ARTIFICIAL INTELLIGENCE

Digital Notes By

BIGHNARAJ NAIK

Assistant Professor
Department of Master in Computer Application
VSSUT, Burla

Syllabus

5" SEMESTER MCA

MCA-308 ARTIFICIAL INTELLIGENCE (3-1-0)Cr.-4

Module 1 (10 hrs.)

Introduction to Artificial Intelligence: The Fountilans of Artificial Intelligence, The History of
Artificial Intelligence, and the State of the Athtelligent Agents: Introduction, How Agents
should Act, Structure of Intelligent Agents, Enviroents. Solving Problems by Searching:
problem-solving Agents, Formulating problems, Exnpoblems, and searching for Solutions,
Search Strategies, Avoiding Repeated States, ambt@mnt Satisfaction Search. Informed
Search Methods: Best-First Search, Heuristic FanstiMemory Bounded Search, and Iterative
Improvement Algorithms.

Module 11 (10 hrs.)

Agents That Reason Logically; A Knowledge-Based ®tgdhe Wumpus World Environment,
Representation, Reasoning & Logic prepositionalitodA very simple Logic, An agent for the
Wumpus World.

First-Order Logic; Syntax and Semantics, Extensams National, Variations, using First Order
Logic, Logical Agents for the Wumpus World, A SiragReflex Agent, Representing Charge in
the World, Deducing Hidden Properties of the WoRdeferences Among Actions, Toward A
Goal-Based Agent.

Building a Knowledge Base; Properties of Good arabl BKnowledge Bases, Knowledge
Engineering. The Electronic Circuits Domain, Geh€&matology, The Grocery Shopping World.
Inference in First-Order Logic : Inference Rulewvdlving Quantifiers, An Example Proof.
Generalized Modus Ponens, Forward and Backwardin@iga& Completeness, Resolution: A
complete Inference Procedure, Completeness of Resol

Module 111 (10 hrs.)

Planning A Simple Planning Agent Form Problem Suajvio Planning. Planning in Situation
Calculus. Basic Representations for Planning. Aif#laDrder planning Example, A partial Order
planning algorithm, Planning With partially Instetéd Operators, Knowledge Engineering for
Planning.

Making Simple Decision: Combining Beliefs and desiunder uncertainty. The Basis of Utility
Theory, Utility Functions. Multi attribute utilitfrunctions, Decision Networks. The Value of
Information. Decision — Theoretic Expert Systems.

Learning in Neural and Belief Networks’ How the BraVorks, Neural Networks, perceptions,
Multi-layered Feed Forward Networks ApplicationscBgropagation algorithm Applications of
Neural Networks.

Module IV (10 hrs.)

Knowledge in Learning: Knowledge in Learning, Exg#ion-based Learning, Learning Using
Relevance Information, Inductive Logic Programmingdgents that Communicate:
Communication as action, Types of CommunicatingrAgeA Formal Grammar for A subset of
English Syntactic Analysis (Parsing), Definite GlauGrammar (DCG), Augmenting A
Grammar. Semantic Interpretation. Ambiguity andabibiguation. A Communicating Agent.
Practical Natural Language processing Practicaliegins. Efficient Parsing Scaling up the
lexicon. Scaling up the Grammar Ambiguity. Discautinderstanding.

Reference Books:

1. Elaine Rich, Kevin Knight, & Shivashankar B Nartificial Intelligence, McGraw Hill, 3rd
ed.,2009
2. Introduction to Artificial Intelligence & ExpeBystems, Dan W Patterson, PHI.,2010

MODULE WISE DESCRIPTIONS OF ALL THE CONCEPTS

Module 1:

What is Atrtificial Intelligence?

Artificial Intelligence (Al) is a branch o&cience which deals with helping machines finding
solutions to complex problems in a more humandgshion. This generally involves borrowing
characteristics from human intelligence, and apglythem as algorithms in a computer friendly
way. A more or less flexible or efficient approazdn be taken depending on the requirements
established, which influences how artificial theelhgent behaviour appears. Al is generally
associated witlComputer Science, but it has many important links with other fieldsch as
Maths, Psychology, Cognition, Biology and Philosophy, among many others. Our ability to
combine knowledge from all these fields will ultitely benefit our progress in the quest of

creating an intelligent artificial being.

Al currently encompasses a huge variety of sulidiefrom general-purpose areas such as

perception and logical reasoning, to specific tagksh as playing chess, proving mathematical

theorems, writing poetry, and diagnosing diseasafen, scientists in other fields move
gradually into artificial intelligence, where thégd the tools and vocabulary to systematize and
automate the intellectual tasks on which they hbgen working all their lives. Similarly,
workers in Al can choose to apply their methodany area of human intellectual endeavour. In

this sense, it is truly a universal field.

HISTORY OF Al

The origin of artificial intelligence lies in theadiest days of machine computations. During th40%9
and 1950s, Al begins to grow with the emergenab@imodern computer. Among the first researchers to
attempt to build intelligent programs were NewelldaSimon. Their first well known program, logic
theorist, was a program that proved statementgyubim accepted rules of logic and a problem solving
program of their own design. By the late fiftiegspgrams existed that could do a passable job of
translating technical documents and it was seasnbsa matter of extra databases and more computing
power to apply the techniques to less formal, naonbiguous texts. Most problem solving work revolved

around the work of Newell, Shaw and Simon, on tbeegal problem solver (GPS). Unfortunately the

GPS did not fulfill its promise and did not becaudesome simple lack of computing capacity. In the
1970’s the most important concept of Al was devetbgnown as Expert System which exhibits as a set
rules the knowledge of an expert. The applicati@a af expert system is very large. The 1980’s thew
development of neural networks as a method leamwagnples.
Prof. Peter Jackson (University of Edinburgh) dfaexs the history of Al into three periods as:

1. Classical

2. Romantic

3. Modern
1. Classical Period:
It was started from 1950. In 1956, the concept diffigial Intelligence came into existance. Duritigs
period, the main research work carried out inclugkame plying, theorem proving and concept of state
space approach for solving a problem.
2. Romantic Period:
It was started from the mid 1960 and continuesl uhé mid 1970. During this period people were
interested in making machine understand, that igllys mean the understanding of natural language.
During this period the knowledge representatiohnégue “semantic net” was developed.
3. Modern Period:
It was started from 1970 and continues to the pteday. This period was developed to solve more

complex problems. This period includes the researcihoth theories and practical aspects of Aréfici

Intelligence. This period includes the birth of cepts like Expert system, Artificial Neurons, Patte

Recognition etc. The research of the various ad@reoncepts of Pattern Recognition and Neural

Network are still going on.

COMPONENTS OF Al

There are three types of components in Al

1) Hardware Components of Al
a) Pattern Matching
b) Logic Representation
¢) Symbolic Processing
d) Numeric Processing
e) Problem Solving
f) Heuristic Search
g) Natural Language processing
h) Knowledge Representation
i) Expert System
i) Neural Network

k) Learning

[) Planning

m) Semantic Network

Software Components

a) Machine Language

b) Assembly language

c) High level Language

d) LISP Language

e) Fourth generation Language

f) Object Oriented Language

g) Distributed Language

h) Natural Language

i) Particular Problem Solving Language
3) Architectural Components

a) Uniprocessor

b) Multiprocessor

c) Special Purpose Processor

d) Array Processor

e) Vector Processor

f) Parallel Processor

g) Distributed Processor

10Definition of Artificial intelligence

1. Al is the study of how to make computers do thimgsch at the moment people do

better. This is ephemeral as it refers to the owrstate of computer science and it
excludes a major area ; problems that cannot beedolell either by computers or by
people at the moment.

2. Al is a field of study that encompasses computalidechniques for performing tasks
that apparently require intelligence when perforragdhumans.

3. Al is the branch of computer science that is comegwith the automation of intelligent
behaviour. A | is based upon the principles of cotap science namely data structures
used in knowledge representation, the algorithnesleé to apply that knowledge and the
languages and programming techniques used inithgiementation.

Al is the field of study that seeks to explain @amulate intelligent behaviour in terms of
computational processes.

Al is about generating representations and proesdinat automatically or autonomously
solve problems heretofore solved by humans.

A | is the part of computer science concerned vd#signing intelligent computer
systems, that is, computer systems that exhibitcligracteristics we associate with
intelligence in human behaviour such as understanidinguage, learning, reasoning and
solving problems.

A | is the study of mental faculties through the @ computational models.

A lis the study of the computations that makeoggible to perceive, reason, and act.

A | is the exciting new effort to make computerskhmachines with minds, in the full

and literal sense.

. Al is concerned with developing computer systemat tban store knowledge and

effectively use the knowledge to help solve proldesnd accomplish tasks. This brief
statement sounds a lot like one of the commonlepied goals in the education of
humans. We want students to learn (gain knowledgd)to learn to use this knowledge
to help solve problems and accomplish tasks.

WEAK AND STRONG Al

There are two conceptual thoughts about Al nantedyWeak Al and Strong Al. The strong Al is very
much promising about the fact that the machindriwst capable of solve a complex problem like an
intelligent man. They claim that a computer is moatre efficient to solve the problems than soméhef
human experts. According to strong Al, the compigerot merely a tool in the study of mind, ratties
appropriately programmed computer is really a mialong Al is the supposition that some forms of
artificial intelligence can truly reason and sopm@blems. The term strong Al was originally coired
John Searle.

In contrast, the weak Al is not so enthusiasticualibe outcomes of Al and it simply says that some
thinking like features can be added to computernaie them more useful tools. It says that computer
to make them more useful tools. It says that coarputannot be made intelligent equal to human being
unless constructed significantly differently. Thelgim that computers may be similar to human egpert
but not equal in any cases. Generally weak Al seietthe use of software to study or accomplisitifipe
problem solving that do not encompass the full eafjhuman cognitive abilities. An example of weak
Al would be a chess program. Weak Al programs chtmeocalled “intelligent” because they cannot
really think.

TASK DOMAIN OF Al

Areas of Artificial Intelligence

- Perception

* Machine Vision: It is easy to interface a TV camera to a computel get an
image into memory; the problem igderstandingwhat the image represents.
Vision takeslots of computation; in humans, roughly 10% of all cader
consumed are burned in vision computation.
Speech Understanding:Speech understanding is available now. Some systems
must be trained for the individual user and requeaises between words.
Understanding continuous speech with a larger wdeapis harder.

» Touch(tactile or haptic) Sensation:Important for robot assembly tasks.

- Robotics Although industrial robots have been expensiveprdiardware can be cheap: Radio

Shack has sold a working robot arm and hand for. ke limiting factor in application of

robotics is not the cost of the robot hardwardfit$®hat is needed is perception and intelligence
to tell the robot what to do; “blind" robots diraited to very well-structured tasks (like spray
painting car bodies).

- Planning Planning attempts to order actions to achieve gdédlnning applications include
logistics, manufacturing scheduling, planning mawtiring steps to construct a desired product.
There are huge amounts of money to be saved thioettgr planning.

- Expert SystemsExpert Systems attempt to capture the knowledgelafman expert and make
it available through a computer program. There hHaeen many successful and economically
valuable applications of expert systems. Expertesys provide the following benefits

* Reducing skill level needed to operate complexads.

» Diagnostic advice for device repair.

* Interpretation of complex data.

» "Cloning" of scarce expertise.

» Capturing knowledge of expert who is about tareet

» Combining knowledge of multiple experts.

- Theorem Proving Proving mathematical theorems might seem to be Ignainacademic interest.
However, many practical problems can be cast imgesf theorems. A general theorem prover can
therefore be widely applicable.

Examples:

« Automatic construction of compiler code generafoym a description of a CPU's instruction set.
- J Moore and colleagues proved correctness of dairfilg-point division algorithm on AMD CPU
chip.

- Symbolic Mathematics Symbolic mathematics refers to manipulationfafmulas, rather than
arithmetic on numeric values.
« Algebra

- Differential and Integral Calculus

Symbolic manipulation is often used in conjunctiatith ordinary scientific computation as a
generator of programs used to actually do the &atioms. Symbolic manipulation programs are an

important component of scientific and engineeriragkstations.

- Game PlayingGames are good vehicles for research because tbayell formalized, small, and
self-contained. They are therefore easily prograchn@ames can be good models of competitive
situations, so principles discovered in game-plgyprograms may be applicable to practical
problems.

Al Technique

Intelligence requires knowledge but knowledge pssse less desirable properties such as
- It is voluminous

- it is difficult to characterise accurately

- it is constantly changing

- it differs from data by being organised in a wiagt corresponds to its application

An Al technique is a method that exploits knowledg is represented so that

- The knowledge captures generalisations; situatitvat share properties, are grouped together,
rather than being allowed separate representation.

- It can be understood by people who must providalihough for many programs the bulk of the
data may come automatically, such as from readimgmany Al domains people must supply the
knowledge to programs in a form the people undedstand in a form that is acceptable to the
program.

- It can be easily modified to correct errors agitiect changes in real conditions.

- It can be widely used even if it is incompletdraccurate.

- It can be used to help overcome its own sheék bylhelping to narrow the range of possibilities

that must be usually considered.

Problem Spaces and Search

Building a system to solve a problem requires tiewing steps

- Define the problem precisely including detailgubafications and what constitutes an acceptable
solution;

- Analyse the problem thoroughly for some featumesy have a dominant affect on the chosen
method of solution;

- Isolate and represent the background knowledgdetkin the solution of the problem;

- Choose the best problem solving techniques irsdihetion.

Defining the Problem as state Search

To understand what exactly artificial intelligensgewe illustrate some common problems. Problems
dealt with in artificial intelligence generally usecommon term called 'state’. A state represents a
status of the solution at a given step of the mnwbsolving procedure. The solution of a problem,
thus, is a collection of the problem states. Theble@m solving procedure applies an operator to a
state to get the next state. Then it applies anaiperator to the resulting state to derive a nates

The process of applying an operator to a stateitarglibsequent transition to the next state, tisus,
continued until the goal (desired) state is deriv&aich a method of solving a problem is generally
referred to as state space approach For exampbedén to solve the problem play a game, which is

restricted to two person table or board games, egeire the rules of the game and the targets for

winning as well as a means of representing postionthe game. The opening position can be

defined as the initial state and a winning positsna goal state, there can be more than one. legal
moves allow for transfer from initial state to atls¢ates leading to the goal state. However thesrul
are far too copious in most games especially civbese they exceed the number of particles in the
universe 10. Thus the rules cannot in general pbpl®d accurately and computer programs cannot
easily handle them. The storage also presents enptbblem but searching can be achieved by
hashing. The number of rules that are used mughibenised and the set can be produced by
expressing each rule in as general a form as pesSibe representation of games in this way leads
to a state space representation and it is nataralé&ll organised games with some structure. This
representation allows for the formal definitionaoproblem which necessitates the movement from a
set of initial positions to one of a set of targesitions. It means that the solution involves gsin

known techniques and a systematic search. Thigite g common method in Al.

Formal description of a problem
- Define a state space that contains all possibigigurations of the relevant objects, without
enumerating all the states in it. sfate space represents a problem in termsstdtes and operators

that change states

- Define some of these states as possible initiis;

- Specify one or more as acceptable solutionsethes goal states;

- Specify a set of rules as the possible actioiesved. This involves thinking about the generatity
the rules, the assumptions made in the informagmation and how much work can be anticipated

by inclusion in the rules.

The control strategy is again not fully discussatithe Al program needs a structure to facilithe t
search which is a characteristic of this type oigpam.

Example:

The water jug problem :There are two jugs callddur andthree ; four holds a maximum of four
gallons andhree a maximum of three gallons. How can we get 2 gallionthe jugfour. The state
space is a set of ordered pairs giving the numbegalbons in the pair of jugs at any time feuyr,
three) wherefour = 0, 1, 2, 3, 4 anthree = 0, 1, 2, 3. The start state is (0,0) and the gtk is
(2,n) where n is a don't care but is limitedhioee holding from 0 to 3 gallons. The major production

rules for solving this problem are shown below:

Initial condition goal comment

1 (four,three) if four < 4 (4,three) fill fodwom tap

2 (four,three) if three<3 (four,3) fill thréeom tap

3 (four,three) |If four >0 (O,three) empty foato drain
4 (four,three) if three >0 (four,0) emptyehrinto drain
5 (four,three) if four+three<4 (four+three,Ongty three into four
6 (four,three) if four+three<3 (O,four+three) mmnfour into three
7 (O,three) If three>0 (three,0) empty three fiour

8 (four,0) if four>0 (O,four) empty four intbree

9(0,2) (2,0) empty three into four

10 (2,0) (0,2) empty four into three

11 (four,three) if four<4 (4,three-diff) pouiffd4-four, into four from three

12 (three,four) if three<3 (four-diff,3) pouiffd 3-three, into three from four and
a solution is given below Jug four, jug three rapplied

00

032

307

332

4211

023

2010

Control strategies.

A good control strategy should have the followiequirement: The first requirement is that it causes
motion. In a game playing program the pieces mavthe board and in the water jug problem water
is used to fill jugs. The second requirement ig th&s systematic, this is a clear requirementifor
would not be sensible to fill a jug and empty ipeatedly nor in a game would it be advisable to
move a piece round and round the board in a cygig. We shall initially consider two systematic
approaches to searching.

Monotonic and Non monotonic Learning :

Monotonic learning is when an agent may not learn any knowledgedwiradicts what it already
knows. For example, it may not replace a stateméhtits negation. Thus, the knowledge base may

only grow with new facts in a monotonic fashion efddvantages of monotonic learning are:

1.greatly simplified truth-maintenance

2.greater choice in learning strategies

Non-monotonic learningis when an agent may learn knowledge that cortisdihat it already
knows. So it may replace old knowledge with new lifelieves there is sufficient reason to do so.

The advantages of non-monotonic learning are:

l.increased applicability to real domains,

2.greater freedom in the order things are learned i

A related property is the consistency of the knalgke If an architecture must maintain a consistent

knowledge base then any learning strategy it usest be monotonic.

7- PROBLEM CHARACTERISTICS

A problem may have different aspects of represiemaand explanation. In order to choose the most
appropriate method for a particular problem, inecessary to analyze the problem along several key

dimensions. Some of the main key features of alpnolare given below.

Is the problem decomposable into set of sub prodffem

Can the solution step be ignored or undone?

Is the problem universally predictable?

Is a good solution to the problem obvious withcarnparison to all the possible solutions?

Is the desire solution a state of world or a path state?

Is a large amount of knowledge absolutely requicesblve the problem?

= Will the solution of the problem required interactibetween the computer and the person?

The above characteristics of a problem are cale@-problem characteristics under which the sahutio

must take place.

PRODUCTION SYSTEM AND ITS CHARACTERISTICS

The production system is a model of computation ¢ha be applied to implement search algorithms and
model human problem solving. Such problem solvingvdedge can be packed up in the form of little
guanta called productions. A production is a ruasisting of a situation recognition part and atioac
part. A production is a situation-action pair inieththe left side is a list of things to watch fond the
right side is a list of things to do so. When pretthns are used in deductive systems, the situatian
trigger productions are specified combination at$aThe actions are restricted to being assedfiarew
facts deduced directly from the triggering combimat Production systems may be called premise

conclusion pairs rather than situation action pair.
A production system consists of following compoent

() A set of production rules, which are of the form-B. Each rule consists of left hand side
constituent that represent the current problene gtatl a right hand side that represent an output

state. A rule is applicable if its left hand sidatohes with the current problem state.

(b) A database, which contains all the appropriaterinégion for the particular task. Some part of
the database may be permanent while some parisofriiy pertain only to the solution of the
current problem.

(c) A control strategy that specifies order in which thles will be compared to the database of rules
and a way of resolving the conflicts that arise mwheveral rules match simultaneously.

(d) A rule applier, which checks the capability of rblgmatching the content state with the left hand
side of the rule and finds the appropriate rulenfdatabase of rules.

The important roles played by production systenctuife a powerful knowledge representation scheme.
A production system not only represents knowledgeabso action. It acts as a bridge between Al and
expert systems. Production system provides a laggirawhich the representation of expert knowledge

is very natural. We can represent knowledge inoayprtion system as a set of rules of the form
If (condition) THEN (condition)

along with a control system and a database. Thiea@ystem serves as a rule interpreter and seguen
The database acts as a context buffer, which re¢bedconditions evaluated by the rules and inftioma
on which the rules act. The production rules amo &inown as condition — action, antecedent —

consequent, pattern — action, situation — respdasdback — result pairs.
For example,

If (you have an exam twrow)

THEN (study the wholegyimi)

The production system can be classified as mongtamdn-monotonic, partially commutative and

commutative.

Control structure p———

— Global database
Knowledge base }—' (working memory)

Figure Architecture of Production System

Features of Production System

Some of the main features of production system are:

Expressiveness and intuitivenesdn real world, many times situation comes liké this happen-you
will do that”, “if this is so-then this should hagay’ and many more. The production rules essentially

us what to do in a given situation.

1. Simplicity: The structure of each sentence in a productioresys unique and uniform as they use
“IF-THEN?” structure. This structure provides singily in knowledge representation. This feature of
production system improves the readability of pidiun rules.

Modularity: This means production rule code the knowledge abkdl in discrete pieces.
Information can be treated as a collection of irtejent facts which may be added or deleted from
the system with essentially no deletetious sidectst

Modifiability: This means the facility of modifying rules. It@ls the development of production
rules in a skeletal form first and then it is aatarto suit a specific application.

Knowledge intensive:The knowledge base of production system stores kmowledge. This part
does not contain any type of control or programmirfgrmation. Each production rule is normally
written as an English sentence; the problem of s@inmis solved by the very structure of the

representation.

Disadvantages of production system

1. Opacity: This problem is generated by the combination ofpctidn rules. The opacity is generated
because of less prioritization of rules. More ptioto a rule has the less opacity.
Inefficiency: During execution of a program several rules maivact well devised control strategy
reduces this problem. As the rules of the producsigstem are large in number and they are hardly
written in hierarchical manner, it requires somerie of complex search through all the production
rules for each cycle of control program.
Absence of learning:Rule based production systems do not store thét @fsihe problem for future
use. Hence, it does not exhibit any type of leayréapabilities. So for each time for a particular
problem, some new solutions may come.
Conflict resolution: The rules in a production system should not hamg fype of conflict
operations. When a new rule is added to a datalitasbpuld ensure that it does not have any

conflicts with the existing rules.

ALGORITHM OF PROBLEM SOLVING

Any one algorithm for a particular problem is ngphcable over all types of problems in a variefy o
situations. So there should be a general problelwingoalgorithm, which may work for different
strategies of different problems.

Algorithm (problem name and specification)

Step 1:

Analyze the problem to get the starting state aval gtate.

Step 2:

Find out the data about the starting state, gdalsta

Step 3:

Find out the production rules from initial datab&seproceeding the problem to goal state.
Step 4:

Select some rules from the set of rules that caappéied to data.

Step 5:

Apply those rules to the initial state and proceedet the next state.

Step 6:

Determine some new generated states after applyingiles. Accordingly make them as current state.
Step 7:

Finally, achieve some information about the goatesfrom the recently used current state and get th

goal state.
Step 8:
Exit.

After applying the above rules an user may getstilation of the problem from a given state to asoth
state. Let us take few examples.

VARIOUS TYPES OF PROBLEMS AND THEIR SOLUTIONS

Water Jug Problem

Definition:

Some jugs are given which should have non-caliirgteperties. At least any one of the jugs should
have filled with water. Then the process througlicivlwe can divide the whole water into differerggu

according to the question can be called as waggpijablem.

Procedure:

Suppose that you are given 3 jugs A,B,C with cdjesc8,5 and 3 liters respectively but are notocated
(i.e. no measuring mark will be there). Jug A ied with 8 liters of water. By a series of pouribgck
and forth among the 3 jugs, divide the 8 liters iBtequal parts i.e. 4 liters in jug A and 4 litargug B.

How?

In this problem, the start state is that the jugil contain 8 liters water whereas jug B and jugvll be
empty. The production rules involve filling a judtivsome amount of water, taking from the jug AeTh
search will be finding the sequence of productigies which transform the initial state to finaltstalhe
state space for this problem can be described tgfswrdered pairs of three variables (A, B, C) whe
variable A represents the 8 liter jug, variablesBresents the 5 liter and variable C represest8 tiiers

jug respectively.

Figure

8 liter 5 liter| |3 lite

(Jug A) (JugB) (JugC)
The production rules are formulated as follows:

Step 1:

In this step, the initial state will be (8, 0, @ the jug B and jug C will be empty. So the watejug A

can be poured like:
(5, 0, 3) means 3 liters to jug C and 5 liters welinain in jug A.
(3, 5, 0) means 5 liters to jug B and 3 liters Wl in jug A.

(0, 5, 3) means 5 liters to jug B and 3 litersug € and jug C and jug A will be empty.

(8,0.0)

Step2:

In this step, start with the first current stateste#fp-1 i.e. (5, 0, 3). This state can only be ean@nted by
pouring the 3 liters water of jug C into jug B. #® state will be (5, 3, 0). Next, come to the seco

current state of step-1i.e. (3, 5, 0). This state be implemented by only pouring the 5 litersevaf jug
B into jug C. So the remaining water in jug B vii# 2 liters. So the state will be (3, 2, 3). Finalbme to

the third current state of step-1i.e. (0, 5, 3)t Bom this state no more state can be implementeduse

after implementing we may get (5, 0, 3) or (30bor (8, 0, 0) which are repeated state. Hencsethe

states are not considerably again for going towgods.
So the state will be like:
(5,0,3) = (5,3,0)
(3,5,0) = (3,2,3)
(0,5,3) » X
Step 3:
In this step, start with the first current statestefp-2 i.e. (5, 3, 0) and proceed likewise thevalsteps.
(5,3,0) = (2,3,3)
(3,2,3) - (6,2,0)
Step 4:
In this step, start with the first current statestefp-3 i.e. (2, 3, 3) and proceed.
(2,3,3) - (2,51)
(6,2,0) » (7,0,1)
Step 5:
(2,5,1) - (7,0,1)
(6,0,2) =» (1,5,2)
Step6:
(7,0,1) = (7,1,0)
(1,4,3) - (1,4,3)
Step7:

(7,1,0) » (4,1,3)

(1,4,3) = (4,4,0) (Goal)

So finally the state will be (4, 4, 0) that meamg A and jug B contains 4 liters of water each Whgour
goal state. One thing you have to very careful abfmipouring of water from one jug to another that

capacity of jug must satisfy the condition to cemthat much of water.

The tree of the water jug problem can be like:

(Initial)

4,40 (Goal)

Figure
Comments:

= This problem takes a lot of time to find the gdale.
= This process of searching in this problem is vengthy.

= At each step of the problem the user have to Btrictlow the production rules. Otherwise the

problem may go to infinity step.

Missionaries and Carnivals Problem

Definition:

In Missionaries and Carnivals Problem, initiallgth are some missionaries and some carnivals eviitb

a sideof a river. They want to cross the river. Bigre is only one boat available to cross therriVae
capacity of the boat is 2 and no one missionamoo€arnivals can cross the river together. Sodbiirsg

the problem and to find out the solution on diffaretates is called the Missionaries and Carnival

Problem.
Procedure:

Let us take an example. Initially a boatman, Gragger and Goat is present at the left bank ofrber
and want to cross it. The only boat available is capable of carrying 2 objects of portions atretiThe
condition of safe crossing is that at no time fgertpresent with goat, the goat present with ttaesgat

the either side of the river. How they will croke tiver?

The objective of the solution is to find the sequeenf their transfer from one bank of the riverthe

other using the boat sailing through the riverssgitig these constraints.
Let us use different representations for each @fitissionaries and Carnivals as follows.
B: Boat
T: Tiger
G: Goat
Gr: Grass

Step 1:

According to the question, this step will be (B,Q3,, Gr) as all the Missionaries and the Carnivedsad

one side of the bank of the river. Different stdtes this state can be implemented as

(B. T, O, O) X [Condition failed]

(B, 0. G, O)

(B, O, O, Gr) X [Condition failed]
(Right)

“The states (B, T, O, O) and (B, O, O, Gr) will et countable because at a time the Boatman and the
Tiger or the Boatman and grass cannot go. (Accgrttirthe question).

Step 2:

Now consider the current state of step-1 i.e. thiegB, O, G, O). The state is the right sidehef tiver.
So on the left side the state may be (B, T, O, Gr)

i.e.(B,0,G,0) -~ (B, T,0,Gr)
(Right) (Left)

Step 3:

Now proceed according to the left and right sidethe river such that the condition of the problemast

be satisfied.
(B.T,G. 0)

(B. 0, G, Gr)
(Right)
Step 4:

First, consider the first current state on thetrigjtie of step 3 i.e.

(B.0.0,Gr) X [Condition failed]
(B, T, O, Gr) X [Repeatation]

(B: O: G: G’I’)
(Left)

Now consider the second current state on the siglet of step-3 i.e.

(B, T, O, 0) X [Condition failed]
(B.0.G.Gr (B,T.G,0)

(B, T. O, Gr) X [Repeatation]
(Right) (Left)

Step 5:

Now first consider the first current state of steje.

(B. T, G, O) X [Repeatation]
B.0. G, Gf}<
(B. T. O, Gr)

(Left) (Right)

Now consider the 2rd state of step-4 i.e.

(B. T. O. Gr)
(B.T. G. 0)<:
(B, O, G, Gr) X [Repeatation]

(Left) (Right)

Step 6:

Consider the current state of step-3
(B.T.0.Gr) ———— > (B.0.G.0)
(Right) (Left)

From ftep-6, the state will be
(B, 0,G,0) » B.T G G
(Left) (Right)

Hence the final state will be (B, T, G, Gr) whiate @n the right side of the river.

Comments:

= This problem requires a lot of space for its siaglementation.
= It takes a lot of time to search the goal node.
= The production rules at each level of state arg swict.

Chess Problem
Definition:

It is a normal chess game. In a chess problenstéreis the initial configuration of chessboartieTinal

state is the any board configuration, which is anivig position for any player. There may be mugtipl

final positions and each board configuration canthmught of as representing a state of the game.

Whenever any player moves any piece, it leadsfterdnt state of game.

Procedure:

A 3x3 Chess board

The above figure shows a 3x3 chessboard with egolare labeled with integers 1 to 9. We simply
enumerate the alternative moves rather than deimgi@general move operator because of the reduced
size of the problem. Using a predicate called miove@redicate calculus, whose parameters are the
starting and ending squares, we have describetbdglaé moves on the board. For example, move (1, 8)
takes the knight from the upper left-hand cornethtomiddle of the bottom row. While playing Chess,
knight can move two squares either horizontallyertically followed by one square in an orthogonal

direction as long as it does not move off the board

The all possible moves of figure are as follows.

Move (1, 8)
Move (1, 6)
Move (2, 9)
Move (2, 7)
Move (3, 4)
Move (3, 8)
Move (4, 1)

Move (4, 3)

move (6, 1)
move (6, 7)
move (7, 2)
move (7, 6)
move (8, 3)
move (8, 1)
move (9, 2)

move (9, 4)

The above predicates of the Chess Problem fornkitb&/ledge base for this problem. An unification

algorithm is used to access the knowledge base.

Suppose we need to find the positions to whichkttight can move from a particular location, square
The goal move (z, x) unifies with two different gieates in the knowledge base, with the substitstio

{7/x} and {9/x}. Given the goal move (2, 3), thegmonsible is failure, because no move (2, 3) exists

the knowledge base.

Comments:

= In this game a lots of production rules are applggceach move of the square on the chessboard.
= A lots of searching are required in this game.
= Implementation of algorithm in the knowledge basedry important.

8- Queen Problem

Definition:

“We have 8 queens and an 8x8 Chess board havieignate black and white squares. The queens are
placed on the chessboard. Any queen can attaclotey queen placed on same row, or column or
diagonal. We have to find the proper placementugfeqps on the Chess board in such a way that nm quee

attacks other queen”.

Procedure:
Figure A possible board configuration of 8 queenblem

In figure , the possible board configuration forg@een problem has been shown. The board has
alternative black and white positions on it. Th&edent positions on the board hold the queens. The
production rule for this game is you cannot putghme queens in a same row or same column or i@ sam
diagonal. After shifting a single queen from itssition on the board, the user have to shift othereqgs
according to the production rule. Starting from fingt row on the board the queen of their corresiiag

row and column are to be moved from their origipasitions to another position. Finally the playash

to be ensured that no rows or columns or diagamfais the table is same.

Comments:

= This problem requires a lot of space to store thegrdh

= It requires a lot of searching to reach at the gtete.
= The time factor for each queen’s move is very lengt

= The problem is very strict towards the productioles.

8- Puzzle Problem

Definition:

“It has set off a 3x3 board having 9 block spaagtsod which 8 blocks having tiles bearing numbemnir
1 to 8. One space is left blank. The tile adja¢erilank space can move into it. We have to arrahge

tiles in a sequence for getting the goal state”.
Procedure:

The 8-puzzle problem belongs to the category odlitsly block puzzle” type of problem. The 8-puzze i

a square tray in which eight square tiles are platee remaining ninth square is uncovered. Eaefirti

the tray has a number on it. A tile that is adjaderblank space can be slide into that space.gEmee
consists of a starting position and a specified goaition. The goal is to transform the startirggition

into the goal position by sliding the tiles arouffthe control mechanisms for an 8-puzzle solver must
keep track of the order in which operations ardgoared, so that the operations can be undone oae at
time if necessary. The objective of the puzzle®ifind a sequence of tile movements that leads feo

starting configuration to a goal configuration sashtwo situations given below.
Figure (Starting State) (Goal State)

The state of 8-puzzle is the different permutatadntiles within the frame. The operations are the
permissible moves up, down, left, right. Here athestep of the problem a function f(x) will be dhefd

3
6
7 3

which is the combination of g(x) and h(x).

e FX)=0(x) + h (x)

Where
g (x): how many steps in the problem you have already dotiee current state from the initial state.
h (x): Number of ways through which you can reach agtted state from the current state or

Or

h (x)is the heuristic estimator that compares the cusete with the goal state note down how many
states are displaced from the initial or the cursate. After calculating the f (x) value at easthp
finally take the smallest f (x) value at every steml choose that as the next current state tchgegdal
state.

Let us take an example.

Figure (Initial State) (Goal State)

B

Fx)=1+5=6

5
3

F(Xx)=0+4=4 C
Fx)=1+3=4

Stepl:

f (x)is the step required to reach at the goal state fitee initial state. So in the tray either 6 orahc
change their portions to fill the empty positiorm. there will be two possible current states nanBejnd
C. The f (x) value of B is 6 and that of C is 4. Ass the minimum, so take C as the current statbd
next state.

Step 2:

In this step, from the tray C three states canrbeml The empty position will contain either 5 00136.
So for three different values three different staten be obtained. Then calculate each of theiy &rfd

flx)=2+4=6

flx)=2+4=6

take the minimum one.

Here the state F has the minimum value i.e. 4 amddntake that as the next current state.

Step 3:

The tray F can have 4 different states as the epgsigions can be filled with b4 values i.e.2, 485
G fix)=3+3=6

1
1
7

flx)=3+3=6

I

fx)=3+1=4

4
Step 4: 7 ¢ | f=3+3=6

In the step-3 the tray | has the smallest f (nue@alThe tray | can be implemented in 3 differeatest
because the empty position can be filled by the begmlike 7, 8, 6.

fix)=4+2=6

fx)=4+2=6

fix)=4+0=14

Hence, we reached at the goal state after few esaoittiles in different positions of the trays.

Comments:

= This problem requires a lot of space for savingdifferent trays.

= Time complexity is more than that of other problems

= The user has to be very careful about the shifiinges in the trays.

= Very complex puzzle games can be solved by thimigae.

Monkey Banana Problem

Definition:

“A monkey is in a room. A bunch of bananas is hagdrom the ceiling. The monkey cannot reach the

bananas directly. There is a box in the cornehefrbom. How can the monkey get the bananas?”
Procedure:

The solution of the problem is of course that tlenkey must push the box under the bananas, thed sta
on the box and grab the bananas. But the solutiocepure requires a lot of planning algorithms. The
purpose of the problem is to raise the questior: rAonkeys intelligent? Both humans and monkeys have
the ability to use mental maps to remember thiikgswhere to go to find shelter or how to avoid giem
They can also remember where to go to gather faddaater, as well as how to communicate with each
other. Monkeys have the ability not only to remembew to hunt and gather but they also have the
ability to learn new things, as is the case withrtionkey and the bananas. Even though that monkgy m
never have entered that room before or had ontyxddr a tool to gather the food available, thatnky
can learn that it needs to move the box acrosidbe position it below the bananas and climb bl to
reach for them. Some people believe that this isipatinct, part learned behaviour. It is mosthably
both.

Initially, the monkey is at location ‘A’, the bareis at location ‘B’ and the box is at location !The
monkey and box have height “low”; but if the monkgiynbs onto the box will have height “High”, the
same as the bananas.

The action available to the monkey include:
“GQO” from one place to another.
“PUSH” an object from one place to another.
“Climb” onto an object.
“Grasp” an object.

Grasping results in holding the object if the monlked the object are in the same place at the same

height.

The solution of the problem in different steps barof followings.

. What is initial state description?
At (monkey, A), At (banana, B), At (box, 03]
Position (monkey, low), Position (banana, high)sifon (box, low)

. What are the definitions of the different actions?

a) Go (%,

Precondition: At (monkey,
Effects: -At (monkey, x), At (monkey, y)

b) Push (object, X, 2 height)
Pre condition: At (monkey, x), At (object, x), Pii@n (monkey, height), Position (object,
height)

Effects: = (monkey, x), -At (object, x), At (monkey), At(object, y)\

c¢) Climb up (object, y)
Precondition: At (monkey, x), At (object, x), Pdsit (monkey, low), Position (object, low)
Effects: -Position (monkey, low), Position (monkgigh), On (monkey, object)

d) Climb down (object)
Preconditions: Position (monkey, high), On (monkey, object)
Effects: =Position (monkey, high), - On (monkey, jeat)
Position: (monkey, low)

e) Grasp (object, X, height)
Preconditions: At (monkey, x), At (object, x), Rasi (monkey, height), Position (object,
height)

Effect: Hold (object)

f) UnGrasp (object, X, height)
Preconditions: Hold (object), At (monkey, Xx), Atb{ect, x), Position (monkey, height),
Position (object, height)
Effects: -Hold (object)

So the solution to the planning problem may beothiving

=>GO(A,C)

=PUSH (Box, C, B, Low)
=Climb Up(Box , B)
=Grasp(banana, B, High)
=Climb down(Box)
=Push(Box, B, C, Low)

Comments:

= One major application of the monkey banana probetine toy problem of computer science.

= One of the specialized purposes of the problem iaise the question: Are monkeys intelligent?
= This problem is very useful in logic programmingigianning.

Tower of Hanoi Problem

Definition:

“We are given a tower of eight discs (initially)uioin the applet below, initially stacked in incseay size
on one of three pegs. The objective is to trartsferentire tower to one of the other pegs (thet nighst

one in the applet below), moving only one disc tiree and never a larger one onto a smaller”.
Procedure:

The tower of Hanoi puzzle was invented by the Fnenwathematician Eduardo Lucas in 1883. The
puzzle is well known to students of computer sadesiace it appears in virtually any introductorytten

data structure and algorithms.
The objective of the puzzle is to move the entiaglsto another rod, obeying the following rules.

= Only one disc can be moved at a time.
= Each move consist of taking the upper disc from afnthe rods and sliding it onto another rod,
on top of the other discs that may already be ptemethat rod.

= No disc may be placed on the top of a smaller disk.
There is a legend about a Vietnamese temple whictains a large room with three times. Worn pasts i
it surrounded by 64 golden disks. The priests afidilaacting out of command of an ancient prophecy,
have been moving these disks, in accordance wéhules of the puzzle, since that time. The puixzle
therefore also known as the tower of Brahma puzabeording to the legend, when the last move of the

puzzle is completed, the world will end.

There are many variations on this legend. For mgtain some tellings, the temple is a monastedythe

priests are monks. The temple or monastery mayaliets be in different parts of the world including
Hanoi, Vietnam and may be associated with anyigaligrhe flag tower of Hanoi may have served as the

inspiration for the name.

The puzzle can be played with any number of diakkpough many toy versions have around seven to
nine of them. The game seems impossible to maniceswyet is solvable with a simple algorithm. The

following solution is a very simple method to sothe tower of Hanoi problem.

= Alternative moves between the smallest piece amdra smallest piece. When moving the
smallest piece, always move it in the same diradtio the right if starting number of pieces is

even, to the left if starting number of piecesdso

If there is no tower in the chosen direction, mdke pieces to the opposite end, but then
continue to move in the correct direction, for epdmif you started with three pieces, you
would move the smallest piece to the opposite #rah continue in the left direction after that.
= When the turn is to move the non-smallest piearetks only one legal move.
Doing this should complete the puzzle using thatlemount of moves to do so. Finally, the user will
reach at the goal. Also various types of solutioras/ be possible to solve the tower of Hanoi problem

like recursive procedure, non-recursive procedacktkanary solution procedure.
Another simple solution to the problem is givendvel
For an even number of disks

= Make the legal move between pegs A and B.
= Make the legal moves between pages A and C.
= Make the legal move between pages B and C.

For an even number of disks

Make the legal move between pegs A and C.
Make the legal move between pegs A and B.
Make the legal move between pegs B and C.
= Repeat until complete.
A recursive solution for tower of Hanoi problemais follows.

A key to solving this problem is to recognize thiatan be solve by breaking the problem down ih® t

collection of smaller problems and further breakthgse problems down into even smaller problems

until a solution is reached. The following procesldemonstrates this approach.

= Label the pegs A, B, C - these levels may moveftrdnt steps.
= Let n be the total number of disks.
= Number of disks from 1 (smallest, topmost) to mgésst, bottommost).

To move n disks from peg A to peg C.

a) Move n-1 disks from A to B. This leaves disk #nr&mn peg A.

b) Move disk #n from A to C.

¢) Move n-1 disks from B to C so they sit on disk #n.
To carry out steps a and ¢, apply the same algordthain for n-1. The entire procedure is a finitenber
of steps, since at most point the algorithm willréquired for n = 1. This step, moving a singleedism
peg A to peg B, is trivial.

Comments:

The tower of Hanoi is frequently used in psychatagiresearch on problem solving.

This problem is frequently used in neuro-psychalabidiagnosis and treatment of executive
functions.

The tower of Hanoi is also used as backup rotagsidmeme when performing computer data
backups where multiple tabs/media are involved.

This problem is very popular for teaching recursagorithm to beginning programming
students.

A pictorial version of this puzzle is programmedoiremacs editor, accessed by typing M - X
Hanoi.

The tower of Hanoi is also used as a test by npayohologists trying to evaluate frontal lobe

deficits.

Cryptarithmatic Problem

Definition:

“It is an arithmetic problem which is representaddtters. It involves the decoding of digit reeted
by a character. It is in the form of some arithmetfuation where digits are distinctly represerigd
some characters. The problem requires finding ef digit represented by each character. Assign a
decimal digit to each of the letters in such a gt the answer to the problem is correct. If thme
letter occurs more than once, it must be assigmeddame digit each time. No two different lettees/rne

assigned the same digit”.
Procedure:

Cryptarithmatic problem is an interesting constraiatisfaction problem for which different algorith
have been developed. Cryptarithm is a mathematicztle in which digits are replaced by lettershef t

alphabet or other symbols. Cryptarithmatic is ttiersce and art of creating and solving cryptarithms
The different constraints of defining a cryptarittin problem are as follows.

1) Each letter or symbol represented only one andguardigit throughout the problem.
2) When the digits replace letters or symbols, thaltest arithmetical operation must be correct.

The above two constraints lead to some other ctisins in the problem.

For example:

Consider that, the base of the number is 10. Theretmust be at most 10 unique symbols or letters i

the problem. Otherwise, it would not possible teigs a unique digit to unique letter or symbol fe t

problem. To be semantically meaningful, a numbestmot begin with a 0. So, the letters at the
beginning of each number should not correspond #&lsb one can solve the problem by a simple blind

search. But a rule based searching technique caidprthe solution in minimum time.
Now, let us solve a simple cryptarithmatic puzzieeg below.
Step 1:

In the above problem, M must be 1. You can visedlimat, this is an addition problem. The sum of two

four digit numbers cannot be more than 10,000. Msoannot be zero according to the rules, sine it

S END

the first letter.

So now you have the problem like

Step 2:

Now in the column s10, s#110. S must be 8 because there is a 1 carriedfimrarthe column EON or
9. O must be 0 (if s=8 and there is a 1 carriesl 9 and there is no 1 carried) or 1 (if s=9 dmid is a
1 carried). But 1 is already taken, so O must be 0.

Step 3:

There cannot be carry from column EON because agiy €0 < 10, unless there is a carry from the

column NRE, and E=9; But this cannot be the casause then N would be 0 and 0 is already taken. So
E <9 and there is no carry from this column. TheeeS=9 because 9+1=10.

Step 4:

In the column EON, E cannot be equal to N. So thaust be carry from the column NRE; E+1=N. We
now look at the column NRE, we know that E+1=N.c8irwe know that carry from this column,
N+R=1E (if there is no carry from the column DEY)M+R+1=1E (if there is a carry from the column
DEY).

Let us see both the cases:
NocarryyN+R=10+(N—-1) = N+9
R=9
But 9 is already taken, so this will not work
CarryN+R+1=9

R =9 — 1 = 8 This must be solution for R

9END

Now just think what are the digits we have leftxytare 7, 6, 5, 4, 3 and 2. We know there must be a
carry from the column DEY. SB+E > 10.N =E + 1, So E cannot be 7 because then N would be 8

which is already taken. D is almost 7, so E carb®® because théh+ E < 10 and E cannot be 3
because thed + E = 10 andY = 0, but O is already taken. Also E cannot be 4 bec#uBe> 6,D +
E<10 andifD=6orD=7thenY=0o0rY =1, which are both taken. So E is 5 or BE =
6,then D = 7 and Y = 3. So this part will work but look the column N8E.iRtwthat there is a carry from
the column D5WN + 8 + 1 = 16(As there is a carry from this column). But thenMand 7 is taken by D

therefore E=5.
Step 6:

Now we have gotten this important digit, it getsamsimpler from here. N+8+1=15, N=6

Step 7:

The digits left are 7, 4, 3 and 2. We know thereaigy from the column D5Y, so the only pair thairis
is D=7 and Y= 2.

Which is final solution of the problem.
Comments:

This problem requires a lot of reasoning.
Time complexity of the problem is more as concdruethe other problems.

This problem is dependent upon some constrainisivare necessary part of the problem.

=
=
= This problem can also be solved by the evolutiom@yroach and mutation operations.
=
=

Various complex problems can also be solved ts/tdghnique.

SEARCHING

Problem solving in artificial intelligence may bbaracterized as a systematic search through a @fnge
possible actions in order to reach some predefgua or solution. In Al problem solving by search

algorithms is quite common technique. In the comage of Al it will have big impact on the
technologies of the robotics and path finding.sltalso widely used in travel planning. This chapter
contains the different search algorithms of Al ugedarious applications. Let us look the concdpts

visualizing the algorithms.

A search algorithm takes a problem as input angrmstthe solution in the form of an action sequence
Once the solution is found, the actions it recomisecan be carried out. This phase is called as the
execution phase. After formulating a goal and mobto solve the agent cells a search proceduraie s

it. A problem can be defined by 5 components.

a) The initial state: The state from which agent will start.

b) The goal state The state to be finally reached.

c) The current state The state at which the agent is present aftetirggefrom the initial state.
d) Successor functionlt is the description of possible actions andrtbatcomes.

e) Path cost It is a function that assigns a numeric costachepath.

DIFFERENT TYPES OF SEARCHING

the searching algorithms can be various types. Véngrtype of searching is performed, there may some
information about the searching or mayn't be. Atds possible that the searching procedure magep
upon any constraints or rules. However, generaflgrching can be classified into two types i.e.
uninformed searching and informed searching. Atsunesother classifications of these searches aengiv

below in the figure .

‘ Uninformed Search ‘ Informed Search

.

.

.

.

Breadth First
Search (BFS)

Depth First
Search (DFS)

Brute force or
Blind Search

Greedy Search

Best First
Search (BFS)

& Bound

Branch

Generate
Test Search

Local Beam
Search

.

Analysis

Figure
UNINFORMED SEARCH

Breadth First Search (BFS)

Breadth first search is a general technique ofetrsiig a graph. Breadth first search may use more
memory but will always find the shortest path filst this type of search the state space is repteden
form of a tree. The solution is obtained by traireyghrough the tree. The nodes of the tree reptahe
start value or starting state, various intermedsiédes and the final state. In this search a qdate
structure is used and it is level by level traverBaeadth first search expands nodes in ordetheirt
distance from the root. It is a path finding altfum that is capable of always finding the solutibane
exists. The solution which is found is always thstianal solution. This task is completed in a very

memory intensive manner. Each node in the seagehidgrexpanded in a breadth wise at each level.

Concept:

Step 1:Traverse the root node

Step 2:Traverse all neighbours of root node.

Step 3:Traverse all neighbours of neighbours of the rumte.

Step 4:This process will continue until we are getting tioal node.

Algorithm:

Step 1:Place the root node inside the queue.
Step 2:1f the queue is empty then stops and return failur
Step 3:1f the FRONT node of the queue is a goal node gtep and return success.

Step 4:Remove the FRONT node from the queue. Processlifiad all its neighbours that are in ready

state then place them inside the queue in any order

Step 5:Go to Step 3.

Step 6:Exit.

Implementation:

Let us implement the above algorithm of BFS byrigkhe following suitable example.

Figure
Consider the graph in which let us take A as theisg node and F as the goal node (*)
Step 1:

Place the root node inside the queue i.e. A

Step 2:
Now the queue is not empty and also the FRONT mnedd is not our goal node. So move to step 3.
Step 3:

So remove the FRONT node from the queue i.e. Afimddthe neighbour of Ai.e. B and C

Cl A

Step 4:

Now b is the FRONT node of the queue .So procemsdfinds the neighbours of B i.e. D.

C P |B

Step 5:

Now find out the neighbours of Ci.e. E

D E C

Step 6:

Next find out the neighbours of D as D is the FROMTOe of the queue

D

Step 7:

Now E is the front node of the queue. So the naghbf E is F which is our goal node.

F E

Step 8:

Finally F is our goal node which is the FRONT aof tjueue. So exit.

Advantages:

= In this procedure at any way it will find the goal.
= It does not follow a single unfruitful path foranlg time.

= It finds the minimal solution in case of multiplatps.

Disadvantages:

= BFS consumes large memory space.
= Its time complexity is more.
= It has long pathways, when all paths to a destinaire on approximately the same search depth.

Depth First Search (DFS)
DFS is also an important type of uniform searchSD#sits all the vertices in the graph. This tyge o
algorithm always chooses to go deeper into thelgrafier DFS visited all the reachable verticesifra
particular sources vertices it chooses one ofd@h@aimning undiscovered vertices and continues thecke
DFS reminds the space limitation of breath firgtreb by always generating next a child of the dsepe
unexpanded nodded. The data structure stack oinldisst out (LIFO) is used for DFS. One interesti

property of DFS is that, the discover and finishetiof each vertex from a parenthesis structuneelfise

one open parenthesis when a vertex is finishedttieresult is properly nested set of parenthesis.
Concept:

Step 1:Traverse the root node.

Step 2:Traverse any neighbour of the root node.

Step 3:Traverse any neighbour of neighbour of the roateno

Step 4:This process will continue until we are getting tfoal node.

Algorithm:

Step 1: PUSH the starting node into the stack.
Step 2:1f the stack is empty then stop and return failure
Step 3:1f the top node of the stack is the goal noden $tep and return success.

Step 4:Else POP the top node from the stack and protesimd all its neighbours that are in ready state

and PUSH them into the stack in any order.
Step 5:Go to step 3.

Step 6:Exit.

Implementation:

Let us take an example for implementing the abo& Blgorithm.

Figure Examples of DFS

Consider A as the root node and L as the goal imottee graph figure

Step 1: PUSH the starting node into the stack i.e.

A

Step 2:Now the stack is not empty and A is not our gaader Hence move to next step.

Step 3:POP the top node from the stack i.e. A and firdrteighbours of A i.e. B and C.

B| C A

Step 4:Now C is top node of the stack. Find its neighkaie. F and G.

171 ° ¢

Step 5:Now G is the top node of the stack. Find its neairi.e. M

F| M| G

Step 6: Now M is the top node and find its neighbour, there is no neighbours of M in the graph so
POP it from the stack.

(3T 8

Step 7:Now F is the top node and its neighbours are Klarsh PUSH them on to the stack.

K F

Step 8:Now L is the top node of the stack, which is ooalghode.

B K

Also you can traverse the graph starting from tha&t A and then insert in the order C and B into the

stack. Check your answer.
Advantages:

= DFSconsumes very less memory space.

= It will reach at the goal node in a less time petiwan BFS if it traverses in a right path.
It may find a solution without examining much ofseh because we may get the desired solution
in the very first go.

Disadvantages:

= It is possible that may states keep reoccurring.
= There is no guarantee of finding the goal node.
= Sometimes the states may also enter into infinibgd.

Brute Force or Blind Search

Brute force or blind search is a uniformed expiorabf the search space and it does not explititke

into account either planning efficiency or execnteafficiency. Blind search is also called uniforeasch.

It is the search which has no information abouti@gmain. The only thing that a blind search carsdo
differentiate between a non goal state and a datd.sThese methods do not need domain knowledge bu
they are less efficient in result. Uniform stragsgdon’t use any information about how a close @eno
might be to a goal. They differ in the order tha hodes are expanded. The most important brute for
techniques are breadth first search, depth figtche uniform search and bidirectional search.bilite
force techniques must také?) time and use o (d) space. This technique is neffagent as compared

to other algorithms.

Difference between BFS and DFS
BES

= It uses the data structure queue.

= BFS is complete because it finds the solution & erists.
BFS takes more space i.e. equivalent tb®) (vhere b is the maximum breath exist in a search
tree and d is the maximum depth exit in a seaesh tr

In case of several goals, it finds the best one.

It uses the data structure stack.

It is not complete because it may take infinitepl@o reach at the goal node.
The space complexity is O (d).

In case of several goals, it will terminate theutioh in any order.

Greedy Search

This algorithm uses an approach which is quite lainto the best first search algorithm. It is a fslien
best first search which reduces the estimatedafasiach the goal. Basically it takes the closestenthat
appears to be closest to the goal. This searcts stith the initial matrix and makes very singlespible
changes then looks at the change it made to thre.sEbis search then applies the change till teatgist

improvement. The search continues until no furthmrovement can be made. The greedy search never

makes never makes a lateral move .It uses minist@mhated cost h (n) to the goal state as measuidhwh
decreases the search time but the algorithm ifereitomplete nor optimal. The main advantage & thi
search is that it is simple and finds solution Hlyic The disadvantages are that it is not optimal,

susceptible to false start.

f
D

| E

;

Figure Greedy Search

INFORMED SEARCH (HEURISTIC SEARCH)

Heuristic is a technique which makes our searcariilgn more efficient. Some heuristics help to guid
search process without sacrificing any claim to pl@teness and some sacrificing it. Heuristic is a
problem specific knowledge that decreases expesgadch efforts. It is a technique which sometimes
works but not always. Heuristic search algorithreslisformation about the problem to help directimg
path through the search space. These searchesamedunctions that estimate the cost from theeotirr
state to the goal presuming that such functiorffisient. A heuristic function is a function thataps
from problem state descriptions to measure of dbiity usually represented as number. The purpdse
heuristic function is to guide the search procesté most profitable directions by suggesting Wwihpath

to follow first when more than is available.

Generally heuristic incorporates domain knowledgeinprove efficiency over blind search. In Al
heuristic has a general meaning and also a momadiged technical meaning. Generally a term héiaris
is used for any advice that is effective but is quoéranteed to work in every case. For examplase of

travelling sales man (TSP) problem we are usinguaistic to calculate the nearest neighbour. Haaris
is a method that provides a better guess aboutdirect choice to make at any junction that wowdd b
achieved by random guessing. This technique isubgefsolving though problems which could not be

solved in any other way. Solutions take an infitiitee to compute.

Let us see some classifications of heuristic search

Best First Search

Best first search is an instance of graph seagtrithm in which a node is selected for expansiaselol

o evaluation function f (n). Traditionally, the r@davhich is the lowest evaluation is selected fa th
explanation because the evaluation measures distanthe goal. Best first search can be implemented
within general search frame work via a priority gega data structure that will maintain the fririge
ascending order of f values. This search algorilenves as combination of depth first and breadsh fi
search algorithm. Best first search algorithm iterfreferred greedy algorithm this is because they
quickly attack the most desirable path as sootsdseuristic weight becomes the most desirable.

Concept:

Step 1:Traverse the root node

Step 2: Traverse any neighbour of the root node, that iswaiming a least distance from the root node

and insert them in ascending order into the queue.

Step 3: Traverse any neighbour of neighbour of the rootendbat is maintaining a least distance from
the root node and insert them in ascending ordertive queue

Step 4:This process will continue until we are getting toal node

Algorithm:

Step 1:Place the starting node or root node into the gueu
Step 2:1f the queue is empty, then stop and return failur
Step 3:If the first element of the queue is our goal ndben stop and return success.

Step 4:Else, remove the first element from the queue.aBgdt and compute the estimated goal distance
for each child. Place the children in the queuasicending order to the goal distance.

Step 5:Go to step-3

Step 6:Exit.

Implementation:

\(’E‘g (28)
AN

/
16) __(E“}(m) (1) (19)
: =

J/ o
,
,

S,

N \"&

®, ©

—4(0))

Let us solve an example for implementing above BIg8rithm.
Figure
Step 1:

Consider the node A as our root node. So thedlsshent of the queue is A whish is not our goalenod
so remove it from the queue and find its neighlibat are to inserted in ascending order.

Step 2:

The neighbours of A are B and C. They will be itesgtinto the queue in ascending order.

B C A

Step 3:

Now B is on the FRONT end of the queue. So caleuta¢ neighbours of B that are maintaining a least

distance from the roof.

Step 4.

Now the node F is on the FRONT end of the queu¢.aBlt has no further children, so remove it from
the queue and proceed further.

¢

Step 5:

Now E is the FRONT end. So the children of E aaed K. Insert them into the queue in ascendingrorde

| K[pHe | :

Step 6:

Now K is on the FRONT end and as it has no furtiéidren, so remove it and proceed further

| |J DC K

Step7:

Also, J has no corresponding children. So remosedtproceed further.

e

Step 8:

Now D is on the FRONT end and calculates the olldif D and put it into the queue.

| [9 D

Step9:

Now | is the FRONT node and it has no children.pBaceed further after removing this node from the

queue.

1 I°

Step 10:

Now C is the FRONT node .So calculate the neighbofirC that are to be inserted in ascending order
into the queue.

= 1"

Step 11:

Now remove G from the queue and calculate its fmigh that is to insert in ascending order into the

queue.

Stepl2:

Now M is the FRONT node of the queue which is aaalghode. So stop here and exit.

H M

Advantage:

= Itis more efficient than that of BFS and DFS.

= Time complexity of Best first search is much ldsmt Breadth first search.

= The Best first search allows us to switch betweathip by gaining the benefits of both breadth
first and depth first search. Because, depth iirgbod because a solution can be found without
computing all nodes and Breadth first search isdgoecause it does not get trapped in dead

ends.

Disadvantages:

Sometimes, it covers more distance than our coraida.

Branch and Bound Search

Branch and Bound is an algorithmic technique wHicdls the optimal solution by keeping the best
solution found so far. If partial solution can’t pmove on the best it is abandoned, by this methed t
number of nodes which are explored can also becestlut also deals with the optimization problems
over a search that can be presented as the lehtles search tree. The usual technique for elinmgat
the sub trees from the search tree is called pgurior Branch and Bound algorithm we will use stack

data structure.

Concept:

Step 1:Traverse the root node.

Step 2:Traverse any neighbour of the root node that imtaming least distance from the root node.

Step 3: Traverse any neighbour of the neighbour of thé¢ noale that is maintaining least distance from

the root node.

Step 4:This process will continue until we are getting tioal node.

Algorithm:

Step 1:PUSH the root node into the stack.
Step 2:1f stack is empty, then stop and return failure.
Step 3:1f the top node of the stack is a goal node, #tep and return success.

Step 4: Else POP the node from the stack. Process it mtdil its successors. Find out the path
containing all its successors as well as predecessal then PUSH the successors which are belobging
the minimum or shortest path.

Step 5:Go to step 5.
Step 6:Exit.
Implementation:

Let us take the following example for implementthg Branch and Bound algorithm.

Step 1.

Consider the node A as our root node. Find itsesgars i.e. B, C, F. Calculate the distance fraardlot

and PUSH them according to least distance.

A

B: 0+5 =5 (The cost of A is 0 as it is the staytitode)
F:0+9=9

C.0+7=7

Here B (5) is the least distance.

Step 2:

Now the stack will be

C F B A

As B is on the top of the stack so calculate thightmurs of B.
D: 0+5+4 =9
E: 0+5+6 =11

The least distance is D from B. So it will be om tbp of the stack.

‘°

As the top of the stack is D. So calculate neightodi D.

C |F D B

C: 0+5+4+8 = 17
F: 0+5+4+3 =12
The least distance is F from D and it is our gaaen So stop and return success.

Step 4:

C F

Hence the searching path will be A-B -D-F
Advantages:

= As it finds the minimum path instead of finding thenimum successor so there should not be
any repetition.

= The time complexity is less compared to other atlgors.

Disadvantages:

= The load balancing aspects for Branch and Bouratighgn make it parallelization difficult.
= The Branch and Bound algorithm is limited to snmsile network. In the problem of large
networks, where the solution search space growsrexyially with the scale of the network, the

approach becomes relatively prohibitive.

A* SEARCH

A* is a cornerstone name of many Al systems andoeas used since it was developed in 1968 by Peter
Hart; Nils Nilsson and Bertram Raphael. It is trmmbination of Dijkstra’s algorithm and Best first
search. It can be used to solve many kinds of probl A* search finds the shortest path throughaecke
space to goal state using heuristic function. Tétinique finds minimal cost solutions and is deddo

a goal state called A* search. In A*, the * is wait for optimality purpose. The A* algorithm aldods

the lowest cost path between the start and gotd, stdoere changing from one state to another reguir
some cost. A* requires heuristic function to evédutne cost of path that passes through the phaticu
state. This algorithm is complete if the branchfagtor is finite and every action has fixed cost. A
requires heuristic function to evaluate the cospath that passes through the particular statartbe
defined by following formula.

f(m) = g(n) + h(n)
Where

g (n): The actual cost path from the start state to the current state.

h (n): The actual cost path from the current state to goal state.

f (n): The actual cost path from the start state to the goal state.

For the implementation of A* algorithm we will usgo arrays namely OPEN and CLOSE.
OPEN:

An array which contains the nodes that has beeargtad but has not been yet examined.
CLOSE:

An array which contains the nodes that have beammed.

Algorithm:

Step 1:Place the starting node into OPEN and find its) value.

Step 2:Remove the node from OPEN, having smallest f &e. If it is a goal node then stop and return

success.
Step 3:Else remove the node from OPEN, find all its sgs0es.

Step 4: Find the f (n) value of all successors; place thetm OPEN and place the removed node into
CLOSE.

Step 5:Go to Step-2.
Step 6:Exit.
Implementation:

The implementation of A* algorithm is 8-puzzle game

Advantages:

It is complete and optimal.

It is the best one from other techniques.

It is used to solve very complex problems.

It is optimally efficient, i.e. there is no otheptomal algorithm guaranteed to expand fewer nodes
than A*.

Disadvantages:

= This algorithm is complete if the branching fad®finite and every action has fixed cost.

= The speed execution of A* search is highly depehdarthe accuracy of the heuristic algorithm
that is used to compute h (n).
= It has complexity problems.

AO* Search: (And-Or) Graph

The Depth first search and Breadth first searckrgarlier for OR trees or graphs can be easilptado
by AND-OR graph. The main difference lies in theyviarmination conditions are determined, since all
goals following an AND nodes must be realized; wehas a single goal node following an OR node will

do. So for this purpose we are using AO* algorithm.

Like A* algorithm here we will use two arrays andecheuristic function.

OPEN:

It contains the nodes that has been traverseddbutoy been marked solvable or unsolvable.
CLOSE:

It contains the nodes that have already been medes

h (n):The distance from current node to goal node.
Algorithm:
Step 1:Place the starting node into OPEN.

Step 2:Compute the most promising solution tree say TO.

Step 3:Select a node n that is both on OPEN and a meoftié. Remove it from OPEN and place it in
CLOSE

Step 4:If n is the terminal goal node then leveled nalsed and leveled all the ancestors of n as solved.

If the starting node is marked as solved then sscaad exit.

Step 5:If n is not a solvable node, then mark n as uradnby If starting node is marked as unsolvable,

then return failure and exit.
Step 6:Expand n. Find all its successors and find th€imhvalue, push them into OPEN.
Step 7:Return to Step 2.

Step 8:Exit.
Implementation:

Let us take the following example to implement A@* algorithm.

/,@ (Solvable)

(Solvable)

S (1)
(Unsolvable) {Sﬂh—'ah]e).:/ E) I___./

\U (Solvable) >_/ (Unsolvable)
ﬁ\ / 8

\®*/(Solvab1e}

Figure
Step 1.

In the above graph, the solvable nodes are A, B,&, F and the unsolvable nodes are G, H. Taks A

the starting node. So place A into OPEN.

A (»)
CLOSE = (NULL)

The children of A are B and C which are solvable. @ace them into OPEN and place A into the
CLOSE.

i.e. OPEN =

() ©

Now process the nodes B and C. The children ofd@aare to be placed into OPEN. Also remove B and

Step 3:

C from OPEN and place them into CLOSE.

So OPEN =
Gl D

‘O’ indicated that the nodes G and H are unsolvable
Step 4:
As the nodes G and H are unsolvable, so place ihenCLOSE directly and process the nodes D and E.

i.e. OPEN = CLOSE =

Step 5:

Now we have been reached at our goal state. Se plato CLOSE.

i.e. CLOSE =
Step 6:

Success and Exit

AO* Graph:

Figure
Advantages:

= It is an optimal algorithm.
= If traverse according to the ordering of nodes.
= It can be used for both OR and AND graph.

Disadvantages:

= Sometimes for unsolvable nodes, it can't find théral path.

= Its complexity is than other algorithms.

Hill Climbing

Hill climbing search algorithm is simply a loop theontinuously moves in the direction of increasing

value. It stops when it reaches a “peak” where pghbour has higher value. This algorithm is
considered to be one of the simplest proceduresniptementing heuristic search. The hill climbing
comes from that idea if you are trying to find the of the hill and you go up direction from wheneer
you are. This heuristic combines the advantage®ibf depth first and breadth first searches indmgle

method.

The name hill climbing is derived from simulatirftetsituation of a person climbing the hill. Thequer

will try to move forward in the direction of at tliep of the hill. His movement stops when it reache

the peak of hill and no peak has higher value afiséc function than this. Hill climbing uses knlmsige
about the local terrain, providing a very usefull agffective heuristic for eliminating much of the
unproductive search space. It is a branch by d Exauation function. The hill climbing is a vaniaof
generate and test in which direction the searchuldhproceed. At each point in the search path, a

successor node that appears to reach for exploratio

Algorithm:
Step 1:Evaluate the starting state. If it is a goal staén stop and return success.
Step 2:Else, continue with the starting state as considét as a current state.

Step 3:Continue step-4 until a solution is found i.e.iluthtere are no new states left to be applied & th

current state.
Step 4:

a) Select a state that has not been yet applied toutlient state and apply it to produce a new state.
b) Procedure to evaluate a new state.
i. If the current state is a goal state, then stoprafudn success.
ii. Ifitis better than the current state, then malkmiirent state and proceed further.
ii. If itis not better than the current state, thenttwe in the loop until a solution is found.

Step 5:Exit.

Advantages:

= Hill climbing technique is useful in job shop schédg, automatic programming, circuit
designing, and vehicle routing and portfolio mamaget.
It is also helpful to solve pure optimization preivis where the objective is to find the best state
according to the objective function.

= It requires much less conditions than other setchniques.

Disadvantages:

The question that remains on hill climbing searshwihether this hill is the highest hill possible.
Unfortunately without further extensive exploratighis question cannot be answered. This technique
works but as it uses local information that's whgdn be fooled. The algorithm doesn’t maintairarsh
tree, so the current node data structure need relgrd the state and its objective function valtie.

assumes that local improvement will lead to glolmgdrovement.

There are some reasons by which hill climbing offets suck which are stated below.

Local Maxima:

A local maxima is a state that is better than eddts neighbouring states, but not better thanesother
states further away. Generally this state is lothan the global maximum. At this point, one cannot
decide easily to move in which direction! This diffities can be extracted by the process of backitmg
i.e. backtrack to any of one earlier node positoord try to go on a different event direction. To
implement this strategy, maintaining in a list athpalmost taken and go back to one of them. Ijpthté

was taken that leads to a dead end, then go bawketof them.

Global Maxima

Objective ¢

Function Local Maxima I-'
— J

State Space
Figure Local Maxima

Ridges:

It is a special type of local maxima. It is a signph area of search space. Ridges result in a seg

local maxima that is very difficult to implementge itself has a slope which is difficult to traser In

this type of situation apply two or more rules befaoing the test. This will correspond to move in

several directions at once.

Objective
function

* State Space

Figure Ridges

Plateau:

It is a flat area of search space in which the m@igringhave same value. So it is very difficult to
calculate the best direction. So to get out of #itisation, make a big jump in any direction, whigt
help to move in a new direction this is the besy teehandle the problem like plateau.

Objective
Function

" State Space

Figure Plateau
KNOWLEDGE

Knowledge is the collection of facts, inferenceeruletc. which can be used for a particular purpose.
Knowledge requires the use of data and informaticombines relationships, correlations, depenigsnc

with data and information.
The basic components of knowledge are:

1) A set of collected data

2) A form of belief or hypothesis

3) Akind of information.
Knowledge is different from data. Data is the odtilen of raw materials where as knowledge is the
collection of some well specified inference rulesl dacts. Knowledge is also different from belieta
hypothesis. Belief is any meaningful and coheraptession that can be represented. Belief mayuse tr
or false. A hypothesis is a justified belief thatiot known to be true. A hypothesis is a beliefcihs
backed up with some supporting evidence but it stdlybe false. So knowledge can be defined as true

justified knowledge.

KNOWLEDGE BASED SYSTEMS

Knowledge based systems get their power from tlpereXknowledge that has been coded into facts,
rules, heuristics and procedures. The knowledgtoi®d in a knowledge base separate from the dontro
and inferencing components. Knowledge is importamtl essential for knowledge based intelligent

behaviour.

Input, Output Unit Inference Control g Knowledge Base

Unit

Figure A typical Knowledge based system

Any choice of representation will depend on thestg problem to be solved and the inference methods
available. Knowledge may be vague, contradictorinoomplete. Thus, knowledge is information about
objects, concepts and relationships that are agbtorexist in a particular area of interest.

TYPE OF KNOWLEDGE

The categorisation of knowledge is very much lamge interesting. They can be of following types:

Declarative knowledge

It is the passive knowledge expressed as stateroefdasts about the world. It gives the simple saahd
ideas about any phenomenon. It means just the semiaion of facts or assertions. This tells thalto
description about the situation. For example, thetsf about an organization may be its buildings,
location, no. of departments, no. of employeesTte. facts may be of two types i.e. static and thina
The static facts do not change with time wherehasdiynamic facts change with time. For example, the

name and location of an organization is permarigurttsome additional departments may be added.

Procedural knowledge

Procedural knowledge is the compiled knowledgetediao the performance of some task. For example
the steps used to solve an algebric equation caxfressed as procedural knowledge. It also ernadica
the limitations of declarative knowledge i.e. deateve knowledge tells about the organization hut i
cannot tell how the employees are working in thgtnization and how the products are developed. But
procedural knowledge describes everything aboubthanization by using production rules and dynamic

attributes.
For example, If: All the employees are very hardirmg
They are very punctual
They have productive ideas.
Then: Large no. of products can be produced wihiery limited time period.
The advantages of using procedural knowledge af@las/s:

1) Domain specific knowledge can be easily represented

2) Extended logical inferences, such as default reagdacilitated.

3) Side effects of actions may be modeled.
Some disadvantages of procedural knowledge are

1) Completeness: In procedural knowledge not all cas®sbe represented.
2) Consistency: Not all deductions may be correct.
3) Modularity: Changes in knowledge base might havedaching effects.

Inheritable knowledge
There are many situations in the world, where thgat of an event inherits some properties of that

particular event or any other event.

For example, consider a college. A college hasatefeatures like classrooms, teachers, play ground
furniture, students etc. Besides these, therebgibome general concepts regarding the functiofitige
college, like it will have time table for each das fee deposit plan, examination pattern, counsgule

etc. It can have many more deep concepts like planeof students etc. Now, if we say “A is a Collég
then A will automatically inherits all the feature$ the college. It may be possible that X has some
additional features. The inheritable knowledge iagthmmatically represented below. Here, the
relationshiphas’ indicates the silent features or attributes ‘@d’ represents the variable or instance of
that type. A inherits all the properties of collegal has one additional feature of having maleestisd In

this type of knowledge, data must be organizedaneerarchy of classes. The arrows representdimnd p
from obiject to its value in the diagram. Boxed rodepresent the objects and values of attributes of

objects.

has

has

F L
| Teachers | ‘ Furniture |

Onlv Male
Students

Figure College Attribute representation

Relational Knowledge

Relational knowledge is made up of objects comgjstif attributes and corresponding associated salue
In this type of knowledge, the facts are represkateset of relations in a tabular form. The tabbees or

captures all the hidden attributes of objects.

For example the knowledge about doctors may beessiomed in figure .

Department Quialification Height

Eye P.HD 5.0
Kidney P.HD
Surgery P.HD

Medicine P.HD

Figure Knowledge about Doctor

This form of representation is the simplest and lbarused in database systems. But this representati
cannot store any semantic, information. For examfitem this information we cannot answer the

guestions like “What is the name of the doctor"?How many doctors are in eye department™?

Inferential Knowledge

The knowledge, which can use inference mechanismus® this knowledge is called inferential
knowledge. The inheritance property is a very pdwefiorm of inferential knowledge. The inference
procedures implement the standard logic rules feffémce. There are two types of inference procedure
like forward inference and backward inference. Fodvinference moves from start state to goal state
whereas backward inference moves from goal statstand state. In this type of knowledge several

symbols are generally used like(universal quantifier) {existential quantifier)~ (arrow indicator) etc.
For example: All cats have tails
0 X: cat (x) - has tail (x)
Advantages:

1) A set of strict rules are defined which can be usedkerive more facts.
2) Truths of new statements can be verified.
3) It gives guarantee about the correctness.

4) Many inference procedures available to implemearidsrd rules of logic.

Heuristic Knowledge

This type of knowledge is fully experimental. THimowledge requires some judgments about any
performance. One can guess a good thing and aksaam think bad thing. But good performances are
generally taken in heuristic knowledge. For examglgpose it is asked that “Ram will score how much
percentage in his final semester?” Then the ansmight be 80%, 70%, 30% or 95%. The individual
answers of this question based on the heuristizvieuge. The answer would be based on various factor
such as past performance, his talent etc. If légipus semester percentage was 78%, then if ohsayil

he will secure 10% in this semester then obviohslhas not any knowledge about Ram.

Tacit Knowledge

This kind of knowledge is acquired by experiencacif knowledge is subconsciously understood and
applied, difficult to articulate and formalize. Bhiype of knowledge is developed from direct expare
and action. This knowledge is usually shared thnokighly interactive conversation, story tellingdan
experience. It also includes cognitive skills sashintuition as well as technical skills such asftcand
know-how. Tacit knowledge cannot be transmittefbiteeit is converted into words, models or numbers
that can be understood. Tacit knowledge can baektfin two dimensions, such as technical dimension
and cognitive dimension. In technical dimensionhhigsubjective and personal insights, intuitionsl an
inspirations derived from long experience. The digiens such as beliefs, ideals, principles, vahras

emotions fall in the category of cognitive dimemsio

Explicit Knowledge

This knowledge is formalized, coded in several ratlanguages (English, Iltalian and Spanish) or
artificial languages (UML, Mathematics etc). Thieokvledge can be easily transmitted. It includes
theoretical approaches, problem solving, manualsdatabase. As explicit knowledge, it was the fiost
be or, at least, to be archived. Tacit and explcibwledge are not totally separate, but mutually
complementary entities. Without any experience, caanot truly understand. Explicit knowledge is
playing an increasingly large role in organizatand it is considered by some to be the most impbrta
factor of production in the knowledge economy. linagan organization without procedure manuals
product literature or computer software. Also watkplicit knowledge, some tacit knowledge is recqgire
to run the business in an organization. Withoutliekgknowledge, the organization is simply hasesaz

performance.

Research Knowledge
There are many standards for the generation atidatrppraisal of research knowledge, but judgimey
quality of knowledge in this source is not withdalifficulty. There are disputes about the nature and

content of standards in areas such as qualitattgearch, and the implementation of standards is

sometimes weak so that conformity with them is metessarily a guarantee of quality. This type of
knowledge is very useful for researchers to imptitneeresearch quality.

KNOWLEDGE ACQUISITION

Knowledge acquisition is the gathering or collegtimowledge from various sources. It is the procdss
adding new knowledge to a knowledge base and ngfior improving knowledge that was previously
acquired. Acquisition is the process of expandihg tapabilities of a system or improving its
performance at some specified task. So it is the gdented creation and refinement of knowledge.
Acquired knowledge may consist of facts, rules,cemts, procedures, heuristics, formulas, relatigssh
statistics or any other useful information. Souné¢hese knowledges may be experts in the domain of
interest, text books, technical papers, databgsertee journals and the environments. The knowledge
acquisition is a continuous process and is spread entire lifetime. Example of knowledge acquisiti

is machine learning. It may be process of autonankmowledge creation or refinements through the use
of computer programs. The newly acquired knowleslgeuld be integrated with existing knowledge in
some meaningful way. The knowledge should be ateunan-redundant, consistent and fairly complete.
Knowledge acquisition supports the activities ldeatering the knowledge and maintaining knowledge
base. The knowledge acquisition process also sgtanuic data structures for existing knowledge to

refine the knowledge.

The role of knowledge engineer is also very impartaith respect to develop the refinements of

knowledge. Knowledge engineers may be the profeaiowho elicit knowledge from experts. They

integrate knowledge from various sources like @gatnd edits code, operates the various interactive

tools, build the knowledge base etc.

[Expert 1]
I

Enowledge
Acquisition

Edit
Knowledge | Knowledge Engineer]

Base Manage Encoding

!

[Encoding

!

Computer
Knowledge Base

I

/ Manage Acquisition

Expert Svstem
Tools

I

[Client 1]

Figure Knowledge Engineer's Roles in Interactive Kowledge Acquisition

Knowledge Acquisition Techniques
Many techniques have been developed to deduce kdgelfrom an expert. They are termed as

knowledge acquisition techniques. They are:

a) Diagram Based Techniques

b) Matrix Based Techniques

c) Hierarchy-Generation Techniques

d) Protocol Analysis Techniques

e) Protocol Generation Techniques

f) Sorting Techniques
In diagram based techniques the generation andfusencept maps, event diagrams and process maps.
This technique captures the features like “why, nylweho, how and where”. The matrix based techniques

involve the construction of grids indicating sudhings as problems encountered against possible

solutions. Hierarchical techniques are used todbhlierarchical structures like trees. Protocol gsial
technique is used to identify the type of knowletlge goals, decisions, relationships etc. The qurot
generation techniques include various types of nildas like structured, semi-structured and

unstructured.

The most common knowledge acquisition techniqudaise-to-face interview. Interview is a very
important technique which must be planned careflllye results of an interview must be verified and
validated. Some common variations of an unstrudtirterview are talk through, teach through andirea
through. The knowledge engineer slowly learns atfoeiproblem. Then can build a representation ®f th
knowledge. In unstructured interviews, seldom pitesi complete or well-organized descriptions of
cognitive processes because the domains are ggreaiplex. The experts usually find it very diffic

to express some more important knowledge. Dataiahiare often unrelated, exists at varying leaéls
complexity, and are difficult for the knowledge emegr to review, interpret and integrate. But oe th
other hand structured interviews are systematicl gméented process. It forces an organized
communication between the knowledge engineer aecetpert. In structured interview, inter personal

communication and analytical skills are important.

KNOWLEDGE REPRESENTATION

Knowledge representation is probably, the most imgpd ingredient for developing an Al. A
representation is a layer between information asibkes from outside world and high level thinking
processes. Without knowledge representation imigossible to identify what thinking processes are,

mainly because representation itself is a substrétu a thought.

The subject of knowledge representation has beessaged for a couple of decades already. For many
applications, specific domain knowledge is requiledtead of coding such knowledge into a system in
way that it can never be changed (hidden in theralv implementation), more flexible ways of
representing knowledge and reasoning about it haea developed in the last 10 years.

The need of knowledge representation was felt €y aa the idea to develop intelligent systems.HWit
the hope that readers are well conversant withfabe by now, that intelligent requires possessibn o
knowledge and that knowledge is acquired by usdnous means and stored in the memory using some
representation techniques. Putting in another \wagwledge representation is one of the many ctitica
aspects, which are required for making a computbae intelligently. Knowledge representation iefer
to the data structures techniques and organizingtioos that are used in Al. These include semantic

networks, frames, logic, production rules and cpta graphs.

Properties for knowledge Representation

The following properties should be possessed hyoavledge representation system.

Representational Adequacylt is the ability to represent the required knadge.

Inferential Adequacy: It is the ability to manipulate the knowledge eg@nted to produce new
knowledge corresponding to that inferred from thiginal.

Inferential Efficiency: The ability to direct the inferential mechanismgoithe most productive
directions by storing appropriate guides.

Acquisitional Efficiency: The ability to acquire new knowledge using autdomahethods

wherever possible rather than reliance on humamnention.

Syntax and semantics for Knowledge Representation

Knowledge representation languages should havéspregntax and semantics. You must know exactly
what an expression means in terms of objects irredabworld. Suppose we have decided that “red 1”
refers to a dark red colour, “carl” is my car, caranother. Syntax of language will tell you whiafithe
following is legal: redl (carl), redl carl, cardd), redl (carl & car2)?

Semantics of language tell you exactly what ane&sgion means: for example, Pred (Arg) means tkat th
property referred to by Pred applies to the ohjefdrred to by Arg. E.g., properly “dark red” amgsito

my car.

Beal World Peal World

Map to KR Language Map back to real word

Representation of factsin »| New conclusions
world Inference

Computer Computer

Types of Knowledge Representation
Knowledge can be represented in different ways. Sthecturing of knowledge and how designers might
view it, as well as the type of structures usecerimdlly are considered. Different knowledge

representation techniques are

a. Logic
b. Semantic Network
c. Frame

d. Conceptual Graphs
e. Conceptual Dependency
f. Script

Logic

A logic is a formal language, with precisely defineyntax and semantics, which supports sound
inference. Different logics exist, which allow ytm represent different kinds of things, and whitibva
more or less efficient inference. The logic maydiféerent types like propositional logic, predicdbgic,
temporal logic, description logic etc. But reprdsen something in logic may not be very natural and

inferences may not be efficient.

First— order Logic

Propositional Logic

Predicate Logic

Figure

Semantic Network

A semantic network is a graphical knowledge repregi®mn technique. This knowledge representation
system is primarily on network structure. The seticanetworks were basically developed to model
human memory. A semantic net consists of nodesemted by arcs. The arcs are defined in a variety of

ways, depending upon the kind of knowledge beipgasented.

The main idea behind semantic net is that the mgamifi a concept comes, from the ways in which it is
connected to other concepts. The semantic netvmkists of different nodes and arcs. Each nodelghou
contain the information about objects and eachshmuld contain the relationship between objects.
Semantic nets are used to find relationships anutnjects by spreading activation about from each of

two nodes and seeing where the activation meptioisess is called intersection search.

For example: Ram is a boy.

Figure

Semantic network by using Instances

The semantic network based knowledge representatémmanism is useful where an object or concept is
associated with many attributes and where relatipssbetween objects are important. Semantic nets
have also been used in natural language reseanmdptesent complex sentences expressed in English.
The semantic representation is useful becauseottiges a standard way of analyzing the meaning of
sentence. It is a natural way to represent relshigs that would appear as ground instances ofyina
predicates in predicate logic. In this case we a@ate one instance of each object. In instancedbas
semantic net representations some keywords arelikeets A, INSTANCE, AGENT, HAS-PARTS etc.

Consider the following examples:

1. Suppose we have to represent the sentence “Siangiiis.

Sima Girl

E

Figure

2. Ram is taller than Hari

IS TALLER
THAN

It can also be represented as

“Mouse is a Rodent and Rodent is a mammal. Mousdédeth and etas grass”. Check whether the

sentence mammal has teeth is valid or not.]

(©

Mammal

E

ISA

Rodent

E

IS A

Mouse

Partitioned Semantic Network

Some complex sentences are there which cannotpbesented by simple semantic nets and for this we

have to follow the technique partitioned semanétworks. Partitioned semantic net allow for

1. Propositions to be made without commitment to truth

2. Expressions to be quantified.

In partitioned semantic network, the network iskem into spaces which consist of groups of nodes an
arcs and regard each space as a node.

Let us consider few examples.
Draw the partitioned semantic network structuretiier followings:

a) Sima is eating an apple.

Sima

E

5

Acssailant

Figure
b) All Sima are eating an apple.

B
>

Assailant

c) All Sima are eating some apple.

=

Assailant

d) All men are mortal

Figure

e) Every dog has bitten a shopkeeper

Shopkeeper

ISA

.
L

Assailant

Every dog in town has bitten a shopkeeper.

Dog Shopkeeper

+ r

Town Dogs

+

d

Assailant

Figure

NOTE: On the above semantic network structures, themmcst “IS A” is used. Also two terms like
assailant and victim are used. Assailant meanswthigh the work is done” and that of victim refecs t
“on which the work is applied”. Another term naméhs, which refers to General Statement. For GS,
make a node g which is an instance of Gs. Evenyeht will have at least two attributes. Firstijoam
that states which a relation is being assertedor@y, one or more for alll{) or there exists{)

connections which represent universally quantiéakdriables.

FRAME

A frame is a collection of attributes and assodatalues that describe some entity in the worldies

are general record like structures which consist ofllection of slots and slot values. The sloéy tme of

any size and type. Slots typically have names atgkeg or subfields called facets. Facets may ase h
names and any number of values. A frame may hay@amber of slots, a slot may have any number of
facets, each with any number of values. A slot a@imstinformation such as attribute value pairsadkf
values, condition for filling a slot, pointers tther related frames and procedures that are aetiwahen
needed for different purposes. Sometimes a fraraerithes an entity in some absolute sense, sometimes
it represents the entity from a particular pointvigfw. A single frame taken alone is rarely usefe

build frame systems out of collection of framed @ connected to each other by virtue of the taat

the value of an attribute of one frame may be aroftame. Each frame should start with an open

parenthesis and closed with a closed parenthesis.

Syntax of a frame

(<frame name>
(<=slot]l> (=facet]l> <wvalue 1= <value n;=)

(=facet?> <valuel> <value n3=)

(=facet n> <valuel> =value ny>=))
(<slot 2= (=facetl> <value 1= <value n;>)
(=facet2><wvaluel>_.____ .. . <wvalue n;>)

Let us consider the below examples.

1) Create a frame of the person Ram who is a doctoHe is of 40. His wife name is Sita. They
have two children Babu and Gita. They live in 100 s street in the city of Delhi in India. The
Zip code is 756005.

(Ram

(PROFESSION (VALUE Doctor))

(AGE (VALUE 40))

(WIFE (VALUE Sita))

(CHILDREN (VALUE Bubu, Gita))

(ADDRESS
(STREET (VALUE 100 kps))
(CITY(VALUE Delhi))
(COUNTRY(VALUE India))

(ZIP (VALUE 756005))))

2) Create a frame of the person Anand who is a chastry professor in RD Women's College.

His wife name is Sangita having two children Ruparad Shipa.

(PROFESSION (VALUE Chemistry Professor))
(ADDRESS (VALUE RD Women's College))
(WIFE (VALUE Sangita))

(CHILDREN(VALUE RupaShipa)))

3) Create a frame of the person Akash who has a whimaruti car of LX-400 Model. It has 5
doors. Its weight is 225kg, capacity is 8, and mége is 15 km /lit.

(Akash
(CAR (VALUE Maruti))
(COLOUR (VALUE White))
(MODEL (VALUE LX-400))
(DOOR (VALUE 5))
(WEIGHT (VALUE 225kg))
(CAPACITY (VALUE 8))
(MILAGE (VALUE 15km/lit)))

The frames can be attached with another frame andceeate a network of frames. The main task of
action frame is to provide the facility for proceduattachment and help in reasoning process. Raagso
using frames is done by instantiation. Instantrafwocess begins, when the given situation is nealtch
with frames that are already in existence. Theamiag process tries to match the current probleate st
with the frame slot and assigns them values.Theegalssigned to the slots depict a particular gituat
and by this, the reasoning process moves towagidsk The reasoning process can be defined awfilli

slot values in frames.

Conceptual Graphs

It is a knowledge representation technique whiahsisis of basic concepts and the relationship twe
them. As the name indicates, it tries to captueeddncepts about the events and represents thém in
form of a graph. A concept may be individual or ggn An individual concept has a type field follegv

by a reference field. For example person : Ramekperson indicates type and Ram indicates reference

An individual concept should be represented withirectangle in graphical representation and within
square bracket in linear representation. The geremncept should be represented within an oval in
graphical representation and within a parenthesiinear representation. Conceptual graph is acbasi
building block for associative network. Concepte iAGENT, OBJECT, INSTRUMENT, PART are
obtained from a collection of standard conceptsw Mencepts and relations can be defined from these
basic ones. These are also basic building bloclagspciative network. A linear conceptual graphns
elementary form of this structure. A single conc@pgraph is roughly equivalent to a graphical chag

of a natural language sentence where the worddegiieted as concepts and relationships.
Consider an example

“Ram is eating an apple “

Person: Ram Agent ° Fruit: Apple

Concept Concept

Generic

Figure Graphical Representation

[Person: Ram]e——{Agent)}+—— [Eat]— (Object}——[Fruit: Apple]

Conceptual Dependency

It is an another knowledge representation techniguehich we can represent any kind of knowledge. |
is based on the use of a limited number of priraitboncepts and rules of formation to represent any
natural language statement. Conceptual dependemegryt is based on the use of knowledge
representation methodology was primarily developedunderstand and represent natural language

structures. The conceptual dependency structuress evigiinally developed by Roger C SChank in 1977.

If a computer program is to be developed that caderstand wide phenomenon represented by natural
languages, the knowledge representation shouldokenful enough to represent these concepts. The
conceptual dependency representation captures maxconcepts to provide canonical form of meaning
of sentences. Generally there are four primitivesnfwhich the conceptual dependency structure ean b

described. They are

a. ACTS : Actions
b. PPs : Objects (Picture Producers)
c. AAs : Modifiers of Actions (Action Aiders)

d. PAs : Madifiers of PPs (Picture Aiders)
e. TS : Time of action
Conceptual dependency provides both a structureaasykcific set of primitives at a particular leoél

granularity, out of which representation of patidcipieces of information can be constructed.

For example

P O R

[= ATRANS <— book +—

Where«: Direction of dependency
Double arrow indicates two way link between aetod action.
P: Past Tense
ATRANS: One of the primitive acts used by the tlyeo
O: The objective case relation
R: Recipient case Relation
In CD, representation of actions are built froneaaf primitive acts.

1) ATRANS: Transfer of an abstract relationship (give, accape)

2) PTRANS: Transfer the physical location of an object (Gome, Run, Walk)
3) MTRANS: Transfer the mental information (Tell)

4) PROPEL: Application of physical force to an object (puphll, throw)
5) MOVE: Movement of a body part by its owner (kick).

6) GRASP: Grasping of an object by an action (clutch)

7) INGEST: Ingestion of an object by an animal (eat)

8) EXPEL: Expel from an animal body (cry)

9) MBUILD: Building new information out of old (decide)

10) SPEAK: Production of sounds (say)

11) ATTEND: Focusing of a sense organ towards a stimulusgihjst

The main goal of CD representation is to captueeitttiplicit concept of a sentence and make it ekplic

In normal representation of the concepts, besides and object, other concepts of time, locatsmurce

and destination are also mentioned. Following cptuze tenses are used in CD representation.

1) : Object case relationship
2) : Recipient case relationship
3) . Past

4) : Future

5) Ni : Present

6) : Transition

7 : Start Transition

8) : Finisher Transition

9) : Continuing

10)? . Interrogative

11)/ : Negative

12)C : Conditional

Also there are several rules in conceptual depearyden

Rule 1: PP <;>ACT

It describes the relationship between an actoramnelvent, he/she causes.
E.g. Ram ran

P
Ram <:> PTRANS

Where P: Past Tense

Rule 2: PP <:> PA

It describes the relationship between a PP and Ré&evthe PA indicates one characteristics of P§. E.

Ram is tall

Ram , Nil, Tallor RamENﬂ: HeightAverage)

Rule 3: PP PP
It describes the relationship between two PPs whieeePP is defined by other.

E.g. Ram is a doctor

Rule 4: PP or PA

t v

PA PP

It describes the relationship between the PP andiPAre PA indicates one attributes of PP.

E.g. A nice boy is a doctor

Nil
Boy (:1> Doctor

T

Nice
Rule 5: PP
PP
It describes the relationship between 3 PP’s whaeePP is the owner of another PP.

E.g. Ram’s Cat

Cat

T

Ram
Rule 6:Act «—Q PP Where O: Object

It describes the relationship between the PP and. Athere PP indicates the object of that action. E.

Ram is eating an apple.

Ram : ; INGEST

o

Apple

R *» Recipient
Rule 7:ACT 4——]

Donner
(R: Recipient)

Here one PP describes the recipient and anothdegd?ibes the donner

E.g. Rahul gave a book to sourav.

Book

I
Rule 8: ACT q—ﬁ (I: tnsment used in the action)

PP,
Here PR indicates the agent and HRdicates the object that is used in the action.

E.g. Tapash ate the ice cream with the spoon.

Tapash

I
Tapash () INGEST "—H

O Spoon
Ice cream

D

ACT +—

PP,

Here D indicates destination, ARdicates destination and PRdicates the source.

E.g. the bucket is filled with milk.

Nil D » Milk (> x)

Bucket ¢ »PTRANS +—

S\ Milk (< x)

xindicates the average milk and the source i.e. dtuskdry which is hidden.

Rule 10: T

PP<:> ACT

It describes the relationship between a conceptatadin and the time at which the event is described

(T: Time)

occurs.

E.g. Sita ate the apple yesterday.

Yesterday
Sita < » INGEST

0
Apple

Place

PP <:> ACT

It describes the relationship between a concepgttadin and the place at which it is occurred.

E.g. Shanu ate the apple at VRS hotel yesterday

VES Hotel
Shanu < »INGEST

Yesterday
O
Apple

Rule 12;

Shanu INGEST

PP <7 ACT

It describes the relationship between one concépdiian with another.

E.g. while | was going to college, | saw a snake

D CP

Eve
College

Home

(Where CP: Conscious Processor i.e. the combinafiali sense organs like eye, ear, nose etc.)

By using the above rules we can represent any rsemteet us visualize few examples on conceptual
dependency.

1) Sima gave a book to Niki

P R » Niki
Sima & ATRANS]

Sima

(0]
Where O: Ohject, P: Past Tense, R: Recipient, SRRaBook: PP, Niki: PP, ATRANS: give
2) Bhabani c#sclan apple with a knife

3) Sanjay drove the car fast

P D » Speed (> x)
Sanjay < PTRANS*—
T 0 Speed (=x)

The rose v@a%‘given by Rupa to Anand

P R
Rupa = ATRANS]

TD

Rose

Shruti pushed the door.

P
shruti < PROPEL
O

The man took a bojk

L)

P O
Man &= ATRANS *——Book

Here man is the doctor and book is the object @fittion took.
My grandfather told me a story

P O
Grandfather &= MIFANS*— Story

8) Ira gave the man a dictionary

P 0
Ira = ATEANS+— book

SCRIPT

It is an another knowledge representation techni§eeipts are frame like structures used to repitese
commonly occurring experiences such as going tauwesnt, visiting a doctor. A script is a structthat
describes a stereotyped sequence of events intiauper context. A script consist of a set of slots
Associated with each slot may be some informathmuawhat kinds of values it may contain as welhas
default value to be used if no other informatiomvsilable. Scripts are useful because in theweald,
there are no patterns to the occurrence of evétisse patterns arise because of clausal relatipmshi
between events. The events described in a script fogiant casual chain. The beginning of the cigin
the set of entry conditions which enable the fingtnts of the script to occur. The end of the cimithe
set of results which may enable later events tamncthe headers of a script can all serve as itmlisa
that the script should be activated.

Once a script has been activated, there are atyafiavays in which it can be useful in interpretin
particular situation. A script has the ability toegdict events that has not explicitly been observad
important use of scripts is to provide a way ofliting a single coherent interpretation from a aziltan
of observation. Scripts are less general structinas are frames and so are not suitable for repties
all kinds of knowledge. Scripts are very usefulfgpresenting the specific kinds of knowledge fhick

they were designed.
A script has various components like:

1) Entry condition: It must be true before the events described énsttript can occur. E.g. in a
restaurant script the entry condition must be titamer should be hungry and the customer has

money.

2) Tracks: It specifies particular position of the script diga supermarket script the tracks may be

cloth gallery, cosmetics gallery etc.
3) Result: It must be satisfied or true after the events diesdrin the script have occurred.
e.g. In a restaurant script the result must beifrthe customer is pleased.

The customer has less money.

Probs: It describes the inactive or dead participantha gcript e.g. In a supermarket script, the
probes may be clothes, sticks, doors, tables, dditls

5) Roles: It specifies the various stages of the script. Ehga restaurant script the scenes may be

entering, ordering etc.

Now let us look on a movie script description adarg to the above component.

a) Script name : Movie

b) Track : CINEMA HALL

c) Roles : Customer(c), Ticket seller(TS), Ticket €er(TC), Snacks
Sellers (SS)

Probes : Ticket, snacks, chair, money, Ticketrtcha
Entry condition : The customer has money

The customer has interest to watch movie.

6) Scenes:
a. SCENE-1 (Entering into the cinema hall)
C PTRANS C into the cinema hall

C ATTEND eyes towards the ticket counter
PTRANS C towards the ticket counters
ATTEND eyes to the ticket chart
MBUILD to take which class ticket
MTRANS TS for ticket

C ATRANS money to TS

TS ATRANS ticketto C

SCENE-2 (Entering into the main ticket check gate)
C PTRANS C into the queue of the gate

C ATRANS ticket to TC

TC ATTEND eyes onto the ticket

TC MBUILD to give permission to C for entering dnthe hall
TC ATRANS ticket to C

C PTRANS C into the picture hall.

SCENE-3 (Entering into the picture hall)
C ATTEND eyes into the chair

TC SPEAK where to sit
C PTRANS C towards the sitting position
C ATTEND eyes onto the screen

SCENE-4 (Ordering snacks)
C MTRANS SS for snacks

SS ATRANS snacks to C
C ATRANS money to SS
C INGEST snacks

SCENE-5 (Exit)
C ATTEND eyes onto the screen till the end of yniet

C MBUILD when to go out of the hall
C PTRANS C out of the hall

7) Result:
The customer is happy

The customer has less money
Example 2: Write a script of visiting a doctor in ahospital

1) SCRIPT_NAME : Visiting a doctor
2) TRACKS : Ent specialist
3) ROLES : Attendant (A), Nurse(N), Chemist (C),
Gatekeeper(G), Counter clerk(CC), Receptionistf®tient(P),

Ent specialist Doctor (D), Medicine

Seller (M).

4) PROBES : Money, Prescription, Medicine, Sittingich

Doctor’'s table, Thermometer, Stetho scope, writbagl, pen,

torch, stature.

5) ENTRY CONDITION: The patient need consultation.

Doctor’s visiting time on.

6) SCENES:
a. SCENE-1 (Entering into the hospital)
P PTRANS P into hospital

P ATTEND eyes towards ENT department
P PTRANS P into ENT department
P PTRANS P towards the sitting chair

b. SCENE-2 (Entering into the Doctor's Room)
P PTRANS P into doctor’s room

P MTRANS P about the diseases
SPEAK D about the disease
MTRANS P for blood test, urine test
ATRANS prescription to P
PTRANS prescription to P.

P PTRANS P for blood and urine test

c. SCENE-3 (Entering into the Test Lab)
P PTRANS P into the test room

P ATRANS blood sample at collection room
P ATRANS urine sample at collection room

P ATRANS the examination reports

d. SCENE-4 (Entering to the Doctor’'s room with Test r@orts)
P ATRANS the report to D

D ATTEND eyes into the report
D MBUILD to give the medicines

D SPEAK details about the medicine to P

P ATRANS doctor's fee
P PTRANS from doctor’'s room

e. SCENE-5 (Entering towards medicine shop)
P PTRANS P towards medicine counter

P ATRANS Prescription to M
ATTEND eyes into the prescription
MBUILD which medicine to give
ATRANS medicines to P
ATRANS money to M

P PTRANS P from the medicine shop

7) RESULT:
The patient has less money

Patient has prescription and medicine.

Advantages And Disadvantages Of Different KnowledgRepresentation

SI. | Schem
No.

Advantage Disadvantage

Production Simple syntax Hard to follow Hierarchies

rules Easy to understand

Inefficient for large systems
Simple interpreter Poor at representing structur
Highly Modular descriptive knowledge.

Easy to add or modify

Semanti Easy to follow hierarchy Meaning attached to nodes mig

Easy to trace associations be ambiguous
Flexible Exception handling is difficult

Difficult to program

Expressive Power
Easy to set up slots for ne

properties and relations

Easy to create specialize

Difficult to program
Difficult for inference

Lack of inexpensive software

procedure

Ability to predict events
A single coheren

interpretation may be buil

Less general than frames

May not be suitable to represent

kinds of knowledge

up from a collection o

observations

Formal Logic Facts asserted independen Separation of representation and

of use processing
Assurance that only vali Inefficient with large data sets
consequence are asserted Very slow with large knowledg

Completeness bases

HUMAN ASSOCIATIVE MEMORY (HAM)

This model was developed by John Anderson and GoBadaver (1973). This memory is organized as a
network of propositional binary trees. When aniinfant asserts a statement to HAM, the system parses
the sentence and builds a binary tree representatis HAM is informed of new sentences, they are
parsed and formed into new tree like structurel extisting ones. When HAM is posed with a queiy it

formed into a tree structure called a probe. Thigcture is then matched against memory structiomes

the best match. The structure with the closestimiatased to formulate an answer to the query. Miatc

is accomplished by first locating the leaf nodesriamory that match leaf nodes in the probe. The
corresponding links are then checked to see if iy the same labels and in the same order. Hnehse
process is constrained by searching only node grthgi have the same relation links. Access tosode

HAM is accomplished through word indexing in LISP.

In HAM, nodes in the tree are assigned with uniquebers, while links are labeled with some function

They are given below:
C : Context for free fa
Set membersh
a fact
a locatior
An objec

Predicat

R : Relatior
S . Subjec
T : Time (Present, past, futu

On the basis of above function, we can represemmussentences in HAM. Let us look some example

by using the above functions.

1) Sony met Rahul

Figure

On the above Ham Structure the time is the past)(rmg Sonly did the work so sonly is the subjext a

Rahul will be the object and the relation is met.

2) Ram is eating an apple at Nico Park.

ANV

Mico Park Present Ram 4

0

lce cream

3) Sima is eating ice cream as well as chips at Gdndik.

A
ZANVAN

Gandhi Present Sima

AN

Ice cream, chips

Figure

4) He came to me.

N

VARVAN
/N

Came

Figure
5) In aroom Muna touched Lily.
1

2 3

L/ \T S/\
Room past Muna 4
Park

Module 2

MIN-MAX Search

Games have always been an important applicatianfareheuristic algorithms. In playing games whose
state space may be exhaustively delineated, tiheapyidifficulty is in accounting for the actions thfe
opponent. This can be handled easily by assumatghle opponent uses the same knowledge of the stat
space as us and applies that knowledge in a censistfort to win the game. Minmax implements game

search under referred to as MIN and MAX.

The min max search procedure is a depth first,dipited search procedure. The idea is to stathet
current position and use the plausible move geoetatgenerate the set of possible successor ositi
To decide one move, it explores the possibilitie&ioning by looking ahead to more than one stdps T
is called a ply. Thus in a two ply search, to dedige current move, game tree would be explored two

levels farther.

Consider the below example

Figure Tree showing two ply search

In this tree, node A represents current state gpfgame and nodes B, C and D represent three pessibl
valid moves from state A. similarly E, F, G repmasepossible moves from B, H, | from C and J, K, L,
from D. to decide which move to be taken from Ae thifferent possibilities are explored to two next
steps. 0, -3, 3, 4, 5, 6, -5, 0 represent thetytitalues of respective move. They indicate goosidsa
move. The utility value is back propagated to atwresode, according to situation whether it is rpéx

or min ply. As it is a two player game, the utilitglue is alternatively maximized and minimizedrélas

the second player's move is maximizing, so maximutue of all children of one node will be back
propagated to node. Thus, the nodes B, C, D, getv#iues 4, 5, 6 respectively. Again as ply 1 is
minimizing, so the minimum value out of these 4és propagated to A. then from A move will be take
to B.

MIN MAX procedure is straightforward recursive pedltire that relies on two auxiliary procedures that
are specific to the game being played.

1. MOVEGEN (position, player): the move generator whieturns a list of nodes representing the

moves that can be made by player in position. Ws ma&e 2 players namely PLAYER-TWO in a
chess problem.

STATIC (position, player): the static evaluatiométion, which returns a number representing the
goodness of position from the standpoint of player.

We assume that MIN MAX returns a structure contajriboth results and that we have two functions,
VALUE and PATH that extract the separate componeftsunction LAST PLY is taken which is
assumed to evaluate all of the factors and tometlRUE if the search should be stopped at the otrre
level and FALSE otherwise.

MIN MAX procedure takes three parameters like artgaosition, a current depth of the search and the

players to move. So the initial call to compute lblest move from the position CURRENT should be
MIN MAX (CURRENT, 0, PLAYER-ONE)
(If player is to move)
Or
MIN MAX (CURRENT, 0, PLAYER-TWO)
(If player two is to move)

Let us follow the algorithm of MIN MAX

Algorithm: MINMAX (position, depth, player)

1. If LAST PLY (position, depth)
Then RETURN VALUE = STATIC (position, player)
PATH = nil.
Else, generate one more ply of the tree by caliirgfunction MOVE_GEN (position, player)
and set SUCCESORS to the list it returns.
If SUCESSORS is empty,

THEN no moves to be made
RETURN the same structure that would have beemmedlif LAST PLY had returned TRUE.
If SUCCESORS is not empty,
THEN examine each element in turn and keep tratckeobest one.
5. After examining all the nodes,
RETURN VALUE = BEST- SCORE
PATH =BEST- PATH

When the initial call to MIN MAX returns, the bestove from CURRENT is the first element in the
PATH.

Alpha- Beta (a-p) Pruning

When a number of states of a game increase amhitot be predicted about the states, then we @n us
the method pruning. Pruning is a method which &dus reduce the no. of states in a game. Alphia be
is one such pruning technique. The problem withmaix search is that the number of game states it has
to examine is exponential in the number of move¥oldunately we cannot eliminate the exponent, but
we can effectively cut it in half. Alpha-beta progiis one of the solutions to the problem of minmax
search tree. Whem pruning is applied to a standard minmax treegtitnmns the same move as minmax
would, but prunes away branches that cannot pgsisitilience the final decision.

The idea of alpha beta pruning is very simple. Alpieta search proceeds in a depth first fashitrerat
than searching the entire space. Generally twoegalcalled alpha and beta, are created durincgetirels

The alpha value is associated with MAX nodes aedotita value is with MIN values. The value of alpha
can never decrease; on the other hand the valbetafnever increases. Suppose the alpha value of A
MAX node is 5. The MAX node then need not considery transmitted value less than or equal to 5
which is associated with any MIN node below it. dpis the worst that MAX can score given that MIN
will also do its best. Similarly, if a MIN has athevalue of 5, it need not further consider any MAdde
below it that has a value of 6 or more.

The general principal is that: consider a n@dsomewhere in the search tree, such that playemhas
choice of moving to that node. If player has adyethoiceK either at the parent node wgfor at any
choice point further up, thei will never be reached in actual play. So once aeehfound out enough

aboutn (by examining some of its descendents) to reastctinclusion, we can prune it.

We can also say thati™is the value of the best choice we have founthsat any choice point along the
path for MAX. Similarly ‘B” is the value of the best choice we have foundascat any choice point

along the path for MIN. Consider the following exam

(=] [x][] L] L) [l fle]

® 0O H 6 6 ¢ 9 0

Figure

Here at MIN ply, the best value from three nodes4s5, 0. These will be back propagated towaods r
and a maximizing move 5 will be taken. Now the n&deas the value 8 is far more, then acceptedias it
minimizing ply. So, further node E will not be egptd. In the situation when more plies are considler
whole sub tree below E will be pruned. Similarlywi#0, p=7, all the nodes and related sub trees having

value less than 0 at maximizing ply and more thah minimizing ply will be pruned.

Alpha beta search updates the value @ihdp as it goes along and prunes the remaining brarahas
node as soon as the value of the current nodeowrkrio be worse than the currentandp value for
MAX or MIN respectively. The effectiveness of alptseta pruning is highly dependent on the order in

which the successors are examined suppose in ehgeee the branching factor is x and depth datfe

search needs examining oml¥/? nodes to pick up best move, insteact®for MINMAX.

Constraint Satisfaction Search

A constraint search does not refer to any spesédarch algorithm but to a layer of complexity adtted
existing algorithms that limit the possible solati®et. Heuristic and acquired knowledge can be
combined to produce the desired result a constsatisfaction problem is a special kind of search
problem in which states are defined by the valdes set of variables and the goal state specifiest @f
constraints that the value must obey. There areynpaoblems in Al in which the goal state is not
specified in the problem and it requires to be aisted according to some specific constraint. Exasp
of some constraint satisfaction search includegdeproblem, labeling graphs, robot path plannind an

cryptarithmatic problem etc.

A constraint satisfaction problem (CSP) is definpda set of variablesk{, x,----x,) and a set of
constraints d¢;, c,-----c,,). Each variablex; has a non empty domaid; of possible values. Each

constraintc; in values some subset of the variables and spedtiie allowable combination of values for

that subset. The search space of CSPS is oftemenfial. Therefore a number of different approadhes
the problem have been proposed to reduce the sspade and find a feasible solution in a reasonable
time based on the search space exploring and l@selection heuristics different algorithms and ba
developed for a CSP problem. The algorithms cadivided into two major categories such as complete

and incomplete algorithm.

Complete algorithms seek any solution or solutioing CSP or they try to prove that no solution itfte
categories like constraint propagation techniqueihvtries to eliminate values that are consisteitt
some constraints and systematic search technidMbih explores systematically the whole search
space. But on the other hand incomplete searchauettio not explore the whole search space. They
search the space either non-systematically oisiysgematic manner, but with a limit on some resaurc

They may not provide a solution but their compuotal time is reasonably reduced. They cannot be
applied to find all solutions or to prove that nausion exists. Let us look an algorithm to solve a

constraint satisfaction problem.

Algorithm:

1) Open all objects that must be assigned valuesanmlete solution.

2) Repeat until all objects assigned valid values.

3) Select an object and strengthen as much as pasBit#eset of constraints that apply to object.

4) If set of constraints is different from previoud #gen open all objects that share any of these
constraints. Remove selected objects.

5) If union of constraints discovered above defineslation, return solution.

6) If union of constraints discovered above definesmtradiction, return failure.

7) Make a guess in order to proceed. Repeat untiluiao is found.

8) Select an object with a number assigned valuergratrengthen its constraints.
PLANNING

The process of doing a sequence of actions toaehigoal is called planning. A plan is a represtéon

of the crude structure of the input scene by thr@ua object labels. The process of planning istom

up process to provide clues concerning which kndgdecan be applied to different parts of the scene.
The knowledge of the task world is representeddiy ef productions rules. Each rule in the bottgm u
process has a fuzzy predicate which describesrtpepies of relations between objects. Generhltyd

are various agents who act to plan. The environsnfemtan agent may be deterministic, finite, static
which change happens only when the agent acts.didueete environment includes the time factor,
objects, effects etc. These environments are calkeskical planning environments. On the other hand

the non classical planning environments are phrtiddservable and involves a different set of dtpons

and agent designs. Planning refers to the procksoroputing several steps of a problem solving
procedure before evaluation of that problem.

Computer cannot solve any problem without planning-or example, in 8-puzzle game, the computer
can't replace the tiles onto their positions withtlue planning procedure of that problem. When we
discuss the computer solution of the 8-puzzle gamhat we are really doing was outlining the way the
computer might generate a plan for solving it. Anpaiter could look for a solution plan in the sansyw
as a person who was actually trying to solve tleblem by moving tiles on a board. If solution stéps
the real world cannot be ignored or undone, thqulghning becomes extremely important. Although real
world steps may be irrevocable, computer simulatbthose steps is not. So we can circumvent the
constraints of the real world by looking for a cdetp solution in a simulated world in which
backtracking is allowed. After we find a solutiave can execute it in the real world. The fact thatcan
leave out properties of world states that areexaht to the problem at hand or that are not knisvane

of the powerful aspects of using a feature basquoagh. This aspect is particularly important is

describing the goal condition that we want the ageachieve by its actions.

Basic Components of a Planning System

When a particular problem will be solved, at thatet some specific rules regarding to that probleenta
be applied. Then apply the choosen rule to comihae@ew problem state that arises from its appdinat
Detect when a solution has been found and calctliatactive and inactive ends of that problem. Masi

components of a planning system are describedlas/fo

(a) States:For a planning process, the planners decomposgdtid into some environments. Then
environments are defined by some logical conditamd states. The problems can be viewed as
the task of finding a path from a given startingisto some desirable goal state. The state can be
viewed as a conjunction of positive literals. Faample, Rich A famous might represent the
state of a best agent.

(b) Goal: A goal is a specified state. To find a solutioratproblem using a search procedure is to
generate moves through the problem space untibhgjate is reached. In the context of game
playing programs, a goal state is one in which vire Wnfortunately, for interesting games like
chess, it is not usually, possible, even with adgplausible move generator, to search until a
goal state is found.

Actions: An action is specified en terms of the pre-coodii that must hold before it can be
executed and then the effects that ensue whemieisuted. For example, an action for running a
tiger from one location to another is

Action (Run (T, from, to),

PRECONDITION: At (T, from) A Tiger (T) A Jungle (from) A Jungle (To)

EFFECT: ~ At (T, from) A At (T, to))

(d) Precondition: The precondition is a conjunction of function frgesitive literals stating what
must be true in a state before the action can beutad.

(e) Effect: It is a conjunction of function free literals dabing how the state changes when the
action is executed.

() Finding a solution: A planning system has succeeded in finding a isolub a problem when it
has found a sequence of operators that transfdrensitial problem state into the goal state. The
way it can be solved depends on the way that deseriptions are represented.

Calculating the Dead State:As a planning system is searching for a sequehoperators to
solve a particular problem, it must be able to cietehen it is exploring a path that can never
lead to a solution. The same reasoning methodsémabe used to detect a solution can often be
used for detecting a dead path. If the search psoisereasoning in forward direction from the
initial state, it can prune any path that leadsatetate from which the goal state cannot be
reached. If the search process is reasoning badikinan the goal state, it can also terminate a

path either because it is sure that the startisig sannot be reached.

Planning in State Space Search

Problem solving in Al may be characterized as #esyatic search through a range of possible actions
order to reach some predefined goal or solutioe. @iloblem solving agents decide what to do by figdi
sequence of action that lead to desirable states simplest agents which have been described tmiew
the reflex and goal based agents. The reflex ages#sdirect mapping from states to actions and are
unsuitable for very large mappings. Problem sohaggnts find action sequence that lead to desirable

state.

A state space is represented by four componemstéps involved in a problem solving processstag
state of the problem and the corresponding go&.s&earch algorithms should track the paths fioen t
start node to the goal node because these pattarcanseries of operations that lead to the smiudif

the problem. A programmer should analyze and préisiicbehaviour of search algorithms to successfull
designed and implement them in a proper mannerpidtdems can be characterized as spaces consisting
of a set of states and a set of operators that fnasp one state to another state. The states may be
distinguished as containing one of the followingrecor more initial or starting states, a number of
intermediate states and one or more goal statesgh@ence of operators that map an initial stategoal
state will provide the solution to a problem. A teslution is one that requires the fewest no. of
operations while mapping from an initial state e goal state. The amount of time and memory space
required to complete the mapping measures the mpeaiftce of a particular solution method. The state

space search can be in forward and backward directhe forward state space planning is also knasvn

progression planning in which searching alwaysdgiace in forward direction. In backward searth, i
finds only the relevant actions. An agent with sa@nmediate options of unknown values can decide
what to do by first examining the different possilslequences of actions that lead to states of known

values and then choosing the best one.

A state space search can be searched in two dinedtke from the inputs towards the goal or frdra t
goals towards the inputs. In data driven search,starts with the given facts of a problem and assst

of legal moves or rules to change the states. plosess is continued until it generates a path that
satisfies the goal condition. In goal driven seaficht determine the rules or legal moves thatlamsed

to generate the goal and identifies the condithat tan be applied to use these rules. These wmslit
form the new goals or sub goals for the search. @uost continue the search process by working
backwards through successive sub goals untilurmstof moves or rules leading from the data toal,g
even if it performs this process backwards. Dabeedrsearch is suggested if one is provided withosk

all the data at the time of formulation of the gesb statement.

Data driven search uses the knowledge and consti@iesent in the given data of a problem to gthde
search along a path. The main work in the areaeafch strategies is to find the correct search
performance measures like time complexity, spacepbexity, completeness and optimality help to judge
the fitness of a particular search algorithm.

Various Planning Techniques

Several planning techniques are described below.

(1) Hierarchical Planning: In hierarchical planning, at each level of hiemgrcthe objective
functions are reduced to a small number of actisitit the next lower level. So the computational
cost of finding the correct way to arrange thestvisies for the current problem is small.
Hierarchical methods can result in linear time. Tiigal plan of hierarchical planning describes
the complete problem which is a very high leveladiggion. The plans are refined by applying
action decompositions. Each action decompositidnaes a high level description to some of the
individual lower level descriptions. The action dewposers describe how to implement the
actions.

(2) Conditional Planning: It deals with the planning by some appropriatedétions. The agents
plan first and then execute the plan that was grediuThe agents find out which part of the plan
to execute by including sensing actions in the pietest for the appropriate conditions.

(3) Exact Planning: It is also called as conformation planning. Itwes that the plan achieves the
goal in all possible circumstances regardless ef ttine initial state and the actual actions
outcome. This planning is based on the idea tlatvbrid can be forced into a given state even

when the agent has only partial information abbatdurrent state.

(4) Replanning: It occurs when there is any wrong information regey with the planning. The
agent can plan the same plan as the conditionahefeor some new steps.

(5) Continuous Planning: In this planning, the planner at first achieves ¢foal and then only can
stop. A continuous planner is designed to persist a lifetime. It can handle any unfavorable
circumstances in the environment.

(6) Multiagent Planning: In multiagent planning some other new agents nmaglved with our
single agent in the environment. This may lead poar performance because dealing with other
agents is not the same as dealing with the ndtusenecessary when there are other agents in the
environment with which to cooperate, compete ordioate.

(7) Multibody Planning: This planning constructs joint plans, using ancefht decomposition of
joint action descriptions, but must be augmenteth veiome form of co-ordination of two

cooperative agents are to agree on which joint folaxecute.

UNDERSTANDING

Understanding is the simplest procedure of all hutm@ings. Understanding means ability to determine
some new knowledge from a given knowledge. For eation of a problem, the mapping of some new
actions is very necessary. Mapping the knowledgeanmetransferring the knowledge from one
representation to another representation. For ebearifpyou will say “I need to go to New Delhi” for
which you will book the tickets. The system willMea‘understood” if it finds the first available plato
New Delhi. But if you will say the same thing towériends, who knows that your family lives in “New
Delhi”, he/she will have “understood” if he/she lieas that there may be a problem or occasion ur yo

family. For people, understanding applies to induts all the senses. Computer understanding has so

far been applied primarily to images, speech apddylanguages. It is important to keep in mind that

success or failure of an “understanding” problem wrely be measured in an absolute sense but must
instead be measured with respect to a particukk ta be performed. There are some factors that

contribute to the difficulty of an understandingipiem.

(a) If the target representation is very complex forickhyou cannot map from the original
representation.
(b) There are different types of mapping factors masealike one-to-one, one-to-many and many-
to-many.
(c) Some noise or disturbing factors are also there.
(d) The level of interaction of the source componeray lve complex one.
(e) The problem solver might be unknown about some roonmeplex problems.
(H The intermediary actions may also be unavailable.
Consider an example of an English sentence whidieisg used for communication with a keyword-
based data retrieval system. Suppose | want to latbabout the temples in India. So | would neebti¢o

translated into a representation such as

(SEARCH KEYWORDS = TEMPLE &INDIA)

The above sentence is a simple sentence for whighcorresponding representation may be easy to

implement. But what for the complex queries?
Consider the following query.

“Ram told Sita he would not eat apple with her.hds to go to the office”. This type of complex
queries can be modeled with the conceptual depegdepresentation which is more complex than that
of simple representation. Constructing these qadsgevery difficult since more informationare to be

extracted. Extracting more information will requseme more knowledge.

Also the type of mapping process is not quite @aghe problem solver. Understanding is the prooéss
mapping an input from its original form to a momeful one. The simplest kind of mapping is “one-to-
one”. In one-to-one mapping each different problevosld lead to only one solution. But there areyver
few inputs which are one-to-one. Other mappinggjaite difficult to implement. Many-to-one mappings
are frequent is that free variation is often alldweither because of the physical limitations aditth
produces the inputs or because such variation gimpkes the task of generating the inputs. Many-to-
one mapping require that the understanding systemw labout all the ways that a target representation
can be expressed in the source language. One-tp-mm@pping requires a great deal of domain
knowledge in order to make the correct choice antbegavailable target representation. The mapping
process is simplest if each component can be magfibdut concern for the other components of the
statement. If the number of interactions increatizar; the complexity of the problem will increase.
many understanding situations the input to whiclamireg should be assigned is not always the ingit th
is presented to the under stander. Because ofatimplex environment in which understanding usually
occurs, other things often interfere with the basfut before it reaches the under stander. Hehnee t
understanding will be more complex if there willdmme sort of noise on the inputs.

NATURAL LANGUAGE PROCESSING

Natural language processing is a subfield of coempstience and in artificial intelligence that is
concerned with computational processing of natianaguages, emulating cognitive capabilities without
being committed to a true simulation of cognitiveqesses. It is a theoretically motivated range of
computational techniques for analyzing and reptasgmaturally occurring texts at one or more levef
linguistic analysis for the purpose of achievingriam like language processing for a range of tasks o
applications. It is a computerized approach to\aiad text that is based on both a set of thea@iesa

set of technologies. NLP is a very active areaeséarch and development. Naturally occurring texis

be of any language, mode and genre etc. The textearal or written. The only requirement is ttinety

be in a language used by humans to communicateet@other. Also, the text being analyzed shoutd no

be specifically constructed for the purpose of gsial but rather that the text is gathered fronualct

usage.

The notion of levels of linguistic analysis refdosthe fact that there are multiple types of lamgua
processing known to be at work when humans produceomprehend language. The humans use
generally various types of sentences for expressiag feelings. Sentences are classified by siract
and usage. A simple sentence has one independmgecicomprised of a subject and predicate. A
compound sentence consists of two or more indepgnclauses connected by a conjunction or a
semicolon. The way a sentence is used determinemabd, declarative, imperative, interrogative or
exclamatory. A word functions in a sentence asragdaspeech. Parts of speech for the English laggu

are nouns, pronouns, verbs, adjectives, adverbpppitions, conjuctions etc.

Generally NLP is the means for accomplishing ai@agr task. It is a combination of computational
linguistics and artificial intelligence. The natudlanguage processing uses the tools of Al such as:
algorithms, data structures, formal models for@epnting knowledge, models or reasoning processes e
There are two ways through which the natural laggsare being processed. First parsing techniciie an

the second is the transition network. The archirectf NLP is given figure .

Inputs in form of Interface for Parsing Application

»
Ll Ll »
Natural language natural language Process Program

Figure Architecture of a NLP

In NLP, to interact with the database in naturalglaages, computer is required to have knowledge of
basic alphabet, lexicon, grammar and words formatic. The inputs are in the form of natural larggua
given by the user. Finally after parsing process dhtput in the language is being understood by the

application program.

GOALS OF NLP

The goal of natural language processing is to §padianguage comprehension and production theory t
such a level of detail that a person is able téenaicomputer program which can understand andipeod
natural language. The basic goal of NLP is to agdimm human like language processing. The choice of
word “processing” is very deliberate and should Imetreplaced with “understanding”. For although the
field of NLP was originally referred to as Natutalnguage Understanding (NLU), that goal has not yet
been accomplished. A full NLU system would be able

- Paraphrase an input text.

- Translate the text into another language.

- Answer questions about the contents of the text.

- Draw inferences from the text.
While NLP has made serious inroads into accompiisigjoals from first to third, the fact that NLP
system can not, of themselves, draw inferences fexttn NLU still remains the goal of NLP. Also tleer
are some practical applications of NLP. An NLP-lohi® system has the goal of providing more precise,
complete information in response to a user’'s refdrination need. The goal of the NLP system is to
represent the true meaning and intent of the ugeiesy, which can be expressed as naturally inyetegr
language.

APPLICATIONS OF NLP

NLP lie in a number of disciplines like computerdaimformation sciences, linguistics, mathematics,
electrical and electronic engineering, artificialelligence and robotics, psychology etc. Applmas of
NLP include a number of fields of studies such asmmne translation, natural language text procgssin
summarization, user interfaces multilingual and sSréanguage information retrieval (CLIR), speech
recognition, artificial intelligence and expert . Research on NLP is regularly published in ralmer

of conferences such as the annual proceedings bf(A€sociation of Computational Linguistics) and it
European counter part EACL, biennial proceedinghefMessage Understanding Conferences (MUCS),
Text Retrieval Conferences (TRECS) and ACM-SIGIRsgéciation of Computing Machinery-Special
Interest Group on Information Retrieval) conference

As natural language processing technology matuteis increasingly being used to support other

computer applications. Such use naturally fall itwto areas, one in which linguistic analysis merel
serves as an interface to the primary program dmd fecond one in which natural language
considerations are central to the application. Nétlanguage interfaces into a request in a formal
database query language, and the program thengat®ess it would without the use of natural language
processing techniques. The design of question aimgyvsystems is similar to that for interfaces to
database management systems. One difference hqwevérat the knowledge base supporting the
guestion answering system does not have the steuofla database. Similarly in message understgndin
systems, a fairly complete linguistic analysis nbayrequired but the messages are relatively simort a
the domain is often limited. Also some more appi@a areas include information and text
categorization. In both applications, natural leaggi processing imposes a linguistic representation
each document being considered. In text categmiza collection of documents is inspected and all
documents are grouped into several categories basedthe characteristics of the linguistic
representations of the documents. In informatitiarfng documents satisfying some criterion areglsid

out from a collection.

Discourse Knowledge

While syntax and semantics work with sentence-tengits, the discourse level of NLP works with gnit
of text longer than a sentence i.e. it does nerjmet multi-sentence texts as just concatenatete sees,
each of which can be interpreted singly. Discodoseises on the properties of the text as a whae th
convey meaning by making connections between cosmgorentences. Several types of discourse
processing can occur at this level like anaphosologion and discourse/text structure recognition.
Anaphora resolution is the replacing of words sastpronouns which are semantically vacant with the
appropriate entity to which they refer. For examplewspaper articles can be deconstructed into
discourse components such as: lead, main storyigoe events, evaluation etc. A discourse is a
sequence of sentences. Discourse has structure likecentences do. Understanding discourse steictu
is extremely important for dialog system.

For example: The dialog may be
When does the bus to Bhubaneswar leave?
There is one at 10 a.m. and one at 1 p.m.
Give me two tickets for the earlier one, please.

The problems with discourse analysis may be noteséal utterances, cross-sentential anaphora.

Pragmatic Knowledge

This level is concerned with the purposeful usdaofjuage in situations and utilizes context oved an
above the contents of the text for understanditng goal is to explain how extra meaning is read int
texts without actually being encoded in them. Treguires much world knowledge including the
understanding of intentions, plans and goals. Shild@ applications may utilize knowledge bases and
inferencing modules. Pragmatic is the study of meve gets communicated than is said. Speech acts in
the pragmatic processing is the illocutionary fortee communicative force of an utterance, resultin

from the function associated with it. For examj8appose the sentence is | will see you later.
Prediction: | predict that | will see you later.
Promise: | promise that | will see you later.

Warning: | warn you that | will see you later.

EXAMPLES OF SOME NLP SYSTEMS
In early 1950s, few NLP systems had been develofsdept the theoretical developments many
practical systems were developed to demonstrateftbetiveness of particular principles. Weizenbaum

ELIZA was built to replicate the conversation betwea psychologist and a patient; simply by perngutin

the user input. Winograd’'s SHRDLU simulated a roti@t manipulated blocks on a table top. Also

LUNAR was developed by Woods as an interface systemdatabase. In the late 1970's, McKeown'’s
discourse planner TEXT and McDonald's response ggoreMUMMBLE used theoretical predicates to
produce declarative descriptions in the form ofrskexts, usually paragraphs. Some of the eares

systems are described below.

ELIZA System

ELIZA was an early natural language processingesystapable of carrying on a limited form of
conversation with a user. It was developed by Wddaem in 1966. It is a remarkably simple program
that makes use of pattern matching to processihg and translate it into suitable outputs. Coersttle

following session with a version of ELIZA that litad the responses of a psychotherapist.
User 1:

You are like my brother in some ways.

ELIZA 1:

WHAT RESEMBLANCE DO YOU SEE?

User 2:

You are not very intelligent but | think you domant me to notice that.
ELIZA 2:

WHAT MAKES YOU THINK | AM NOT INTELLIGENT?

User 3:

You don't agree with me.

ELIZA 3:

WHY DO YOU THINK | DON'T AGREE WITH YOU?

User 4:

You are afraid of me.

ELIZA 4:

DOES IT PLEASE YOU TO BELIEVE | AM AFRAID OF YOU?
User 5:

| need some help, that much seems certain.

ELIZA 5:

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP?

This program is one of the most popular Al prograshsll time since it carried the keyword based
analysis approach to an absurd (but impressivekme. The success of this simple technique in this
domain is due to the fact that ELIZA doesn’t aduaheed to know anything to a mimic a
psychotherapist. As Weizenbaum notes, this is dtieecfew dialogue genres where the listener caif ac
they know nothing of the world. ELIZA’s deep releea to Turing's ideas is that many people who
interacted with ELIZA cam to believe that it reallynderstood them and their problems. Indeed,
Weizenbaum (1976) notes that many of these peapiténtied to believe in ELIZA’s abilities even after

the program’s operation was explained to them.

LUNAR System

It was developed by Woods in 1970. It is one of ldmgest and most successful question-answering
system using Al techniques. This system had a agpayntax analyzer and a semantic interpreter. Its
parser was written in ATN (Augmented Transition Watk) form. The system was used in various tests

and responded successfully to queries like follgsin

- How many oak trees have height greater than 1%s®h
- What is the average concentration of hydrogen agdem in water?
- Which one is the oldest material between Iron, Bewand Aluminum?
The LUNAR system is mainly deal with queries. Bl {performance of the system is very good than

other systems.

HAL System

HAL is an artificial agent capable of such advantatguage processing behaviour as speaking and
understanding English. The HAL system was develdpedérthur C. Clarke. Generally HAL system is
useful for language and speech recognition. By @pead language processing we have in mind those
computational techniques that process spoken aitttmvhuman language. HAL require much broader
and deeper knowledge of language. To determine Wieatuser is saying, HAL must be capable of

analyzing an incoming audio signal and recoverirgexact sequence of words user used to produce tha

signal. Similarly, in generating its response HALshbe able to take a sequence of words and generat
an audio signal that the user can recognize. Bbthese tasks require knowledge about phonetics and

phonology which can help model how words are proced in colloguial speech.

SHRDLU System

It was developed by Winograd in 1970. It was aatjak system which could converse with a human user
about simple world containing building blocks.dta simulation based programming system involving o
a hand and eye. It is a syntax based system whiehdombination of deep and surface structure. It
contains a syntactic parser with a fairly wide cage which builds surface structures that are imgplg

of trivial category labeling. It performs the comaiion and integration of many components which wil

create a total system. For example: User 1. Chgseen pen.
SHRDLU: Ok
User 2: Write with the pen.

SHRDLU: | DON'T UNDERSTAND WHICH PEN YOU MEAN.

The Chomsky Hierarchy of Grammars

A hierarchy of classes of languages viewed asafettrings, ordered by their “complexity”. The hagh

the language is in the hierarchy, the more comjilex In particular the class of languages in otess
properly includes the languages in lower classé®rd exists a correspondence between the class of
languages and the format of phrase structure méegssary for generating all its languages. Noam
Chomsky defined a hierarchy of grammars called T§pé&ype 1, Type 2 and Type 3. The outline of

Chomsky hierarchy of languages is given in figure .

Recursively-
Enumerable
languages

Context-Sensitive
languages

Context force
language

Regular Language

Figure Chomsky Hierarchy of Languages

The Chomsky hierarchy of languages reflects a icedwader of complexity in some sense, the lower

language class is in the hierarchy; the simplesitampossible constructior

1. Type 0 (Recursively Enumerable Languagesllt is obtained by making the simple restrictit

that cannot be empty string in the rewrite form — adc. It is the much more simplest grami
than others.
Type 1 (Context Sensitive Languages They have added restriction that the length ofsthieg
on tre right hand side of the rewrite rule must be asteas long as the strings on the left sidt
production of the form | , b must be a single non terminal symbol and d moma
empty string.

For example:

aA - ab
aA —aa
ba x— AB

Type 2 (Context Free Grammar):This type can be represented as
< Symbols >— Symbols 1 >< Symbols 2 > — — ——< Symbolsn > wheren 21 Also in

type 2 grammars the left hand side is a singleteaminal symbol which is very important. Its
computational device is push down automata.

For example:S — as

A —-a
B—-b

Type 3 (Regular Languages)it is the most restrictive type grammar than ahdihe rules of
type 3 grammar iA — aB
A - a.
Its computational device is finite state automiteample:B — bA
B — ba
So we can say that always a terminal symbol shstald first (like ‘b’) then any no. of symbols
may come.

Some symbols are used to represent the grammatbeyndre described as follows.

Sentences- S

Verb Phrase. VP
Noun Phrases NP
Preposition Phrase PP
Auxiliary - AUX
Preposition- PREP
Adverb -~ ADV
Adjectives— ADJ

Determiners—- DEJ

Article - ART
. NOUn — N
« Verb - V and so on.

Also while representing a sentence we have toviolome rules like as follows.

1. S NP VP
Or
S- NP VP PP
VP - AUX VP
VP - V NP
VP - V PP
VP -V AD]
VP -V NP PP
VP - V
VP - AUX V NP
NP - NP ART
NP - N ADJ
NP - N PP
NP - N
4. PP- PREP NP
By taking into consideration the above rules ampetyof syntactic grammars are possible. Always you
have to remember a sentence must have at leastawses like verb phrase (VP) and noun phrase (NP).
Now let us see some other types of grammars uslatignage processing like transformational grammar,
case grammar, systemic grammar and semantic gragtmar

Transformational Grammar

These are the grammars in which the sentence cagpbesented structurally into two stages. Obtginin
different structures from sentences having the sameaning is undesirable in language understanding
systems. Sentences with the same meaning shou&/aleorrespond to the same internal knowledge
structures. In one stage the basic structure ofsdrgence is analyzed to determine the grammatical
constituent parts and in the second stage jusvwittee versa of the first one. This reveals the sugrfa

structure of the sentence, the way the sentengseid in speech or in writing. Alternatively, we ago

say that application of the transformation rules peoduce a change from passive voice to activeevoi

and vice versa. Let us see the structure of aseai@s given below.

1. Ramis eating an apple (In Active Voice)

Figure (Transformational grammar Tree representation of Active voice to sentence formation)

2. An apple is being eaten by Ram (In Passive Voice)

IILa.m Is E&I'ng T apple

N AUX V ART aten

ART L lf’*'—‘“P*'—‘g / i PEEP an
| | L

NP 1—Sq—¥Pq—‘hP +——VP+—NP

Figure Passive voice to sentence formation

Both of the above sentences are two different seatebut they have same meaning. Thus it is an
example of a transformational grammar. These gramnvare never widely used in computational
models of natural language. The applications of @iammar are changing of voice (Active to

Passive and Passive to Active) change a questidedarative form etc.

Case Grammars (FILLMORE’s Grammar)

Case grammars use the functional relationships dmtwioun phrases and verbs to conduct the more

deeper case of a sentence. Generally in our Erggistences, the difference between different farhas
sentence is quite negligible. In early 1970’s Fiha gave some idea about different cases of a $ingli
sentence. He extended the transformational gramofa@homsky by focusing more on the semantic
aspects of view of a sentence. In case grammagstarse id defined as being composed of a prepositi

P, a modality constituent M, composed of mood,denspect, negation and so on. Thus we can represen

a sentence like

S M+P

Where P Set of relationships among verbs and noun phiigseR =
M Modality constituent

For example consider a sentence “Ram did not eaple”.

Negation
(Declaration
Past)

Ca

‘ 1
Fam Apple

Figure Case Grammar Tree Representation

The tree representation for a case grammar wititiffethe words by their modality and case. Theesas
may be related to the actions performed by the tagéime location and direction of actions. The sase
may also be instrumental and objective. For exarfiplam cuts the apple by a knife”. Here knife is an
instrumental case. In fig 8.5 the modality constitiiis the negation part, eat is the verb and Rauple
are nouns which are under the case@ G respectively. Case frames are provided for veshdentify

allowable cases. They give the relationships whiehrequired and which are optional.

Semantic Grammars

Semantic grammars encode semantic informationarstgntactic grammar. They use context free rewrite
rules with non terminal semantic constituents. Gahea semantic error occurs when the meaningef t
knowledge is not properly communicated. Semantioreroccur if the human expert misinterprets the
knowledge engineer’'s question or answers inappatgyi. The proper constituents of semantic grammar
are noun phrase (NP), verb phrase (VP), Noun (Mypb\V), Preposition phrase (PP), Adverb (ADV)
and so on. One of the successful applications wfagtic grammar is the LIFER system (A database

query system). In the LIFER system, there are s¢veles to handle the wh-queries such as:
What is the name of your country?
Which department of your country is must efficient?
Who guide them?
Where they are being guided?

These sentences are analyzed and words matchetk tgymmbols contained in the lexicon entries.
Semantic grammars are suitable for use in systeilitis m@stricted grammars since its power of

computation is limited.

Context Free Grammar (CFG)

The grammar in which each production has exactly/ terminal symbol in its left hand side and atieas

one symbol at the right hand side is called corfted grammar. A CFG is a four tugl® V, S, P) where
X: Finite non empty set of terminals, the alphabet.
V: Finite non empty set of grammar variablegtégories or non terminal symbols)
SuchasnV= @
S: Starting symbdlS € V)
P: Finite set of production rules, each offtven A — «, where
A eVandae (VU

Each terminal symbol in a grammar denotes a largyuBlge non terminals are written in capital letters
and terminals are written in small letters. Sonapprties of CFG formalism are

Concatenation is the only string combination operat

Phrase structure is the only syntactic relationship

The terminal symbols have no properties.

Non terminal symbols are atomic.

Most of the information encoded in a grammar lrethie production rules.

Any attempt of extending the grammar with semanécgiires extra means.

Concatenation is not necessarily the only way biclwviphrases may be combined to yield other
phrases.

Even if concatenation is the sole string operatiother syntactic relationships are being put
forward.

For example we can write the followings:

5 — NP VP
NP—>ART N
VPV NP
ART —a

N —Cat

N — Meat

V — Eat

PARSING PROCESS

Parsing is the term used to describe the proceastofmatically building syntactic analysis of atesice

in terms of a given grammar and lexicon. The re@sylsyntactic analysis may be used as input to a
process of semantic interpretation. Occasionalbssipg is also used to include both syntactic and
semantic analysis. The parsing process is donbébpdrser. The parsing performs grouping and ladpeli

of parts of a sentence in a way that displays tiedationships to each other in a proper way.

The parser is a computer program which acceptadhgal language sentence as input and generates an
output structure suitable for analysis. The lexitoa dictionary of words where each word contamse
syntactic, some semantic and possibly some pragrmdtirmation. The entry in the lexicon will comai

a root word and its various derivatives. The infation in the lexicon is needed to help determire th

function and meanings of the words in a sentenke.basic parsing technigue is shown in figure .

Input Sentence Parser > Output Sentence

A

A 4

Lexicon

Figure Parsing Technique

Generally in computational linguistics the lexicaupplies paradigmatic information about words
including part of speech labels, irregular plur@ed sub categorization information for verbs.
Traditionally, lexicons were quite small and weoastructed largely by hand. The additional infoliorat
being added to the lexicon increase the complexityhe lexicon. The organization and entries of a
lexicon will vary from one implementation to anatloeit they are usually made up of variable lengttad
structures such as lists or records arranged imablgtical order. The word order may also be given i
terms of usage frequency so that frequently usedisvtike “a”, “the” and “an” will appear at the
beginning of the list facilitating the search. Téwtries in a lexicon could be grouped and givendwor
category (by articles, nouns, pronouns, verbs,ctislgs, adverbs and so on) and all words contained
within the lexicon listed within the categories which they belong. The entries are like a, an
(determiner), be (verb), boy, stick, glass (nogmgen, yellow, red (adjectives), |, we, you, hes,ghey

(pronouns) etc.

In most contemporary grammatical formalisms, thgpouof parsing is something logically equivalemt t
a tree, displaying dominance and precedence refatietween constituents of a sentence. Parsing

algorithms are usually designed for classes of granrather than tailored towards individual granmsnar

Types of Parsing

The parsing technique can be categorized into ypest such as

1. Top down Parsing
2. Bottom up Parsing

Let us discuss about these two parsing techniquediaw they will work for input sentences.

1 Top down Parsing

Top down parsing starts with the starting symbal anoceeds towards the goal. We can say it is the
process of construction the parse tree startinbeatoot and proceeds towards the leaves. It tsaategy

of analyzing unknown data relationships by hypadttieg general parse tree structures and then
considering whether the known fundamental strustame compatible with the hypothesis. In top down
parsing words of the sentence are replaced by tlagggories like verb phrase (VP), Noun phrase (NP)
Preposition phrase (PP), Pronoun (PRO) etc. Letamsider some examples to illustrate top down
parsing. We will consider both the symbolical resgrgtation and the graphical representation. We will
take the words of the sentences and reach at thelete sentence. For parsing we will consider the
previous symbols like PP, NP, VP, ART, N, V andbso Examples of top down parsing are LL (Left-to-

right, left most derivation), recursive descentsparetc.
Example 1:Rahul is eating an apple.
Symbolical Representation
S NP VP
ON VP U NP N)
(0N AUX VP 0 VP AUX VP)
O N AUX V NP C VPOV NP)
oo JUX V ART N (JOPL ART N)
oo OUX V. ART apple
ON AUX V an apple

UN AUX eating an apple

oo is eating an apple
[J Rahul is eating an apple.

Graphical Representation

apple
Figure Example of Top down Parsing
Example 2: The small tree shades the new house by the stream.
Symbolical Representation
STINP VP
ART
The VP
The \Y NP
The \Y ART NP
The shades ART ADJ NP
The shades the ADJ N NP
The shades the new N PREP N
The shades the new house PREP ART

The shades the new house by ART

The shades the new house by the

O The small tree shades the new house by the stream.

Graphical Representation

|
VP
‘/\"
Vv NP
pr Sy

sha£ es ART NP

the ADJ

Figure Top down Parsing

Bottom up Parsing

In this parsing technique the process begins Wighsentence and the words of the sentence is eepiac
their relevant symbols. This process was first sgtgd by Yngve (1955). It is also called shift @dg
parsing. In bottom up parsing the constructionarsp tree starts at the leaves and proceeds totherds
root. Bottom up parsing is a strategy for analyaiminown data relationships that attempts to ifienti
the most fundamental units first and then to ifigher order structures for them. This process i=citu
the analysis of both natural languages and compatguages. It is common for bottom up parsers to
take the form of general parsing engines that céhew parse or generate a parser for a specific

programming language given a specific of its gramma

A generalization of this type of algorithm is faiailfrom computer science LR (k) family can be sasn
shift reduce algorithms with a certain amount (K6rds) of look ahead to determine for a set of iidess
states of the parser which action to take. The esgzpi of actions from a given grammar can be pre-
computed to give a ‘parsing table’ saying whethehiét or reduce is to be performed and which state

go next. Generally bottom up algorithms are moffecieft than top down algorithms, one particular

phenomenon that they deal with only clumsily anafy rules”: rules in which the right hand siddtie
empty string. Bottom up parsers find instancesuchsules applying at every possible point in tigut

which can lead to much wasted effort. Let us seeesexamples to illustrate the bottom up parsing.
Example-1: Rahul s eating an apple.

Ot is eating an apple.

ON eating an apple.

ON \% an apple.

ON \% apple.

N N

N

N

N

1S
Graphical Representation
gating

v

Figure Examples of Bottom up Parsing

Example-2:

UThesmall tree shades the new house by the stream

UART smalltree shades the new house by the stream
UART ADJ treeshades the new house by the stream
UART ADJ N shadethe new house by the stream
UART ADJ N V thenew house by the stream

UART ADJ N V ART newhouse by the stream
UART ADJ N V ART ADJ house by the stream
UART ADJ N V ART ADJ N by the stream

TJART ADJ N V ART ADJ N PREP the stream
TJART ADJ N V ART ADJ N PREP ART stream
TJART ADJ N V ART ADJ N PREP ART N

TJART ADJ N V ART ADJ N PREP NP

[JART ADJ NV ART ADJ N PP

[JART ADJ N V ART ADJ NP

TJART ADJ N V ART NP

[JART ADJ NV NP

TJART ADJ N VP

TJART NP VP

[INP VP

0s

Graphical Representation

shades the new house by the stream.

I N T T

V ART ADI N PEEP ART N

-

BEA

Figure Example of Bottom up Parsing

Deterministic Parsing
A deterministic parser is one which permits onlg @moice for each word category. That means tlsere i

only one replacement possibility for every wordecatry. Thus, each word has a different test caotti

At each stage of parsing always the correct chisite be taken. In deterministic parsing back tiagko

some previous positions is not possible. Alwaysphieser has to move forward. Suppose the parsex som

form of incorrect choice, then the parser will pobceed forward. This situation arises when onedwor
satisfies more than one word categories, such as and verb or adjective and verb. The determisti

parsing network is shown in figure.

ART N

A deterministic Network

Non-Deterministic Parsing
The non deterministic parsing allows different atosbe labeled with the some test. Thus, they can

uniquely make the choice about the next arc toakert. In non deterministic parsing, the back tnagki

procedure can be possible. Suppose at some extgoim, the parser does not find the correct word,

then at that stage it may backtracks to some @iré@gious nodes and then start parsing. But theepduas
to guess about the proper constituent and thentdaagkif the guess is later proven to be wrong. So
comparative to deterministic parsing, this procedmay be helpful for a number of sentences asnit ca

backtrack at any point of state. A non determiaiptirsing network is shown in figure.

TRANSITION NETWORK

It is a method to represent the natural langudgesbased on applications of directed graphsfaniig

Figure Non-Deterministic Parsing Network

state automata. The transition network can be natstd by the help of some inputs, states and taitpu

A transition network may consist of some statesates, some labeled arcs from one state to the next
state through which it will move. The arc represehe rule or some conditions upon which the ttaomsi

is made from one state to another state. For examagtansition network is used to recognize acswat
consisting of an article, a noun, an auxiliary, eaby an article, a noun would be represented by the

transition network as follows.

Transition Network

The transition from Nto N, will be made if an article is the first input syaiblf successful, state Ns
entered. The transition from,No N; can be made if a noun is found next. If successhalte N is
entered. The transition fromsb N, can be made if an auxiliary is found and so omp®se consider a
sentence “A boy is eating a banana”. So if theesa# is parsed in the above transition network,then
first ‘A’ is an article. So successful transitiamthe node Nto N,. Then boy is a noun (so,b N), “is”

is an auxiliary (N to Ng) and finally “banana” is a noun {No N;) is done successfully. So the above

sentence is successfully parsed in the transitnwark.

TYPES OF TRANSITION NETWORK

There are generally two types of transition netwdilke

1. Recursive Transition networks (RTN)
2. Augmented Transition networks (ATN)

Let us focus on these two transition networks &ed structure for parsing a sentence.

Recursive Transition Networks (RTN)

RTNs are considered as development for finite statemata with some essential conditions to take th
recursive complexion for some definitions in coesation. A recursive transition network consists of
nodes (states) and labeled arcs (transitions)erinjts arc labels to refer to other networks aray tim
turn may refer back to the referring network rattiem just permitting word categories. It is a nfiedi
version of transition network. It allows arc labtiat refer to other networks rather than word gaite A

recursive transition network can have 5 types of éfllen’s, JIM’s) like

1) CAT: Current word must belong to category.

2) WORD: Current word must match label exactly.

3) PUSH: Named network must be successfully traversed.

4) JUMP: Can always be traversed.

5) POP: Can always be traversed and indicates that inpagshas been accepted by the network.
In RTN, one state is specified as a start statetridg is accepted by an RTN if a POP arc is rechetmel

all the input has been consumed. Let us considentence “The stone was dark black”.
Here The: ART

Stone:ADJ NOUN

Was: VERB

Dark: ADJ

Black: ADJ NOUN

The RTN structure is given in figure
ADJ

OART ADJ LN'PIJ N Q’_{’?} POP

s: (\- S\\‘l Q‘f@‘s —

Figure RTN Structure

So we can parse the sentence through the RTN wwteuas follows.

Current Word Arc Backup States
S 1 NP
NP

N

(NP, 3, 9)

w

(NR, 3,8) (NP, 4, §)

(NR, 3, S) (NP, 4, §)
(NR, 3, 8) (NP, 4,)
(NPy, 3, &) (NP, 4, €)
(NP, 4, 8)
(NRB 4, 8)
(NR, 4,)

NP (NB, 4, 9)

ADJ (NP, 4, 9)

S

S
NP
NP, NOUN (NP, 4,8) (NP, 7, §)

NP, POP (NR, 4,9) (NP, 7, S)

3
4
4
3
4
4
5
5
6
7
7

NP, POP (NR, 4,9) (NP, 7, §)

S 7 POP (NR 4,39) (NP, 7,)

Finally as there are no words left so the parseiisessful.

Also there is an another structure of RTN is désdiby William Woods (1970) is illustrated in figur
He described the total RTN structure into thredsphike sentence (S), Noun Phrase (NP), Preposition
Phrase (PP).

PP @

Figure RTN Structure

The number of sentences accepted by an RTN caxtdeded if backtracking is permitted when a failure
occurs. This requires that states having alteredtiansitions be remembered until the parse pregges
past possible failure points. In this way, if ddeg occurs at some point, the interpreter cantpback and

try alternative paths. The disadvantage with tipisraach is that parts of a sentence may be parseel m
than time resulting in excessive computations. myrthe traversal of an RTN, a record must be
maintained of the word position in the input senteand the current state and return nodes to ltkasse
return points when control has been transformeditaver level network.

Augmented Transition Network (ATN)

An ATN is a modified transition network. It is artension of RTN. The ATN uses a top down parsing
procedure to gather various types of informatiobedater used for understanding system. It prositioe
data structure suitable for further processing eapable of storing semantic details. An augmented
transition network (ATN) is a recursive transitinatwork that can perform tests and take actionsgur
arc transitions. An ATN uses a set of registerstéoe information. A set of actions is defined dach arc
and the actions can look at and modify the regist&n arc may have a test associated with it. Thesa
traversed (and its action) is taken only if the s&cceeds. When a lexical arc is traversed, puitsin a
special variable (*) that keeps track of the curneard. The ATN was first used in LUNAR system. In

ATN, the arc can have a further arbitrary test andarbitrary action. The structure of ATN is illksted
in figure. Like RTN, the structure of ATN is alsorssisting of the substructures of S, NP and PP.

. PREP - NP —
Q,f -Q - (3_3, ‘ POP

Figure ATN Structure

The ATN collects the sentence features for furtialysis. The additional features that can be cagtu

by the ATN are; subject NP, the object NP, the ecttbyerb agreement, the declarative or interrogativ
mood, tense and so on. So we can conclude thatragjtires some more analysis steps compared to that
of RTN. If these extra analysis tests are not peréml, then there must some ambiguity in ATN. The
ATN represents sentence structure by using a dter fepresentation, which reflects more of the
functional role of phrases in a sentence. For ex@angmne noun phrase may be identified as “subject”
(SUBJ) and another as the “object” of the verb.hiitnoun phrases, parsing will also identify the
determiner structure, adjectives, the noun etctfi®sentence “Ram ate an apple”, we can represdnt

figure.

(S SUBJ(NP NAME Ram)
MAIN V ate
TENSE PAST
OBI(NP DET an
HEAD apple))

Figure Representation of sentence in ATN

The ATN maintains the information by having varigegisters like DET, ADJ and HEAD etc. Registers
are set by actions that can be specified on the. &khen the arc is followed, the specified action
associated with it is executed. An ATN can recogrdny language that a general purpose computer can
recognize. The ATNs have been used successfully immber of natural language systems as well as

front ends for databases and expert systems.

Module 3

LEARNING

Learning process is the basis of knowledge acdprisjirocess. Knowledge acquisition is the expanding
the capabilities of a system or improving its perfance at some specified task. So we can say
knowledge acquisition is the goal oriented createomd refinement of knowledge. The acquired
knowledge may consist of various facts, rules, epts; procedures, heuristics, formulas, relatigrsshi

any other useful information. Knowledge can be @egufrom various sources like, domain of intergsts
text books, technical papers, databases, repdrestéfms of increasing levels of abstraction, keoge
includes data, information and Meta knowledge. Matawledge includes the ability to evaluate the

knowledge available, the additional knowledge respliand the systematic implied by the present rules

Learning involves generalization from experiencemputer system is said to have learning if it iedb
not only do the “repetition of same task” more efifeely, but also the similar tasks of the relatienain.
Learning is possible due to some factors like tkid sefinement and knowledge acquisition. Skill
refinement refers to the situation of improving gl by performing the same task again and agéin.
machines are able to improve their skills with tfendling of task, they can be said having skill of

learning. On the other hand, as we are able to m#rae the experience or gain some knowledge by

handling the task, so we can improve our skill. Waild like our learning algorithms to be efficient
three respects:

(1) Computational: Number of computations during training and duriegognition.
(2) Statistical: Number of examples required for good generalipatspecially labeled data.
(3) Human Involvement. Specify the prior knowledge built into the modefdre training.

A similar machine learning architecture is giverigure .

Figure Architecture of Machine Learning
Design of learning element is dictated by the folfmgs.

(1) What type of performance element is used?

(2) Which functional component is to be learned?

(3) How that functional component is represented?

(4) What kind of feedback is available?

(5) How can be compared between the existing feedhsithshe new data?
(6) What are the levels of comparisons? Etc.

Any system designed to create new knowledge andliiemprove its performance must include a set of

data structures that represents the system’s présesh of expertise and a task algorithm that ubes

rules to guide the system’s problem solving agtivithe architecture of a general learning procedsire

given in figure .

Figure A general Learning Procedure

Hence the inputs may be any types of inputs, thosexecuted for solution of a problem. Those mput
are processed to get the corresponding resultsleBnring element learns some sort of knowledges by
the knowledge acquisition techniques. The acquiremviedge may be required for a same problem in

future, for which that problem can be easily solved

Every learning model must contain implicit or exfilrestrictions on the class of functions that kearn.
Among the set of all possible functions, we ardipalarly interested in a subset that containsttzd!

tasks involved in intelligent behaviour. Examples soich tasks include visual perception, auditory

perception, planning, control etc. The set doegusitinclude specific visual perception tasks, theat set

of all the tasks that an intelligent agent showddable to learn. Although we may like to think tita
human brain is some what general purpose, it isemdly restricted in its ability to learn high

dimensional functions.

CLASSIFICATION OF LEARNING

The process of learning may be of various types €&m develop learning taxonomies based on the type
of knowledge representation used (predicate caculles, frames, scripts etc), the type of knogied
learned (game playing, problem solving) or by amfaapplication (medical diagnosis, engineering.etc
Generally learning may be of two types like singgent learning and multi-agent learning. A general

architecture of learning process is given figure .

Learning

Single Agent Learning Multi Agent Learning

Rote or Base Learning Control Learning

Learning from instruction Organization
Learning

Learning by deduction

Communication
Learning

Learning by Analogy

Group observation and

Learning from examples . .
discovery Learning

Learning from observation

and discovery

Learning by induction

Learning from advices

Learning by clustering

Figure Learning Classification

Single Agent Learning

Over the last four decades, machine learning’s gmminterest has been single agent learning. Single
agent learning involves improving the performancenareasing the knowledge of a single agent. An
improvement in performance or an increase in kndggeallows the agent to solve past problems with
better quality or efficiency. An increase in knoddge may also allow the agent to solve new problems.
An increase in performance is not necessarily dugntincrease in knowledge. It may be brought about
simply by rearranging the existing knowledge otizitig it in a different manner. Single agent ldam

systems may be classified according to their ugitgyllearning strategies. These strategies arsifiled

as follows.

Rote Learning

This strategy does not require the learning systetransform or infer knowledge. It is the simplésm

of learning. It requires the least amount of infee and is accomplished by simply copying the
knowledge in the same form that it will be useckdily into the knowledge base. It includes learnimg
imitation, simple memorization and learning by lgeperformed. For example we may use this type of
learning when we memorize multiplication tablestHis method we store the previous computed values,
for which we do not have for recomputed them |2Adso we can say rote learning is one type of exgst

or base learning. For example, in our childhoodhaee the knowledge that “sun rises in the east'inS
our later stage of learning we can easily memdtieething. Hence in this context, a system may imp
memorize previous solutions and recall them wherfroated with the same problem. Generally access
of stored value must be faster than it would beetmmpute. Methods like hashing, indexing and sorti
can be employed to enable this. One drawback @f legirning is it is not very effective in a rapidly
changing environment. If the environment does chahgn we must detect and record exactly what has
changed. Also this technique must not decreasefftoéency of the system. We must be able to decide

whether it is worth storing the value in the fipfice.

Learning from Instruction
This strategy also known as learning by being tidearning by direct instruction. It requires the

learning system to select and transform knowledge & usable form and then integrate it into the

existing knowledge of the system. It is a more clemform of learning. This learning technique reqai

more inference than rote learning. It includes demy from teachers and learning by using books,

publications and other types of instructions.

Learning by Deduction

This process is accomplished through a sequendedictive inference steps using known facts. From
the known facts, new facts or relationships aréchily derived. Using this strategy, the learnilygtem
derives new facts from existing information or kiedge by employing deductive inference. It requires
more inferences than other techniques. The inferemethod used is a deductive type, which is a valid
form of inference. For example we can say x isabsin of y if we have the knowledge of x’'s and y's
parents and the rules for cousin relationships.|@amer draws deductive inferences from the kndgde
and reformulates them in the form of useful coriclus which preserve the information content of the
original data. Deductive learning includes knowkedgformulation, compilation and organizational

procedures that preserve the truth of the origimahulation.

Learning by Analogy
It is a process of learning a new concept or smuthrough the use of similar known concepts or
solutions. We make frequent use of analogical legrriThe first step is inductive inference, reqdite

find a common substructure between the problem doarad one of the analogous domains stored in the

learner’'s existing knowledge base. This form ofn@sy requires the learning system to transform and
supplement its existing knowledge from one domairpmblem area into new domain. This strategy
requires more inferencing by the learning systeam threvious strategies. Relevant knowledge must be
found in the systems existing knowledge by usimduation strategies. This knowledge must then be
transformed to the new problem using deductiver@rfee. Example of learning by analogy may include
the driving technique of vehicles. If we know thévihg procedure of a bike, then when we will drize
car then some sort of previous learning procedwesnay employ. Similarly for driving a bus or tryck

we may use the procedure for driving a car.

Learning from Examples

In this process of learning it includes the leagnihrough various interactive and innovative exaspl
This strategy, also called concept acquisitiometiuires the learning system to induce generakabas
concept descriptions from examples. Since the ilegrisystem does not have prior or analogous
knowledge of the concept area, the amount of infaéng is greater than both learning by deductioth an

analogy. For solving a newly designed problem wg g its corresponding old examples.

Learning from Observations and Discovery

Using this strategy, the learning system must eithduce class descriptions from observing the
environment or manipulate the environment to aeguilass descriptions or concepts. This is an
unsupervised learning technique. It requires tleatgist amount of inferencing among all of the dffe
forms of learning. From an existing knowledge basene new forms of discovery of knowledge may
formed. The learning discovery process is very irtgrt in the respect of constructing new knowledge

base.

Learning by Induction
Inductive learning is the system that tries to t&la general rule based on observed instanceshén o

words, the system tries to infer an associatiowéen specific inputs and outputs. In general, tipat of

the program is a set of training instance whereothiput is a method of classifying subsequent itsa
For example, the input of the program may be cofdiypes of fruits where the output may be the $ype
of fruits those are useful for protein. Inductionethod involves the learning by examples,
experimentation, observation and discovery. Thackeapaces encountered in learning tend to be

extremely large, even by the standards of searsbdoaroblem solving.

This complexity of problems is cleared by choosmgroblem among the different generalizations
supported by any given training data. Inductiveshiefers to any method a learning program uses to
constrain the space of possible generalizationsnoA of inductive learning algorithms have been
developed like Probably Approximately Correct (PA®grsion spaces etc. Probably Approximately

Correct learning was proposed concerning the situidhat cannot be deductive. Approximately correct

is recognized whenever the program can get masteoproblems right. In order to increase perforreanc
of the program, learning algorithms should restifiet size of hypothesis space. On the other hiued, t
goal of version space is to produce a descripti@t tises only positive examples. The program in
practice, produce a description of all acceptablecepts. In detail, we may conclude that therehace
sets of concepts that are produced during leartiimgtly, the most specific concept describes vthat

target set should be. Secondly, the least spaxificept describes what should not be in the tamgerp.

Generally inductive learning is frequently usedhuynans. This form of learning is more powerful than
the others. We use this learning when we formudageneral concept after seeing a number of instance
For example, we can say the taste of sugar is sfugethave the knowledge about sweetness.

Learning from Advices

In this process we can learn through taking adfrios others. The idea of advice taking learning was
proposed in early 1958 by McCarthy. In our daifg,lithis learning process is quite common. Rigbirfr
our parents, relatives to our teachers, when we atat educational life, we take various adviceasrfr
others. All most all the initial things and all &pf knowledges we acquire through the advicedhwrs.

We know the computer programs are written by prognars. When a programmer writes a computer
program he or she gives many instructions to coerpuat follow, the same way a teacher gives his/her
advice to his students. The computer follows ttstrirctions given by the programmer. Hence, a kihd o
learning takes place when computer runs a partiqriggram by taking advice from the creator of the
program.

Learning by Clustering

This process is similar to the inductive learni@tustering is a process of grouping or classifyotjects

on the basis of a close association or shared cesistics. The clustering process is essentiadyired

in a learning process in which similarity patteams found among a group of objects. The progrant mus
discover for itself the natural classes that efdstthe objects, in addition to a method for clggsg
instances. AUTOCLASS (Cheeseman et al., 1988)@sppagram that accepts a number of training cases
and hypothesizes a set of classes. For any gives, the program provides a set of probabilities tha
predict into which classes the case is likely tddile

Multi Agent Learning

Distributed artificial intelligence (DAI) system®lge problems using multiple, cooperative agemns. |
these systems, control and information are oftestriduted among the agents. This reduces the
complexity of each agent and allows agents to woparallel and increases problem solving speeso Al
each agent has resource limitations which could line ability of a single agent system to solveyéa
complex problems. Allowing multiple agents to wank these types of problems may be the only way to
realistically solve them. In general, multiple aggéarning involves improving the performance of th

group of agents as a whole or increasing the dokrawledge of the group. It also includes incregsin

communication knowledge. An increase in communicatknowledge can lead to an increase in
performance by allowing the agents to communicatea imore efficient manner. In the context of
improving the performance of a group of agentsvélhg individual agents to improve their performanc

may not be enough to improve the performance ofgtteeip. To apply learning to the overall group
performance, the agents need to adapt and leavortowith the each other. The agents may not need t
learn more about the domain, as in the traditiosethise of machine learning, to improve group
performance. In fact to improve the performancéhefgroup, the agents may only need to learn td wor
together and not necessarily improve their indiglduerformance. In addition, not all the agents trives

able to learn or adapt to allow the group to improv

Control Learning

Learning and adapting to work with other agent®ines adjusting the control of each agent’s problem
solving plan. Different tasks may have to be solire@ specific sequence. If the tasks are assigmed
separate agents, the agents must work togethesite e tasks. Learning which agents are typically
assigned different types of tasks will allow eadgerat to select other agents to work with on diffiere
tasks. Teams can be formed based on the typelofddse solved. Some of the issues involved are the
type, immediacy and importance of task, as wettash agent’s task solving ability, capability, abllity

and past task assignments. Each team member'syglald be adjusted according to the other agent’s

plans.

Organization Learning

Learning what type of information and knowledge heagent possesses allows for an increase in
performance by specifying the long term resporitidsl of each agent. By assigning different agents
different responsibilities, the group of agents d@eaprove group performance by providing a global

strategy. Organizing the responsibilities redubesworking complexity of each agent.

Communication Learning

Learning what type of information, knowledge relip and capability each agent possesses allows fo
an increase in performance by allowing improved momication. Directly addressing the best agent for
needed information or knowledge allows for moréceffit communication among he agents.

Group Observation and Discovery Learning

Individual agents incorporate different informatiand knowledge. Combining this differing informattio
and knowledge may assist in the process of leaméw class descriptions or concepts that could not
have been learned by the agents separately. Tiesdfylearning is more effective than the othetse T
observation towards the procedure will be focusgdabgroup of agents. When a group of different

visions will reach, at that point of view a newltedractive procedure will be found out; which i th
discovery of all the agents.

Explanation based Learning

Explanation based learning has ability to learnmfra single training instance. Instead of taking enor
examples the explanation based learning is empthsizlearn a single, specific example. For example
consider the Ludoo game. In a Ludoo game, thergemerally four colors of buttons. For a singleocol
there are four different squares. Suppose the £@or red, green, blue and yellow. So maximum four
members are possible for this game. Two membersarsidered for one side (suppose green and red)
and other two are considered for another side @®plue and yellow). So for any one opponent the
other will play his game. A square sized small btarked by symbols one to six is circulated amoig th
four members. The number one is the lowest numbertlze number six is the highest for which all the

operations are done. Always any one from tHisidle will try to attack any one member in tHé gde

and vice versa. At any instance of play the playpérane side can attack towards the players ofteamot
side. Likewise, all the buttons may be attacked r@fetted one by one and finally one side will wie
game. Here at a time the players of one side dackatowards the players of another side. So for a
specific player, the whole game may be affectednddewe can say that always explanation based
learning is concentrated on the inputs like a samiphrning program, the idea about the goal sthee,
idea about the usable concepts and a set of td¢sléscribes relationships between the objectdtand

actions.

Explanation based generalization (EBG) is an dlgorifor explanation based learning, described in
Mitchell at al. (1986). It has two steps first, &ip method and secondly, generalize method. Dutieg
first step, the domain theory is used to prune aalhthe unimportant aspects of training examplél w
respect to the goal concept. The second stepgerteralize the explanation as far as possible vatille
describing the goal concept. Consider the probléirarning the concept bucket. We want to genegaliz

from a single example of a bucket. At first colldu following informations.

1. Input Examples:

Owner (object, X) A has part (object, Y) A is(object, Deep) A Color (Object, Green)
(Where Y is any thin material)

Domain Knowledge

is (a,Deep) A has part (a,b) Ais a(b, handle) — liftable (a)
has part (a,b) Aisa (b, Bottom) A is (b, flat) — Stable (a)
has part (a,b) Ais a (b,Y) A is (b, Upward — pointing) — Open — vessel (a)
3. Goal: Bucket
B is a bucket if B is liftable, stable and opensads

4. Description of Concept These are expressed in purely structural fornesikep, Flat, rounded

etc.

Bucket (Object)

Liftable {object) Stable (object) Open vessel (Object)

T)
is (Object, Deep)
has — part (Object, Handle) has part (Object, Y)
is a (Handle) is a (Y)
is a (Y, Upward Pointing)

has part (Object, Bottom)
is a (Bottom)
is (Bottom, Flat)

Figure An explanation of BUCKET Object

Given a training example and a functional desaiptive want to build a general structural desaiptf
a bucket. In practice, there are two reasons wheiplanation based learning is important.

GENETIC ALGORITHM

Genetic algorithms are based on the theory of ahtglection and work on generating a set of random
solutions and making them compete in an area wiigsethe fittest survive. Each solution in the et
equivalent to a chromosome. Genetic algorithm legrmethods are based on models of natural adaption
and evolution. These learning methods improve tipeiformance through processes which model
population genetics and survival of the fittest.tie field of genetics, a population is subjectedah
environment which places demands on the memberes.némbers which adapt well are selected for
matting and reproduction. Generally genetic alponit uses three basic genetic operators like
reproduction, crossover and mutation. These arebitmd together to evolve a new population. Starting
from a random set of solutions the algorithm u$ese operators and the fitness function to guile it
search for the optimal solution. The fitness fumttguesses how good the solution in question is and
provides a measure to its capability. The gengigrators copy the mechanisms based on the prisciple
of human evolution. The main advantage of the geragorithm formulation is that fairly accurate
results may be obtained using a very simple algaritThe genetic algorithm is a method of finding a

good answer to a problem, based on the feedbaekvegtfrom its repeated attempts at a solution. The

fitness function is a judge of the GA's attempts #oproblem. GA is incapable to derive a problem'’s
solution, but they are capable to know from theefiis function.

Genetic algorithm starts with a fixed size popwalatbf data structure which is used to perform some

given tasks. After the structure performs the gitassk or problem, they are rated on their perforcedry

some utility value and a new generation of datacttire then created. The new generation is crdated
mapping with the high performing structure to progleffspring. The offsprings or the children anelith
parents are retained for the next generation whiéepoorer performers are not included. Mutatioms a
also performed on the best programming structwemnsure that the full space of possible strucisire
reachable. This process is repeated for a numbegerdrations until the resultant population cossist
only the highest performing structures. Mattingwesn two strings is accomplished with the crossover
operation which randomly selects a bit positiorthia eight bit string and concatenates the headef o
parent to the tail of the second parent to prodheeoff string. Inversion is another type of geneti

operation which is applied to a single string.

The GA goes through the following cycle: Gener&ealuate, Assignment of values, Mate and Mutate.
One criteria is to let the GA run for a certain rgnof cycles. A second one is to allow the GAuo r
until a reasonable solution is found. Also mutatisna operation, which is used to ensure that all
locations of the rule space are reachable, thatyepetential rule in the rule space is available fo
evaluation. The mutation operator is typically usaty infrequently to prevent random wonderinghie t
search space. Let us focus on the genetic algod@suaribed as follows.

Step 1:

Generate the initial population.

Step 2:

Calculate the fitness function of each individuals.

Step 3:

Some sort of performance utility values or thedfte values are assigned to individuals.
Step 4:

New populations are generated from the best indalglby the process of selection.
Step 5:

Perform the crossover and mutation operation.

Step 6:

Replace the old population with the new individual
Step 7:
Perform step-2 until the goal is reached.

In its simplest form, the standard genetic algaonitis a method of stochastic optimization for digere

programming problems of the form.

Maximize f (P)

cnthiecttn P € = OfN 111

In this casd: Q2 — R is called the fithess function and the n-dimenaidrinary vectors i2 are called
strings. The most noticeable difference between siamdard genetic algorithm and the methods of
optimization is that at each stage of the compurtatijenetic algorithms maintain a collection of ps
from the search space rather than a single point. This collection of géam is called a population of
strings. To start the genetic search, an initigdytation of say, B binary string¥0) = {P,,P,Pg} c

Q; each with n bits, is created. Usually, this ithifi@pulation is created randomly because it is not
known apriori where the globally optimal stringstnare likely to be found. If such information is giv
though it may be used to bias the initial populatiowards the most promising region€ofFrom this
initial population, subsequent populatiBfil), P(2)P(m) will be computed by employing

the three genetic operators of selection, crossawveémutation.

Applications and Advantages of Genetic Algorithm

Some of the applications and characteristics oétiemlgorithm as described as following.

GA is a randomized search and optimization techenigided by the principle of natural genetic
systems.

The GA is being applied to a wide range of optiicmaand learning problems in many domains.
GAs also lend themselves well to power system dpétion problems.

GAs solve problems using principles inspired byuretpopulation genetics.

GAs can provide globally optimal solutions.

GAs work with a coding of the parameter set, netgarameters themselves. Therefore, they can
easily handle integral variables.

GAs use probabilistic transition rules, non detaistic rules.

GAs are used to solve the problems like job shablpm, optimization problems, skill based

employee allocation problems, scheduling of jobpshimblems etc.

- GA performs always multidirectional search by maiiming a population of potential solutions.

NEURAL NETWORK

A neural network consists of inter connected prsicgselements called neurons that work together to
produce an output function. The output of a nenetivork relies on the cooperation of the individual
neurons within the network to operate. Well desijneural networks are trainable systems that dzm of
“learn” to solve complex problems from a set of rapdars and generalize the “acquired knowledge” to
solve unforeseen problems, i.e. they are self-adaglystems. A neural network is used to refer to a
network of biological neurons. A neural network sists of a set of highly interconnected entiticteda

nodes or units. Each unit accepts a weighted sapafs and responds with an output.

Mathematically letl = (1,1, I,) represent the set of inputs presented to theluriitach input has
an associated weight that represents the strength that particular connection. Let

W,) represent the weight vector corresponding to ripeti vector X. By applying to
V, these weighted inputs produce a net sum at &ngby

S =SUM (W * [,)
A neural network is first and foremost a graph,hwpatterns represented in terms of numerical values
attached to the nodes of the graph and transfasmatbetween patterns achieved via simple message-
passing algorithms. The graph contains a numbeunits and weighted unidirectional connections

between them. The output of one unit typically bees an input for another. There may also be units

with external inputs and outputs. The nodes ingtagh are generally distinguished as being inpdeso

or output nodes and the graph as a whole can beedli@s a representation of a multivariate functions
linking inputs to outputs. Numerical values (weihtare attached to the links of the graphs,
parameterizing the input/ output function and allmyvit to be adjusted via a learning algorithm. A
broader view of a neural network architecture imesl treating the network as a statistical processor
characterized by making particular probabilististasptions about data. Figure illustrates one elamp

of a possible neural network structure.

¥

Figure An example of a Neural network structure

Patterns appearing on the input nodes or the outpdés of a network are viewed as samples from
probability densities and a network is viewed agprababilistic model that assigns probabilities to
patterns. Biologically, we can also define a neufidme human body is made up of a vast array afidivi
cells. Certain cells are interconnected in a way #lows them to communicate pain or to actudtee§

or tissues. Some cells control the opening andrgasf minuscule valves in the veins and arterldgse

specialized communication cells are called neurdfsurons are equipped with long tentacle like

structures that stretch out from the cell bodynpting them to communicate with other neurons. The
tentacles that take in signals from other cells tiedenvironment itself are called dendrites, wtiile

tentacles that carry signals from the neuron terotklls are called axons.

Dendrites

Nucleus

Cell Body

Figure A Neuron

FEATURES OF ARTIFICIAL NETWORK (ANN)

Artificial neural networks may by physical devices simulated on conventional computers. From a
practical point of view, an ANN is just a paralledmputational system consisting of many simple
processing elements connected together in a speafy in order to perform a particular task. There

some important features of artificial networks alfofvs.

(1) Artificial neural networks are extremely powerfulnoputational devices (Universal computers).

(2) ANNs are modeled on the basis of current brainribepin which information is represented by
weights.

(3) ANNs have massive parallelism which makes them eéfigient.

(4) They can learn and generalize from training datatheye is no need for enormous feats of
programming.

(5) Storage is fault tolerant i.e. some portions ofrtkaral net can be removed and there will be only a
small degradation in the quality of stored data.

(6) They are particularly fault tolerant which is ecplant to the “graceful degradation” found in
biological systems.

(7) Data are naturally stored in the form of assoadtativemory which contrasts with conventional
memory, in which data are recalled by specifyindrads of that data.

(8) They are very noise tolerant, so they can cope siittations where normal symbolic systems would
have difficulty.

(9) In practice, they can do anything a symbolic/ lagistem can do and more.

(10) Neural networks can extrapolate and intrapolatmftioeir stored information. The neural networks
can also be trained. Special training teacheséh&orook for significant features or relationshigf
data.

TYPES OF NEURAL NETWORKS

There are a number of models of neural networke en developed, each defined at a different level
of abstraction and trying to model different aspeuft neural systems. They range from models of the
short term behaviour of individual neurons, thromgbdels of how the dynamics of neural circuitrysari

from interactions between individual neurons, tadele of how behaviour can arise from abstract heura

modules that represent complete sub systems. Seunalmetworks have been illustrated below.

Single Layer Network

A single layer neural network consists of a seunits organized in a layer. Each ubif receives a

weighted input;with weightW;,. Figure shows a single layer neural network yitfputs and n outputs.

Figure A single Layer neural Network

Letl = (il,i2ij) be the input vector and let the activation functidbe simply, so that the activation

value is just the net sum to a unit. The jxn weigltrix is calculated as follows.

Thus the output Qat unit U, is

Ok = (Wyg, Wog wev veee

Multilayer Network

A multilayer network has two or more layers of spivith the output from one layer serving as injput
the next. Generally in a multilayer network there & layers present like, input layer, output laged
hidden layer. The layer with no external outputreestions are referred to as hidden layers. A naytkit

neural network structure is given in figure.

Input Laver Hidden Laver Output Laver

I

Figure A multilayer neural network

Any multilayer system with fixed weights that hadirear activation function is equivalent to a deng
layer linear system, for example, the case of alayer system. The input vector to the first laigdy.the

outputO = W, = I and the second layer produces output= W, = O.Henc®, = W, x (W; =)
= Wy + W) =1

So a linear system with any number n of layergjigvalent to a single layer linear system whosegivei
matrix is the product of the n intermediate weigtdtrices. A multilayer system that is not linean ca
provide more computational capability than a singher system. Generally multilayer networks have
proven to be very powerful than single layer neurelwork. Any type of Boolean function can be
implemented by such a network. At the output lagfea multilayer neural network the output vector is
compared to the expected output. If the differeirceero, no changes are made to the weights of
connections. If the difference is not zero, theokis calculated and is propagated back through the

network.

Feed Forward neural network

The neural networks consist of multiple layers ofmputational units, usually interconnected in adfee
forward way. The feed forward neural networks & first, simplest type of artificial neural netdsr
devised. In this network, the information movesoimly one direction, forward from the input nodes,
through the hidden nodes and to the output nodesteTare no cycles or loops in the network. In othe

way we can say the feed forward neural networlis that does not have any connections from output t

input. All inputs with variable weights are conregtiwith every other node. A single layer feed fanva
network has one layer of nodes, whereas a multiltagel forward network has multiple layers of nodes

The structure of a feed forward multilayer netwisriven in figure.

(Input Layer)

(Hidden Laver)

(Input Laver)

Output Signal)
K=3

K=1

Figure Multilayer Feed Forward Neural Network

Data are introduced into the system through antilgyer. This is followed by processing in one are
intermediate (hidden layers). Output data emergm fthe network’s final layer. The transfer funcgon
contained in the individual neurons can be almogttang. The input layer is also called as Zeratyel,

of the network serves to redistribute input valaesl does no processing. The output of this layer is

described mathematically as follows.
0% = iy, Wherem =1,2....N°
(N° representes the no. of neurons in the input or zeroth layer).

The input to each neuron in the first hidden lagethe network is a summation all weighted conroeti
between the input or Zeroth layer and the neurdharfirst hidden layer. We will write the weightedm
as net sum or net input. We can write the net inp@ neuron from the first layer as the producthet
input vector j and weight factor wplus a bias tern®. The total weighted input to the neuron is a

summation of these individual input signals desatibs follows.

N
net sum = Z WX + 0

m=1
Where N represents the number of neurons in the iager.

The net sum to the neuron is transformed by theomesi activation or transfer function, f to produge
new output value for the neuron. With back propagathis transfer function is most commonly either
sigmoid or a linear function. In addition to thet s&im, a bias terrf is generally added to offset the
input. The bias is designed as a weight coming feotmitary valued input and denoted ag b, the

final output of the neuron is given by the follogiequation.

Output = f (net sum)

N
=f (Z Wi + 6)
m=1

NO

— .0

=f Z Wpim + Wy
m=1

But one question may arise in reader’'s mind. Whyane using the hidden layer between the input and
output layer? The answer to this question is vély. €ach layer in a multilayer neural network higs
own specific function. The input layer accepts ingignals from the outside world and redistributese
signals to all neurons in the hidden layer. Actyahe input layer rarely includes computing nesrand
thus does not process input patterns. The outget Eccepts output signals, or in other wordsratdtis
patterns, from the hidden layer and establishedtiput patterns of the entire network. Neuronghan
hidden layer detect the features, the weights efrtburons represent the features hidden in the inpu
patterns. These features are then used by thetdatmr in determining the output patterns. Witkeon
hidden layer we can represent any continuous fomaif the input signals and with two hidden layers
even discontinuous functions can be representdddden layer hides its desired output. Neuron$én t
hidden layer cannot be observed through the irgutgut behaviour of the network. The desired output
of the hidden layer is determined by the layerlfitsg@enerally, we can say there is no obvious way t

know what the desired output of the hidden layeusthbe.

Back Propagation neural network

Multilayer neural networks use a most common temimifrom a variety of learning technique, callegl th
back propagation algorithm. In back propagationralenetwork, the output values are compared wigh th
correct answer to compute the value of some preeléferror function. By various techniques the eisor
then fed back through the network. Using this infation, the algorithms adjust the weights of each
connection in order to reduce the value of therdunction by some small amount. After repeatinig th
process for a sufficiently large number of traintngles the network will usually converge to sortaes

where the error of the calculation is small.

The goal of back propagation, as with most trairafgprithms, is to iteratively adjust the weightsthe

network to produce the desired output by minimizihg output error. The algorithm’s goal is to solve
credit assignment problem. Back propagation is adignt-descent approach in that it uses the
minimization of first-order derivatives to find amptimal solution. The standard back propagation

algorithm is given below.

Stepl:

Build a network with the choosen number of inpididien and output units.
Step2:

Initialize all the weights to low random values.

Stepa3:

Randomly, choose a single training pair.

Step4:

Copy the input pattern to the input layer.

Stepb:

Cycle the network so that the activation from thguits generates the activations in the hidden atulio

layers.
Step6:
Calculate the error derivative between the outptivation and the final output.
Step7:

Apply the method of back propagation to the summmestiucts of the weights and errors in the output

layer in order to calculate the error in the hiddeits.

Step8:

Update the weights attached the each unit accoitdinge error in that unit, the output from thetuni

below it and the learning parameters, until thereig sufficiently low.

To derive the back propagation algorithm, let ussider the three layer network shown in figure .

Input Laver Input Signals——» Output Laver

Hidden Layer

Error Signals

Figure Three layer back-propagation neural network

To propagate error signals, we start at the odgyer and work backward to the hidden layer. Thierer

signal at the output of neuron k at iteration géfined as

Where is the desired output of neuron k at iteraxi.

Generally, computational learning theory is conedrmvith training classifiers on a limited amount of
data. In the context of neural networks a simpleriséc, called early stopping often ensures tihat t

network will generalize well to examples not in tin@ining set. There are some problems with thé bac
propagation algorithm like speed of convergencetardoossibility of ending up in a local minimum of

the error function. Today there are a variety ofctical solutions that make back propagation in

multilayer perceptrons the solution of choice fany machine learning tasks.

CLUSTERING

Clustering is a division of data into groups of kimobjects. Representing the data by fewer citaste
necessarily loses certain fine details, but acliesienplification. It models data by its clustersat®
modeling puts clustering in a historical perspeaxtiwoted in mathematics, statistics and numerical
analysis. From a machine learning perspective elsstorrespond to hidden patterns, the search for
clusters in unsupervised learning and the resukiygiem represents a data concept. From a practical
perspective, clustering plays an outstanding raledata mining applications such as scientific data
exploration, information retrieval and text minirgpatial database applications, web analysis, rtingge
medical diagnostics, computational biology and matimers.

Clustering is the subject of active research iresavfields such as statistics, pattern recognitod

machine learning. Clustering is the classificatadnsimilar objects into different group. We canaals
define clustering is the unsupervised learning bfdalen data concept. Besides the term data ciogter
there are a number of terms with similar meanimgduding cluster analysis, automatic classificatio

numerical taxonomy, and typological analysis.

Types of Clustering

Categorization of clustering algorithms is neitharaight forward nor canonical. Data clustering
algorithms can be hierarchical or partitional. Tway clustering, co-clustering or bi-clustering &ne
names for clustering where not only the objectsdustered but also the features of the objects. We

provide a classification of clustering algorithristdd below.

Clustering Algorithms

Hierarchical mgamhms<

Partitioning Methods
—» F.elocation algorithm

Agglomerative Algorithms

Divisive Algorithms

—» Probabilistic clustering
— K-medoids methods
_}
_}

K-means methods

Densitv Based algorithm
— Density based Connectivity Clustering
— Density functions Clustering

Grid Based methods

Methods based on co-occurrence of categorical Data.

Constraint based clustering

Clustering algorithm used in machine learning

— Gradient Descent methods

—» Evolutionary methods

Scalable clustering algorithms

Algorithm for high dimensional data

—* Sub space clustering

— Projection Technique

— Co-clustering Techniques

Different Clustering Algorithms

PATTERN RECOGNITION

Pattern recognition as a field of study developéghiicantly in the 1960’s. It was very much
interdisciplinary subject, covering developments the areas of statistics, engineering, artificial
intelligence, computer science, psychology and iptggy, among others. Some people entered the field
with a real problem to solve. The large numberagflications ranging from the classical ones sich a
automatic character recognition and medical diaignmsthe more recent ones in data mining (such as
credit scoring, consumer sales analysis and coadit transaction analysis), have attracted coredfier
research effort, with many methods developed arndramks made. Pattern recognition of the objects int
a lot of categories or classes. It is an integaat pn most machine intelligence system built fecidion
making. The nature of the pattern recognition Gimeering. But the final aim of pattern recognitisrto
design machines to solve the gap between applicatid theory. It is a process of identifying a siins.
This process is often accomplished with incompleteambiguous information. The basic model of

pattern classifiers is shown in figure.

Input Feature Selector or -
——{ Sensor > Classifier —»
Extractor Feature Decision

F.epresentatio Pattemn
Patterm

Figure A common Pattern Classifier
A complete pattern recognition system consists of:

(a) A sensor: It gathers the information to be claedifi
(b) A feature selector or Extractor: Feature seledsahe process of selecting a subset of a given set
of variables. The feature extractor mechanism takgmssible non linear combination of the
original variables to form new variables.
(c) A classifier: It classifies or describes the oba#ions relying on the extracted features.
To understand the problem of designing a pattecogmition system, we must understand the problems

that each of these components must solve. Diffezentponents of the pattern recognition system are

sensing, segmentation, feature extraction, classifin, post processing. The input to a pattern

recognition system is some kind of a transducerh s1$ camera or a microphone array. Sensing istased
eliminate the noise. A sensor converts images and®or other physical into signal data. The segonen
isolates sensed objects from the back ground on fsther objects. A feature extractor measures bbjec
properties that are useful for classification. Toal of feature extractor is to characterize orecbjo be
recognized by measurements whose values are vmilarsifor objects in the same category and for
objects in different categories very different. Tiask of feature extractor is domain dependent and
requires the knowledge of the domain. The taslhefdassifier component proper of a full systertois

use the feature vector provided by the featureaetdr to assign the object to a category. The ifieiss
uses the features to assign the sensed objectategory. The post processor uses the output of the

classifier to decide on the recommended action.

Decision

Post Processing

-

Classification Eule

r

Feature extraction

or Selection

r

Segmentation

-

Sensor

Input

Figure Components of a Pattern Recognition System

The design cycle of a pattern recognition systemiksnthe repetition of a number of different aitias

training and evaluation. A structure of the designle of a pattern recognition system is illustdabe

figure .

Start

l

| Data Collection

Selection

r
| Model Selection

¥
Training

Classification

Ewaluation of
Classifier

l

Figure Design cycle of a Pattern Recognition Syste

Data collection can account for large part of tlstof developing a pattern recognition system. The
selection of some separate distinguishable featlepends on the characteristics of the problem doma
In selecting features, we would like to find featurthat are simple to extract, invariant to irralgv
transformation and useful to discriminating patseim different categories. The selections of modets
done by the different descriptions, which are inhmeatical form. The training process uses sonadl or
of the data to determine the system parametergerBift types of training protocols are stochastitch
and online. Evaluation is needed to measure thienpesnce of the system and to identify the need for
improvements in its components. There are two mi@iisions of classification in pattern recognitilike
supervised classification and unsupervised classifin. In supervised classification, we have aofet
data samples (each consisting of measurementsset af variables) with associated labels, the class
types. These are used as exemplars in the clasifsign. In unsupervised classification, the @datanot
labeled and we seek to fine groups in the datalafeatures that distinguish one group from arrothe

EXPERT SYSTEM:

An expert system may be viewed as a computer stiroalaf a human expert. It can also be
defined as a computer program that simulates thgnpent and behaviour of a human or an
organization that has expert knowledge and expegiéna particular field. Typically such a
system contains a knowledge base containing acetetliéxperience and a set of rules for

applying the knowledge base to each particulaasdn that is described to the program. Expert

systems also use human knowledge to solve prollemhsormally would require human
intelligence. These expert systems represent therése knowledge as data or rules within the
computer. These rules and data can be called upen needed to solve problems. Books and
manual guides have a tremendous amount of knowledige human has to read and interpret

the knowledge for it to be used.

A system that uses human knowledge captured intgeter to solve problems that ordinarily
require human expertise. A computer program dedigmenodel the problem solving ability of a
human expert. Expert systems make extensive usgecfalized knowledge to solve problems at
the level of a human expert. An expert is a pemsbo has expertise in a certain area i.e. the
expert has knowledge or special skills that areknotvn or available to most people. An expert
can solve problems that most people cannot soleentmuch more efficiently. Thus expert
system technology may include special expert sysk@nguages, programs and hardware
designed to aid in the development and executioexpert systems. The knowledge in expert
systems may be either expertise or knowledge shgémerally available from books, magazines
and knowledgeable persons.

DIFFERENCE BETWEEN EXPERT SYSTEM AND CONVENTIONAL S YSTEM

The principle distinction between expert systent taaditional problem solving programs is the
way in which the problem related expertise is codedconventional applications, problem
expertise is encoded in both program and datatates: In the expert system approach all of the
problem related expertise is encoded in data strestonly, none is in programs. Generally in
expert systems, the use of knowledge is vital. Butonventional system data is used more
efficiently than knowledge. Conventional systeme aot capable of explaining a particular
conclusion for a problem. These systems try toesaiva straight forward manner. But expert
systems are capable of explaining how a particatarclusion is reached and why requested
information is needed during a process. However ptloblems are solved more efficiently than
a conventional system by an expert system. Gegdralhn expert system, it uses the symbolic
representations for knowledge i.e. the rules, dbffie forms of networks, frames, scripts etc. and
performs their inference through symbolic compotati But conventional systems are unable to
express these terms. They just simplify the problema straight forward manner and are
incapable to express the “how, why” questions. Als® problem solving tools those are present

in expert system are purely absent in conventisgsiems. The various types of problems are

always solved by the experts in an expert systenh& solution of the problem is more accurate

than a conventional system.

THE DEVELOPMENT PROCESS OF AN EXPERT SYSTEM

By the definition, an expert system is a computegmm that simulates the thought process of a huma
expert to solve complex decision problems in a ifigedomain. The expert system’s knowledge is
obtained from expert sources which are coded imgetrauitable form. The process of building an eper

system is called knowledge engineering and is dgre knowledge engineer. The knowledge engineer is

a human with a background in computer science anand he knows how to build expert systems. A

knowledge engineer also decides how to represenktiowledge in an expert system and helps the
programmers to write the code. Knowledge engingeignthe acquisition of knowledge from a human
expert or any other source. The different stagdhendevelopment of an expert system are illusirate

figure.

MAINTENANCE

IMPLEMENTATION,
INTEGRATION

TESTING, VERIFICATION,
INTEGRATION

DEVELOPMENT
PROCESS

TOOL SELECTION

KNOWLEDGE
REPRESENTATION

ENOWLEDGE
ACQUISITION

PROBLEM SELECTION

CONCEPTS

BACKGROUND

Time co—

Figure Hierarchy of expert system development progss
Some latest developments in the expert systemaaecas follows:

1. Availability of many tools that are designed to edjte the construction of expert system at a retdluce

cost.

Increased use of expert systems in many tasksmafigim help desks to complex military and space
shuttle applications.

Use of multiple knowledge bases.

Improvements in knowledge acquisition.

Use of the internet to disseminate software aneige.

Increased use of object oriented programming approaknowledge representation.

The multiple use of heuristic knowledge in sevegblications.

Enables the user to think about hypothetical reagon
CHARACTERISTICS OF AN EXPERT SYSTEM

The growth of expert system is expected to contiouseveral years. With the continuing growth, mman
new and exciting applications will emerge. An expgystem operates as an interactive system that
responds to questions, asks for clarification, malecommendations and generally aids the decision
making process. Expert system provides expert adia guidance in a wide variety of activities from
computer diagnosis to delicate medical surgery.

An expert system is usually designed to have thewing general characteristics.

1. High level Performance:The system must be capable of responding at a td\@mpetency equal
to or better than an expert system in the fielck Ghality of the advice given by the system shdad
in a high level integrity and for which the perfante ratio should be also very high.
Domain Specificity: Expert systems are typically very domain specHiar ex., a diagnostic expert
system for troubleshooting computers must actyadiform all the necessary data manipulation as a
human expert would. The developer of such a systest limit his or her scope of the system to just
what is needed to solve the target problem. Spemidé or programming languages are often needed
to accomplish the specific objectives of the system
Good Reliability: The expert system must be as reliable as a hunpartex

Understandable: The system should be understandable i.e. be aldepiain the steps of reasoning

while executing. The expert system should havexatagation capability similar to the reasoning

ability of human experts.

Adequate Response timeThe system should be designed in such a way thatable to perform
within a small amount of time, comparable to otdrethan the time taken by a human expert to reach
at a decision point. An expert system that takeg®ar to reach a decision compared to a human
expert’s time of one hour would not be useful.

Use symbolic representationsExpert system use symbolic representations for kedge (rules,
networks or frames) and perform their inferenceulh symbolic computations that closely resemble

manipulations of natural language.

7. Linked with Metaknowledge: Expert systems often reason with metaknowledgethe&y reason
with knowledge about themselves and their own kedgé limits and capabilities. The use of
metaknowledge is quite interactive and simple fmious data representations.

Expertise knowledge: Real experts not only produce good solutions sa find them quickly. So,
an expert system must be skillful in applying itowledge to produce solutions both efficiently and
effectively by using the intelligence human experts

Justified Reasoning:This allows the users to ask the expert systepstify the solution or advice
provided by it. Normally, expert systems justifgithanswers or advice by explaining their reasaning
If a system is a rule based system, it providebdauser all the rules and facts it has used teaeh
its answer.

. Explaining capability: Expert systems are capable of explaining how &cpdar conclusion was
reached and why requested information is needeidglar consultation. This is very important as it
gives the user a chance to access and understargydtem’s reasoning ability, thereby improving
the user’s confidence in the system.

. Special Programming Languages:Expert systems are typically written in speciabgramming
languages. The use of languages like LISP and PR®IlrOthe development of an expert system
simplifies the coding process. The major advant#fghese languages, as compared to conventional
programming languages is the simplicity of the &ddj elimination or substitution of new rules and
memory management capabilities. Some of the disishing characteristics of programming
languages needed for expert system work are as\vill
a) Efficient mix of integer and real variables.

b) Good memory management procedures.
c) Extensive data manipulation routines.

d) Incremental compilation.

e) Tagged memory architecture.

f) Efficient search procedures.

g) Optimization of the systems environment.

STRUCTURE OF AN EXPERT SYSTEM

The structure of expert systems reflect the knogde@ngineers understanding of the methods of
representing knowledge and of how to perform iigefit decision making tasks with the support of a
computer based system. Complex decisions involtgcate combination of factual and heuristic
knowledge. In order for the computer to be ableetoieve and effectively use heuristic knowleddpe t
knowledge must be organized in an easily acces#ipieat that distinguishes among data, knowledge

and control structures. For this reason experegystare organized in three distinct levels like:

a) Knowledge Base:lt consists of problem solving rules, procedured mtrinsic data relevant to the

problem domain. The knowledge base constituteptbklem solving rules, facts or intuition that a

human expert might use in solving problems in agiproblem domain. The knowledge base is
usually stored in terms of if-then rules. The wotkimemory represents relevant data for the current
problem being solved.
Working Memory: It refers to task specific data for the problendemconsideration. This is the
dynamic module of the system. It consists of aem$as component called database. In general, the
workspace contains a set called rule base, icenitains a set of rules that to be used by a syatean
given moment.
Inference Engine: This is a generic control mechanism that appliesakiomatic knowledge in the
knowledge base to the task specific data to arasivesome solution or conclusion. Inference in
production systems is accomplished by a procesbkaihing through the rules recursively, either in a
forward or in a backward direction until a conctusis reached.
These three pieces may very well come from diffesenirces. The inference engine, such as VP-Expert,
may come from a commercial vendor. The knowledge maay be a specific diagnostic knowledge base
compiled by a consulting firm, and the problem datey be supplied by the end user. A knowledge base
is the nucleus of the expert system structure. &wkadge base is created by knowledge engineers, who
translate the knowledge of real human experts riakes and strategies. These rules and strategies ca
change depending on the prevailing problem scen@itie knowledge base provides the expert system
with the capability to recommend directions for musequiry. The system also instigates further
investigation into areas that may be important teiain line of reasoning but not apparent touber.
The general structure of an expert system is givdigure .

Knowledge Engineers

. Software
Inference Engine

Working Memory Knowledge Base
Spreadsheets

Databases Data
Hardware

Figure Expert Systems Organization and Operating Environment The

modularity of an expert system is an importantidigatishing characteristics compared to a conveation
computer program. Modularity is affected in an ekggstem by the use of three distinct componesnts a
shown in fig 6.2. A good expert system is expetbegrow as it learns from user feedback. Feedlmck i
incorporated into the knowledge base as appropateake the expert system smarter. The dynamism of
the application environment for expert systemsaiseld on the individual dynamism of the components.

This can be classified into three categories dsvisl

a) Most dynamic: The most dynamic part of an expert system is adwtag working memory. The
content of the working memaory, sometimes calleddata structure, changes with each problem
situation. Consequently, it is the most dynamic ponent of an expert system assuming, of
course that it is kept current.

Moderately dynamic: This part in the expert system is the knowledgabahe knowledge base
need not change unless a new piece of informatisesathat indicates a change in the problem
solution procedure. Changes in the knowledge bhaseld be carefully evaluated before being
implemented. In effect, changes should not be basgdst one consultation experience.

Least dynamic: The least dynamic part is the inference engine.thes control and coding
structure of an inference engine is very strictclsanges are made only if absolutely necessary to
correct a bug or enhance the inferential processar@ercial inference engines, in particular,
change only at the discretion of the developerc&inequent updates can be disruptive and costly

to clients, most commercial software developersdmninimize the frequency of updates.

RULE BASED ARCHITECTURE OF AN EXPERT SYSTEM

The most common form of architecture used in exged other types of knowledge based systems is the
production system or it is called rule based systerhis type of system uses knowledge encodedein th

form of production rules i.e. if-then rules. Thderinas a conditional part on the left hand side and

conclusion or action part on the right hand side.dxample if. conditionl and condition2 and

condition3
Then: Take action4

Each rule represents a small chunk of knowleddkeaiven domain of expertise. When the known facts
support the conditions in the rule’s left side, dmnclusion or action part of the rule is then atee as

known. The rule based architecture of an experteaysconsists of the domain expert, knowledge
engineer, inference engine, working memory, knogdedase, external interfaces, user interface,

explanation module, database spreadsheets exexptalgkams s mentioned in figure .

Domain Expert

[

Transfer of Expertise

Control Structure Enowledge Structure
A 4

Knowledge Engineer

Explanation
Module

-~

r

Inference ¥
Engine) | Knowledge

Base

k4
External
Interfaces

Working

Memory
Fy

[

Problem Data
Solutions Updates

L 4
User Interface
(Explanation)

Data Bases
Spreadsheets
Executable Programs

Integration of Expert systems Components

The components of the rule based architecturesafellaws.

1.

User Interface: It is the mechanism by which the user and the xgystem communicate with each
other i.e. the use interacts with the system thmoaigiser interface. It acts as a bridge between use
and expert system. This module accepts the usereguend submits those to the expert system. The
user normally consults the expert system for folfmreasons.

a) To get answer of his/her queries.

b) To get explanation about the solution for psychiaalgsatisfaction.
The user interface module is designed in such a thay at user level it accepts the query in a
language understandable by expert system. To niaékeexpert system user friendly, the user
interface interacts with the user in natural larggual he user interface provides as much facilaies
possible such as menus, graphical interfacesaetmake the dialog user friendly and more attractive

Explanation Module: The explanation module explains the reasoning efdystem to a user. It

provides the user with an explanation of the remgpprocess when requested. The credibility of

expert system will be established only when it Ideato explain “how and why” a particular

conclusion is drawn. This explanation increasedtiief of user in the expert system.

a) Explanation(How): To respond to a how query, the explanation mottales the chain of rules
fired during a consolation with the user. This exjgtion mode can be activated once the process
is over. It explains how a fact was deduced bysystem and similarly how a rule was/wasn’t
used. The simplest way to specify this is to expthe rule which allows the deduction. For e.g.

If the system (S) will give information about tharent-child relationship to the user (U) then the
followings can be possible.
S: My diagnosis is “A is the father of B”
U: How?
S: The result was obtained by the addition of feifay facts and rules.
Fact no 11: A is the parent of Hari.
Fact no 15: A is a male.
Fact no 110: X is father of Y:
Xis parent of Y, X is male.
So A is the father of B.
Explanation (Why)? To respond to a why query, the explanation modulst be able to explain
why certain information is needed by the infererogine to complete a step in the reasoning

process. This mode of explanation is dynamic angéx when the system functions in backward

chaining. If the user doesn’t understand the reé&hind the question. The system is capable of

explaining why the question was asked.
For example S: Is the following true?
A is the father of B.
U: Why?

S: I need the fact:

A is the father of B to establish the followiragf “B is the son of A”.
By using the rule no. 4:

A is the father of B:

B is the son of A.

Working Memory: It is a global database of facts used by the rules
Knowledge Engineering: The primary people involved in building an expsststem are the
knowledge engineer, the domain expert and the sad ©nce the knowledge engineer has obtained

a general overview of the problem domain and gbneugh several problem solving sessions with

the domain expert, he/she is ready to begin agtdakigning the system, selecting a way to reptesen
the knowledge, determining the search strategyk{ac or forward) and designing the user
interface. After making complete designs, the kmemge engineer builds a prototype. The prototype
should be able to solve problems in a small areghefdomain. Once the prototype has been
implemented, the knowledge engineer and domainrexpst and refine its knowledge by giving it
problems to solve and correcting its disadvantages.
Knowledge Base:ln rule based architecture of an expert system ktitowledge base is the set of
production rules. The expertise concerning the Iprabarea is represented by productions. In rule
based architecture, the condition actions pairgepeesented as rules, with the premises of thesrul
(if part) corresponding to the condition and thedauosion (then part) corresponding to the action.
Case-specific data are kept in the working memdilye core part of an expert system is the
knowledge base and for this reason an expert syistaiao called a knowledge based system. Expert
system knowledge is usually structured in the farfra tree that consists of a root frame and a
number of sub frames. A simple knowledge base eae bnly one frame, i.e. the root frame whereas
a large and complex knowledge base may be strutture¢he basis of multiple frames.

Inference Engine: The inference engine accepts user input queridsresponses to questions through

the 1/O interface. It uses the dynamic informatimgether with the static knowledge stored in the

knowledge base. The knowledge in the knowledge [sassed to derive conclusions about the current

case as presented by the user’s input. Inferengmetis the module which finds an answer from the

knowledge base. It applies the knowledge to firedgblution of the problem. In general, inferencgirs

makes inferences by deciding which rules are sadisfy facts, decides the priorities of the saifiules

and executes the rule with the highest priorityn&ally inferring process is carried out recurghiel 3
stages like match, select and execute. During th&chmstage, the contents of working memory are
compared to facts and rules contained in the kmgdebase. When proper and consistent matches are

found, the corresponding rules are placed in alicbskt.

APPLICATIONS OF EXPERT SYTEM

There are several major application areas of exgpatem such as agriculture, education, environment
law manufacturing, medicine power system etc. Bxpgstem is used to develop a large number of new
products as well as new configurations of estabtishroducts. When established products are modified
to include an expert system as a component or velmeastablished product item is replaced with an
expert system, the expert system supported estitalled intelligent. Expert systems are designatl a

created to facilitate tasks in the fields of acdmg) medicine, process control, financial service,

production, education etc. The foundation of a sasful expert system depends on a series of tethnic

procedures and development that may be designedrtain related experts.

Expert Systems are for everyone

Everyone can find an application potential in tieddfof expert systems. Contrary to the belief thgiert
systems may pose a threat to job security, expstems can actually help to create opportunitiesiéwv
job areas. No matter which is of business one gages in, expert systems can fulfill the need fghér
productivity and reliability of decisions. Some jopportunities offered by the expert system artedis

below:

Basic Research

Applied Research

Knowledge Engineering

The development of Inference engine
Training

Sales and marketing

Expert System in Education

In the field of education, many of the expert systeapplication are embedded inside the Intelligent
Tutoring System (ITS) by using techniques from aidephypertext and hypermedia. Most of the system
usually will assist student in their learning byings adaptation techniques to personalize with the
environment prior knowledge of student and studeability to learn. Expert system in education has
expanded very consistently from micro computer &bwased and agent based technology. Web based
expert system can provide an excellent alternativerivate tutoring at any time from any place veher
internet is provided. Agent based expert systerhheilp users by finding materials from the web ldase
on the user's profile. Expert system also had tretoas changes in the applying of methods and
technigues. Expert system are beneficial as a irm@qdbols because it has equipped with the unique
features which allow users to ask question on hely and what format. When it is used in the class
environment, surely it will give many benefit taudent as it prepare the answer without referrinthéo
teacher. Beside that, expert system is able to gigeons towards the given answer. Expert systeim ha
been used in several fields of study including cotpanimation, computer science and engineering,

language teaching business study etc.

Expert system in Agriculture

The expert system for agriculture is same as ltkerofields. Here also the expert system usesulee r
based structure and the knowledge of a human eigeaptured in the form of IF-THEN rules and facts
which are used to solve problems by answering gqurestyped at a keyboard attached to a computer. Fo
example, in pest control, the need to spray, delectf a chemical to spray, mixing and applicatéto.
The early, state of developing the expert systamsnathe 1960’s and 1970’s were typically writiema
mainframe computer in the programming language ase LISP. Some examples of these expert

systems are MACSYMA developed at the Massachuseitiute of Technology (MIT) for assisting
individuals in solving complex mathematical probten®ther examples may be MYCIN, DENDRAL,
and CALEX etc. The rises of the agricultural expgrstem are to help the farmers to do single point
decisions, which to have a well planning for befst@rt to do anything on their land. It is usediésign

an irrigation system for their plantation use. Alsome of the other functions of agricultural expert

system are:

— To predict the extreme events such as thunderstamnah$rost.
— To select the most suitable crop variety.

- Diagnosis of liver stock disorder and many more.

Expert System for a particular decision problem

The expert system can be used as a stand alonsoadgystem for the specific knowledge domain. It
also can provide decision support for a high ldwginan expert. The main purposes, the rises of the
expert system are as a delivery system for extansiormation, to provide management education for
decision makers and for dissemination of up-to-dgaientific information in a readily accessible and
easily understood form, to agricultural researchedsisers and farmers. By the help of an expestiesy,

the farmers can produce a more high quality prottuttie citizen.

Expert System for Text Animation (ESTA)

The idea behind creating an expert system is thatm enable many people to benefit from the
knowledge of one person — the expert. By providingith a knowledge base for a certain subject area
ESTA can be used to create an expert system faulbject:

ESTA + Knowledge base = Expert System

Each knowledge base contains rules for a speaficain. A knowledge base for an expert system te giv
tax advice might contain rules relating maritaks$amortgage commitments and age to the advigabili
of taking out a new life insurance policy. ESTA Fakfacilities to write the rules that will makep wa
knowledge base. ESTA has an inference engine wbach use the rules in the knowledge base to
determine which advice is to be given to the expgstem user. ESTA also features the ability fer th
expert system user to obtain answers to questioob as “how” and “why”. ESTA is used by a
knowledge engineer to create a knowledge base wprbebexpert system user to consult a knowledge

base. Knowledge representation in ESTA is basdti@items like sections, parameters, title.

