂmum|ﬂ-lg vyl £ N}fursume wectors Upy ooy U,

A subset of NFC is said to be semi-inear if it is a union of finitely many linear subsets.

Cantor's theorem

Cantor's theorem states that, for any setA, thefsat subsets of A (the power set of A) has a
strictly greater cardinality than A itself. For i@ sets, Cantor's theorem can be seen to beyrue b
a much simpler proof than that given below, simcaddition to subsets of A with just one
member, there are others as well, and since nfer2al natural numbers n. But the theorem is
true of infinite sets as well. In particular, thewer set of a countably infinite set is uncountably

infinite.

Proof:

Tuo sets are equinumeraus (have the same cardinalty) f and anly ifthere exists a ane-to-one conespondence between thern. Ta establish Cantar's theorem i is enaugh ta show
that, for any gven set A, no function ffrom A into P(-l) the power set of A, can be surective, 1.8, to show the existence of at least ane subset of A that is nat an element of the
iage of A under . Such a subset, € P({) 12 given by the fallowing construction:

B={ze:zgflr)}.
Thiz meang, by defintion, that for all xin A, x e Bif and only ifx ¢). For all xthe sets B and fx) cannat be the same because Bwas constructed fram elements of Awhose

images (under) did nat include themselves. More speciically, consider any x € A, then ether x e f) orx & 0. Inthe former case,) cannot equal B because x e fy) by
assumption and x ¢ B by the construction of B I the latter case, fi) cannot equal B because x & fi) by assumption and x € Bby the construction of B

Thus there 15 no x such that f) = B; in other wards, B 1z not inthe image of £ Because Bz in the power set of A, the power set of A haz & greater cardinalty than A tself

Anather way to think of the proaf s that B, empty o non-empty, s always in the power set of A, For f1o be onto, some element of A must map to B. But that leads to 3
contradiction: na element of B can map to B because that would contradict the crterion of mernbership in 8, thus the element mapping to & must nat be an element of B meaning
that 1t satisfies the criterion for membershin in 8, another contradiction. 50 the assumption that an element of A maps to 8 must be false; and f can nat be anto.

Because of the double accunence of xin the exprazsion “x ¢ fix)", this 12 a diaganal argument.

Godel Numbering:

In mathematical logic, a Godel numbering is a fiorcthat assigns to each symbol and well-
formed formula of some formal language a uniquena@ihumber, called its Gédel number. The
concept was famously used by Kurt Godel for thepad his incompleteness theorems. (Godel
1931)

A GoOdel numbering can be interpreted as an encadingdpich a number is assigned to each
symbol of a mathematical notation, after which gussce of natural numbers can then represent
a sequence of strings. These sequences of naturddanrs can again be represented by single

natural numbers, facilitating their manipulatiorfammal theories of arithmetic.

Since Godel's paper was published in 1931, the ‘t&wdel numbering” or "Godel code" has

been used to refer to more general assignmentstofat numbers to mathematical objects.

Goidel used a system based on prime factorization. He first assigned a unique natural number to each basic symbol in the formal language of arithmetic with which he was dealing.

To encode an entire formula, which is a sequence of symbols, Gidel used the following system. Given a saquence (Iy, Tq, I3, ... xn) of positive integers, the Gidel encoding

of the sequence is the product of the first n primes raised ta their camespanding values in the sequence:
enc(zy, 2,23, ..., 2y) = 27 350,

Accarding to the fundamental theorem of anthmetic, any number obtained in this way can be uniquely factored inta prime factors, 20 it is possible to recover the original sequence
fram its Gadel number (for any given number n of symbols to be encaded).

Gaidel specically used this scheme at two levels: first, to encode sequences of symbals representing formulas, and second, to encode sequences of formulas representing proafs.
This allowed him to show a correspondence between statements about natural numbers and statements about the provability of theorems about natural numbers, the key
obsenvation of the proof

Example:

Inthe specific GAdel numbaring used by Nagel and Newman, the Gidel number for the symbol '0" i3 & and the Gédel number for the symbal*="i 5. Thus, in therr system, the
Godel numberofthe formul 0= 01152« 3« 8= 2430000

Pushdown automaton(PDA)

* In computer science, a pushdown automaton (PDA)ype of automaton that uses a
stack for temporary data storage.

» The PDA is used in theories about what can be cteapoy machines. The PDA is more
capable than finite-state machines but less caphateTuring machines. Because its
input can be described with a formal grammar, it lsa used in parser design. There are
two classes of PDAs:

* In deterministic PDAs, the machine has only onesiixbs choice of action for all
situations. Their application is limited to detenistic context-free grammars.

* In nondeterministic PDAs, the automaton can havedmwmore possible choices of
action for some or all situations. The choices magnay not be mutually exclusive.

* When they are not, the automaton will create brascbach following one of the correct
choices. If more than one of the branches createédglthe execution of the automaton
complete successfully multiple outputs will be proed. This kind of PDAs can handle

all context-free grammars.

Operation

* Pushdown automata differ from finite state machindsio ways:

* They can use the top of the stack to decide whaihsition to take.

» They can manipulate the stack as part of perforraitrgnsition.

» Pushdown automata choose a transition by indextagla by input signal, current state,
and the symbol at the top of the stack. This méaaisthose three parameters completely
determine the transition path that is chosen. &istiatte machines just look at the input
signal and the current state: they have no staalot& with. Pushdown automata add the

stack as a parameter for choice.

finite top
control | o
‘S_) .'"Ji
state
input tape
stack

a diagram of the pushdown automaton

» Pushdown automata can also manipulate the staglarasf performing a transition.
Finite state machines choose a new state, the wddollowing the transition. The
manipulation can be to push a particular symbadhéotop of the stack, or to pop off the
top of the stack. The automaton can alternativghpie the stack, and leave it as it is.
The choice of manipulation (or no manipulationjletermined by the transition table.

» Put together: Given an input signal, current stael, stack symbol, the automaton can
follow a transition to another state, and optiopatlanipulate (push or pop) the stack.

* In general, pushdown automata may have several wiatigns on a given input string,
some of which may be halting in accepting confitjores while others are not. Thus we
have a model which is technically known as a "néegheinistic pushdown automaton”
(NDPDA or NPDA).

Nondeterminism means that there may be more trstrope transition available to
follow, given an input signal, state, and stack Bgmif in every situation only one
transition is available as continuation of the catagion, then the result is a deterministic
pushdown automaton (DPDA), a strictly weaker devidaike finite-state machines,
there is no mechanical way to turn a NDPDA integunivalent DPDA.

If we allow a finite automaton access to two staok$ead of just one, we obtain a more
powerful device, equivalent in power to a Turingamae. A linear bounded automaton
is a device which is more powerful than a pushdawtomaton but less so than a Turing
machine.

Nondeterministic pushdown automata are equivatenbhtext-free grammars: for every
context-free grammar, there exists a pushdown aattumsuch that the language
generated by the grammar is identical with the lagg generated by the automaton,
which is easy to prove. The reverse is true, thcwagkler to prove: for every pushdown
automaton there exists a context-free grammar shattihe language generated by the

automaton is identical with the language generbietthe grammar.

A PDA is formally defined as a 7-tuple:

M= (Q' E.' T.' 5.' o, Z.' F)Where

o ()is afinite set of states

« Yis afinite set which is called the input ajphabet

o ['is afinite set which is called the stack ajphabet

v) is 2 finite subset qu X (E U {;}) [¥ Q % [the transition refation, where ™ denote the set of strings over [and denotes the empty string.
s € Qis the start state

o 7 € [isthe iniial stack symbol

o F C (s the set of accepting states

An element (p, a, ;L q, a') € (is atransition of [1t has the intended meaning that)], in state p € Q with @ € 3 1J {:} an the input and with 4 € [as topmost
stack symbol, may read (1, change the state to §, pap 4 , replacing it by pushing o € [™. The letter € (epailan) denates the empty string and the (E | {5})component of

the transition relation is used ta formalize that the PDA can either read a letter from the input, or proceed leaving the input untouched.

In many texts the transition relation is replaced by an (equivalent) formalization, where

+ § is the transition function, mapping Q X (}: U {;}) % ['into finite subsets on x ™

Here 5(;}, a, -1) containg all possible actions in state Pwith 4 on the stack, while reading @ on the input. One writes (q! a) £ 5(;}3 a, -1) for the function precisely when
(p, a, ;1, g, a') € () for the relation. Note that finte in this definition is essential

Computations

In order to farmalize the semantics of the pushdoim automaton a description of the current situation is introduced. Any 3-tuple ;

(P. w, j) - Q % Y 5 T is called an instantaneous description (ID) of [, which includes the current state, the part of the input JS_
1% — (@) W

tape that has not heen read, and the contents of the stack (topmast symbol written first). The transition relation § defines the step-relation ‘1“ O- 4 |

= of M oninstartaneous descriptions. For instruction (p, a, -'13 q, Q‘) € () there exists a step (p, az, ;1";) Far (q’ z, a'ﬁl,-), —E s

for every - ¢ 3% and every 7y € I Y

In general pushdown automata are nondeterministic meaning that in a given instantaneous description (p' W, Iﬁ)there may be several R
possible steps. Any of these steps can be chosen in & computation. With the above definition in each step always a single symbal (top of
the stack) is popped, replacing it with as many symbols as necessary. As a conseguence no step is defined when the stack is empty . 0 g “
kel
o] |
S

Camputations of the pushdown automaton are sequences of steps. The camputation starts in the initial state o with the initial stack symbal

7, onthe stack, and a string 20 on the input tape, thus with initial description (q{,, w, Z) There are two modes of accepting. The
pushdown automaton either accepts by final state, which means after reading its input the automaton reaches an accepting state (in £, or , |
it accepts by empty stack (£), which means after reading its input the automaton empties its stack. The first acceptance mode uses the a step of the pushdown sutometon &
internal memary (state), the second the extemal memory (stack)

Formally ane defines
1 L(M) = {w e Z*|(go,w.Z) by (f.c,y)win f € Fandry € "} inal stte)
T ¥ ¥ ;
2 N(M) = {w e X|(qo,w, Z) Fy (g,2,¢)vith g € Q} tempty stack)
Here I—’;! represents the reflexive and transitive closure of the step relation I—M meaning any number of consecutive steps (zero, one or more).

For each single pushdown autamaton these two languages need to have no relatian: they may be equal but usually this is not the case. A specification of the autamaton should
alsa include the intended mode of acceptance. Taken over all pushdown automata both aceeptance conditions define the same family of languages.

PDA Transitions:

Two types of PDA transitions:
First:
5(a, &, z) = {(pIy1), (p2y2),..., (PmMym)}

— Current state is q
— Current input symbol is a
— Symbol currently on top of the stack z
— Move to state pi from q
— Replace z withyi on the stack (leftmost symbol on top)
— Move the input head to the next input symbol

Second:

3(. & 2) = {(p1y1), (p2y2)...., (pmym)}
— Current state is q
— Current input symbol is not considered
— Symbol currently on top of the stack z
— Move to state pi from q
— Replace z withyi on the stack (leftmost symbol on top)
— No input symbol is read

Example 1: (balanced parentheses)

M=({qi}. {“(". “)"}. {L.#}. 6. q1. #. ©)
o
(1) o(qw. (. #)= {(q:. L)}
2 o8(q.). E)=0O illegal. string rejected
(3) 0(qs. (- L) = {(q:. LL)}
(4) o(q:.). L) = {(qu. &)}
=3 6(q. .) = {(qi. &)} if no characterread. & stack hits bottom
(&) 8{q:.. . L) =0 illegal, string rejected

Goal: (acceptance)
— Termminate in a non-null state
— Eead the entire input string

— Terminate with an emptwv stack

Informally. a string is accepted if there exists a computation thatuses up all the
input and leaves the stack empty.

Transition Diagram:

Example Computation:

.z L=
e#le (Lao) GLILL
.L &
Current Input Stack Transition
(0 #
§)] L= (1) - Could have applied rule (3}, but
¥ LL= (3} it would have doneno good
) L# 4
g =)
g - =)

M={{q.. a2}. {0. 1. c}. {R.B. G}.6.q1. R. ©)

(1)
(2)
(3)
(4)
(3)
(6)
(7
(8)

0
0
1.0.G) = {(q;.
.C
e
.C
5, 0
.8 R)={iq..

s

CR)=1iq.
.B)={(q;.

Ry = {(q..
.B) = {(qz.
. G) = {(q..
.B)={(q..

BR)} (®) é(qr. 1. R)= {(q:. GR);
BB)} (10) é(q:. 1. B)= {(q:. GB)}
BG)} (11) é(q;. 1. G) = {{q1. GG);
R)}
B)}
G}
)} (12) 6(g2. 1. G) = {{q:. 2);
)

[ax]

ax]

Example Computation:

(1) o(q;. 0. R} = {(q:. BR)} (9 o(q:. 1. R} = {(q:. GR)}
(2) 6(q:. 0. B) = {(q,. BB)} (10) &{g;.1.B)= {{q;. GB)}
(3) 8(2.0.G)={(@.BG) (1) 8.1, G)={(a;. GG)}
4) d(q;. c. R) = {{q2. R)}
(3) d(q;.c. B) = {{q2. B)}
(6) d(q;.c. G) = {(q2. G)}
(7) 6(q2. 0. B) = {(q2. 2)} (12) 6(q2. 1. G) = {(q2. e)}
(&) 8(q2. . R) = {(qa2. 2)}

State Input Stack FEule Applied Fules Applicable

Qi 01cl F. (1)

Qi 1cl0 BE (1) (10

qQi cl0 GBE. (107 (6}

Q2 10 GBE. (6} (12)

Qs 0 BE (12) (N

1 e R 0)

(£) -

]
P
(4]
(4]

Example Computation:

(1) 6(q;. 0. R} = {(q:. BR);} 9y 6iq:. 1. Ry = {{q:. GRI}
(2) 6(q;. 0. B) = {(q,. BB);} (10} &(q;. 1. B) = {{q:. GB);}
(3) 8(q;. 0. G) = {{q:. BG); (11} &(g:. 1. G) = {(q:. GG}
4 é(qy. c. R) = {(q:. B}
(3) 6(gqr.c. BY = {{gqz. B}}
(6) 8(g1. c. G) = {(q2. G)}
(7 6(q2. 0. B) = {(qz. &)} (12) 6(qz. 1. G) = {(qz. &)}
(8) &(qz.e. R) = {(q2.)}

State Input Stack Fule Applied

qi 1cl E

qi cl GE 9y

qz 1 GR (6)

Q2 £ R (12)

qz g g (&)

aaaaaa

M={{21.q:}.10.1;. {R.B.G}.0.q1.R.0)

0
(1)
(2
(3)
(4
(2)

Example Computation:

(1)
2)
(3)
)

(%)

6(q1. 0. R) = {(q:. BR)}
o(q1. 1. R) = {(q;. GR);
6(q1. 0. B) = {(q:. BB). (q2. 2)}
8(2:.0.G) = {(q:. BG)}
6(q1. 1. B) = {(q:. GB);

5':':1:: |:I: R:I = {['I: ER:I}
o(q;. 1, R) = {(q;, GR}}

6(q;, 0. B) = {(q;.

6(q;. 0, G) = {(q;, BG)}
5[':1:: 1: Bj: {[':li: GE:I}

(6)
(7)

BB). (3.8} (8)

(%)

(6)
(7)

)
(10)

(1m

(3) option =1
(3) option =1
(3Joption =2

State Input Stack Fale Applisd
q 000000 R

qQ 00000 EF. (13
qQ 0000 BEFR

q 000 BEBFE

Qs 0a BEFR.

Qs 0 BR (7
0 £ E (7
Qs E E (1m

[y [y
Ead

(0. 1. G) = {{91. GG). (qz. &)}

q:. 0. B) = {(qz.)}

6(q2. 1. G) = {{qz. &)}

6(q;. 2. R) = {(qx.2)}
6(q2. 2. R) = 1(q2.2)}

q.:: 1: G:I= {'I.':l GG:‘: [% E‘:I}
. 0. B) = {(qz. &)}

Rules Applicabls
(13, (%)

(3}, both options
(3}, both options
(3}, both options
(7}

(7

(1m

Example Computation:

(1)
(2)
(2)
(4)

(3)

6(q;, 0, R) = {(q;. BR}}
6(q;. 1. K= {(q;. GR}}

o(q;, 0, B)= {(q;. BB), (g, &)}

6(q;. 0. G) = {(q;. BG}}
5[';[:: 1: Ej: {'I.':l GB:I}

(6)
(7
(8)
()

8(q;, 1. G) = {(q;. GG, (g, £)}
6(gs, 0. B) = {{q. &)}
(0. 1. G)={(q. &)}
G(qy, & R) = {(q.. =)}

(1m 80, 8. R = {(q.. 8]}

Stats Input Stack Pule Applied

Q; 010010 kR

Q; 10010 BE (1 From (1) and (@)
Q; 0010 GBER (3

qQ; 010 BGBR (4

Qs 10 GBR (3) option =2

Qs 0 BE. (&)

q: = R (7

Q- £ £ (1m

Theorem :Let L be a CFL. Then there exists a PDA M such that L = Lg(M).

Proof: Assume without loss of generalitv that £ is notin L. The construction can be
modified to include ¢ later.

Let G=(V.T. P,5) beaCFG, and assume without loss of generalitv that G is in GNF.
Construct M ={Q. X, T, 8, q. z, @) where:

Q=1a}
=T
Ir=v
z=5

o:forall ain Zand Ain I, 6(q. a. A) contains (q. v} if A — ayis in P or rather:
o(q.a, A)={(q.7) | A—ayisinPandyisin[*} forallaim¥ and Ain T

For a given string xin ¥ , M will attempt to simulate a leftmost derivation of x with G.

Example 4 :

Construct pushdown automata for the following languages. Acceptance either by
empty stack or by final state.

(a) { a"b™a™ | m.,n e N }

(b){ufmw" |i,j,keN,i+ k=j}

© | a"0™ n<m<2n}

Answer:

The pda 1s depicted by the following diagram. Formally, it consists of the fol-
lowing components: state set Q@ = {1,2,3,4}, alphabet ¥ = {a,b}, stack al-
phabet I' = {Z, A}, initial state 1, final state 4, initial stack symbol Z, and in-
structions (1,a, X, 1, AX), (1A X.2, X), (2,5, X.2, X), (2, A, X,3,X) (3.a,4,3,X),
(3, A, 24,3, A), for all X € I'. Acceptance either by final state or by empty stack.

a; +A b a; A/ A

81 ,\K%/A@A;zm®

Alternatively, we bmld a cfg: S — aSA, S =T, T —=bT',T — A, A — a.

This translates into the single state pda with instructions (p,a, S.p. SA), (p. A, S.p, T).
(p.b, T,p, T), (p, A\, T,p, \), and (p,a, A, p, A). Initial stack symbol S, acceptance by
empty stack.

Determinism. The automata above are not deterministic. To accept determinis-
tically we have to realize strings without b’s (including \) are to be accepted too,
without recognizing (puessing) the middle of the string. However, strings without b
from the regular subset (aa)*. Likewise there is a ‘special’ subset b*.

AV

b Z/Z %

a; +4 b; A/A

b AJA @ T A;z;f@

@) b AJA

(b)

We mive three different pda accepting this language. All variants use the fact that
the language can be writen as { Vel | 4,7 € N L

a;+A b A/A b:4+-A c; AJA

8 Dz Wz @

a;+C' b.C /A c;D/A

8 X; Zin/ AC
N \ a; A/AB b C/CD
A A/ A C/A
brD xZafr DB /A &P

(€)

For each a we put nondetermimistically one or two symbols onto the stack. Each b
removes one symbol,

Parsing:

In computer science and linguistipgrsing, or, more formallysyntactic analysis is the
process of analyzing a text, made of a sequentakehs (for example, words), to
determine its grammatical structure with respec given (more or less) formal
grammar.

Parsing is also an earlier term for the diagrammoingentences of natural languages, and
is still used for the diagramming of inflected lalages, such as the Romance languages
or Latin.

Parsing is a common term used in psycholinguistizsn describing language
comprehension.

In this context, parsing refers to the way that harbeings, rather than computers,
analyze a sentence or phrase (in spoken languaggtplin terms of grammatical
constituents, identifying the parts of speech, agtit relations, etc.” This term is
especially common when discussing what linguistieschelp speakers to parse garden-

path sentences.

Types Of Parsing
Top Down Parsing:

Top-down parsing is a parsing strategy where aselboks at the highest level of the
parse tree and works down the parse tree by usentetvriting rules of a formal
grammar. LL parsers are a type of parser that aseg-down parsing strategy.
Top-down parsing is a strategy of analyzing unknaolata relationships by hypothesizing
general parse tree structures and then considetiether the known fundamental
structures are compatible with the hypothesisctuos in the analysis of both natural
languages and computer languages.

Top-down parsing can be viewed as an attempt tbl&fi-most derivations of an input-
stream by searching for parse-trees using a topraogansion of the given formal
grammar rules. Tokens are consumed from left tatripclusive choice is used to

accommodate ambiguity by expanding all alternatigiet-hand-sides of grammar rules.

* In top-down parsing, you start with the start syhdyal apply the productions until you
arrive at the desired string.
* As an example, let’s trace through the two appreadn this simple grammar that
recognizes strings consisting of any number of@lswed by at least one (and possibly
more) b’s:
S—>AB
A—>aA | e
B—>b|bB
Here is a top-down parse afab. We begin with the start symbol and at each stepard one of
the remaining nonterminals by replacing it with tlght side of one of its productions. We

repeat until only terminals remain. The top-dowrspgroduces a leftmost derivation of the

sentence.

S

AB S—>AB
aAB A —>aA
aaAB A —>aA
aaaAB A —>aA
aaaB A —>¢
aaab B—>b

Bottom Up Parsing

A bottom-up parse works in reverse. We begin withgentence of terminals and each step
applies a production in reverse, replacing a sirgsthat matches the right side with the
nonterminal on the left. We continue until we hauéstituted our way back to the start symbol.
If you read from the bottom to top, the bottom-w@pge prints out a rightmost derivation of the

sentence.

aaab
aaab (inseft

aaaAb Ae>

aaAb A —>aA
aAb A —>aA
Ab A —>aA
AB B—>b
S S—>AB

Ogden's lemma

In the theory of formal languages, Ogden's lemnaagd after William F. Ogden) provides an

extension of flexibility over the pumping lemma fmwntext-free languages.

Ogden's lemma states that if a language L is coifteg, then there exists some number p > 0
(where p may or may not be a pumping length) shahfor any string w of length at least p in L

and every way of "marking" p or more of the posison w, w can be written as
W = uxyzv
with strings u, X, y, z, and v, such that

1. xz has at least one marked position,

2. Xxyz has at most p marked positions, and

3. uxiyziv is in L for every i> 0.

Ogden's lemma can be used to show that certaind@eg are not context-free, in cases where

the pumping lemma for context-free languages isofftcient. An example is the language

{aibjckdI :i=0orj=k=1} Itis also useful to protke inherent ambiguity of some languages.

Proof:

Let b be the maximum number of symbols in the rlggnbd side of a rule. For any parse tree T
of string z, and z has at least p marked positidfessay a leaf in T is marked if its
corresponding position in z is marked. We say &rival node of T is marked if the subtrees

rooted at two or more of its children each contaimsarked leaf. We claim that if every (root-to-

leaf) path in T contains at most i marked intemades, T has at most bi marked leaves. Assume
that this claim is true (which will be proved shpity induction). To prove Ogden’s lemma, we
setp = B Then, the minimum marked internal nodes in a i\ | + 1. By pigeonhole
principle, there exists some variable appearifgast twice on that path. Then, by a similar way
of proving the original pumping lemma, we can shibat z can be written as uvwxy satisfying
Ogden’s lemma. We now go back to prove the claine dlaim is true for i = 0, since if every
path inT has at most 0 marked nodes, T has no mhad@es. Thus, there must be at most

b0 = 1 marked leaves (why?). Faxli, let q be the unique marked internal node whose
ancestors (if exist) are not marked. Then, the rerrobmarked leaves in T is equal to

the total number of marked leaves under the childfeg. Also, as g is a marked node,

in the subtree rooted at any child of g, every etk at most i — 1 marked nodes. By

induction, every subtree has at most marked leaves. As g has at most b children, T

thus has at most bi marked leaves.

C(Cocke)Y(Younger)K(Kasami) Algorithm:

+ The Cocke-Younger—Kasami (CYK) algorithm (altermely called CKY) is a
parsingalgorithm for context-free grammars. It emyplbottom-up parsing and dynamic
programming.

« The standard version of CYK operates only on caditee grammars given in Chomsky
normal form (CNF). However any context-free grammary be transformed to a CNF
grammar expressing the same language .

« The importance of the CYK algorithm stems fromhiigh efficiency in certain situations.

- The algorithm requires the context-free grammadrgeendered into Chomsky normal
form (CNF), because it tests for possibilities pbtshe current sequence in half. Any

context-free grammar that does not generate théyestmng can be represented in CNF

using onlyproduction rules of the forn A= a4 - BC

Algorithm:

let the input be a string 5 consisting of z characters: 3 ... 4.
let the grammar contain r nonterminal symbols & ... K.
This grammar contains the subzet E; which is the zet of start svmbols.
let Pz, n,r] be an array of booleans. Initialize all elements of P to false.
for each 1 = 1 to n
for each unit production R; -» a;
set P[2,1,7] = true
for each 1 = 2 to n -- Length of span
for each 7 = 1 to p-i+1 -- Start of apan
for each k¥ = 1 to i-1 -- Partition of span
for each production Ry -» B Eq
if P[7,k,B] and P[7+k,1-k,C] then set P[3,1,3] = true
if any of P[1,n,%] is true (% iz iterated over the set 3, vhere 3 are all the indices for E;) then
S 1z member of language
else
S iz not member of language

Example:

This is an example grammar;

S = NPVP
VP - VP PP
VP - V NP
VP = eats
PP - P NP
NP — Det N
NP = she
V= eats
P = wth
N = fish
N = fork
Det = a

Now the sentence she eats a fish with a fork is analyzed using the CYK algorithm. In the following table, in P[i, j, k], 115 the number of the column (starting at the left at 1), and
jis the number of the raw (starting at the battom at 1).

CYK table
S
4P
S
4P PP
S NP NP

NP Y, WP Det. N [P Det|N

sheleats |a (fish|with|a fork

Turing Machine:

A Turing machine is a device that manipulates sysbo a strip of tape according to a table of
rules. Despite its simplicity, a Turing machine ¢@nadapted to simulate the logic of any
computeralgorithm, and is particularly useful ippkining the functions of a CPU inside a

computer.

The "Turing" machine was described in 1936 by Alamingwho called it an "a-machine”

(automatic machine). The Turing machine is notridezl as practical computing technology, but

rather as a hypothetical device representing a atingpmachine. Turing machines help
computer scientists understand the limits of meahcomputation.

A Turing machine that is able to simulate any ofhering machine is called a universal Turing
machine (UTM, or simply a universal machine). A marathematically oriented definition with
a similar "universal" nature was introduced by AorChurch, whose work on lambda calculus
intertwined with Turing's in a formal theory of cpatation known as the Church—Turing thesis.
The thesis states that Turing machines indeed i&afita informal notion of effective method in
logic and mathematics, and provide a precise definof an algorithm or 'mechanical

procedure’.
A Turing machine consists of:

« A tapewhich is divided into cells, one next to the otHeach cell contains a symbol
from some finite alphabet. The alphabet contaiggezialblank symbol (here written as
'‘B") and one or more other symbols. The tape igraed to be arbitrarily extendable to
the left and to the right, i.e., the Turing machimealways supplied with as much tape as
it needs for its computation. Cells that have regrbwritten to before are assumed to be
filled with the blank symbol. In some models thpddas a left end marked with a
special symbol; the tape extends or is indefinietiensible to the right.

« A headthat can read and write symbols on the tape anck i tape left and right one
(and only one) cell at a time. In some models #@dhmoves and the tape is stationary.

- A state registerthat stores the state of the Turing machine, drfiitely many. There is
one speciadtart state with which the state register is initialized. Taestates, writes
Turing, replace the "state of mind" a person penfog computations would ordinarily
be in.

« Afinite table (occasionally called aaction table or transition function) of instructions
(usually quintuples [5-tuples] ;&—0i810k, but sometimes 4-tuples) that, given the
state(q) the machine is currently end thesymbol(g) it is reading on the tape (symbol
currently under the head) tells the machine tah@édellowing in sequence (for the 5-
tuple models):

- Either erase or write a symbol (replacingvith g:), and then
+ Move the head (which is described hyathd can have values: 'L’ for one step defiR’
for one step righor 'N' for staying in the same placahd then

« Assume the same omaw state as prescribed (go to state)q

. . . M = (Q r.‘ b.' E.‘ 5.‘ o, F} where
« Formally a Turing machine can be defined as follc

’ Q i a finite, non-empty et of states

o [Vis a finite, non-empty set of the tape alphabet’symbols

o b€ ['is the blank symbol (the anly symbol allowed to occur on the tape infinitely often at any step during the computation)
) g I \ {b} iz the set of input symhols

= Q is the imival state
o F C Q is the set of final or accepting states
o) Q\ FxT = Q v % {L, R} is a partial function called the transition function, whera L is left shift, R is right shif. (A relatively uncomman variant allows "na

shift", say N, as a third element of the latter sst)

Decision problems, optimization problems

Hamiltonian cycle in a graph G = (V, E): a cyclatthontains each of the vertices in V (exactly
once)

Traveling salesman problem (TSP):

Weighted graph G = (V, E, w: E ->Reals), V={1n}, E={(i,]) | i <]} (often the complete
graph Kn).Weight (or length) of a path or cycleumsof the weights of its edges.

Given G= (V, E, w) find a shortest Hamiltonian @g| if any exist.

A clique in a graph G = (V, E): a subset V'V such that for all u, vI V’, (u, v) [J E.

|[V’| is the size of the clique. A clique of sizeskcalled a k-clique.

Clique problems: Given G= (V, E), answer questions about the emcef cliques, find

maximumclique, enumerate all cliques.

Examples:

o AV

Ex: the graph a) shown at left has exactly 1 Hamién cycle, highlighted in b). The graph c)
has none. Thecomplete graph K4 has 3 Hamiltonialesyd) The complete graph Kn has (n-1)!
/ 2 Hamiltonian cycles

Ex: Graph a) has three maximum 3-cliques. The olidyies in graph c) are the vertices and the
edges, i.e. thel-cliques and the 2-cliques. Graphal4-clique, and every subset of its vertices
is a clique.

Decision problems:

* Given G, does G have a Hamiltonian cycle? Givean@ k, does G have a k-clique?

Given G = (V, E, w) and a real number B, does Gehmtdamiltonian cycle of lengthB?

Finding the answer to a decision problem is ofterdhwhereas verifying a positive answer is
often easy: weare shown an object and merely lmavertfy that it meets the specifications (e.g.
trace the cycle shown in b).Decision problems atenally formalized in terms of machines
accepting languages, as follows: probleminstanees ¢raphs) are coded as strings, and the
code words of all instances that have the answ& (¥g.have a Hamiltonian cycle) form the
language to be accepted.

Optimization problems:

» Given G, construct a maximum clique.

* TSP: Given Kn = (V, E, w) find a Hamiltonian cgabf minimal total length.

Both problems, of finding the answer and verifyipgre usually hard. If | claim to show you a
maximumclique, and it contains k vertices, how da yerify that | haven’'t missed a bigger
one? Do you have toenumerate all the subsets of/&rtices to be sure that there is no (k+1)-
cligue? Nevertheless, verifying isusually easiantfinding a solution, because the claimed
solution provides a bound that eliminates manystibngh candidates.

Enumeration problems:

 Given G, construct all Hamiltonian cycles, ordifues, or all maximum cliques.

Enumeration problems are solved by exhaustive baaohiniques such as backtrack. They are
time consumingbut often conceptually simple, exegptn the objects must be enumerated in a
prescribed order. Enumerationis the techniquestfrissort for solving decision problems or
optimization problems that admit no efficientalgloms, or for which no efficient algorithm is
known. It is an expensive technique, since the rermobjects to be examined often grows

exponentially with the length of their description.

Theorem

The class P of problems solvable in polynomial time

Practically all standard combinatorial algorithnmegented in a course on Algorithms and Data
Structures runin polynomial time. They are seqaatigorithms that terminate after a number
of computational steps that isbounded by some pofyal p(n) in the size n of the input data, as
measured by the number of data items thatdefinpritidem. A computational step is any
operation that takes constant time, i.e. time iedejent of n.

In practical algorithm analysis there is a fair amioof leeway in the definition of

“computational step” and“data item”. For example jeteger may be considered a single data
item, regardless of its magnitude, and anyarithergtieration on integers as a single step. This is
reasonable when we know a priori that all numbersged are bounded by some integer
“maxint”, and is unreasonable for computations tfe&terate numbersof unbounded magnitude.
In complexity theory based on Turing machines thindion is clear: a computational step is a
transitionexecuted, a data item is a charactdre@ttphabet, read or written on a square of tape.
The alphabet is usuallychosen to be {0, 1} andsike of data is measured in bits. When
studying the class P of problems solvable inpolyiabtrme, we only consider deterministic

TMs that halt on all inputs.

Let tM: A* -> Integers be the number of steps exediby M on input X1 A*.

This chapter deals with TMs whose running timedarmed by some polynomial in the length of
the input.

TM M is or runs in polynomial time iff] polynomial p suchix (] A*: tM(x) <p(|x])
P={LUA*| 0JTM M, [J polynomial p such that L = L(M) andx (1 A*: tM (x) <p([x])}

Notice that we do not specify the precise versiohM to be used, in particular the number of
tapes of M isleft open. This may be surprisingigwof the fact that a multi-tape TM is much
faster than a single-tape TM.

A detailed analysis shows that “much faster” isypolmially bounded: a single-tape TM S can
simulate anymulti-tape TM M with at most a polynahslow-down: for any multi-tape TM M
there is a single-tape TM Sand a polynomial p shahfor all x[1 A*, tS (x)< p(tM (x)).

This simulation property, and the fact thata potyra of a polynomial is again a polynomial,
makes the definition of the class P extremely robus

The question arises whether the generous accouhibggnores polynomial speed-ups or slow-
downs is ofpractical relevance. After all, these much greater differences than ignoring
constant factors as one doesroutinely in asympgtolfice answer is a definite YES, based on
several considerations:

1) Practical computing uses random access memorgeaguential storage such as tapes. Thus,
the issue ofhow many tapes are used does not egen Bhe theory is formulated in terms of
TMs, rather than morerealistic models of computasoch as conventional programming
languages, for the sake of mathematicalprecisionl ifturns out that the slowness of tape
manipulation gets absorbed, in comparison with &RAodel, by the polynomial
transformations we ignore so generously.

2) Most practical algorithms are of low degree,bsas O(n), O(nlogn), O(n2), or O(n3).
Low-degreepolynomials grow slowly enough that there€sponding algorithms are
computationally feasible for manyvalues of n thetw in practice. E.g. for n = 1000, n3 = 109
is a number of moderate size when compared topsoceock rates of 1 GHz and memories of
1 GByte. Polynomial growth rates are exceedingbyvsbmpared to exponential growth
(consider 21000).

3) This complexity theory, like any theory at &l,a model that mirrors some aspects of reality
well, and otherspoorly. It is the responsibilitytbé programmer or algorithm designer to
determine in each specific case,whether or notgoritm “in P” is practical or not.

Examples of problems (perhaps?) in P:

1) Every context-free language is in P. In Ch5 @w an O(n3) parsing algorithm that solves

the wordproblem for CFLs, where n is the lengthhefinput string.

2) The complexity of problems that involve integdepends on the representation. Fortunately,
with the usualradix representation, the choiceadix r > 1 is immaterial (why?). But if we
choose an exotic notation,everything might chafge example, if integers were given as a list
of their prime factors, many arithmeticproblems Vaoobecome easier. Paradoxically, if integers
were given in the unwieldy unary notation, somegkimight also become “easier” according to
the measure of this chapter. This is because tiggHeof theunary representation < k >1 of k is
exponential in the length of the radix 2 representation < k > r. Given anexponentialhgker
input, a polynomial-time TM is allowed to use amperentially longer computation timeas
compared to the “same” problem given in the forma @bncise input.

The following example illustrates the fact that doenplexity of arithmetic problems depends on
the numberrepresentation chosen. The assumeduttiffiaf factoring an integer lies at the core
of modern cryptography.Factoring algorithms knoataty require, in the worst case, time
exponential in the length, i.e. number of bitslad tadix representation of the number to be
factored. But there is no proof that factoring B-Nard -according to today’s knowledge, there
might exist polynomial-time factoring algorithmahi$ possibilitygained plausibility when it was
proven that primality, i.e. the problem of determ@gwhether a natural number(represented in
radix notation) is prime or composite.

Theorem :

The class NP of problems solvable in non-deterministic polynomial time

“NP” stands for “non-deterministic polynomial”.i# instructive to introduce two different but
equivalentdefinitions of NP, because each definitighlights a different key aspect of NP. The
original definitionexplicitly introduces non-deteimistic TMs:

NP ={L [A*| 0 NTM N, [J polynomial p such that L = L(N) andx [J A*: tN (x) <p(|x])

}

Notice that this differs from the definition of Rlg in the single letter “N” in the phrase*

NTM N ..”,indicating that we mean non-deterministiering machines. We had seen that
deterministic and nondeterministicTMs are equatiwerful in the presence of unbounded
resources of time and memory. But thereis a huiference in terms of the time they take for
certain computations. A NTM pursues simultaneoaslymber of computation paths that can

grow exponentially with the length of the computatBecause of many computation paths

pursued simultaneously we must redefine the fundtib A* -> Integersthat measures the
number of steps executed. An inputXA* may be accepted along a short path as well as
along a long path, and some other paths may nuoirtate. Therefore we define tN(x) as the
minimumnumber of steps executed along any acceptiigfor x.

Whereas the original definition of NP in terms ohrdeterministic TMs has the intuitive
interpretation viaparallel computation, an equinakgefinition based on deterministic TMs is
perhaps technically simpler tohandle. The fact these two definitions are equivalent provides
two different ways of looking at NP.The motivatifmr this second definition of NP comes from
the observation that it may be difficult to decidether a string meeting certain specifications
exists; but that it is often easier to decide whethr not a givenstring meets the specifications. |
other words, finding a solution, or merely detennmgwhether a solution

exists, is harder than checking a proposed solstmrrectness. The fact that this intuitive
argument leads to arigorous definition of NP igsising and useful!

In the following definition, the language L des@&doa problem class, e.g. all graphs with a
desired property ;the string w describes a probietance, e.g. a specific graph G; the string ¢ =
c(w), called a “certificate forw” or a witness, ptathe role of a key that “unlocks w”: the pair w,
c is easier to check than w alone!

Example: for the problems of Hamiltonian cycles ahgues, w = <G> is the representationof
graph G, and the certificate c is the represemtaifa cycle or a clique, respectively. Given c, it
is easy toverify that c represents a cycle orquelin G.

a verifier for L[] A* is a deterministic TM V with the property thatt.{ w | [1 c(w) [A* such
that V accepts < w, c¢> }The string ¢ = c(w) is edlla certificate for w's membership in L. <w,
c> denotes a representation of the pair(w, c)s@Bgle string, e.g. w#c, where a reserved symbol
separates w from its certificate. The idea behisdoncept of certificate is that it is easy to
verify w [J L if you are given w’s certificate c. If not, yawuldhave to try all strings in the

hope of finding the right vertificate, a procesattmay not terminate. We formalizethe phrase

“easy to verify” by requiring that a verifier V (sr runs in) polynomial-time.

Polynomial time reducibility, NP-hard, NP-complete
Df: A function f: A* -> A* is polynomial-time comptable iff there is a polynomial p and a
DTM M which,when started with w on its tape, hattsh f(w) on its tape, and tM(w3 p([w]).

L is polynomial-timereducible to L', denoted by I<p L’ iffthere is polynomial-time

computable f: A* -> A* such thatw [A*, w [J L ifff(w) [J L.

In other words, the question wL?can be answered by deciding f(w)L'. Thus, the

complexity of decidingmembership in L is at most tomplexity of evaluating f plus the
complexity of deciding membership in L.

Since we generously ignore polynomial times, thsfifies the notation kp L’ .

A remarkable fact makes the theory of NP intergséind rich. With respect to the class NP and
the notion ofpolynomial-time reducibility, thereedthardest problems” in the sense that all
decision problems in NP arereducible to any ont@de“hardest problems”.

L’ is NP-hardiff (1L [1 NP, L<p L’

L’ is NP-completeiff L' [1 NP and L’ is NP-hard

Theorem :

Satisfiability of Boolean expressions (SAT) is NP-complete

SAT = satisfiability of Boolean expressions: givamarbitrary Boolean expression E over
variablesx1, x2, .., xd, is there an assignmemtuth values to x1, x2, ..that makes E true?

It does not matter what Boolean operators occuryentionally one considers And, Or (], Not
-.SAT is the prototypical “hard problem”. l.e. theblem that is generally proven to be NP-
complete “fromscratch”, whereafter all other prabgeto be proven NP-complete are reduced to
SAT. The theory of NPcompletenessbegan with thetlkegrem (Cook 1971): SAT is NP-
complete.Given this central role of SAT it is udatudevelop an intuitive understanding of the
nature of the problem,including details of measw@enand “easy” versions of SAT.

1) It does not matter what Boolean operators oa@anyentionally one considers And Or [],

Not —. Specialforms, eg CNF

2) The length n of E can be measured by the nuwibeharacters of E. It is more convenient,
however, to firsteliminate “Not-chains” =—- ..usitlge identity - = x = X, and to measure the
length n of E by thenumber n of occurences of e (d denotes the number of distinct
variables x1, x2, .. xd in E,€n). It isconvenient to avoid mentioning the unapgrator -
explicitly by introducing, for each variable x, iegation- x as a dependent variable. A variable
and its negation are called literals. Thus, anesgion E with d

variables has 2d distinct literals that may ocouE i

3) Any Boolean expression E can be evaluated ealitime. Given truth values for x1, x2, ..xd,
the noccurrences of literals are the leaves oharpitree with n -1 internal nodes, each of which
represents a binaryBoolean operator. The bottormvajpuation of this tree requires n-1
operations.

4) Satisfiability of expressions over a constannhbar d of distinct variables can be decided in
linear time. Bytrying all 2d assignments of trutlues to the variables, SAT can be decided in
time O(2d n), a bound that islinear in n and exguial in d. If we consider d constant, 2d is
also a constant - hence this version of thesabisif\aproblem can be solved in linear time! This
argument shows that, if SAT turns out to be adiftproblem, this is due to an unbounded
growth of the number of distinct variables. Indeiéd, growsproportionately to n, the argument
above yields an exponential upper bound of O(2n).

5) In order to express SAT as a language, chosséable alphabet A and a coding scheme that
assigns to anyexpression E a word code(&#*, and define: SAT = { code(E) | E is a satisfab
Boolean expression }

Theorem:

3-CNF SAT is NP-complete

Pf idea: reduce SAT to 3-CNF SAT, SAPp 3-CNF SAT. To any Boolean expression E we
assign inpolynomial time a 3-CNF expression F thaquivalent in the weak sense that either
both E and F aresatisfiable, or neither is. Natie E and F need not be equivalent as Boolean
expressions, i.e. they need notrepresent the samgédn! They merely behave the same w.r.t.
satisfiability.Given E, we construct F in 4 stefisstrated using the example E = = (aix(y [
z))

1) Use de Morgan’s law to push negations to thedeaf the expression tree:
El=xU-(yldz)=x(~yl=z)

2) Assign a new Boolean variable to each interodenof the expression tree, i.e. to each
occurrence of anoperator, and use the Boolean topéeguivalence’] to state the fact that this
variable must be the resultof the correspondingaime: ull (~yll=z),wllx[Ju

3) Construct an expression E2 that states thabthteof the expression tree must be true, traces
the evaluationof the entire tree, node by node,cambines all these assertions using ANDs:
E2=wl(wO(xOu))O(ud(~yl=z)).

E2 and E are equivalent in the weak sense of sameitus satisfiability. If E is satisfiable, then
E2 is also, bysimply assigning to the new variablesd w the result of the corresponding
operation. Conversely, if E2 issatisfiable, theis Blso, using the same values of the original
variables X, y, z as appear in E2.Notice that H& njunctive form at the outermost level, but
its subexpressions are not, so we need a lastbramsfion step.

4) Recall the Boolean identity for implicationi ab = = al! b to derive the identities:
all(bc)=(ald=b)(allac)l(~allblc)
all(bdc)=(-alb)(-aldc)(ald=-bl-c)

Using these identities on the subexpressions, E2tgmsformed into F in 3-CNF:
F=wi(w=ax)O(wlO=u)d(-wOxOu)d(~uldx)d(~udz)O(udylz)
Each of the four transformation steps can be dotieear time and lengthens the expression by
at most aconstant factor. Thus, the reductionBdalean expression E in general form to one, F,
in 3-CNF can be donein polynomial time.

Notice the critical role of the integer '3'in 3-CNWe need to express the result of a binary
operator, such asw x [u, which naturally involves three literals. Thitgs no surprise that the
technigue used in the proofabove fails to workX&ZNF. Indeed, 2-CNF is in P .

In analogy to CNF we define the disjunctive norfioain DNF as an OR of terms, each of which
is anAND of literals: E=T11 T2 T3 [J ... where Ti= (L1 L2 [J L3] ..)

Theorem :

CLIQUE is NP-complete

Proof: Show that 3-CNEp CLIQUE. Given a 3-CNF expression F, constructapl G = (V, E)
and an integerk such that F is satisfiableiff G &&sclique.

Let F = (z110) 21211 z13) [(22111 22211 z23) 1 ... [1 (zm1[1 zm2[] zm3), where each zij is

a literal.To each occurrence of a literal we assigrertex, i.e. V ={(1,1), (1,2), (1,3), ... , {m

1), (m, 2), (m, 3) }

We introduce an edge ((i, j) (p, q)) iftip (the two literals are in different clauses)

andz # -zyy(the 2 literals do not clash, i.e. both can be ntageunder the same assignment).
Finally, let k, the desired clique size, be = ng thumber of clauses.

With this construction of G we observe that F isséiable via an assignment A

iff 1) each clause contains a literal that is tnneler A, say z1, j1, z2, j2, ..., zm, jm

iff 2) there are literals z1, |1, z2, j2, ..., zm no 2 of which are negations of each other

iff 3) there are vertices (1, j1), (2, j2), ..m,(jm) that are pairwise connected by an edge
iff 4) G has a k-clique.

Some more Examples:

Let. L be the set of all strings
a™ba™b...a"b € &* = {a,b}"

where ¢,n4,...,n; > 0 are positive integers such that n; # j for some j € {1,...,t}h
(As usual, a™ denotes the strings consisting of n; copies of the letter “a”.) In this
problem you will prove that L is a context free language. You can break your proof
into the following subproblems:

e First prove that the language L' = {¢"d™e:n + 1L # m} over the alphabet
{c,d, e} is context free giving a context free grammar that generates L.

Solution: The language L' is generated by the following grammar:

S — Te|lUe
T — cTd|cTe
U — cUdUd|dd

where T generates the set of all strings ¢*d™ with m < n and U generates the
set of all strings c*d™ with m > n + 2.

e Then consider ¢, d, e as variable symbols and extend the grammar [rom the [irst
part with rules for ¢,d,e in such a way that the new grammar generates the

language L.

Solution: We add rules to the grammar in such a way that symbols ¢, d, e are
replaced by the languages corresponding to regular expressions a*b, a, b(a*b)*.
For clarity, we remane symbols ¢, d, e with the corresponding uppercase letters
C', D, E. The resulting grammar is:

TE\UE
CTDI|CT|e
CUD|UD|DD
aC'lb

a

b EX

aX|b

“ O QINY
A A A A

The language generated by the grammar is the set of all strings obtained by
concatenating n strings of the form a*b (corresponding to the C' variable symbols), a
string a™b where m is an integer different. from n+1 (corresponding to the D symbols
and the first b in the string generated by E'), and finally any number of strings of the
form a*b.

G = {I,N,8)
T = {that, this, a, the, man, book, flight, meal, include, read, does}

N ={S, NP, NOM, VP, Det, Noun, Verb, Aux}

I
€3]

Sf
R =

—~—

S — NP VP Det — that | this | a | the

S — Aux NP VP Noun — book | flight | meal | man
S— VP Verb — book | include | read

NP — Det NOM Aux — does

NOM — Noun

NOM — Noun NOM

VP — Verb

VP — Verb NP

Application of grammar rewrite rules

S — NP VP Det — that | this | a | the

S — Aux NP VP Noun — book | flight | meal | man
S — VP Verb — book | include | read

NP — Det NOM Aux — does

NOM — Noun

NOM — Noun NOM

VP — Verb

VP — Verb NP

S — NP VP

— Det NOM VP

The NOM VP

The Noun VP

The man VP

The man Verb NP

The man read NP

The man read Det NOM
The man read this NOM
The man read this Noun
The man read this book

l

e

Church Turing Thesis:
In computability theory, the Church—Turing thesitss¢ known as the Turing-Church thesis, the
Church—Turing conjecture, Church's thesis, Chumabrgecture, and Turing's thesis) is a
combined hypothesis ("thesis") about the natufeinétions whose values are effectively
calculable; or, in more modern terms, functions séhwalues are algorithmically computable. In
simple terms, the Church—Turing thesis statesalianction is algorithmically computable if
and only if it is computable by a Turing machine.
Several attempts were made in the first half of20 Century to formalize the notion of
computability:

« American mathematician Alonzo Church created a otkfor defining functions called

the\-calculus,

- British mathematician Alan Turing created a thaoedtmodel for a machine, now called
a universal Turing machine, that could carry ol¢wations from inputs,
« Church, along with mathematician Stephen Kleenelagidian J.B. Rosser created a
formal definition of a class of functions whoseues could be calculated by recursion.
All three computational processes (recursiontiealculus, and the Turing machine) were
shown to be equivalent—all three approaches défi@same class of functions. This has led
mathematicians and computer scientists to beliexethe concept of computability is accurately
characterized by these three equivalent procelsgeamnally the Church—Turing thesis states
that if some method (algorithm) exists to carry awaflculation, then the same calculation can
also be carried out by a Turing machine (as wellyaa recursively definable function, and by a
A-function).

The thesis can be stated as follows:

- Every effectively calculable function is a compué&atunction.

Turing stated it this way:

- "It was stated ... that 'a function is effectiveglculable if its values can be found by
some purely mechanical process.' We may takeitarally, understanding that by a
purely mechanical process one which could be @hoig by a machine. The
development ... leads to ... an identification @hputabilityt with effective

calculability.”

