

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY

BURLA – 768018

Lecture Notes on Software Engineering

By

Dr. H.S.Behera

Asst. Prof. K.K.Sahu

Asst. Prof. Gargi Bhattacharjee

CONTENTS

Module: 1

 Lecture 1: Introduction to Software Engineering

Lecture 2: Software Development Life Cycle, Classical Waterfall Model, Iterative Model

 Lecture 3: Prototype Model, Spiral Model

 Lecture 4: Requirement Analysis & Specification

 Lecture 5: Software Requirement Characteristics, User Interface Requirements

 Lecture 6: Software Design

 Lecture 7: Cohesion & Coupling

 Lecture 8: Software Analysis & Design Tools – DFD

 Lecture 9: Structure Charts, Structured English

 Lecture 10: Decision Table, ER Model, Data Dictionary

REFERENCES

MODULE 1

LECTURE NOTE-1

INTRODUCTION TO SOFTWARE ENGINEERING

The term software engineering is composed of two words, software and engineering.

Software is more than just a program code. A program is an executable code, which serves

some computational purpose. Software is considered to be a collection of executable

programming code, associated libraries and documentations. Software, when made for a

specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific

principles and methods.

So, we can define software engineering as an engineering branch associated with the

development of software product using well-defined scientific principles, methods and

procedures. The outcome of software engineering is an efficient and reliable software product.

IEEE defines software engineering as:

The application of a systematic, disciplined, quantifiable approach to the development,

operation and maintenance of software.

We can alternatively view it as a systematic collection of past experience. The experience is

arranged in the form of methodologies and guidelines. A small program can be written without

using software engineering principles. But if one wants to develop a large software product, then

software engineering principles are absolutely necessary to achieve a good quality software cost

effectively.

Without using software engineering principles it would be difficult to develop large programs. In

industry it is usually needed to develop large programs to accommodate multiple functions. A

problem with developing such large commercial programs is that the complexity and difficulty

levels of the programs increase exponentially with their sizes. Software engineering helps to

reduce this programming complexity. Software engineering principles use two important

techniques to reduce problem complexity: abstraction and decomposition. The principle of

abstraction implies that a problem can be simplified by omitting irrelevant details. In other

words, the main purpose of abstraction is to consider only those aspects of the problem that are

relevant for certain purpose and suppress other aspects that are not relevant for the given

purpose. Once the simpler problem is solved, then the omitted details can be taken into

consideration to solve the next lower level abstraction, and so on. Abstraction is a powerful way

of reducing the complexity of the problem. The other approach to tackle problem complexity is

decomposition. In this technique, a complex problem is divided into several smaller problems

and then the smaller problems are solved one by one. However, in this technique any random

decomposition of a problem into smaller parts will not help. The problem has to be decomposed

such that each component of the decomposed problem can be solved independently and then the

solution of the different components can be combined to get the full solution. A good

decomposition of a problem should minimize interactions among various components. If the

different subcomponents are interrelated, then the different components cannot be solved

separately and the desired reduction in complexity will not be realized.

NEED OF SOFTWARE ENGINEERING

The need of software engineering arises because of higher rate of change in user requirements

and environment on which the software is working.

 Large software - It is easier to build a wall than to a house or building, likewise, as the

size of software become large engineering has to step to give it a scientific process.

 Scalability- If the software process were not based on scientific and engineering

concepts, it would be easier to re-create new software than to scale an existing one.

 Cost- As hardware industry has shown its skills and huge manufacturing has lower down

the price of computer and electronic hardware. But the cost of software remains high if

proper process is not adapted.

 Dynamic Nature- The always growing and adapting nature of software hugely depends

upon the environment in which the user works. If the nature of software is always

changing, new enhancements need to be done in the existing one. This is where software

engineering plays a good role.

 Quality Management- Better process of software development provides better and

quality software product.

CHARACTERESTICS OF GOOD SOFTWARE

A software product can be judged by what it offers and how well it can be used. This software

must satisfy on the following grounds:

 Operational

 Transitional

 Maintenance

Well-engineered and crafted software is expected to have the following characteristics:

Operational

This tells us how well software works in operations. It can be measured on:

 Budget

 Usability

 Efficiency

 Correctness

 Functionality

 Dependability

 Security

 Safety

Transitional

This aspect is important when the software is moved from one platform to another:

 Portability

 Interoperability

 Reusability

 Adaptability

Maintenance

This aspect briefs about how well a software has the capabilities to maintain itself in the ever-

changing environment:

 Modularity

 Maintainability

 Flexibility

 Scalability

In short, Software engineering is a branch of computer science, which uses well-defined

engineering concepts required to produce efficient, durable, scalable, in-budget and on-time

software products.

LECTURE NOTE-2

SOFTWARE DEVELOPMENT LIFE CYCLE

Software Development Life Cycle (SDLC) is a well-defined, structured sequence of stages in

software engineering to develop the intended software product.

SDLC ACTIVITIES

SDLC provides a series of steps to be followed to design and develop a software product

efficiently. SDLC framework includes the following steps:

Fig 1: SDLC framework

 Communication

This is the first step where the user initiates the request for a desired software product. He

contacts the service provider and tries to negotiate the terms. He submits his request to the

service providing organization in writing.

Requirement Gathering

This step onwards the software development team works to carry out the project. The team

holds discussions with various stakeholders from problem domain and tries to bring out as

much information as possible on their requirements. The requirements are contemplated and

segregated into user requirements, system requirements and functional requirements. The

requirements are collected using a number of practices as given -

 studying the existing or obsolete system and software

 conducting interviews of users and developers

 referring to the database

 collecting answers from the questionnaires.

 Feasibility Study

After requirement gathering, the team comes up with a rough plan of software process. At this

step the team analyzes if the software can be made to fulfill all requirements of the user and if

there is any possibility of the software being no more useful. If the project is financially,

practically and technologically feasible for the organization to take up, they take up the project

else they let it go.

System Analysis

At this step the developers decide a roadmap of their plan and try to bring up the best software

model suitable for the project. System analysis includes understanding of software product

limitations, learning system related problems or changes to be done in existing systems

beforehand, identifying and addressing the impact of project on organization and personnel etc.

The project team analyzes the scope of the project and plans the schedule and resources

accordingly.

Software Design

Next step is to bring down whole knowledge of requirements and analysis on the desk and

design the software product. The inputs from users and information gathered in requirement

gathering phase are the inputs of this step. The output of this step comes in the form of two

designs; logical design and physical design. Engineers produce meta-data and data dictionaries,

logical diagrams, data-flow diagrams and in some cases pseudo codes.

 Coding

This step is also known as programming phase. The implementation of software design starts in

terms of writing program code in the suitable programming language and developing error-free

executable programs efficiently.

 Testing

An estimate says that 50% of whole software development process should be tested. Errors may

ruin the software from critical level to its own removal. Software testing is done while coding

by the developers and thorough testing is conducted by testing experts at various levels of code

such as module testing, program testing, product testing, in-house testing and testing the

product at user’s end. Early discovery of errors and their remedy is the key to reliable software.

 Integration

Software may need to be integrated with the libraries, databases and other program(s). This

stage of SDLC is involved in the integration of software with outer world entities.

Implementation

This means installing the software on user machines. At times, software needs post-installation

configurations at user end. Software is tested for portability and adaptability and integration

related issues are solved during implementation.

Operation and Maintenance

This phase confirms the software operation in terms of more efficiency and less errors. If

required, the users are trained on, or aided with the documentation on how to operate the

software and how to keep the software operational. The software is maintained timely by

updating the code according to the changes taking place in user end environment or technology.

This phase may face challenges from hidden bugs and real-world unidentified problems.

Disposition

As time elapses, the software may decline on the performance front. It may go completely

obsolete or may need intense up gradation. Hence a pressing need to eliminate a major portion

of the system arises. This phase includes archiving data and required software components,

closing down the system, planning disposition activity and terminating system at appropriate

end-of-system time.

THE NEED FOR A SOFTWARE LIFE CYCLE MODEL

The development team must identify a suitable life cycle model for the particular project and

then adhere to it. Without using of a particular life cycle model the development of a software

product would not be in a systematic and disciplined manner. When a software product is being

developed by a team there must be a clear understanding among team members about when and

what to do. Otherwise it would lead to chaos and project failure. This problem can be illustrated

by using an example. Suppose a software development problem is divided into several parts and

the parts are assigned to the team members. From then on, suppose the team members are

allowed the freedom to develop the parts assigned to them in whatever way they like. It is

possible that one member might start writing the code for his part, another might decide to

prepare the test documents first, and some other engineer might begin with the design phase of

the parts assigned to him. This would be one of the perfect recipes for project failure. A software

life cycle model defines entry and exit criteria for every phase. A phase can start only if its

phase-entry criteria have been satisfied. So without software life cycle model the entry and exit

criteria for a phase cannot be recognized. Without software life cycle models it becomes difficult

for software project managers to monitor the progress of the project.

SOFTWARE DEVELOPMENT PARADIGM

The software development paradigm helps developer to select a strategy to develop the

software. A software development paradigm has its own set of tools, methods and procedures,

which are expressed clearly and defines software development life cycle. A few of software

development paradigms or process models are defined as follows:

CLASSICAL WATERFALL MODEL

Classical waterfall model is the simplest model of software development paradigm. It says the

all the phases of SDLC will function one after another in linear manner. That is, when the first

phase is finished then only the second phase will start and so on.

Fig 2: Waterfall Model

This model assumes that everything is carried out and taken place perfectly as planned in the

previous stage and there is no need to think about the past issues that may arise in the next

phase. This model does not work smoothly if there are some issues left at the previous step. The

sequential nature of model does not allow us go back and undo or redo our actions.

This model is best suited when developers already have designed and developed similar

software in the past and is aware of all its domains.

ITERATIVE MODEL

This model leads the software development process in iterations. It projects the process of

development in cyclic manner repeating every step after every cycle of SDLC process.

Fig 3: Iterative Model

The software is first developed on very small scale and all the steps are followed which are

taken into consideration. Then, on every next iteration, more features and modules are designed,

coded, tested and added to the software. Every cycle produces a software, which is complete in

itself and has more features and capabilities than that of the previous one.

After each iteration, the management team can do work on risk management and prepare for the

next iteration. Because a cycle includes small portion of whole software process, it is easier to

manage the development process but it consumes more resources.

LECTURE NOTE -3

PROTOTYPING MODEL

A prototype is a toy implementation of the system. A prototype usually exhibits limited

functional capabilities, low reliability, and inefficient performance compared to the actual

software. A prototype is usually built using several shortcuts. The shortcuts might involve using

inefficient, inaccurate, or dummy functions. The shortcut implementation of a function, for

example, may produce the desired results by using a table look-up instead of performing the

actual computations. A prototype usually turns out to be a very crude version of the actual

system.

Following is the stepwise approach to design a software prototype:

1. Basic Requirement Identification: This step involves understanding the very basic

product requirements especially in terms of user interface. The more intricate details of

the internal design and external aspects like performance and security can be ignored at

this stage.

2. Developing the initial Prototype: The initial Prototype is developed in this stage, where

the very basic requirements are showcased and user interfaces are provided. These

features may not exactly work in the same manner internally in the actual software

developed and the workarounds are used to give the same look and feel to the customer in

the prototype developed.

3. Review of the Prototype: The prototype developed is then presented to the customer and

the other important stakeholders in the project. The feedback is collected in an organized

manner and used for further enhancements in the product under development.

4. Revise and enhance the Prototype: The feedback and the review comments are discussed

during this stage and some negotiations happen with the customer based on factors like,

time and budget constraints and technical feasibility of actual implementation. The

changes accepted are again incorporated in the new Prototype developed and the cycle

repeats until customer expectations are met.

Fig 4: Prototype Model

SPIRAL MODEL

The Spiral model of software development is shown in fig.5. The diagrammatic representation of

this model appears like a spiral with many loops. The exact number of loops in the spiral is not

fixed. Each loop of the spiral represents a phase of the software process. For example, the

innermost loop might be concerned with feasibility study. The next loop with requirements

specification, the next one with design, and so on. Each phase in this model is split into four

sectors (or quadrants) as shown in the fig.5. The following activities are carried out during each

phase of a spiral model.

Fig 5: Spiral Model

- First quadrant (Objective Setting)

• During the first quadrant, it is needed to identify the objectives of the phase.

• Examine the risks associated with these objectives.

- Second Quadrant (Risk Assessment and Reduction)

• A detailed analysis is carried out for each identified project risk.

• Steps are taken to reduce the risks. For example, if there is a risk that the requirements
are inappropriate, a prototype system may be developed.

- Third Quadrant (Development and Validation)

• Develop and validate the next level of the product after resolving the identified risks.

- Fourth Quadrant (Review and Planning)

• Review the results achieved so far with the customer and plan the next iteration around
the spiral.

• Progressively more complete version of the software gets built with each iteration
around the spiral.

LECTURE NOTE -4

REQUIREMENT ANALYSIS & SPECIFICATION

The software requirements are description of features and functionalities of the target system.

Requirements convey the expectations of users from the software product. The requirements

can be obvious or hidden, known or unknown, expected or unexpected from client’s point of

view.

Requirement Engineering

The process to gather the software requirements from client, analyze and document them is

known as requirement engineering.

The goal of requirement engineering is to develop and maintain sophisticated and descriptive

‘System Requirements Specification’ document.

Requirement Engineering Process

It is a four step process, which includes –

 Feasibility Study

 Requirement Gathering

 Software Requirement Specification

 Software Requirement Validation

Let us see the process briefly -

Feasibility study

When the client approaches the organization for getting the desired product developed, it comes

up with rough idea about what all functions the software must perform and which all features

are expected from the software.

Referencing to this information, the analysts does a detailed study about whether the desired

system and its functionality are feasible to develop.

This feasibility study is focused towards goal of the organization. This study analyzes whether

the software product can be practically materialized in terms of implementation, contribution of

project to organization, cost constraints and as per values and objectives of the organization. It

explores technical aspects of the project and product such as usability, maintainability,

productivity and integration ability.

The output of this phase should be a feasibility study report that should contain adequate

comments and recommendations for the management about whether or not the project should be

undertaken.

Requirement Gathering

If the feasibility report is positive towards undertaking the project, next phase starts with

gathering requirements from the user. Analysts and engineers communicate with the client and

end-users to know their ideas on what the software should provide and which features they want

the software to include.

Software Requirement Specification

SRS is a document created by the system analyst after the requirements are collected from

various stakeholders.

SRS defines how the intended software will interact with hardware, external interfaces, speed of

operation, response time of system, portability of software across various platforms,

maintainability, speed of recovery after crashing, Security, Quality, Limitations etc.

The requirements received from client are written in natural language. It is the responsibility of

system analyst to document the requirements in technical language so that they can be

comprehended and useful by the software development team.

SRS should come up with following features:

 User requirements are expressed in natural language.

 Technical requirements are expressed in structured language, which is used inside the

organization.

 Design description should be written in pseudo code.

 Format of Forms and GUI screen prints.

 Conditional and mathematical notations for DFDs etc.

Software Requirement Validation

After requirement specifications are developed, the requirements mentioned in this document

are validated. User might ask for illegal, impractical solution or experts may interpret the

requirements incorrectly. This results in huge increase in cost if not nipped in the bud.

Requirements can be checked against following conditions -

 If they can be practically implemented

 If they are valid and as per functionality and domain of software

 If there are any ambiguities

 If they are complete

 If they can be demonstrated

Requirement Elicitation Process

Requirement elicitation process can be depicted using the following diagram:

Fig 1: Requirement elicitation process

 Requirements gathering - The developers discuss with the client and the end users and

know their expectations from the software.

 Organizing Requirements - The developers prioritize and arrange the requirements in

order of importance, urgency and convenience.

 Negotiation & discussion - If the requirements are ambiguous or there are some

conflicts in the requirements of various stakeholders, it is then negotiated and discussed

with the stakeholders. Requirements may then be prioritized and reasonably

compromised.

The requirements come from various stakeholders. To remove the ambiguity and

conflicts, they are discussed for clarity and correctness. Unrealistic requirements are

compromised reasonably.

 Documentation - All formal & informal, functional and non-functional requirements are

documented and made available for next phase processing.

Requirement Elicitation Techniques

Requirements Elicitation is the process to find out the requirements for an intended software

system by communicating with client, end users, system users and others who have a stake in

the software system development.

There are various ways to discover requirements

Interviews

Interviews are strong medium to collect requirements. Organization may conduct several types

of interviews such as:

 Structured (closed) interviews, where every single information to be gathered, is decided

in advance, they follow the pattern and matter of discussion firmly.

 Non-structured (open) interviews, where information to gather is not decided in advance,

more flexible and less biased.

 Oral interviews

 Written interviews

 One-to-one interviews which are held between two persons across the table.

 Group interviews which are held between groups of participants. They help to uncover

any missing requirement as numerous people are involved.

Surveys

Organization may conduct surveys among various stakeholders by querying about their

expectation and requirements from the upcoming system.

Questionnaires

A document with pre-defined set of objective questions and respective options is handed over to

all stakeholders to answer, which are collected and compiled.

A shortcoming of this technique is, if an option for some issue is not mentioned in the

questionnaire, the issue might be left unattended.

Task analysis

Team of engineers and developers may analyze the operation for which the new system is

required. If the client already has some software to perform certain operation, it is studied and

requirements of proposed system are collected.

Domain Analysis

Every software falls into some domain category. The expert people in the domain can be a great

help to analyze general and specific requirements.

Brainstorming

An informal debate is held among various stakeholders and all their inputs are recorded for

further requirements analysis.

Prototyping

Prototyping is building user interface without adding detail functionality for user to interpret the

features of intended software product. It helps giving better idea of requirements. If there is no

software installed at client’s end for developer’s reference and the client is not aware of its own

requirements, the developer creates a prototype based on initially mentioned requirements. The

prototype is shown to the client and the feedback is noted. The client feedback serves as an input

for requirement gathering.

Observation

Team of experts visits the client’s organization or workplace. They observe the actual working

of the existing installed systems. They observe the workflow at client’s end and how execution

problems are dealt. The team itself draws some conclusions which aid to form requirements

expected from the software.

LECTURE NOTE-5

SOFTWARE REQUIREMENT CHARACTERISTICS

Gathering software requirements is the foundation of the entire software development project.

Hence they must be clear, correct and well-defined.

A complete Software Requirement Specifications must be:

 Clear

 Correct

 Consistent

 Coherent

 Comprehensible

 Modifiable

 Verifiable

 Prioritized

 Unambiguous

 Traceable

 Credible source

Software Requirements

We should try to understand what sort of requirements may arise in the requirement elicitation

phase and what kinds of requirements are expected from the software system.

Broadly software requirements should be categorized in two categories:

Functional Requirements: Requirements, which are related to functional aspect of software fall

into this category. They define functions and functionality within and from the software system.

EXAMPLES -

 Search option given to user to search from various invoices.

 User should be able to mail any report to management.

 Users can be divided into groups and groups can be given separate rights.

 Should comply business rules and administrative functions.

 Software is developed keeping downward compatibility intact.

Non-Functional Requirements: Requirements, which are not related to functional aspect of

software, fall into this category. They are implicit or expected characteristics of software, which

users make assumption of.

Non-functional requirements include -

 Security

 Logging

 Storage

 Configuration

 Performance

 Cost

 Interoperability

 Flexibility

 Disaster recovery

 Accessibility

Requirements are categorized logically as

 Must Have: Software cannot be said operational without them.

 Should have: Enhancing the functionality of software.

 Could have: Software can still properly function with these requirements.

 Wish list: These requirements do not map to any objectives of software.

While developing software, ‘Must have’ must be implemented, ‘Should have’ is a matter of

debate with stakeholders and negation, whereas ‘could have’ and ‘wish list’ can be kept for

software updates.

User Interface (UI) requirements

UI is an important part of any software or hardware or hybrid system. A software is widely

accepted if it is -

 easy to operate

 quick in response

 effectively handling operational errors

 providing simple yet consistent user interface

User acceptance majorly depends upon how user can use the software. UI is the only way for

users to perceive the system. A well performing software system must also be equipped with

attractive, clear, consistent and responsive user interface. Otherwise the functionalities of

software system cannot be used in convenient way. A system is said be good if it provides

means to use it efficiently. User interface requirements are briefly mentioned below -

 Content presentation

 Easy Navigation

 Simple interface

 Responsive

 Consistent UI elements

 Feedback mechanism

 Default settings

 Purposeful layout

 Strategically use of color and texture.

 Provide help information

 User centric approach

 Group based view settings.

Software System Analyst

System analyst in an IT organization is a person, who analyzes the requirement of proposed

system and ensures that requirements are conceived and documented properly & correctly. Role

of an analyst starts during Software Analysis Phase of SDLC. It is the responsibility of analyst

to make sure that the developed software meets the requirements of the client.

System Analysts have the following responsibilities:

 Analyzing and understanding requirements of intended software

 Understanding how the project will contribute in the organization objectives

 Identify sources of requirement

 Validation of requirement

 Develop and implement requirement management plan

 Documentation of business, technical, process and product requirements

 Coordination with clients to prioritize requirements and remove and ambiguity

 Finalizing acceptance criteria with client and other stakeholders

Software Metrics and Measures

Software Measures can be understood as a process of quantifying and symbolizing various

attributes and aspects of software.

Software Metrics provide measures for various aspects of software process and software

product.

Software measures are fundamental requirement of software engineering. They not only help to

control the software development process but also aid to keep quality of ultimate product

excellent.

Let us see some software metrics:

 Size Metrics - LOC (Lines of Code), mostly calculated in thousands of delivered source

code lines, denoted as KLOC.

Function Point Count is measure of the functionality provided by the software. Function

Point count defines the size of functional aspect of software.

 Complexity Metrics - McCabe’s Cyclomatic complexity quantifies the upper bound of

the number of independent paths in a program, which is perceived as complexity of the

program or its modules. It is represented in terms of graph theory concepts by using

control flow graph.

 Quality Metrics - Defects, their types and causes, consequence, intensity of severity and

their implications define the quality of product.

The number of defects found in development process and number of defects reported by

the client after the product is installed or delivered at client-end, define quality of

product.

 Process Metrics - In various phases of SDLC, the methods and tools used, the company

standards and the performance of development are software process metrics.

 Resource Metrics - Effort, time and various resources used, represents metrics for

resource measurement.

LECTURE NOTE-6

SOFTWARE DESIGN

Software design is a process to transform user requirements into some suitable form, which

helps the programmer in software coding and implementation.

For assessing user requirements, an SRS (Software Requirement Specification) document is

created whereas for coding and implementation, there is a need of more specific and detailed

requirements in software terms. The output of this process can directly be used into

implementation in programming languages.

Software design is the first step in SDLC (Software Design Life Cycle), which moves the

concentration from problem domain to solution domain. It tries to specify how to fulfill the

requirements mentioned in SRS.

Software Design Levels

Software design yields three levels of results:

 Architectural Design - The architectural design is the highest abstract version of the

system. It identifies the software as a system with many components interacting with

each other. At this level, the designers get the idea of proposed solution domain.

 High-level Design- The high-level design breaks the ‘single entity-multiple component’

concept of architectural design into less-abstracted view of sub-systems and modules and

depicts their interaction with each other. High-level design focuses on how the system

along with all of its components can be implemented in forms of modules. It recognizes

modular structure of each sub-system and their relation and interaction among each other.

 Detailed Design- Detailed design deals with the implementation part of what is seen as a

system and its sub-systems in the previous two designs. It is more detailed towards

modules and their implementations. It defines logical structure of each module and their

interfaces to communicate with other modules.

Modularization

Modularization is a technique to divide a software system into multiple discrete and

independent modules, which are expected to be capable of carrying out task(s) independently.

These modules may work as basic constructs for the entire software. Designers tend to design

modules such that they can be executed and/or compiled separately and independently.

Modular design unintentionally follows the rules of ‘divide and conquer’ problem-solving

strategy this is because there are many other benefits attached with the modular design of a

software.

Advantage of modularization:

 Smaller components are easier to maintain

 Program can be divided based on functional aspects

 Desired level of abstraction can be brought in the program

 Components with high cohesion can be re-used again

 Concurrent execution can be made possible

 Desired from security aspect

Concurrency

Back in time, all softwares were meant to be executed sequentially. By sequential execution we

mean that the coded instruction will be executed one after another implying only one portion of

program being activated at any given time. Say, a software has multiple modules, then only one

of all the modules can be found active at any time of execution.

In software design, concurrency is implemented by splitting the software into multiple

independent units of execution, like modules and executing them in parallel. In other words,

concurrency provides capability to the software to execute more than one part of code in parallel

to each other.

It is necessary for the programmers and designers to recognize those modules, which can be

made parallel execution.

Example

The spell check feature in word processor is a module of software, which runs alongside the

word processor itself.

LECTURE NOTE-7

COUPLING & COHESION

When a software program is modularized, its tasks are divided into several modules based on

some characteristics. As we know, modules are a set of instructions put together in order to

achieve some tasks. They are though, considered as single entity but may refer to each other to

work together. There are measures by which the quality of a design of modules and their

interaction among them can be measured. These measures are called coupling and cohesion.

Cohesion

Cohesion is a measure that defines the degree of intra-dependability within elements of a

module. The greater the cohesion, the better is the program design.

There are seven types of cohesion, namely –

 Co-incidental cohesion - It is unplanned and random cohesion, which might be the result

of breaking the program into smaller modules for the sake of modularization. Because it

is unplanned, it may serve confusion to the programmers and is generally not-accepted.

 Logical cohesion - When logically categorized elements are put together into a module,

it is called logical cohesion.

 Temporal Cohesion - When elements of module are organized such that they are

processed at a similar point in time, it is called temporal cohesion.

 Procedural cohesion - When elements of module are grouped together, which are

executed sequentially in order to perform a task, it is called procedural cohesion.

 Communicational cohesion - When elements of module are grouped together, which are

executed sequentially and work on same data (information), it is called communicational

cohesion.

 Sequential cohesion - When elements of module are grouped because the output of one

element serves as input to another and so on, it is called sequential cohesion.

 Functional cohesion - It is considered to be the highest degree of cohesion, and it is

highly expected. Elements of module in functional cohesion are grouped because they all

contribute to a single well-defined function. It can also be reused.

Coupling

Coupling is a measure that defines the level of inter-dependability among modules of a

program. It tells at what level the modules interfere and interact with each other. The lower the

coupling, the better the program.

There are five levels of coupling, namely -

 Content coupling - When a module can directly access or modify or refer to the contents

of another module, it is called content level coupling.

 Common coupling- When multiple modules have read and write access to some global

data, it is called common or global coupling.

 Control coupling- Two modules are called control-coupled if one of them decides the

function of the other module or changes its flow of execution.

 Stamp coupling- When multiple modules share common data structure and work on

different part of it, it is called stamp coupling.

 Data coupling- Data coupling is when two modules interact with each other by means of

passing data (as parameter). If a module passes data structure as parameter, then the

receiving module should use all its components.

Ideally, no coupling is considered to be the best.

Design Verification

The output of software design process is design documentation, pseudo codes, detailed logic

diagrams, process diagrams, and detailed description of all functional or non-functional

requirements.

The next phase, which is the implementation of software, depends on all outputs mentioned

above.

It is then becomes necessary to verify the output before proceeding to the next phase. The early

any mistake is detected, the better it is or it might not be detected until testing of the product. If

the outputs of design phase are in formal notation form, then their associated tools for

verification should be used otherwise a thorough design review can be used for verification and

validation.

By structured verification approach, reviewers can detect defects that might be caused by

overlooking some conditions. A good design review is import ant for good software design,

accuracy and quality.

LECTURE NOTE-8

SOFTWARE ANALYSIS & DESIGN TOOLS

Software analysis and design includes all activities, which help the transformation of

requirement specification into implementation. Requirement specifications specify all functional

and non-functional expectations from the software. These requirement specifications come in

the shape of human readable and understandable documents, to which a computer has nothing to

do.

Software analysis and design is the intermediate stage, which helps human-readable

requirements to be transformed into actual code.

Let us see few analysis and design tools used by software designers:

Data Flow Diagram

Data flow diagram is a graphical representation of data flow in an information system. It is

capable of depicting incoming data flow, outgoing data flow and stored data. The DFD does not

mention anything about how data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart depicts flow of

control in program modules. DFDs depict flow of data in the system at various levels. DFD does

not contain any control or branch elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

 Logical DFD - This type of DFD concentrates on the system process and flow of data in

the system. For example in a Banking software system, how data is moved between

different entities.

 Physical DFD - This type of DFD shows how the data flow is actually implemented in

the system. It is more specific and close to the implementation.

DFD Components

DFD can represent Source, destination, storage and flow of data using the following set of

components -

Fig 1: DFD Components

 Entities - Entities are source and destination of information data. Entities are represented

by rectangles with their respective names.

 Process - Activities and action taken on the data are represented by Circle or Round-

edged rectangles.

 Data Storage - There are two variants of data storage - it can either be represented as a

rectangle with absence of both smaller sides or as an open-sided rectangle with only one

side missing.

 Data Flow - Movement of data is shown by pointed arrows. Data movement is shown

from the base of arrow as its source towards head of the arrow as destination.

Levels of DFD

 Level 0 - Highest abstraction level DFD is known as Level 0 DFD, which depicts the

entire information system as one diagram concealing all the underlying details. Level 0

DFDs are also known as context level DFDs.

Fig 1: Level 0 DFD of Online Shopping System

 Level 1 - The Level 0 DFD is broken down into more specific, Level 1 DFD. Level 1

DFD depicts basic modules in the system and flow of data among various modules. Level

1 DFD also mentions basic processes and sources of information.

Fig 2: Level 1 DFD of Online Shopping System

 Level 2 - At this level, DFD shows how data flows inside the modules mentioned in

Level 1.

Higher level DFDs can be transformed into more specific lower level DFDs with deeper

level of understanding unless the desired level of specification is achieved.

LECTURE NOTE-9

STRUCTURE CHART

Structure chart is a chart derived from Data Flow Diagram. It represents the system in more

detail than DFD. It breaks down the entire system into lowest functional modules, describes

functions and sub-functions of each module of the system to a greater detail than DFD.

Structure chart represents hierarchical structure of modules. At each layer a specific task is

performed.

Here are the symbols used in construction of structure charts -

 Module - It represents process or subroutine or task. A control module branches to more

than one sub-module. Library Modules are re-usable and invokable from any module.

Fig 3: Modules in a structure chart

 Condition - It is represented by small diamond at the base of module. It depicts that

control module can select any of sub-routine based on some condition.

Fig 4: Condition in a structure chart

 Jump - An arrow is shown pointing inside the module to depict that the control will jump

in the middle of the sub module.

Fig 5: Jump in a structure chart

 Loop - A curved arrow represents loop in the module. All sub-modules covered by loop

repeat execution of module.

Fig 6: Loop in a structure chart

 Data flow - A directed arrow with empty circle at the end represents data flow.

Fig 7: Data Flow in a structure chart

 Control flow - A directed arrow with filled circle at the end represents control flow.

Fig 7: Control Flow in a structure chart

Structured English

Most programmers are unaware of the large picture of software so they only rely on what their

managers tell them to do. It is the responsibility of higher software management to provide

accurate information to the programmers to develop accurate yet fast code.

Other forms of methods, which use graphs or diagrams, may are sometimes interpreted

differently by different people.

Hence, analysts and designers of the software come up with tools such as Structured English. It

is nothing but the description of what is required to code and how to code it. Structured English

helps the programmer to write error-free code.

Other forms of methods, which use graphs or diagrams, may are sometimes interpreted

differently by different people. Here, both Structured English and Pseudo-Code tries to mitigate

that understanding gap.

Structured English uses plain English words in structured programming paradigm. It is not the

ultimate code but a kind of description what is required to code and how to code it. The

following are some tokens of structured programming.

IF-THEN-ELSE,

DO-WHILE-UNTIL

Analyst uses the same variable and data name, which are stored in Data Dictionary, making it

much simpler to write and understand the code.

Example

We take the same example of Customer Authentication in the online shopping environment.

This procedure to authenticate customer can be written in Structured English as:

Enter Customer_Name

SEEK Customer_Name in Customer_Name_DB file

IF Customer_Name found THEN

 Call procedure USER_PASSWORD_AUTHENTICATE()

 ELSE

 PRINT error message

 Call procedure NEW_CUSTOMER_REQUEST()

 ENDIF

The code written in Structured English is more like day-to-day spoken English. It cannot be

implemented directly as a code of software. Structured English is independent of programming

language.

Pseudo-Code

Pseudo code is written more close to programming language. It may be considered as augmented

programming language, full of comments and descriptions.

Pseudo code avoids variable declaration but they are written using some actual programming

language’s constructs, like C, Fortran, Pascal etc.

Pseudo code contains more programming details than Structured English. It provides a method

to perform the task, as if a computer is executing the code.

Example

Program to print Fibonacci up to n numbers.

void function Fibonacci

Get value of n;

Set value of a to 1;

Set value of b to 1;

Initialize I to 0

for (i=0; i< n; i++)

{

 if a greater than b

 {

 Increase b by a;

 print b;

 }

 else if b greater than a

 {

 increase a by b;

 print a;

 }

}

LECTURE NOTE-10

DECISION TABLES

A Decision table represents conditions and the respective actions to be taken to address them, in

a structured tabular format.

It is a powerful tool to debug and prevent errors. It helps group similar information into a single

table and then by combining tables it delivers easy and convenient decision-making.

Creating Decision Table

To create the decision table, the developer must follow basic four steps:

 Identify all possible conditions to be addressed

 Determine actions for all identified conditions

 Create Maximum possible rules

 Define action for each rule

Decision Tables should be verified by end-users and can lately be simplified by eliminating

duplicate rules and actions.

Example

Let us take a simple example of day-to-day problem with our Internet connectivity. We begin by

identifying all problems that can arise while starting the internet and their respective possible

solutions.

We list all possible problems under column conditions and the prospective actions under column

actions.

Conditions/Actions Rules

Conditions

Shows Connected N N N N Y Y Y Y

Ping is Working N N Y Y N N Y Y

Opens Website Y N Y N Y N Y N

Actions

Check network cable X

Check internet router X

X X X

Restart Web Browser

X

Contact Service provider

X X X X X X

Table 1: Decision Table – In-house Internet Troubleshooting

Entity-Relationship Model

Entity-Relationship model is a type of database model based on the notion of real world entities

and relationship among them. We can map real world scenario onto ER database model. ER

Model creates a set of entities with their attributes, a set of constraints and relation among them.

ER Model is best used for the conceptual design of database. ER Model can be represented as

follows:

Fig 8: ER Model

 Entity - An entity in ER Model is a real world being, which has some properties

called attributes. Every attribute is defined by its corresponding set of values,

called domain.

For example, consider a school database. Here, a student is an entity. Student has

various attributes like name, id, age and class etc.

 Relationship - The logical association among entities is called relationship.

Relationships are mapped with entities in various ways. Mapping cardinalities define the

number of associations between two entities.

Mapping cardinalities:

o one to one

o one to many

o many to one

o many to many

Data Dictionary

Data dictionary is the centralized collection of information about data. It stores meaning and

origin of data, its relationship with other data, data format for usage etc. Data dictionary has

rigorous definitions of all names in order to facilitate user and software designers.

Data dictionary is often referenced as meta-data (data about data) repository. It is created along

with DFD (Data Flow Diagram) model of software program and is expected to be updated

whenever DFD is changed or updated.

Requirement of Data Dictionary

The data is referenced via data dictionary while designing and implementing software. Data

dictionary removes any chances of ambiguity. It helps keeping work of programmers and

designers synchronized while using same object reference everywhere in the program.

Data dictionary provides a way of documentation for the complete database system in one place.

Validation of DFD is carried out using data dictionary.

Contents

Data dictionary should contain information about the following

 Data Flow

 Data Structure

 Data Elements

 Data Stores

 Data Processing

Data Flow is described by means of DFDs as studied earlier and represented in algebraic form as

described.

= Composed of

{} Repetition

() Optional

+ And

[/] Or

Example

Address = House No + (Street / Area) + City + State

Course ID = Course Number + Course Name + Course Level + Course Grades

Data Elements

Data elements consist of Name and descriptions of Data and Control Items, Internal or External

data stores etc. with the following details:

 Primary Name

 Secondary Name (Alias)

 Use-case (How and where to use)

 Content Description (Notation etc.)

 Supplementary Information (preset values, constraints etc.)

Data Store

It stores the information from where the data enters into the system and exists out of the system.

The Data Store may include -

 Files

o Internal to software.

o External to software but on the same machine.

o External to software and system, located on different machine.

 Tables

o Naming convention

o Indexing property

Data Processing

There are two types of Data Processing:

 Logical: As user sees it

 Physical: As software sees it

REFERENCES

BIBLIOGRAPHY

1. “Fundamentals of Software Engineering”, Rajib Mall, Prentice-Hall of India.

WEBLIOGRAPGY

2. http://www.tutorialspoint.com/

