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MODULE:1 

 

4.1 Source coding 

Source coding deals with the task of forming efficient description, of information 

sources. Efficient descriptions permit a reduction in the memory or bandwidth resources 

required to store or to transport sample realizations of the source data. For discrete sources, the 

ability to form reduced data-rate descriptions is related to .their information content and the 

statistical correlation among the source symbols. For analog sources, the ability to form 

reduced data rate descriptions, subject to a stated fidelity criterion is related to the amplitude 

distribution and the temporal correlation of the source waveform. The goal of source coding is 

to form good fidelity description of the source for a given available bit rate, or to permit low 

bit rates to obtain a specified fidelity description of the source. To understand where the tools 

and techniques of source coding are effective, it is important to have Coliimon measures of 

source parameters. For this reason, in this section, we  examine simple models of discrete and 

analog sources. and then we describe how source coding can be applied to these models. 

 

4.2 Discrete Sources 

A discrete source generates (or emits) a sequence of symbols X(k), selected from a 

source alphabet at discrete time intervals kT, where k = 1, 2, . . . . is a counting index. If the 

alphabet contains a finite number of symbols, say N symbols, the source is said to be a finite 

discrete source. An example of such a source is the strategy to initialize the game of 

Hangman. (In this game, a player must guess the letters, but not the positions. of a hidden 

word of known length. Penalties accurate to false guesses, and the letters of the entire word 

must be determined prior to the occurrence of six false guesses.) A discrete source is said to 
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be memoryless if the symbols emitted by the source are statistically independent. In 

particular, this means that for the symbols taken two at a time. the joint probability of the two 

elements is simply the product 

of their respective probabilities: P(X,, X,) = P(X,I X,) P(X,) = P(X,) P(X,) 

A result of statistical independence is that the information required to transmit a sequence of 

M symbols (called an M-tuple) from a given alphabet is precisely M times the average 

information required to transmit a single symbol. This happens because the probability of a 

statistically independent M-tuple is given by 

 

so that the average entropy per symbol of a statistically independent M-tuple is 

 

A discrete source is said to have memory if the source element; composing the sequence are 

not independent. The dependency between symbols means that in a sequence of M symbols. 

there is reduced uncertainty about the M-th symbol when we know the previous (M-1) 

symbols. For instance, is there much uncertainty about the next symbol for the 10-tuple 

CALIFORNI-? The M-tuple with dependent symbols contains less information, or resolves 

less uncertainty, than does one with independent symbols. The entropy of a source with 

memory is the limit 

 

We observe that the entropy of an M-tuple from, a source with memory is always less than 

the entropy of a source with the same alphabet and symbol probability but without memory 
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For example, given a symbol (or letter) '-q" in English text, we know that the next 

symbol will probably be a "u'.. Hence. in a communication task, being told that the 

letter "u" follows a letter 'q' adds little information to our knowledge of the word being 

transmitted. As another example. given the letters 'th' the most likely syrnbol to follow is one 

of the following: a, e. i, o, u, r. and, space. Thus, adding the nest symbol to the given set 

resolves some uncertainty, but not much. A formal statement For example, given a symbol 

(or letter) '-q" in English text, we know that the nest symbol will probably be a "u'.. Hence. in 

a communication task, being told that the letter "u" follows a letter 'q' adds little information 

to our knowledge of the word being transmitted. As another example. given the letters 'th' the 

most likely symbol.-: to follow is one of the following: a,e i, o, u, r. and, space. Thus, adding 

the nest 

symbol to the given set resolves some uncertainty, but not much. A formal statement. 

Statement of this awareness is that the average entropy per symbol of an M-tuple from a 

source with memory decreases as the length M increases. A consequence is that it is more 

efficient to encode symbols from a source with memory in groups of several symbols rather 

than to encode them one symbol at a time. For purposes of source encoding, encoder 

complexity, memory constraints, and delay considerations limit the sii:, of symbol sequences 

treated as a group.  

;j J help us understand the gains to be had in coding sources with memory. We Form simple 

models of these sources. One such model is called a first-order- Markov source [I]. This 

model identifies a number of states (or symbols in the contest of information theory) and the 

conditional probabilities of transitioning to the next state. In the first-order model, the 

transition probabilities depend only. on the present state. This is. P(Xi+ ,IX,. &- ,, . . . .) = 

P(Xi+t|Xi). The model's memory does not extend beyond the present state. In the context of a 
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binary sequence, this expression gives the probability of the next bit conditioned on the value 

of the current bit. 

 

Solving for the a priori probabilities using the transition probabilities, we !lave P(0) = 0.9 and 

P(1) = 0.1 Solving for the source entropy using Equation (13.10). we have 

 

Comparing this result with the result of Example 13.1, are see that the source n.ith memory 

has lower entropy than the source without memory, even though the a priori symbol 

probabilities are the same. 
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4.3 Waveform Sources  

A waveform source is a random process of some random variable. We classically 

consider this random variable to be time. so that the waveform of interest is a time varying 

waveform. Important examples of time-varying waveforms a r e the outputs of transducers 

used in process control, such as temperature, pressure, velocity, and flow rates. Examples of 

particularly high interest include speech and music. The waveform can also be a function of 

one or more spatial variables (e.g., displacement in r a n d y). Important examples of spatial 

waveforms include single images, such as a photograph, or moving images, such as 

successive images (at 24-frames1 sec) of moving picture film. Spatial waveforms are often 

converted to time-varying waveforms by a scanning operation. This is done, for example, for 

facsimile and 

Joint Photographic Expert Group (JPEG) transmission, as well as for standard broadcast 

television transmission. 

 

4.3.1  Amplitude Density Functions 

Discrete sources were described by their list of possible elements (called letters of an 

alphabet) and their multidimensional probability density functions (pdf) of all orders By 

analogy: waveform sources are similarly described in terms of their probability. density 

functions as well as by parameters and functions derived from these functions. we model 

many waveforms as random processes with classical probability density functions and with 

simple correlation properties. In the modeling process, we distinguish between short-term or 

local (time) characteristics and long-term or global characteristics. This partition is necessary 

because many 
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Waveforms are non stationary. The probability. density function of the actual process may 

not be available to the system designer. Sample density functions can of course be rapidly 

formed in 

real time during a short preliminary interval and used as reasonable estimates over the 

subsequent interval. A less ambitious task is simply to form short-term wave to related 

averages. 'l'hese include Lime sample mean (or time average value), the sample variance (or 

mean-square value of the zero mean process), and the sample correlation coefficients formed 

over the prior sample interval. In many applications of waveform analysis, the input 

waveform is converted into a zero mean process by subtracting an estimate, of its mean 

value. For instance, this happens, in comparators used in analog-to-digital converters for 

which auxiliary circuitry measures the internal dc-offset voltages and subtracts them in a 

process known as autozero. Further, the variance estimate is often used to scale the input 

waveform to match the dynamic amplitude range of subsequent waveform conditioning 

circuitry. This process, performed in a data collection process, is called autoranging or 

automatic gain control (AGC).  

The function of these signal conditioning operations. mean removal. and variance 

control or gain adjustment (shown in Figure 13.2) is to formalize probability density 

functions of the input waveforms. This normalization assures optimal utility of the limited 

dynamic range 

of subsequent recording transmission .or processing subsystems. Many waveform sources 

exhibit significant amplitude correlation in successive time intervals. T. this correlation 

means that signal levels in successive time intervals are not independent. If the time signal is 

independent over successive intervals, the autocorrelation function would be an impulse 

function. Many signals of engineering interest have finite width correlation functions. The 

effective width 
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of the correlation function (in seconds) is called the correlation time of the process and is akin 

to the time constant of a low-pass filter. This time interval is an indication of how much shift 

along the time axis is required to de correlate the data. If the correlation time is large we 

interpret this to mean that the waveform makes significant amplitude changes slowly. 

Conversely, if the correlation time is small, we infer that the waveform makes significant 

changes in amplitude very quickly. 

 

4.4 AMPLITUDE QUANTIZING 

Amplitude quantizing is the task of mapping samples of a continuous amplitude waveform to 

a finite set of amplitudes. The hardware that performs the mapping is the analog-to-digital 

converter (ADC or A-to-D). The amplitude quantizing occurs after the sample-and-hold 

operation. The simplest quantizer to visualize performs an instantaneous mapping from each 

continuous input sample level to one of the pre assigned equally spaced output levels. 
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Quantizers that exhibit equally spaced increments between possible quantized output levels 

are called uniform quantizers or linear quantizers. Possible instantaneous input-output 

characteristics are easily visualized by a simple staircase graph consisting of risers and treads 

of the types shown in Figure 13.3. Figure 13.3a, b, and d show quantizers with uniform 

quantizing steps, while Figure 13.3 c is a quantizer with non uniform quantizing steps. Figure 

lj.3a depicts a quantizer with midtread at the origin, while Figure 13.3b and d 

 

present quantizers with midrisers at the origin. A distinguishing property of midriser and 

midtread converters is related to the presence or absence, respectively, of output level 

changes when the input to the converter is low-level idle  noise. Further, Figure 13.3d 

presents a biased (i.e., truncation) quantizer, while the remaining quantizers in the figure are 

unbiased and are referred to as rounding quantizers. Such unbiased quantizers represent ideal 

models, but rounding is never 
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implemented in A/D converters. Quantizers are typically implemented as truncation 

quantizers. terms '-midtread" a-d "midriser" are staircase terms used to describe whether the 

horizontal or vertical member of the staircase is at the origin. The unity-slope dashed line 

passing through the origin represents the ideal non quantized input-output characteristic we 

are trying to approximate with the staircase. The difference between the staircase and the 

unity-slope line segment 

represents the approximation error made by the quantizer at each input level. Figure 13.4 

illustrates the approximation error amplitude versus input amplitude function for each 

quantizer characteristic in Figure 13.3. Parts (a) through (d) of Figure 13.4 correspond to the 

same parts in Figure 13.3. This error is often modeled as quantizing noise because the error 

sequence obtained when quantizing a wideband random process is reminiscent of an additive 

noise sequence. Unlike true additive noise sources, however, the quantizing errors are sienal 

dependent and are highly structured. It is desirable to break up this structure, which can be 

accomplished by 

introducing an independent noise purturbation, known as dither, prior to the quantization 

step.  
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The linear quantizer is simple to implement and is particularly easy to understand. It is the 

universal form of the quantizer, in the sense that it makes no assumptions about the amplitude 

statistics and correlation properties of the input waveform, nor does it take advantage of user-

related fidelity specifications. Quantizers that take advantage of these considerations are more 

efficient as source coders and are more task specific then the general linear quantizer; these 

quantizers are often more complex and more expensive, but they are justified in terms or 

improved system performance. There are applications for which the uniform quantizer is the 

most desirable amplitude quantizer. These include signal processing applications, graphics 

and display applications, and process control applications. There are other applications for 

which nonuniform adaptive quantizers are more desirable amplitude quantizers. These 

include waveform encoders for efficient storage and communication, contour encoders for 

images. vector encoders for speech. and analysis synthesis encoders (such as the vocoder) for 

speech. 

 

4.4.1 Quantizing Noise 
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The difference between the input and output of a quantizer is called the quantizing 

error. In Figure 13.5 we demonstrate the process of mapping the input sequence s(t) to the 

quantized output sequence .i-(I). We can visualize forming.it by adding to each x(t) an error 

sequence, e(t): 

 

 

The error sequence e(t) is deterministically defined by the input amplitude through the 

instantaneous error versus amplitude characteristic of the form in Figure 133. We note that 

the error sequence exhibits two distinct characteristics over different input operating regions. 

The first operating interval is the granular error region corresponding to the input sawtooth-

showed error characteristic. Within this interval, the quantizer errors are confined by the size 

of the nearby staircase risers. The errors that occur in this region are called the granular 

errors, or sometimes the quantizing errors. The input interval for which the quantizing errors 

are granular defines the dynamic range of the quantizer. This interval is sometimes called the 

region of "'tear operation. Proper use of the quantizer requires that the input signal 

conditioning match the dynamic range of the input signal to the dynamic range of the 

quantizer. This is the function of the signal-dependent gain control system, called automatic 
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gain control(AGC), indicated in the signal flow path of Figure 13.5. The second operating 

interval is the nongranular error region corresponding to the linearly increasing (or 

decreasing) error characteristic. The errors that occur 

in this interval are called saturation or overload errors. When the quantizer operates in this 

region, we say that the quantizer is saturated Saturation errors are larger than the granular 

errors and may have a more objectionable effect on reconstruction fidelity. The quantization 

error corresponding to each value of input amplitude represents an error or noise term 

associated with that input amplitude. Under tile assumptions that the quantization interval is 

small compared with the dynamic range of the input signal, and that the input signal has a 

smooth probability density function over the quantization interval, we can assume that the 

quantization errors arc. 

uniformly distributed over that interval, as illustrated in Figure 13.6. The pdf with zero mean 

corresponds to a rounding quantizer, while the pdf with a mean of -q/2 corresponds to a 

truncation quantizer. A quantizer or analog-to-digital converter (ADC) is defined by the 

number. 

size. and location of its quantizing levels or step boundaries. and the corresponding step sizes. 

In a uniform quantizer., the step sizes are equal and are equally spaced. The number of levels 

N is typically a power of 2 of the form N =2^b, where b is the number of bits used in the 

conversion process. This number of levels is equally distributed over the dynamic range of 

the possible input levels. Normally, this range is defined ±Emax,such as ± 1.0 V or ± 5.0 V. 

Thus, accounting for the full range of 2Emax. the size-of a quantization step is .  

 

As an example, using Equation (13.1 I), the quantizing step (here after called a quantile.) for 

a 10-bit converter operating over the +I .0 V range is 1.953 mV. Occasionally the operating 

range of inverter is altered so that the quantile is a "whole" number. For example, changing 
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the operating range of the converter to f1.024 V results in a quantizing step size of 2.0 mV. A 

useful figure of merit for the 

 

uniform quantizer is the quantizer output variance. If we assume that the quantization error is 

uniformly distributed over a single quantile interval q-wide, the quantizer variance (which 

represents the quantizer noise or error power) for the zero-mean error is found to be I 

 

where p(c) = 1/q, over an interval of width q, is the probability density function 7 (pdf) of the 

quantization error e. Thus, the rms quantizer noise in a quantile interval of width q is found to 

be q fi or 0.29q. Equation (13.12) determined the I quantizing noise pou.er over one quantile, 

assuming that the errors are equiprobable  over. the quantization interval. If we include 

operation in the saturation interval of a quantizer, or if we include nonuniform quantizers, we 

find that the quanlization intervals are not of equal width ;b.cr the range of the input variable, 

and that 

the amplitude density is not uniform over the quantization interval. We can account for this 

amplitude-dependent error power are  by averaging the squared error over the amplitude 

variable weighting :,y the probability of that amplitude. This is expressed by 
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where s is the input variable, q(x) is its quantized version, e(x) = x - q(x) is the error. and 

y(.v) is tile pdf OI the amplitude ;:x. We can partition the interval of integration in Equation 

(13:13) into two main intervals-one accounting for errors in the staircase or linear region of 

the quantizer, and the second accounting Lor errors in the saturation region. We define the 

saturation ampiitude of the quantizer as Emax. Also. we assume an odd symmetric transfer 

function FG, the quantizer, and a symmetric pdf for the input signal. The error power  defined 

in Equation 

(13.13). is the total error power, which can be partitioned 2s 

 

 

where a:;, is the error power in the linear region and a$,, is the error power in the saturation 

region. The error power a&, can be further divided into subintervals corresponding to the :I 

received discrete quantizer output levels (i.e., quantiles). If we assume that there are N such 

quantile levels, the integral becomes 

 

where x,, is a quantizer level and an interval or step size between two such levels is called a 

quantile interval. Recall that N is typically a power of 2. Thus, there are N/2 - 1 positive 

levels, N/2 - 1 negative levels, and a zero level, making a total of N - 1 levels and N - 2 

intervals. If we now approximate the density function by a constant qn = (xn+ -.r,), in each 

quantile interval, Equation (13.15) simplifies to  



18 
 

 

wl~cree cv) in Equation (13.15) has been replaced by .v in Equation (13.16), since e(t) 1s a 

linear function of .t- with unity slope and passes through zero at the midpoint of each 

interval. Also, the limits 01 integration in equation (13.15) have been replaced by the change 

in x over a quantile inter Val. Since the change has been denoted as q,. the lower and upper 

limits can be designated as x = -q,,/2 and x = +q,,/2, respectively. Equation (13.16) describes 

the error power In the linear region as a summation of error power q;J12 in each quantile 

interval weighted by :he probability p(xn)qn of that error PO\: :r. 

 

4.4.2 Uniform Quantizing 

If the quantizer has uniform quantiles equal to q and all intervals are equally likely, 

Equation (13.16) simplifies further to 

 

If the quantizer does not operate in the saturation region (the quantization noise power), then 

a: = u:,,; and these terms are often used interchangeably. Noise power alone will not fully 

describe the noise performance of the quantizer. A more - meaningful measure of quality is 

the ratio of the second central moment (variance) , of the quantizing noise and the input 

signal. Assuming that the input signal has zero mean, the signal variance I; 

 

4.4.3  Dithering . 

Dithering is one of the cleverest applications of noise as a useful engineering tool. 
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A dither signal is a small perturbation or disturbance added to ,a measurement process to 

reduce the effect of small local nonlinearities. The most familiar form of dither is the slight 

tapping we apply to the side of a d'Arsonval meter movement prior to taking the reading 

(before the days of digital meters). The tapping is a sequence of little impulses for displacing 

the needle movement beyond the local region, which exhibits a nonlinear coefficient of 

friction at low velocities. A more sophisticated example of this same effect is the mechanical 

dither applied to the counter-rotating laser beams of a laser beam gyro to break up low-level 

frequency entrapment, known as a dead band [3]. In the analog-to-digital converter 

application, the effect of the dither is to reduce 

or eliminate the local discontinuities (i.e., the risers and treads) of the instantaneous input-

output transfer function. We can best visualize the effect of these discontinuities by listing the 

desired properties of the error sequence formed by the quantizer process and then examining 

the actual properties of the same sequence. The quantizer error sequence is modeled as 

additive noise. The desired properties of such a noise sequence e(tz) are as follows 

 

where ti and m are  indices, and S(m) is a Dirac delta function. In Figure 13.10, we examine a 

sequence of samples formed by a truncating ADC and make the following observations: 1. 

The error sequence is all of the same polarity; therefore, it is not zero near. 

2. The error sequence is not independent, sample-to-sample; therefore, it is not white. 

3. The error sequence is correlated with the input; therefore, it is not independent. 

 

4.4.4  Non-uniform Quantizing 

Uniform quantizers are the most common type of analog-to-digital converters because 
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they are the most robust. By "robust" we  mean that they are relatively insensitive to small 

changes in the input statistics. They achieve this robustness by not being finely tuned to one 

specific set of input parameters. This allows them to perform well even in the face of 

uncertain input parameters, and it means that small changes in input statistics will result in 

only small changes in output statistics. When there is small uncertainty in the input signal 

statistics, it is possible to design a nonuniform quantizer that exhibits a smaller quantizer 

NSR than a uniform 

quantizer using the same number of bits. This is accomplished by partitioning the input 

dynamic range into nonuniform intervals such that the noise power, weighted by the 

probability of occurrence in each interval, is the same. Iterative solutions for the decision 

boundaries and step sizes for an optimal quantizer can be found for specific density functions 

aod for a small number of bits. This task is simplified by modeling the nonuniform quantizer 

as a sequence of operators, as depicted in Figure 13.12. The input signal is first mapped, via a 

nonlinear function called a compressor, to an alternative range of levels. These levels are 

uniformly quantized and the quantized signal levels are then mapped, via a complementary 

nonlinear function called an explorer; to the output range of levels. Borrowing part of the 

name from each of the operations Compress and expand, we form the acronym by which this 

process is commonly identified: companding. 

 

4.4.5 (Near) Optimal Non-uniform Quantizing 

Examining the compressor characteristics j. = C(s) of Figure 13.12 we note that the 

quantizing step sizes for the output variable ). are related to the quantizer step sizes for the 

input variable .v through the slope C(s) [e.g.. Ay = A s C(x)]. For an ...-.r y pdf and arbitrary 

compressor characteristics. we can arrive at the output quantizing noise variance [7] 
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for a specific pdf, the compression characteristics C(s) call be found which minimize a:. The 

optimal compressor law for a given pdf is 

 

We find that thc optimal compressor characteristic is proportional to the integration of the 

cube root of the input probability density function. This is called fine tuning. If the 

compressor is designed to operate with one density function and it is used with some other 

density function (including scaled versions), the quantizer is said to be mismatched and there 

may be severe performance degradation due to the mismatch 
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4.4.6  Logarithmic compression 

In thc preceding section, we presented the compression law for the case in which the input 

signal's pdf is well defined. We now address the case for which little is known about the 

signal's pdf. This case occurs. for instance, when the average power of the input signal is a 

random variable As ax-example, the voice level of a randomly choose;;  telephone user may 

vary from one extreme of a barely audible  to the other extreme of a bellowing shout. Fo, ;he 

case of an unknown pdf, the compressor characteristics of the nonuniforrn quantize1 must be 

selected such that the resultant noise performance is independent of the specific density 

function. Although this is a worthy undertaking, it may not be possible to achieve>\this 

independence. We are willing to compromise, however. and we will settle for' virtual 

independence over a large range of input variance and input density functions. An example of 

a quantizer that ,exhibits a 

SNR independent of the input signal's pdf can be visualized with the aid of Figure 2.18. 

There we can see a very large difference in NSR ratio for different amplitude input signals 

when quantized with a uniform quantizer. By comparison, we can see that the nonuniform 

quantizer only permits large errors for large signals. This makes intuitive sense. If the SNR is 

to be independent of the amplitude distribution, the quantizing noise must be proportional to 

the input level. Equation (13.25) resented the quantizer noise variance for an arbitrary pdf and 

arbitrary compressor characteristics. The signal variance for r/; pdf is 
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This result is intuitively appealing. A logarithmic compressor allows for a constant  SQNR 

output, because with a logarithmic scale equal distances (or errors) are, infact , equal ratios, 

which is what we require in order for the SNR to remain fixed over the input signal range. In 

Equation (13.32), the constant is present to match the boundary conditions between xmax 

and ymax. Accounting for this boundary condition, we have' the logarithmic converter of the 

form 

 

The fo1.m of the compression suggested by the logarithm functions shown in Fig l: e 13.11a. 

The first difficulty with this function is that it does not map the negative input signals. We 

account for the negative signals by adding a reflected version of the log to [he negative axis. 

This modification results in Figure 13.14 yielding 
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The remaining difficulty we face is that the compression described by Equation (13.34) is not 

continuous through the origin; in fact, if completely misses the origin. We need to make a 

smooth transition between the logarithmic function and a linear segment passing through the 

origin. There are two standard compression functions that perform this transition-the p-law 

and A-law companders.p-Law. Compander. The p-law compander, introduced by the Bell 

System for use in South America, is of the form Figure 
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A-Law Compander. The A-law compander is the CCIR (hence the European) standard 

approximation to the logarithmic compression. The form of the compressor is 

 

The standard value of the parameter A is 87.56, and for this value, using an S-bit converter, 

the SNR is 3S.0 dB. The A-law compression characteristic is approximated. in a manner 

similar to the p-IP compressor,b y a sequence of 16 lilLtar chords spanning the output range. 

The lower two chords in each quandrant are in fact a signal chord corresponding to the linear 

segment of the A-law compressor. One important difference between the A-law and rile p-

law compression characteristics is that the A-law standard has a mid-riser at the origin, while 

the p-law standard 

has a mid-tread at the origin. Thus, the A-law compressor has no zero value, and hence it 

exhibits no interval for which data are not king transmitted for zero input. There are direct 

mappings from the A-law 8-bit compressed ADC format to a 12-bit linear binary code. and 

fiam the p-law d-bit compressed format to a 13-bit hear code [S]. This operation permits the 

AID conversion to be performed  a uniform quantizer and then to be mapped to the smaller 

number of bits in a code converter This also permits the inverse mapping at the receiver (i.e., 

the expansion) to be informed on the digital sample. 

 

4.5  DIFFERENTIAL PULSE-CODE MODULATION 

By the use of past data  assist in measuring (i.e., quantizing) new data, we leave ordinary. 

PCEvI and enter the realm of differential(DPCIVI).I n DPCM. a prediction of the nest sample 
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value is formed from past \.ides. This prediction can be thought of as instruction for the 

quantizer to conduct its search for the next Sample \.slue in a particular interval. By using the 

redundancy in the  signal to form a prediction .The region of uncertainty is reduced and  the 

quantization can be performed with a reduced number of decisions (or bits) for a given 

quantization level or \\-ith reduced quantization levels for a given number of decisions. The 

reduction in redundant is realized by subtracting the prediction from the next sample. This 

difference is called the prediction error. The quantizing methods described in Section 13.2 

are called instantaneous error or true error. In Section 13.1 we identified the properties of 

sources' that permitted SOLIrCr {ate reductions. These properties where non-equiprobable 

source levels and non independent sample values. Instantaneous quantizers achieve 

source-coding gain? by taking into account the probability density assignment each sample. 

The quantizing methods that take account of sample-to-sample correlation are 

noninstantaneous quantizers. These quantizers reduce source redundant bit First converting 

the correlated input sequence into a related sequence with reduced correlation. reduced 

variance, or reduced bandwidth. This new sequence is then quantized with fewer bits. The 

correlation characteristics of a source can be visualized in the time domain by samples of its 

autocorrelation function and in the frequency domain by its power spectrum. If we examine a 

power spectrum G,(n of a short-term speech signal, as shown in Figure 13.18, we find that 

spectrum has a global maxima in the neighborhood of 300 to 800 Hz and falls off at a rate of 

6 to 12 dB octave. By interpreting 

this power spectrum, we can infer certain properties of the time function from which it was 

derived. We observe that large changes in the signal occur slowly (low frequency) and that 

rapid changes in the signal (high frequency) must be of low amplitude. An equivalent 

interpretation can be found in the autocorrelation function R,(T) of the signal, as shown in 

Figure 13.19. Here a broad, slowly changing autocorrelation function suggests that there will 
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be only slight change on a sample-to-sample basis, and that a time interval exceeding the 

correlation distance 

is required for a full amplitude change. The correlation distance seen in Figure 13.19 is the 

time difference between the peak correlation and the first zero correlation. In particular, 

correlation values for typical single-sample delay is on the order of 0.79 to 0.87, and the 

correlation distance is on the order of 4 to 6 sample intervals of Tseconds per interval. Since 

the difference between adjacent time samples for speech is small, coding techniques have 

evolved based on transmitting sample-to-sample differences rather than actual sample values. 

Successive differences are in fact a specla1 case of a class of non-instantaneous converters 

called N-tap linear predictive scders. These coders, sometimes called predictor-corrector 

coders, predict the next input sample 

value based on the previous input sample values. This structure is shown in Figure 11 20. !n 

this type of converter, the transmitter and the receiver have the same prediction level, which 

is derived from the signal's correlation characteristics. The code forms the prediction error (or 

the residue) as the difference between the next measured sample value 2nd the predicted 

sample value. The equation for the prediction loop is 
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where qusnt (-) represents the quantization operation, c?(h) is the quantized version of the 

prediction error. and i(n) is the corrected and quantized version of the input sample. Tlii; is 

performed in the predict-and-correct loop, the lower loop of the encode,, and the only loop of 

the decoder in Figure 13.20. The decoder must also be informed of the prediction error so that 

it can use its correction loop to correct its prediction. The decoder "mimics" the feedback 

loop of the encoder. The communication task is that of transmittiria the difference (the error 

signal) between the predicted and the actual data sample. For this reason, this class. of coder- 

is often 

called a differential pulse cod^ modulator (3PCM). If the prediction model forms predictions 

that are close to the actual sample values, the residues will exhibit reduced variance (relative 

to the original signal). From Section 13.2, we know that the number of bits required to move 

data through the channel with a given fidelity is related to the signal variance. Hence, the 

reduced variance sequence of residues can be moved through the channel with a reduced data 

rate. 
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4.5.1  One-Tap Prediction 

The one-tap linear prediction coding (LPC) filter in the DPCM process predicts the next input 

sample value based on the previous input sample value. The prediction equation is of the 

form 

 

where x(n1nz) is the estimate of .r at time tl given all the samples collected up through time 

nz, and where -0'' is a Gitrameter used to minimize the prediction error. The prediction error 

available after the measurement is of the form 

 

where R,t(n) and R,(tz) are the autocorrelation functions of the prediction error and the input 

signal, respectively. R,,(O) is the power in the error, R,(O) is the power in the signal, and 

C,(IZ) = R,(II)IR,(O) is the normalized autocorrelation function. We can select the parameter 

o to minimize the Prediction error power of Equation (13.47) by setting a zero the partial 

derivative of R./(O) with respect to n: 
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we can define the prediction of the encoder as the ratio of input to output variances. 

R,(O)IR,(O), For a fixed bit rate this gain represents an increase in output SNR, while for a 

fixed output SNR this gain represents a reduced bit-rate description. We note that the 

prediction gain for the optimal predictor is always greater than any value of signal. 

correlation R,(O) -%- used in Equation (13.50b). On the other hand. the prediction gain is 

greater than one for the nonoptimum unity gain. one-tap predictor, only if the signal 

correlation exceeds 0.5 as used in Equation (13.47b). 

 

 4.5.2  NTap Prediction 

The N-tap LPC filter predicts the next sample value based on a linear combination of the 

previous N sample \.slues. We will assume that the quantized estimates used by the prediction 

filters are unbiased and error free. With-this assumption; we can drop the double indices 

(used in Section 13.3.1) from the data in the tllter but still use them for the predictions. Then 

the N-tap prediction equation lakes the form 

 

 

Clearly. the mean-square prediction error is quadratic in the filter coefficients n, As we did in 

Section 13.3.1. we can form the partial derivative of the mean squared error with respect to 
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each coefficient and solve for the coefficients that set the partials to zero.'Formally, taking the 

partial derivative with respect to the jth coefficient prior to expanding .r(nln - I), we have 

 

To gain insignificant o the solution of the normal equations, we now rec2-t the mean-squrred 

erroer q uation (13.54) in matrix :arm. We have  
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4.5.3  Delta Modulation 

The delta modulator, often denoted A modulator, is a process that embeds a low resolution A-

to-D converter in a sampled data feedback loop that operates at rates far in excess . The 

activation for this technique is our awareness that in the conversion process, speed is less 

expensive than precision. and that by being clever one can use faster signal processing to 

obtain higher precision. Equation (13.50~d) demonstrated that the prediction gain for a one-

tap ;rt;&ctor could be large if the normalized correlation coefficient, C,(l), is close to unity. 

Working toward the goal of high sample-to-sample correlation, the predictive filter in 

generally operated at a rate that far exceeds the Nyquist rate. For example, the 

sample rate might be chosen to be 64 times the Nyquist rate. This for a 20 khz bandwidth 

with a nominal sample rate of 45 kHz, the high correlation prediction filter would operate at a 

3.072 MHz sample rate. The justification for the high sample rate is to insure that the 

sampled data is highly correlated so that a sim1,leonetap predictor will exhibit a small 

prediction error. which in turn permits the quantizer operating in the error loop LJ operate 

with a very small number of bits. The simplest form of the quantizer is a one-bit quantizer, 

which is, in fact, only a 

comparator that detects and reports the sign of the difference signal. As a result, the 

prediction error signal is a 1 -bit word that has the interesting advantage of not requiring word 

framing in subsequent processing. The block diagram of the one-tap linear predictor, 

illustrated in Figure 13.20,is shown in Figure 13.21, with slight modifications. Note that the 

one-tap predict 

and correct loop is now a simple integrator and that a low-pass reconstruction filter follows 

the predict and correct loop at the decoder. This filter removes the out-of band quantizing 

noise that is generated by the two-level coding and that extends beyond the information 

bandwidth of this coding process. The coder is completely characterized by the sampling 
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frequency. the quantizing step size to resolve the prediction error or delta of the loop. and the 

reconstruction filter. The equations for re diction and for the residual error of the modulator 

are of the form 

 

4.5.4  Sigma-Delta Modulation 

The structure of the X-A modulator can be examined from a number of perspectives, the most 

appealing being that of a modified one-tap DPCM converter, and that of an error-feedback 

converter. Let us start with the modified one tap DPCM 

 

converter. As indicated the  loop relies on high correlation of successive samples. a condition 

wc assume by significant oversampling. We can enhance the correlation of the sampled data 

presented to the modulator by pre-filtering the data with an integrator and then compensating 

for the prefilter with a post-filtering differentiator. This structure is shown in Figure 13.22, 

where the integrators. differentiator, and delay functions are expressed in terms of the z 

transform. (See Appendix E.) \ire can then rearrange the signal flow blocks to realize an 

economy of irnplementaion. .At the  input to the encoder, there are the outputs of two digital 

integrators. which are summed and presented to the loop quantizer. Our first modification 
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is that \\e can share a single digital integrator by sliding the two integrators r!~rough the 

summing junction in the encoder. Our second modification to the encoder is that the post 

filter differentiator can be moved tn the decoder, which then cancels the digital integrator at 

the input to the decoder. All their remains of the decoder 1s the Ion'-pass reconstruction filter. 

This simplified form of the modified DPCM system is shown in Figure 13.23. This form, 

called a sigma-delta modulator contains an integrator (the sigma) and a DPCM modulator 

(the delta) [ll]. The second perspective  useful for understanding the H-A modulator 1s that of 

noise feedback loop. We understand that a quantizer adds an error to its input to form its 

output. \\'hen the signal is highly oversampled. not only are the samples highly correlated. the 

errors are as well. When errors are highly correlated. They are predictable. and thus they can 

be subtracted from the signal presented to the quantizer prior to the quantization process. 

When the signal and error are highly oversampled. the previous quantization error can be 

used as a good estimate of the current error. The previous error, formed as the difference 

between the inpi,; and output of the quantizer. is stored in a delay register for rise as the 

estimate of the next quantization error. This structure is shown in Figure 13.24. The signal 

flow graph of Figure 13.24 can be redrawn to emphasize the two inputs, signal and 

quantization noise. as n ell as the two loops, one including the quantizer and one not 

including it. This form is shown in Figure 13.25 and except for explicitly showing the 

feedback leg of the digital integrator, this has the structure as presented in Fiqure 13.23. From 

F~a,ure 13.25, if follows that the output of the Z-\ modulator and its :-transform (see 
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Appendix E) can be written as 
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Figure 13.27a presents an oversampled input sinusoidal signal and the corresponding output 

signal of a one-bit, dual-zero, Z-A modulator. Figure 13.27b shows the spectral response of 

the output series. Note that the shaped noise spectrum in the neighborhood of the signal is 

approximately 50 dB 5elow the peak spectrum of the input signal. Note also that the output 

signal is restricted to 21, and that the loop is esssentially duty cycle modulating the square 

wave is proportion to the amplitude of the input signal. figure 13.28 presents the time series 

and the spectrum obtained from the output of the down-sampling filter following the 

modulator. 
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4.5.6  Sigma-Delta D-to-A Converter (DAC) 

In an ADC, has become an essential building block of the reverse task-the digital-to-analog 

converter (DAC). Nearly all high-end audio equipment and most communication system  

 

DACs are implemented with C-h converters. The process uses the X-h modulator as a digital-

to-digital (D-to-D) transformation, which converts a high-precision (say, 16-bit) 

representation of oversampled digital data to a low-precision (say, 1-bit) representation of the 

same data. The oversampled one-bit data stream is then deliver a 1-bit DAC with two analog 

output levels defined with the same precision as a 16-hit converter. Here, the advantage of a 

one bit DAC operating at high speed but with only two levels is that speed is less expensive 

than precision. 

The 2-lcvcl. high-speed DAC replaces a low-speed DAC that would have to resolve  

65.55; distinct levels Very simple analog low-pass filtering following the 1-bit DAC 

suppr2sse.s the out-of-band noise spectrum and delivers the reduced bandwidth. high-fidelity 

version of the original digital data. The requantizing of the oversampled data is a 

straightforward signal processing task, using an all-digital X-A modulator. The only 

additional task to be performed when using a 2-1 DAC is the requirement to raise [he sample 



38 
 

rate of the data to 64 times its Nyquist rate. This task is performed by a DSP-based 

interpolating filter. which is a standard 

signal-processing block found in most systems that use a DAC to transition between a digital 

signal source and an analog output [12].As a standard illustration of th.: process, a CD player 

uses an interpolating filter to realize a l-to-l up-sampling, resulting in a separation of the 

periodic spectra associated with sampled data. This increased separation permits the 

smoothing filter 

following the DAC to have a wider transition bandwidth, and hence, a reduced component 

count and reduced implementation cost. The CD specification uses terms such as "four-to-one 

resampled "to reflect the presence of the interpolating filters. Starting with the CD 1-to-4 

interpolator, it is a simple task to again raise the sample rate by another factor of 1-to-16. 

with a second inexpensive interpolating filter. The data. now 64 times oversampled. is 

presented to the all-digital P-A modulator and one-bit DAC to complete the analog 

conversion process. This structure is shown in Figure 13.29. There are many signals that are 

significantly oversampled with respect to the signal's bandwidth. These signals can easily be 

converted to analog representations by the use of a 2-A modulator and a 1-bit DAC. 

Examlples are control signals used in circuits such as AGC, carrier VCO. and timing VCO. 

Many systems employ the 

Z-A modulator and I-bit DAC to generate and deliver analog control signals throughout the 

system. 13.5 BLOCK CODES The quantizers we have examined up to now have been scalar 

in nature, sinre they form a single scalar sample based on the present input sample and 

(possibly) the N preciovs output samples. Block coders, on the other hand, form a vector of 

orcrplcr 

sctttzpies based on the present and the N previous input samples. The coding gain of a 

waveform coder is the ratio ol 1r.5 input SNR to the-output SNR. Where the noise variances 
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of t!le input and output are equal, this gain is simply the ratio of input-to-output signal 

variances. The ratio convert. directly to 6 dB per bit for the difference between the number of 

input bits per sample and the average number of output bits per sample. Block coders can 

achieve impressive coding gains. On average, they can represent sequences quantized to S 

bits wit:; only 1-2: 2 bits per sample [a]. Block-coding techniques are varied. but a control 

thread that runs 

through block-coding techniques is the mapping of an input sequence of alternative 

coordinate system. This mapping may be to a subspace of a larger space, so that the mapping 

may not be reversible [S]. Alternatively, a data-dependent editing scheme may be used to 

identify the subspace of the mapping from which the quantized data are extracted. Block-

coding techniques are often classified by their mapping techniques. which include, for 

example, vector quantizers, various orthogonal transform coders, and channelized coders, 

such as subband coders. Block coders are further described by their algorithmic structures, 

such as codebook, tree, trellis, 

discrete Fourier transform, discrete cosine transform, discrete Walsh-Hadanlard transform, 

discrete Karhuy<-1;Loeve transform, and quadrature mirror filter-bank coders. We now 

examine examples of the various block-coding schemes. 13.5.1 Vector quantizing Vector 

quantizers represent an extension of conventional scalar quantization. In scalar quantization, 

a scalar value is selected from a finite list of possible values to represent an input sample. The 

value is selected to be close (in some sense) to the sample it is representing. The fidelity 

measures are various weighted mean-square measures that preserve our intuitive concept of 

distance in terms of ordinary vector lengths. By extension, in vector quantization, a vector is 

selected from a finite list of possible vectors to represent an input vector of samples. The 

selected vector is 
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chose^, in be close (in some sense) to the vector it is representing. Each input vector can be 

visualized as a point in an N-dimensional space. The quantizer is defined by a partition of this 

space into a set of non overlapping volumes [14]. These volumes are called intervals. 

polygons, and polytopes, respectively, for one-. two-, and I\'-dimensional vector spaces. The 

task of the vector quantizer is to determine the \solumien which an input vector is located; 

The output 

of the optimal quantizer is the vector identifying the centroid of that volume. As in the one-

dimension quantizer. the mean-square error is a function of the boundary locations for the 

partition and the multidimensional pdf of the input vector. The description of a vector 

quintizer can be cast as two distinct tasks. The first is the code-design task, which deals with 

the problem of performing the multidimensional volume qantization partition) and selecting 

the allowable output sequences. The second task is that of using the code, and deals with 

searching for the particular volume with this partition that corresponds (according to some 

fidelity criterion) to the best description of the source. The form of the algorithm selected to 

control the complexity of encoding and decoding may couple the two tasks-the partition and 

the search. The standard vector coding methods are Trellis  algorithm 

4.6  Codebook, Tree, and Trellis Coders 

The codebook coders are essentially table look-up algorithms; A list of candidate- patterns 

(code words) is stored in the codebook menial-y. Each pattern is identified by an address 01. 

pointel: indes The coding routine searches through the list of patterns fol- [he one that is 

closest to the input pattern and transmits to the receiver the address where that pattern can be 

fou:.ci in its codebook. The tree and 854 Source Coding Chap. 13 trellis coders are sequential 

codcrs. As such, the allowable code words of the code cannot be selected independently but 

must exhibit a node-steering structure. This is similar to the structure of the sequence tiaelrr 

or-detection-and-correction algorithms which traverse the branches of a graph while forming 
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the branch weight approximati011 to the input sequence. A tree graph suffers from 

exponential memory growth as the dimension or depth of the tree increases. The trellis graph 

reduces the dimensionality problem by the simultaneous tracking of  contender paths with an 

associated path-weight metric called inlmsit)~w, ith the use of a finite state trellis Code 

Population The code vectors stored in the codebook, tree, or trellis are the likely or typical 

vectors. The first task. that of code design, in which the likely code vectors are 

identified is called poprllrrring the code. The methods of determining the code population 

are classically deternministic, stochastic, and iterative. The deterministic population is a list 

of pre assigned possible outputs based on a simple suboptinla1 or user-perception fidelity 

criterion or based on a simple decoding algorithm. An example of the former is the coding of 

the samples in 3-space of the red, green. And blue (RGB) components of a color TV signal. 

The eye does not have the same resolution to each color and it would appear that the coding 

could be applied independently to each color to reflect this different sensitivity. The resulting 

quantizing 

volumes would be rectangular parallelepipeds. The problem with independent quantizing is 

that we do not see images in this coordinate system; rather: \tre see im- I ayps in the 

coordinates of luminance, hue, and saturation. A black-and-white photo. for example, uses 

only the luminance coordinate. Thus, quantizillg RGB co- I ordinates independently does not 

result in the smallest amount of user-perceived distortion for a given number of bits. To 

obtain improved distortion performance, the RGB quantizer should partition its space into 

regions that reflect the partitions 

in the alternate space. Alternatively, the quantization could be performed independently in the 

alternative space by the use of transform coding, treated in Section 13.6. Deterministic coding 

is the easiest to implement but leads to the smallest coding gain (smallest reduction in bit rate 
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for a given SNR). ' The stochastic population would be chosen based on an assumed 

underlying 

pdf of the input samples. Iterative solutions to the optimal partitions euist and can be 

determined for any assumed pdf. The overall samples are modeled by the assumed pdf. In the 

absence of an underlying pdf, iterative techniques based on a large population of training 

sequences can be used to form the partition and the output population. Training sequences  

involve tens of thousands of representative input samples. 

 

4.6.1  Searching 

Given a11 input vector and a codebook, tree, or trellis, the coder algorithm must conduct a 

search to determine the best matching contender vector. An exhaustive search over all 

possible contenders will assure the best match. Coder performance improves for larger 

dimensional spices, but so does complexity. AP exhaustive search over a large dimension 

may be prohibitively time consuming. An alternative is to conduct a non exhaustive, 

suboptimal search scheme, with acceptably small degradations form the optimal path. 

Memory requirements and computational complexity often are  driving consideration in the 

selection of search algorithms. Examples of search algorithms include single-path (best 

leaving branch) algorithms, multiple-path algorithms, and binary (successive approximation) 

codebook algorithms. Most of the search algorithms attempt to identify and discard unlikely 

patterns ; without having to test the entire pattern.  

 

4.7 TRANSFORM CODING 

In Section L3.5.1 we examined vector quantizers in terms of a set of likely patterns and 

techniques to determine the one pattern in the set closest to the input pattern. One measure of 

goodness of approximation is the weighted mean-square error of the form  
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where B(S) is a weight matrix and X' is the transpose of the vector X. The minimization may 

be computationally simpler if the weighting matrix is a diagonal matrix. A diagonal 

weighting matrix implies a decoupled (or uncorrelated) coordinate set so that the error 

minimization due to quantization can be performed independently over each coordinate. 

Thus. transform coding entails the following set of operations, which are given in Figure 

13.32: 

1. An invertible transform is applied to the input vector. 

2. The coefficients of the transform are quantized. 

3. The quantized coefficients are transmitted and received. 

4. The transform is inverted with quantized coefficients. 

Note that the transform does not perform any source encoding, it merely allows for a more 

convenient description of the signal vector to permit ease of source encoding. The task of the 

transform is to map a correlated input sequence into a different coordinate system in bb;~icil 

the coordinates have reduced correlation. Recall that . . this is precisely the task performed by 

predictive codes. The source encoding occurs with the bit assignment to the various 

coefficients of the transform. As part of t!?is assignment, the coefficients may be partitioned 

into subsets that are quantized with a rliff?r~nntu mber of bits but not with different 

quantizing step sizes. This assignme~ tr eflects the dy~i~nlriacn ge (variance) of each 

coefficient and may be 

weighted by a measure that reflects the importance, rehtive to the human perception [17], of 

the basis element carried by each coefficient. A subset of the coefficients, for instance, may 

be set to zero amplitude, or may be quantized wit11 1 or 2 bits. 
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4.7.1  Quantization for Transform Coding 

Transform coders are called spectral encoders because the signal is described in terms of a 

spect,il decomposition (in a selected basis set). The spectral terms a1.p computedfo r non 

overlapped successive blocks of input data. Thus, the output of a transform coder can be 

viewed as a set of tin12 series, one series for each spectral term. The variance of each series 

can be determined and each can be quantized ,'with a different number of bits. By pel-;;;ittin: 

indepeni;;;;: quantization af each transform coefficient, \\,e have the option of allocating a 

fixed number of –bits among the iLiu~sformco efficients to obtain a minimum quantizing 

error. 

 

 4.7.2  Subband Coding 

The transform coders of Section 13.6 wei-e described as a partition of an input signal int,? ? -

-l!ect;nn nf ~!nwlvv arying time series, each of which is associated with a particular basis 

vector of the transform. The specil.al rerms. the inner product of the data with the basis 

vectors, are ijmputed by a set of inner products. The set of inner prod- 13.6 Transform 

Coding 857 ucts can be computed by a set offitrile irtrpulse r-esl>orzsc (FIR) filters [19]. 

With this perspective, the transform coder can be considered to be performing a 

channelization of the input data. By extension, a subband coder, which performs a spectral 

channelization by a bank of contiguous narrowband filters, can be considered a special case 



45 
 

of a transfomal coder. (A typical subband coder is shown in Figure 13.33.) Casting the 

spectral decomposition of the data as a filtering task affords us the option of forming a class 

of custom basis sets (i.e.. spectral filters)-in particular, 

basis sets that reflect out user-perception preferences and our source models. For example, 

the quantizino, noise generated in a band with large variance will be confined to that band, 

not spilling into a nearby band with low variance and hence susceptible to low-level signals 

being masked by noise. We also have the option of forming filters with equal or unequal 

bandwidths. (See Figure 13.33.) Thus. we can independently assign to each subband the 

sample rate appropriate to its bandwidth and a number of quantizing bits appropriate to its 

variance. By comparison in conventional transform coding, each basis vector amplitude is 

sampled at the same rate. The subband coder can be designed as a transmultiplexer. Here the 

input signal 

is considered to be composed of a number of basis functions modeled as independent narrow-

bandwidth subchannels. The encoder separates or channelizes the input signal into a set of 

low-data-rate, time-division multiplexed (TDM) channels. 

 

After quantization and transmission. the decoder reverses the filtering and resampling  
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process, converting the TDM channels back to the original signal. In the classic approach to 

this process, one can implement a bank of narrow-band filters with the steps 01 heterodyning. 

low-pass filtering, and down sampling (often called deciniariot~). T his filtering operation 

reduces the input bandwidth to the selected channel bandwidth and re samples the signal to 

the lowest rate that avoids aliasing of the red13 led bandwidth channelized data. At the 

receiver, the reverse process is performed. The channelized signals are passed through 

interpolating filters to increase 

their sample rate to the desired output sample rate are heterodyned back to their proper 

spectral position. and they are combined to form the original composite signal. For speech 

encoding-or, more generally, for signals that are re1atc.i to mechanical resonance-filter banks 

with non equal center frequencies and non equal bandwidths are desirable. Such filters are 

called constant-Q (or proportional) filter banks. These filters have logarithmically spaced 

center frequencies with bandwidths proportional to the center frequencies. This proportional 

spacing appears as 

uniform spacing and bandwidth when viewed on a log scale, and it reflects the spectral 

properties of many physical acoustic sources.  

 

4.8 SOURCE CODING FOR DIGITAL DATA 

Coding to reduce the-redundancy of a data source entails the selection of an (usually) 

efficient binary representation of that source. Often this requires the substitution of one 

binary representation of the source symbols with an alternative representation. The 

substitution is usually temporary and is performed to achieve an economy of storage c.' 

transmission the discrete source symbols. The binary code assigned to each source symbol 

must satisfy certain constraints to permit reversal of the substitution. In addition. the code 
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may be further constrained by system considerations, such as memory limit: T'; 

implementation ease.  

4.8.1  Properties of Codes 

. Earlier we alluded to properties that a code must satisfy for it to be useful. Some of these 

properties are -?.:-l.~s, .-.?? sc-:: are not. It is worth listing and demonstrating the desired 

properties. Consider the following three-symbol alphabet with the probability assignments 

shown: 

 

Uniquely decodable Property. Uniquely decodable codes are those that allow us to insert the 

mapping to the original symbol alphabet. Obviously. code 1 in the preceding example is not 

uniquely decodable because the symbols n and b care assigned the same binary sequence. 

Thus, the first requirement of a useful code is that each symbol be assigned a unique binary 

sequence. By this condition. all the other codes appear satisfactory until me examine codes 3 

and 6 carefully. These codes indeed have unique binary sequences assigned to each symbol. 

The problem (I occurs \\.hen these code sequences are strung together. For instance, try to 

decode 

the binary pattern 1 0 1 1 1 in code 3. Is it b, n, b, 6, b or 6, a, 6, c or 6, n, c, b? Trying to 

decode the same sequence in code 6 gives similar difficulties. These codes are not uniquely 

decodable, even though the individual characters ha\.c unique code assignments. 
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Prefix Free Property A sufficient (but not necessary) condition to assure that r7 code is 

uniquely decodeable is that no codeword be the prefix of any other code word. Codes that 

satisfy this condition are called prefix-free codes. Note that code 1 is not prefix-free. but it is 

uniquely codable  prefix-free codes also have the property that the!; al-c instantaneously 

decodable. Code 4 has a property that may be undesirable; it is not instantaneously 

decodable. An instantaneously decodable code is one for which the boundary of the present 

codeword can be identified ,by the end of the present codeword, rather than by the beginning 

of the nest codeword. 's; instance, in transmitting the symbol with the binary sequence.1 in 

code. the receiver cannot determine if this is the whole codeword for symbol b or the partial 

codeword for symbol c. By contrast, codes 2 and 5 are prefix free.  

4.8.2  Code Length and Source Entropy 

.At the beginning of the chapter, we described the formal concept of information content and 

source entropy. We identified the self-information I(Y,,). in bits, about the symbol X,, 

denoted as I(X,,) = log[l|P(X,,)]. F:.;;n the perspective [hat information resolver, uncertainty 

we recognize that the information content of a symbol goes to zero as the probability of that 

symbol goes to unity. We also defined the entropy of a finite discrete source as the average 

information of that source. From the perspective that information resolves uncertainty, the 

entropy is the average 

amount of uncertainty resolved per use of the alphabet. It also represents the average number 

of bits per symbol required to describe the source. In this sense. it is also the lower bound of 

what can be achieved with some variable length data compression codes. A number of 

considerations may prevent an actual code from achieving  entropy bound of the input 

alphabet. These include uncertainty in probability assignment and buffering constraints. The 

average bit length achieved by a given code is denoted by i?. This average length is 

computed as the sum of the 
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binary code lengths tli weighted by the probability of that code symbol P(Xi). 

 

4.8.3  Huffman Code 

The Huffman code [20] is a prefix-free, variable-length code that can achieve the shortest 

average code length ;I for a given input alphabet. The shortest average code length for a 

particular alphabet may be significantly greater than the entropy of the source alphabet. This 

inability to exploit the.pro~nised data_compression is related to the alphabet, not to the 

coding technique. Often the alphabet can be modified to form an extension code. and the 

same coding technique is then reapplied to achieve better compression performance. 

Compression performance is measured by the cot77prec:rion lurtio. This measure is equal to 

the ratio of the average number of bits per sample before compression to the average number-

of bits 

per sample after compression. The Huffman coding procedure can be applied for 

transforming between any two alphabets. We will demonstrate the application of the 

procedure between an 

arbitrary input alphabet and a binary output alphabet. The Hoffman code is generated as part 

of a tree-forming process. The process starts by listing the input alphabet symbols, along 

\\lit11 their probabilities (or relative frequencies), in descending order of occurrence. These 

tabular entries correspond to the branch ends of a tree, as shown in Figure 13.34. Each branch 

is assigned a branch weight equal to the probability of that branch. The process now forms 

the tree that supports these branches. The t\vo entries with the lowest relative frequency are 

merged (at a 

branch node) to form a new branch with their composite probability. After every merging. the 

new branch and the remaining branches are reordered (if necessary) to assure that the reduced 

table preserves the descending probability of occurrence.We call this reordering burbling 
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[21]. During the rearrangement after each merging. the new branch rises through the table 

until it can rise no further. Thus, if we form a branch with a weight of 0.2 p!?d during the 

bubbling process find two other branches already with the 0.2 weight, the new branch is 

bubbled to the top of the 0.2 group, as opposed to simply joining it. The bubbling to the top 

of the group results in a code with reduced code length variance but otherwise a code with the 

same average length as that obtained by simple. joining the group. This reduced code length 

variance lowers the chance of buffer overflow. As an example of this part of the code 

process, we will apply the Huffman procedure to the input alphabet shown in Figure 13.34. 

The tabulated alphabet ant1 the associated probabilities are shown on the figure. After 

forming the tree each branch node is labeled with a binary 110 decision to distinguish the two 

branches. The labeling is arbitrary, but for consistency, at each node we will label the branch 

going up with a -'I" and the branch going down with a "0". After labeling the branch nodes? 

we trace the tree path from the base of the tree (far right) to each output branch (far left). The 

path contains the binary sequence to reach that 

branch. In the following table, we have listed at each end branch the path sequence 

corresponding to each path where i = 1, . . .,6 : 
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MODULE :II 

 

2.1 WAVEVEFORM COADING:- 

 

2.1.1  ORTHOGONAL SIGNALS 

Two signals x(t) and y(t) are said to be orthogonal if 

 

The integral above is referred to as the correlation between the two signals x(t) and y(t). 

Thus, two signals are orthogonal when their correlation is zero. 

In signal space, the orthogonality condition becomes 

 

 

2.1.2  ANTIPODAL SIGNALS 

 

Antipodal signalling uses a single pulse shape to represent bit values 0 and 1.Often,but not 

always ,the basic waveform will have a positive mean value .This waveform represents a 1 

and the negative of the same pulse shape represents 0.Represented as: 
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2.1.3  ORTHOGONAL AND BIORTHOGONAL CODES  

 

Si(t) is an orthogonal set if and only if 

 

 

A one-bit data set can be transformed, using orthogonal codewords of two digits each, 

described by the rows of matrix H1 as follows: 

 

 

To encode a 2-bit data set, matrix H2 is created 

 



53 
 

 

 

BIORTHOGONAL 

A biorthogonal signal set of M total signals or codeword can be obtained from an orthogonal 

set of M/2 signals as follows: 

 

A 3-bit data set can be transformed into abiorthogonal as follows: 
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For the same data set, the biorthogonal code requires one-half as many code bits per code 

word over an orthogonal code. Thus the bandwidth for biothogonal is one-half the 

requirements for comparable orthogonal ones. 

 

 

2.2   TYPES OF ERROR CONTROL  

. In particular, we present, in this and subsequent chapters, a survey of ‘Error control coding’ 

techniques that rely on the systematic addition of ‘Redundant’ symbols to the transmitted 

information so as to facilitate two basic objectives at the receiver: ‘Error- detection’ and 

‘Error correction’. We begin with some preliminary discussions highlighting the role of error 

control coding .The earlier chapters have given you enough background of Information 

theory and Source encoding. In this chapter you will be introduced to another important 

signal - processing operation, namely, “ Channel Encoding”, which is used to provide 

‘reliable’ transmission of information over the channel. 

Automatic Repeat Request (ARQ) - when a receiver circuit detects errors in a block of data, it 

requests the data to be retransmitted.  Error detection and retransmission, utilizes parity bits 

(redundant bits added to the data) to detect an error. 

Requires one link only, since in this case the parity bits are designed for both the detection 

and correction of errors. Forward Error Correction (FEC) - the transmitted data is encoded so 

that the data can correct as well as detect errors caused by channel noise. 

2.2.1  TERMINAL CONNECTIVITY 

The main task required in digital communication is to construct ‘cost effective systems’ for 

transmitting information from a sender (one end of the system) at a rate and a level of 

reliability that are acceptable to a user (the other end of the system). The two key parameters 
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available are transmitted signal power and channel band width. These two parameters along 

with power spectral density of noise determine the signal energy per bit to noise power 

density ratio, Eb/N0 and this ratio, as seen in chapter 4, uniquely determines the bit error for a 

particular scheme and we would like to transmit information at a rate RMax = 1.443 S/N. 

Practical considerations restrict the limit on Eb/N0 that we can assign. Accordingly, we often 

arrive at modulation schemes that cannot provide acceptable data quality (i.e. low enough 

error performance). For a fixed Eb/N0, the only practical alternative available for changing 

data quality from problematic to acceptable is to use “coding”.  

Another practical motivation for the use of coding is to reduce the required Eb/N0 for a fixed 

error rate. This reduction, in turn, may be exploited to reduce the required signal power or 

reduce the hardware costs (example: by requiring a smaller antenna size).  

The coding methods discussed in chapter 5 deals with minimizing the average word length of 

the codes with an objective of achieving the lower bound viz. H(S) / log r, accordingly, 

coding is termed “entropy coding”. However, such source codes cannot be adopted for direct 

transmission over the channel. 

The encoder/decoder structure using ‘ fixed length’ code words will be very simple compared 

to the complexity of those for the variable length codes.  

Here after, we shall mean by “ Block codes”, the fixed length codes only. Since as discussed 

above, single bit errors lead to ‘ single block errors’, we can devise means to detect and 

correct these errors at the receiver. Notice that the price to be paid for the efficient handling 

and easy manipulations of the codes is reduced efficiency and hence increased redundancy.  

In general, whatever be the scheme adopted for transmission of digital/analog information, 

the probability of error is a function of signal-to-noise power ratio at the input of a receiver 

and the data rate. However, the constraints like maximum signal power and bandwidth of the 

channel (mainly the Governmental regulations on public channels) etc, make it impossible to 
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arrive at a signaling scheme which will yield an acceptable probability of error for a given 

application. The answer to this problem is then the use of ‘ error control coding’, also known 

as ‘ channel coding’. In brief, “error control coding is the calculated addition of redundancy” 

. The block diagram of a typical data transmission system is shown in Fig. 

The information source can be either a person or a machine (a digital computer). The source 

output, which is to be communicated to the destination, can be either a continuous wave form 

or a sequence of discrete symbols. The ‘ source encoder’ transforms the source output into a 

sequence of binary digits, the information sequence u. If the source output happens to be 

continuous, this involves A-D conversion as well. The source encoder is ideally designed 

such that (i) the number of bints per unit time (bit rate, rb) required to represent the source 

output is minimized (ii) the source output can be uniquely reconstructed from the information 

sequence u. 

 

 

 

The ‘ Channel encoder’ transforms u to the encoded sequence v, in general, a binary 

sequence, although non-binary codes can also be used for some applications. As discrete 
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symbols are not suited for transmission over a physical channel, the code sequences are 

transformed to waveforms of specified durations. These waveforms, as they enter the channel 

get corrupted by noise. Typical channels include telephone lines, High frequency radio links, 

Telemetry links, Microwave links, and Satellite links and so on. Core and semiconductor 

memories, Tapes, Drums, disks, optical memory and so on are typical storage mediums. A 

surface defect on a magnetic tape is a source of disturbance. The demodulator processes each 

received waveform and produces an output, which may be either continuous or discrete – the 

sequence r. The channel decoder transforms r into a binary sequence, uˆ which gives the 

estimate of u, and ideally should be the replica of u. The source decoder then transforms uˆ 

into an estimate of source output and delivers this to the destination. The switching impulse 

noise, thermal noise, cross talk and lightning are some examples of noise disturbance over a 

physical channel. 

 

2.2.2    AUTOMATIC REPEAT REQUEST 

 

Error control for data integrity may be exercised by means of ‘ forward error correction’ 

(FEC) where in the decoder performs error correction operation on the received information 

according to the schemes devised for the purpose. There is however another major approach 

known as ‘ Automatic Repeat Request’ ( ARQ), in which a re-transmission of the ambiguous 

information is effected, is also used for solving error control problems. In ARQ, error 

correction is not done at all. The redundancy introduced is used only for ‘ error detection’ and 

upon detection, the receiver requests a repeat transmission which necessitates the use of a 

return path (feed back channel).  

In summary, channel coding refers to a class of signal transformations designed to improve 

performance of communication systems by enabling the transmitted signals to better 
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withstand the effect of various channel impairments such as noise, fading and jamming. Main 

objective of error control coding is to reduce the probability of error or reduce the Eb/N0 at 

the cost of expending more bandwidth than would otherwise be necessary. Channel coding is 

a very popular way of providing performance improvement. Use of VLSI technology has 

made it possible to provide as much as 8 – dB performance improvement through coding, at 

much lesser cost than through other methods such as high power transmitters or larger 

Antennas.  

We will briefly discuss in this chapter the channel encoder and decoder strategies, our major 

interest being in the design and implementation of the channel ‘ encoder/decoder’ pair to 

achieve fast transmission of information over a noisy channel, reliable communication of 

information and reduction of the implementation cost of the equipment. 

 

 

2.3   STRUCTURED SEQUENCE:- 

In structured sequences, extra bits are added to the message to reduce the probability of 

errors (detect errors). 

• K-bit data block is transmitted as n-bit 

message (n-k added bits). 

• The code is referred to as (n,k) code. 

• k/n is called the code rate 

deals with transforming sequences into “better sequences” by adding structured redundancy 

(or redundant bits). The redundant bits are used to detect and correct  errors hence improves 

overall performance of the communication system.   
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2.3.1  CHANNEL MODELS 

Discrete Memoryless Channel (DMC) 

– A discrete input alphabet, a discrete output 

alphabet 

– P(j|i) is the probability of receiving j given i 

was sent. 

 

Gaussian Channel 

– Generalization of DMC 

– Input is discrete alphabet, output is input+Gaussian noise 

– The demodulator output consists of a continuous alphabet, or quantized version of it 

(>2 levels), the modulator made a soft decision 

– Since, the decision is not hard(0,1), there is no meaning of probability of error. 

Binary Symmetric Channel 

– BSC is a special case of DMC 

– alphabet is 2 elements 0,1 

– P(0|1)=P(1|0)=p 

– P(1|1)=P(0|0)=1-p 

– Demodulator output is either 1 or 0, the modulator is said to make a hard decision 

2.3.2   CHANNEL CAPACITY 

While commenting on the definition of ‘Channel capacity’,  where maximization should be 

with respect to all possible sets of input symbol probabilities. Accordingly, to arrive at the 

maximum value it is necessary to use some Calculus of Variation techniques and the 

problem, in general, is quite involved. 
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Clearly, the mutual information I (X, Y) depends on the source probabilities apart from the 

channel probabilities. For a general information channel we can always make I(X, Y) = 0 by 

choosing any one of the input symbols with a probability one or by choosing a channel with 

independent input and output. Since I(X, Y) is always nonnegative, we thus know the 

minimum value of the Transinformation. However, the question of max I(X, Y) for a general 

channel is not easily answered.  

 

Our intention is to introduce a suitable measure for the efficiency of the channel by making a 

comparison between the actual rate and the upper bound on the rate of transmission of 

information. Shannon’s contribution in this respect is most significant. Without botheration 

about the proof, let us see what this contribution is. 

2.3.3 CHANNEL CODING 

 

class of signal transformations designed to improve communication performance by enabling 

the transmitted signals to better withstand channel distortions such as noise, interference, and 

fading.   

Channel coding can be divided into two major classes: 

1. Waveform coding by signal design 

2. Structured sequences by adding redundancy  

 

2.3.4  INFORMATION CAPACITY  

 

It is possible, in principle, to device a means where by a communication system will transmit 

information with an arbitrary small probability of error, provided that the information rate 
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R(=r×I (X,Y),where r is the symbol rate) is less than or equal to a rate ‘ C’ called “channel 

capacity”.  

The technique used to achieve this objective is called coding. To put the matter more 

formally, the theorem is split into two parts and we have the following statements. 

Positive statement:  

This theorem indicates that for R< C transmission may be accomplished without error even in 

the presence of noise. The situation is analogous to an electric circuit that comprises of only 

pure capacitors and pure inductors. In such a circuit there is no loss of energy at all as the 

reactors have the property of storing energy rather than dissipating.  

“ Given a source of M equally likely messages, with M>>1, which is generating information 

at a rate R, and a channel with a capacity C. If R ≤ C, then there exists a coding technique 

such that the output of the source may be transmitted with a probability of error of receiving 

the message that can be made arbitrarily small”.  

Negative statement:  

“ Given the source of M equally likely messages with M>>1, which is generating information 

at a rate R and a channel with capacity C. Then, if R>C, then the probability of error of 

receiving the message is close to unity for every set of M transmitted symbols”.  

You can interpret in this way: Information is poured in to your communication channel. You 

should receive this without any loss. Situation is similar to pouring water into a tumbler. 

Once the tumbler is full, further pouring results in an over flow. You cannot pour water more 

than your tumbler can hold. Over flow is the loss.  

This theorem shows that if the information rate R exceeds a specified value C, the error 

probability will increase towards unity as M increases. Also, in general, increase in the 

complexity of the coding results in an increase in the probability of error. Notice that the 

situation is analogous to an electric network that is made up of pure resistors. In such a 
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circuit, whatever energy is supplied, it will be dissipated in the form of heat and thus is a 

“lossy network”.  

 

2.3.5  THE SHANON LIMIT 

 

Shannon defines “ C” the channel capacity of a communication channel a s the maximum 

value of Transinformation, I(X, Y):  

C = Δ Max I(X, Y) = Max [H(X) – H (Y|X)] …………. (4.28)  

The maximization in Eq (4.28) is with respect to all possible sets of probabilities that could 

be assigned to the input symbols. Recall the maximum power transfer theorem: ‘In any 

network, maximum power will be delivered to the load only when the load and the source are 

properly matched’. The device used for this matching purpose, we shall call a “transducer “. 

For example, in a radio receiver, for optimum response, the impedance of the loud speaker 

will be matched to the impedance of the output power amplifier, through an output 

transformer.  

There exists a coding scheme for which the source output can be transmitted over the channel 

and be reconstructed with an arbitrarily small probability of error. The parameter C/Tc is 

called the critical rate. When this condition is satisfied with the equality sign, the system is 

said to be signaling at the critical rate. This theorem is also known as “The Channel Coding 

Theorem” (Noisy Coding Theorem). It may be stated in a different form as below:  

R ≤ C or rs H(S) ≤ rc I(X,Y)Max or{ H(S)/Ts} ≤{ I(X,Y)Max/Tc}  

“If a discrete memoryless source with an alphabet ‘S’ has an entropy H(S) and produces 

symbols every ‘T s’ seconds; and a discrete memoryless channel has a capacity I(X,Y)Max 

and is used once every Tc seconds. 
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A communication channel, is more frequently, described by specifying the source 

probabilities P(X) & the conditional probabilities P (Y|X) rather than specifying the JPM. 

The CPM, P (Y|X), is usually refereed to as the ‘ noise characteristic’ of the channel. 

Therefore unless otherwise specified, we shall understand that the description of the channel, 

by a matrix or by a ‘Channel diagram’ always refers to CPM, P (Y|X). Thus, in a discrete 

communication channel with pre-specified noise characteristics (i.e. with a given transition 

probability matrix, P (Y|X)) the rate of information transmission depends on the source that 

drives the channel. Then, the maximum rate corresponds to a proper matching of the source 

and the channel. This ideal characterization of the source depends in turn on the transition 

probability characteristics of the given channel. 

 

2.3.6  ERROR CORRECTING CODE :  

If the code word with n-bits is to be transmitted in no more time than is required for the 

transmission of the k-information bits and if τb and τc are the bit durations in the encoded and 

coded words. 

There are mainly two types of error control coding schemes – Block codes and convolutional 

codes, which can take care of either type of errors mentioned above.  

In a block code, the information sequence is divided into message blocks of k bits each, 

represented by a binary k-tuple, u = (u1, u2 …. uk) and each block is called a message. The 

symbol u, here, is used to denote a k – bit message rather than the entire information 

sequence . The encoder then transforms u into an n-tuple v = (v1, v2 …. vn). Here v 

represents an encoded block rather than the entire encoded sequence. The blocks are 

independent of each other.  
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The encoder of a convolutional code also accepts k-bit blocks of the information sequence u 

and produces an n-symbol block v. Here u and v are used to denote sequences of blocks 

rather than a single block. Further each encoded block depends not only on the present k-bit 

message block but also on m-pervious blocks. Hence the encoder has a memory of order ‘ m’. 

Since the encoder has memory, implementation requires sequential logic circuits.  

 

2.3.7    REDUNDANCY AND EFFICIENCY   

 

A redundant source is one that produces ‘dependent’ symbols. (Example: The Markov 

source). Such a source generates symbols that are not absolutely essential to convey 

information. As an illustration, let us consider the English language. It is really unnecessary 

to write “U” following the letter “Q”. The redundancy in English text is e stimated to be 

50%(refer J Das etal, Sham Shanmugam, Reza, Abramson, Hancock for detailed discussion.) 

This implies that, in the long run, half the symbols are unnecessary! For example, consider 

the following sentence.  

However, we want redundancy. Without this redundancy abbreviations would be impossible 

and any two dimensional array of letters would form a crossword puzzle! We want 

redundancy even in communications to facilitate error detection and error correction. Then 

how to measure redundancy? Recall that for a Markov source, H(S) < H(S), where S is an 

ad- joint, zero memory source. That is, when dependence creeps in, the entropy of the source 

will be reduced and this can be used as a measure indeed!  

“ The redundancy of a sequence of symbols is measured by noting the amount by which the 

entropy has been reduced”.  

When there is no inter symbol influence the entropy at the receiver would be H(X) for any 

given set of messages {X} and that when inter symbol influence occurs the entropy would be 
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H (Y|X). The difference [H(X) –H (Y|X) ] is the net reduction in entropy and is called “ 

Absolute Redundancy  

 

2.3.8    PARITY CHEK CODES  

Definition: A bit string has odd parity if the number of 1s in the string is odd. A bit string 

has even parity if the number of 1s in the string is even. 

Recall: 0 is an even number. 

Example: 

01100, 000, and 11001001 have even parity. 

1000011, 1, and 00010 have odd parity. 

Assume we are transmitting blocks of 

k bits. 

• A block w of length k is encoded as wa, where the value of the parity bit 

a is chosen so 

that wa has even parity. 

– Example: If w = 10110, we send wa = 101101, which has even parity. 

• If there are a positive, even number of bit flip errors in transmission, the receiver gets a bit 

string with even parity, and the error(s) go undetected. 

• If there are an odd number of bit flip errors in transmission, the receiver gets a bit string 

with odd parity, indicating an error occurred. The receiver requests retransmission. 

Single parity check code 

Any time a block of length n (with parity bit) contains an even number of bit errors, the error 

cannot be detected. Let p be the probability of an error in a single bit. The probability of 2 bit 

flips in the block is: 
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 The  number of ways to choose 2 bits from n bits, times p 2, the probability of those bits 

being errors, timesn−2, the probability of the remaining n – 2\bits being correct. 

The probability of an undetected error is: 

For bit strings of length n = 32 and p = 0.001, the probability of an undetectable error is 

approximately 0.0005. 

Rectangular   code 

Block of bits is organized in rows and columns, say an m × n matrix. 

• The parity bit of each row is calculated, and appended to the row before it is transmitted. 

• The parity of each column is calculated, and the parity bit of the entire matrix is computed 

- these are also transmitted to the receiver. 

• m + n + 1 parity bits are computed. 

• A total of mn + m + n + 1 bits are sent to the receiver. 

 

2.4   LINEAR BLOCK CODES :- 

We assume that the output of an information source is Na sequence of binary digits “0” or 

“1” This binary information sequence is segmented into message block of fixed length, 

denoted by u. Each message block consists of k information digits. There are a total of 2k 

distinct message. The encoder transforms each input message u into a binary n-tuple v with n 

> k .This n-tuple v is referred to as the code word ( or code vector ) of the message u. There 

are distinct 2k code words. 

This set of 2k code words is called a block code. For a block code to be useful, there should 

be a one-to-one correspondence between a message u and its code word v. A desirable 

structure for a block code to possess is the linearity. With this structure, the encoding 

complexity will be greatly reduced. 
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Definition A block code of length n and 2k code word is called a linear (n, k) code iff its 2k 

code words form a k-dimensional subspace of the vector space of all the n-tuple over the field 

GF(2). In fact, a binary block code is linear iff the module-2 sum of two code word is also a 

code word 0 must be code word. Since an (n, k) linear code C is a k-dimensional subspace of 

the vector space Vn of all the binary ntuple, it is possible to find k linearly independent code 

word, g0 , g1 ,…, gk-1 in C 

 

2.4.1   VECTOR SPACE AND SUBSPACE 

 

(n,k) code maps a length k-tuples to length n-tuples. 

• The set of all binary n-tuples form a vector space Vn That binary field has 2 operations, 

multiplication and addition (ex-or). 

• A subset S of V is called a subspace of V iff 

– The all zeros vector is in S AND 

– The sum of any 2 vectors in S is also in S 

In Vn the 2n tuples can be represented as points in the space 

• Some of these points are in S 

• There are 2 contradicting objectives 

– Code efficiency means we want to pack Vn with 

elements of S . 

– Error detection means that we want the elements of S to 

be as far away as possible from each other. 

Could be done by using table lookup 

• The size of the table lookup is k2k bits 

• Too large for large k 
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EXAMPLE 

In fact, a binary block code is linear if and only if the modulo-2 sum of two code words is 

also a code word. The block code given in Table 1 is a (7, 4) linear code. One can easily 

check that the sum of any two code words in this code is also a code word. 

 

2.4.2    GENERATOR MATRIX 

 

Since the codewords form a k-dimensional subspace of the n-dimensional space, we can use 

the basis of the subspace to generate any element in the subspace. 

• If these basis are (linearly independent ntuples) V1, V2, . . . ,Vk any code word can be 

represented as 

• U=m1V1 + m2V2 + . . . mkVk 
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2.4.3    SYSTEMATIC LINEAR BLOCK CODE :- 

 

A systematic linear block code is a mapping from a k-dimensional space to ndimensional 

space such that the k-bit message is a part of the n-bit codeword. 
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A desirable property for a linear block code is the systematic structure of the code words as 

shown in Fig.where a code word is divided into two parts 

The message part consists of k information digits The redundant checking part consists of n − 

k parity-check digits. 

A linear block code with this structure is referred to as a linear systematic block code 

 

 

A linear systematic (n, k) code is completely specified by a k × n matrix G of the following 

form 

 

 

 

Let u = (u0, u1, … , uk-1) be the message to be encoded The corresponding code word is It 

follows from (3.4) & (3.5) that the components of v are vn-k+i = ui for 0 ≤ i < k  

And vj = u0 p0j + u1 p1j + ··· + uk-1 pk-1, j for 0 ≤ j < n-k . shows that the rightmost k digits 

of a code word v are identical to the information digits u0, u1,…uk-1 to 
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be encoded Equation (3.6b) shown that the leftmost n – k redundant digits are linear sums of 

the information digits The n – k equations are called parity-check equations of the code. 

 

2.4.4   PARITY CHECK MATRIX 

For any k × n matrix G with k linearly independent rows, there exists an (n-k) ×n matrix H 

with n-k linearly independent rows such that any vector in the row space of G is orthogonal 

to the rows of H and any vector that is orthogonal to the rows of H is in the row space of G. 

An n-tuple v is a code word in the code generated by G if and only if v • HT = 0 

 

This matrix H is called a parity-check matrix of the code.The 2n-k linear combinations of the 

rows of matrix H form an (n, n – k) linear code Cd.This code is the null space of the (n, k) 

linear code C generated by matrix G Cd is called the dual code of C .If the generator matrix 

of an (n,k) linear code is in the systematic form of (3.4), the parity-check matrix may take the 

following form : 

 

Let hj be the jth row of H for 0 ≤ i < k and 0 ≤ j < n – k .This implies that G • HT = 0 

Let u = (u0, u1, …, uk-1) be the message to be encoded In systematic form the corresponding 

code word would be v = (v0, v1, … , vn-k-1, u0,u1, … , uk-1).Using the fact that v • HT = 0, 

we obtain vj + u0 p0j + u1 p1j + ··· + uk-1 pk-1,j = 0  
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Rearranging the equation of we obtain the same parity-check equations of  An (n, k) linear 

code is completely specified by its parity check matrix. 

 

2.4.5    SYNDROME TESTING AND ERROR CORRECTION AND 

DECODER IMPLEMENTAION  

 

Suppose the code vector v= (v0, v1, v2 …v n-1) is transmitted over a noisy channel. Hence 

the received vector may be a corrupted version of the transmitted code vector. Let the 

received code vector be r = (r0, r1, r 2…r n-1). The received vector may not be anyone of the 

2k valid code vectors. The function of the decoder is to determine the transmitted code vector 

based on the received vector.  The decoder, as in the case of linear block codes, first 

computes the syndrome to check whether or not the received code vector is a valid code 

vector. In the case of cyclic codes, if the syndrome is zero, then the received code word 

polynomial must be divisible by the generator polynomial. If the syndrome is non-zero, the 

received word contains transmission errors and needs error correction. Let the received code 

vector be represented by the polynomial 
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That is, the syndrome of R(X) is equal to the remainder resulting from dividing the error 

pattern by the generator polynomial; and the syndrome contains information about the error 

pattern, 

 

 

The syndrome calculations are carried out as below:  

1 The register is first initialized. With GATE 2 -ON and GATE1- OFF, the received vector is 

entered into the register  

2 After the entire received vector is shifted into the register, the contents of the register will 

be the syndrome, which can be shifted out of the register by turning GATE-1 ON and GATE-

2 OFF. The circuit is ready for processing next received vector.  

Cyclic codes are extremely well suited for 'error detection' .They can be designed to detect 

many combinations of likely errors and implementation of error-detecting and error 

correcting circuits is practical and simple. Error detection can be achieved by employing (or 

adding) an additional R-S flip-flop to the syndrome calculator. If the syndrome is nonzero, 

the flip-flop sets and provides an indication of error. Because of the ease of implementation, 

virtually all error detecting codes are invariably 'cyclic codes'. If we are interested in error 

correction, then the decoder must be capable of determining the error pattern E(X) from the 

syndrome S(X) and add it to R(X) to determine the transmitted V(X). The following scheme 

shown in Fig 7.11 may be employed for the purpose. The error correction procedure consists 

of the following steps:  

Step1. Received data is shifted into the buffer register and syndrome registers with switches 

SIN closed and SOUT open and error correction is performed with SIN open and SOUT  
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closed.  

Step2. After the syndrome for the received code word is calculated and placed in the 

syndrome register, the contents are read into the error detector. The detector is a 

combinatorial circuit designed to output a ‘ 1’ if and only if the syndrome corresponds to a 

correctable error pattern with an error at the highest order position Xn-l. That is, if the 

detector output is a '1' then the received digit at the right most stage of the buffer register is 

assumed to be in error and will be corrected. If the detector output is '0' then the received 

digit at the right most stage of the buffer is assumed to be correct. Thus the detector output is 

the estimate error value for the digit coming out of the buffer register. 

 

 

 

Step3. In the third step, the first received digit in the syndrome register is shifted right once. 

If the first received digit is in error, the detector output will be '1' which is used for error 

correction. The output of the detector is also fed to the syndrome register to modify the 



75 
 

syndrome. This results in a new syndrome corresponding to the ‘ altered ‘received code word 

shifted to the right by one place.  

Step4. The new syndrome is now used to check and correct the second received digit, which 

is now at the right most position, is an erroneous digit. If so, it is corrected, a new syndrome 

is calculated as in step-3 and the procedure is repeated.  

Step5. The decoder operates on the received data digit by digit until the entire received code 

word is shifted out of the buffer.  

At the end of the decoding operation, that is, after the received code word is shifted out of the 

buffer, all those errors corresponding to correctable error patterns will have been corrected, 

and the syndrome register will contain all zeros. If the syndrome register does not contain all 

zeros, this means that an un-correctable error pattern has been detected. The decoding 

schemes described in can be used for any cyclic code. However, the practicality depends on 

the complexity of the combinational logic circuits of the error detector.  

 

2.4.6    WEIGHT AND DISTANCE OF BINARY VECTORS  

The  distance between two vectors  x and y of thesame length over a finite alphabet Σ, 

denoted ∆(x, y), is defined as the number of positions at whichthe two strings differ, i.e., ∆(x, 

y) = |{i|xi 6= yi}|. The fractional Hamming distance or relative distance between x, y ∈ Σ. 

The weight of a vectors  x over alphabet Σ is defined as the number of non-zero symbols in 

the string. More formally, the Hamming weight of a string wt(x) = |{i|xi 6= 0}|. Note that 

wt(x − y) = ∆(x, y). 
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2.4.7  MINIMUM DISTANCE OF LINEAR CODE 

A general code might have no structure and not admit any representation other than listing 

the entire codebook. We now focus on an important subclass of codes with additional 

structure called linear codes. Many of the important and widely used codes are linear. Linear 

codes are defined over alphabets Σ which are finite fields. Throughout, we will denote by Fq 

the finite field with q elements, where q is a prime power. (Later on in the course, it is 

valuable to have a good grasp of the basic properties of finite fields and field extensions. For 

now, we can safely think of q as a prime, in which case Fq is just {0, 1, . . . , q − 1} with 

addition and multiplication defined modulo q.) Definition 7 (Linear code) If Σ is a field and C ⊂ Σn is a subspace of Σ n then C is said to be a linear code. As C is a subspace, there exists a 

basis c1, c2, . . . , ck where k is the dimension of the subspace. Any codeword can be 

expressed as the linear combination of these basis vectors. We can write these vectors in 

matrix form as the columns of a n×k matrix. Such a matrix is called a generator matrix. 

 

The Hamming weight w(v) of a binary n-tuple code word v is the number of nonzero 

components in the code word. The Hamming distance d(v, w) between two q-ary (n, k) code 

vectors v and w is the number of places in which they differ. The Hamming distance d(v, w) 

is the Hamming weight w(v+w). The minimum weight of a linear block code C is the 

minimum weight of its nonzero code words. The minimum distance of a linear block code is 

equal to the minimum weight of its nonzero code words. Let C be an (n, k) linear code with 

parity-check matrix H. For each code vector of Hamming weight l, there exists l columns of 

H such that the vector sum of these l columns is equal to the zero vector. Conversely, if there 

exist l columns of H whose vector sum is the zero vector, there exists a code vector of 
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Hamming weight l in C. The minimum weight wmin (or minimum distance dmin) of C is 

equal to the smallest number of columns of H that sum to 0. 

Definition  (Hamming distance) The Hamming distance between two strings x and y of 

thesame length over a finite alphabet Σ, denoted ∆(x, y), is defined as the number of positions 

at whichthe two strings differ, i.e., ∆(x, y) = |{i|xi 6= yi}|. The fractional Hamming distance 

or relative distance between x, y ∈ Σ. 

Definition (Hamming weight) The Hamming weight of a string x over alphabet Σ is definedas 

the number of non-zero symbols in the string. More formally, the Hamming weight of a 

string wt(x) = |{i|xi 6= 0}|. Note that wt(x − y) = ∆(x, y). 

Definition:An error correcting code or block code C of length n over a finite alphabet Σ is a 

subset of Σn. The elements of C are called the codewords in C, and the collection of all 

codewords is sometimes called a codebook.The alphabet of C is Σ, and if |Σ| = q, we say that 

C is a q-ary code. When q = 2, we say that Cis a binary code. The length n of the codewords 

of C is called the block length of C.Associated with a code is also an encoding map E which 

maps the message set M, identified insome canonical way with {1, 2, . . . , |C|} say, to 

codewords belonging to Σn. The code is then theimage of the encoding map. 

 

Definition 5(Distance) The minimum distance, or simply distance, of a code C, denoted ∆(C), 

is defined to be the minimum Hamming distance between two distinct codewords of C. That 

is,∆(C) = min c1,c2∈C c16=c2 ∆(c1, c2) .In particular, for every pair of distinct codewords in 

C the Hamming distance between them is atleast ∆(C).The relative distance of C, denoted 

δ(C), is the normalized quantity ∆(C) n , where n is the block length of C. Thus, any two 

codewords of C differ in at least a fraction δ(C) of positions. 
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2.4.8  ERROR DETECTION AND CORRECTION  

The random-error-detecting capability of a block code is dmin -1, that is it can detect any 

error pattern with dmin -1 or fewer error digits guaranteed. There 2k-1 undetectable error 

patterns.There are 2n-2k detectable error patterns. Let Ai be the number of code vectors of 

weight i in C. The number s A0, A1, _, An are called the weight distribution of C.where p is 

the transition probablity of a BSC. 3.5 Error-Correcting Capabilities of A Block The random-

error-correcting capability of block code is t, that is it guarantees correcting all the error 

patterns of t or fewer digits.where [] denotes the largest integer. A t-error-correcting (n, k) 

block code is capable of correcting a total of 2n-k error patterns. 

 Minimum distance criteria: 

Given a block code C, its minimum Hamming distance, d min, is defined as the minimum 

Hamming distance among all possible distinct pairs of code  In order to compute the 

minimum distance d min of a block code C, in accordance with above distances between 

distinct pairs of code words are needed. The following table-1 shows the hamming distance 

between different code words of (8 2 5) code. Here minimum weight is equal to minimum 

distance of code C.  

 Triangle inequality:  

It states that the code C is capable of correcting all error patterns of t or fewer errors. Let v 

and r be the transmitted and received vectors respectively and let w be any other code vector 

in C then The Hamming distances among v, r and w satisfy the triangle inequality:  

d(v, r) + d(w, r) ≥ d(v, w) (13) 

For a given block code, designed with generator matrix of equation 14, considering v = [10 

11 1010], r = [00 11 1010] and w = [01 01 1101], d(v, r) = 1, d(w, r) = 5 and d(v, w) = 6. 
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Here d(v, r) + d(w, r) = d(v, w). Thus it satisfies the triangle inequality.  

 Weight distribution W(C):  

The Weight distribution W(C) of an error correcting code C, is defined as the set of n + 

1integers W(C) = {Ai , 0 ≤ i ≤ n} such that there are Ai code words of Hamming weight i in 

C, fori = 0, 1, . . . , n.  

 Asymptotic Coding Gain (Ga): 

It is the gain that would be delivered if vanishingly small decoded error rates were required It 

is given by Ga=10 log[R(t+1)] Or Ga=10 log[R*dmin] 

If R = Coding gain=¼, t=2, dmin=5,  

then Ga= 10 log [3/4] = -1.249 d  

Or Ga=10 log[Rd] =10 log [5/4] = 0.969 dB 

Thus asymptotic coding gain will be between -1.249 to 0.969 dB.  

 

 

2.5   CYCLIC CODES:- 

 

2.5.1  ALGEBRIC STRUCTURE:- 

Among the _rst codes used practically were the cyclic codes which were generated 

using shift registers. It was quickly noticed by Prange that the class of cyclic codes has a rich 

algebraic structure, the _rst indication that algebra would be a valuable tool in code design. 

The linear code C of length n is a cyclic code if it is invariant under a cyclic cyclic code 
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shift: 

c = (c0; c1; c2 : : : ; cn2; cn1) 2 C 

if and only if 

~c = (cn1; c0; c1 : : : ; cn3; cn2) 2 C : 

As C is invariant under this single right cyclic shift, by iteration it is invariant under any 

number of right cyclic shifts. As a single left cyclic shift is the same as n1 right cyclic shifts, 

C is also invariant under a single left cyclic shift and hence all left cyclic shifts. Therefore the 

linear code C is cyclic precisely when it is invariant under all cyclic shifts. There are some 

obvious examples of cyclic codes. The 0-code is certainly cyclic as is Fn. Less trivially, 

repetition codes are cyclic. The binary parity check code is also cyclic, and this goes over to 

the sum-0 codes over any _eld. Notice that this shift invariance criterion does not depend at 

all upon the code being linear. It is possible to nonlinear cyclic codes, but that is rarely done. 

The history of cyclic codes as shift register codes and the mathematical structure theory of 

cyclic codes both suggest the study of cyclic invariance in the context of linear codes. 

Cyclic codes form an important subclass of linear codes. These codes are attractive for two 

reasons: Encoding and syndrome computation can be implemented easily by employing shift 

registers with feedback connections(or linear sequential circuits). Because they have 

considerable inherent algebraic structure, it is possible to find various practical methods for 

decoding them. Cyclic codes were first studied by Prange in 1957. 

If the n-tuple v = (v0, v1,…, vn-1) are cyclic shifted one place to the right, we obtain another 

n-tuple v(1) = (vn-1, v0, v1,…, vn-2) which is called a cyclic shift of v .If the v are cyclically 

shifted i places to the right, we have v(i) = (vn–i, vn–i+1,…, vn-1, v0, v1, …, vn-i-1) 

Cyclically shifting v i places to the right is equivalent to cyclically shifting v (n – i) place to 

the left 
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Definition  An (n, k) linear code C is called a cyclic code if every cyclic shift of a code vector 

in C is also a code vector in C The (7, 4) linear code given in Table  is a cyclic code 

To develop the algebraic properties of a cyclic code, we treat the components of a code 

vector v = (v0, v1,…, vn-1) as the coefficients of a polynomial as follows: 

v(X) = v0 + v1X + v2X2 + ··· + vn-1Xn-1 If vn-1 ≠ 0, the degree of v(X) is n – 1 

If vn-1 = 0, the degree of v(X) is less than n – 1.The correspondence between the vector v 

and the polynomial v(X) is one-to-one 

 

2.5.2   BINARY CYCLIC CODE PROPERTIES:- 

"Binary cyclic codes” form a sub class of linear block codes. Majority of important linear 

block codes that are known to-date are either cyclic codes or closely related to cyclic codes. 

Cyclic codes are attractive for two reasons: First, encoding and syndrome calculations can be 

easily implemented using simple shift registers with feed back connections. Second, they 

posses well defined mathematical structure that permits the design of higher-order error 

correcting codes.  

A binary code is said to be "cyclic" if it satisfies:  

1. Linearity property – sum of two code words is also a code word.  

2. Cyclic property – Any lateral shift of a code word is also a code word.  

 

The second property can be easily understood from Fig,  Instead of writing the code as a row 

vector, we have represented it along a circle. The direction of traverse may be either 

clockwise or counter clockwise (right shift or left shift).  

For example, if we move in a counter clockwise direction then starting at ‘ A’ the code word 

is 110001100 while if we start at B it would be 011001100. Clearly, the two code words are 

related in that one is obtained from the other by a cyclic shift. 
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2.5.3  ENCODING IN SYSTEMATIC FORM:- 

Let us assume a systematic format for the cyclic code as below:  

v = (p0, p1, p2 … p n-k-1, u0, u1, u2… u k-1) 

The code polynomial in the assumed systematic format becomes: 

V(X) = p0 + p1X + p2X2 + … 

+p  

n-k-1Xn-k-1 +u0Xn-k + 

u1Xnk+1+… +u k-1Xn-1  

= P(X) + Xn-kU(X)  

 

V (X) = P (X) +Xn-k U (X) = 

Q (X) g (X) 
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Thus division of Xn-k U (X) by g (X) gives us the quotient polynomial Q (X) and the 

remainder polynomial P (X). Therefore to obtain the cyclic codes in the systematic form, we 

determine the remainder polynomial P (X) after dividing Xn-k U (X) by g(X). This division 

process can be easily achieved by noting that "multiplication by Xn-k amounts to shifting the 

sequence by (n-k) bits". Specifically in the circuit of Fig 7.5(a), if the input A(X) is applied to 

the Mod-2 adder after the (n-k) th shift register the result is the division of Xn-k A (X) by B 

(X).  

Accordingly, we have the following scheme to generate systematic cyclic codes. The 

generator polynomial is written as: 

g (X) = 1 +glX+g2X2+g3X3+…+g n-k-1 Xn-k-1 +Xn-k 

 

 

1. The switch S is in position 1 to allow transmission of the message bits directly to an out 

put shift register during the first k-shifts.  
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2. At the same time the 'GATE' is 'ON' to allow transmission of the message bits into the (n-

k) stage encoding shift register  

3. After transmission of the kth message bit the GATE is turned OFF and the switch S is 

moved to position 2.  

 

4. (n-k) zeroes introduced at "A" after step 3, clear the encoding register by moving the parity 

bits to the output register  

5. The total number of shifts is equal to n and the contents of the output register is the code 

word polynomial V (X) =P (X) + Xn-k U (X).  

6. After step-4, the encoder is ready to take up encoding of the next message input  

Clearly, the encoder is very much simpler than the encoder of an (n, k) linear block code and 

the memory requirements are reduced. The following example illustrates the procedure. 

 

 

 

2.5.5   DIVIDING CIRCUITS  :- 

As in the case of multipliers, the division of A (X) by B (X) can be accomplished by using 

shift registers and Mod-2 adders, as shown in Fig 7.5. In a division circuit, the first co-

efficient of the quotient is (an-1 (bm -1) = q1, and q1.B(X) is subtracted from A (X). This 

subtraction is carried out by the feedback connections shown. This process will continue for 

the second and subsequent terms. However, remember that these coefficients are binary 

coefficients. After (n-1) shifts, the entire quotient will appear at the output and the remainder 

is stored in the shift registers. 
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It is possible to combine a divider circuit with a multiplier circuit to build a “composite 

multiplier-divider circuit” which is useful in various encoding circuits. An arrangement to 

accomplish this is shown in Fig 7.6(a) and an illustration is shown in FIG. We shall 

understand the operation of one divider circuit through an example. Operation of other 

circuits can be understood in a similar manner. 

 

 

2.5.6 SYSTEMATIC ENCODING & ERROR DETECTION USING 

SHIFT REGISTER  :- 

An (n, k) cyclic code is specified by the complete set of code polynomials of degree  (n-1) 

and contains a polynomial g(X), of degree (n-k) as a factor, called the "generator polynomial" 

of the code. This polynomial is equivalent to the generator matrix G, of block codes. Further, 

it is the only polynomial of minimum degree and is unique.  

Theorem "If g(X) is a polynomial of degree (n-k) and is a factor of (Xn +1) then g(X) 

generates an (n, k) cyclic code in which the code polynomial V(X) for a data vector u = (u0, 

u1… u k -1) is generated by V(X) = U(X)g(X)  
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U(X) = u0 + u1 X + u2 X2 + ... + uk-1 Xk-I  

is the data polynomial of degree (k-1).  

The theorem can be justified by Contradiction: - If there is another polynomial of same 

degree, then add the two polynomials to get a polynomial of degree < (n, k) (use linearity 

property and binary arithmetic). Not possible because minimum degree is (n-k). Hence g(X) 

is unique  Clearly, there are 2k code polynomials corresponding to 2k data vectors. The code 

vectors corresponding to these code polynomials form a linear (n, k) code. We have then, 

from the theorem 

is a polynomial of minimum degree, it follows 

that g0  

= gn-k = 1 always and the remaining co-  

efficients may be either' 0' of '1'. Performing the multiplication , we have:  

U (X) g(X) = uo g(X) + u1 X g(X) +…+u k-1Xk-1g(X)  

Suppose u0=1 and u1=u2= …=u k-1=0. Then from Eq (7.8) it follows g(X) is a code word 

polynomial of degree (n-k). This is treated as a ‘ basis code polynomial’ (All rows of the G 

matrix of a block code, being linearly independent, are also valid code vectors and form ‘ 

Basis vectors’ of the code). Therefore from cyclic property Xi g(X) is also a code 

polynomial. Moreover, from the linearity property - a linear combination of code polynomials 

is also a code polynomial. It follows therefore that any multiple of g(X) as shown in Eq 

(7.12) is a code polynomial. Conversely, any binary polynomial of degree  (n-1) is a code 

polynomial if and only if it is a multiple of g(X). Construction of encoders and decoders for 

linear block codes are usually constructed with combinational logic circuits with mod-2 

adders. Multiplication of two polynomials A(X) and B(X) and the division of one by the 

other are realized by using sequential log 

Suppose the code vector v= (v0, v1, v2 …v n-1) is transmitted over a noisy channel. Hence 

the received vector may be a corrupted version of the transmitted code vector. Let the 
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received code vector be r = (r0, r1, r 2…r n-1). The received vector may not be anyone of the 

2k valid code vectors. The function of the decoder is to determine the transmitted code vector 

based on the received vector.  

The decoder, as in the case of linear block codes, first computes the syndrome to check 

whether or not the received code vector is a valid code vector. In the case of cyclic codes, if 

the syndrome is zero, then the received code word polynomial must be divisible by the 

generator polynomial. If the syndrome is non-zero, the received word contains transmission 

errors and needs error correction. Let the received code vector be represented by the 

polynomial. That is, the syndrome of R(X) is equal to the remainder resulting from dividing 

the error pattern by the generator polynomial; and the syndrome contains information about 

the error pattern, which can be used for error correction.  

 

The syndrome calculations are carried out as below:  

1 The register is first initialized. With GATE 2 -ON and GATE1- OFF, the received vector is 

entered into the register  

2 After the entire received vector is shifted into the register, the contents of the register will 

be the syndrome, which can be shifted out of the register by turning GATE-1 ON and GATE-

2 OFF.  
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1. The switch S is in position 1 to allow transmission of the message bits directly to an out 

put shift register during the first k-shifts.  

2. At the same time the 'GATE' is 'ON' to allow transmission of the message bits into the (n-

k) stage encoding shift register  

3. After transmission of the kth message bit the GATE is turned OFF and the switch S is 

moved to position 2.  

4. (n-k) zeroes introduced at "A" after step 3, clear the encoding register by moving the parity 

bits to the output register  

5. The total number of shifts is equal to n and the contents of the output register is the code 

word polynomial V (X) =P (X) + Xn-k U (X).  

6. After step-4, the encoder is ready to take up encoding of the next message input  

 

2.6   BLOCK CODES 

2.6.1   HAMMING CODE:- 

Designed to correct single bit errors.Family of (n, k) block error-correcting codes with 

parameters: 

• Block length: n = 2m – 1 . 

• Number of data bits: k = 2m – m – 1. 
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• Number of check bits: n – k = m. 

• Minimum distance: dmin = 3. 

• Single-error-correcting (SEC) code. 

• SEC double-error-detecting (SEC-DED) code. 

• Encoding: k data bits + (n -k) check bits. 

• Decoding: compares received (n -k) bits with calculated (n -k) bits using. 

•   Resulting (n -k) bits called syndrome word. 

• Syndrome range is between 0 and 2(n-k)-1. 

• Each bit of syndrome indicates a match (0) or conflict (1) in that bit position. 

 

 

Hamming code is the first class of linear block codes devised for error correction. The single 

error correcting (SEC) Hamming codes are characterized by the following parameters.  

Code length: n = (2m-1)  

Number of Information symbols: k = (2m – m – 1)  

Number of parity check symbols :( n – k) = m  

Error correcting capability: t = 1, (dmin= 3)  

The parity check matrix H of this code consists of all the non-zero m-tuples as its columns. In 

systematic form, the columns of H are arranged as follows  

H = [Q M Im]  

Where Im is an identity (unit) matrix of order m  m and Q matrix consists of  

(2m-m-1) columns which are the m-tuples of weight 2 or more. As an illustration for k=4 we 

have from k = 2m – m – 1.  

m=1 k=0, m=2 k=1, m=3 k=4  
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Thus we require 3 parity check symbols and the length of the code 23 – 1 = 7 . This results in 

the (7, 4) Hamming code.  

The parity check matrix for the (7, 4) linear systematic Hamming code is then 

p1 p2 m1 p3 m2 m3 m4 p4 m5 m6 m7 m8 m9 m10 m11 p5 m12  

Where p1, p2, p3… are the parity digits and m1, m2, m3… are the message digits. For 

example, let us  

consider the non systematic (7, 4) Hamming code.  

p1 = 1, 3, 5, 7, 9, 11, 13, 15…  

p2 = 2, 3, 6, 7, 10, 11, 14, 15 …  

p3 = 4, 5, 6, 7, 12, 13, 14, 15…  

It can be verified that (7, 4), (15, 11), (31, 26), (63, 57) are all single error correcting 

Hamming codes and are regarded quite useful.  

An important property of the Hamming codes is that they satisfy the condition of Eq. (6.36) 

with equality sign, assuming that t=1.This means that Hamming codes are “ single error 

correcting binary perfect codes”. This can also be verified from Eq. (6.35)  

We may delete any ‘ l ’columns from the parity check matrix H of the Hamming code 

resulting in the reduction of the dimension of H matrix to m .(2m-l-1).Using this new matrix 

as the parity check matrix we obtain a “ shortened” Hamming code with the following 

parameters.  

Code length: n = 2m-l-

1 Number of 

Information symbols:  

k=2m-m-l-1  

Number of parity 

check symbols:  

n – k = m  

Minimum distance:  dmin  3  
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The distance – 4 shortened Hamming codes can be used for correcting all single error 

patterns while simultaneously detecting all double error patterns. Notice that when single 

errors occur the syndromes contain odd number of one’s and for double errors it contains 

even number of ones. Accordingly the decoding can be accomplished in the following 

manner.  

(1) If s = 0, no error occurred.  

 

(2) If s contains odd number of ones, single error has occurred .The single error pattern 

pertaining to this syndrome is added to the received code vector for error correction.  

 

(3) If s contains even number of one’s an uncorrectable error pattern has been detected.  

 

Alternatively the SEC Hamming codes may be made to detect double errors by adding an 

extra parity check in its (n+1) Th position. Thus (8, 4), (6, 11) etc. codes have dmin = 4 and 

correct single errors with detection of double errors. 

 

2.6.2   GOLAY  CODE:- 

Golay code is a (23, 12) perfect binary code that is capable of correcting any combination of 

three or fewer random errors in a block of 23 bits. It is a perfect code because it satisfies the 

Hamming bound with the equality sign for t = 3 as: 
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The code has been used in many practical systems. The generator polynomial for the code is 

obtained from the relation (X23+1) = (X+ 1) g1(X) g2(X), where: 

g1(X) = 1 + X2 + X4 + X5 + X6 + X10 + X11 and g2 (X) = 1 + X + X5 + X6 + X7 + X9 + 

X11 

The encoder can be implemented using shift registers using either g1 (X) or g2 (X) as the 

divider polynomial. The code has a minimum distance, dmin =7. The extended Golay code, a 

(924, 12) code has dmin =8. Besides the binary Golay code, there is also a perfect ternary 

(11, 6) Golay code with dmin = 5. 

2.6.3  BCH  CODE:- 

One of the major considerations in the design of optimum codes is to make the block size n 

smallest for a given size k of the message block so as to obtain a desirable value of dmin. Or 

for given code length n and efficiency k/n, one may wish to design codes with largest dmin. 

That means we are on the look out for the codes that have 'best error correcting capabilities". 

The BCH codes, as a class, are one of the most important and powerful error-correcting 

cyclic codes known. The most common BCH codes are characterized as follows. 

Specifically, for any positive integer m  3, and t < 2m - 1) / 2, there exists a binary BCH 

code (called 'primitive' BCH code) with the following parameters:  

Block length : n = 2m-l  

Number of message bits : k   n - mt  

Minimum distance : dmin  2t + 1  

Clearly, BCH codes are "t - error correcting codes". They can detect and correct up to‘ t’ 

random errors per code word. The Hamming SEC codes can also be described as BCH codes. 

The BCH codes are best known codes among those which have block lengths of a few 

hundred or less. The major advantage of these codes lies in the flexibility in the choice of 
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code parameters viz: block length and code rate. The parameters of some useful BCH codes 

are given below. Also indicated in the table are the generator polynomials for block lengths 

up to 31.  

NOTE: Higher order co-efficients of the generator polynomial are at the left. For example, if 

we are interested in constructing a (15, 7) BCH code from the table we have (111 010 001) 

for the co-efficients of the generator polynomial. Hence  

g(X) = 1 + X4 + X6 + X7 + X8 

 

For further higher order codes, the reader can refer to Shu Lin and Costello Jr. The alphabet 

of a BCH code for n = (2m-1) may be represented as the set of elements of an appropriate 

Galois field, GF(2m) whose primitive element is .The generator polynomial of the t-error 

correcting BCH code is the least common multiple (LCM) of Ml(X), M2(X),… M2t(X), 

where Mi(X) is the minimum polynomial of  i, i = 1, 2…2t . There are several iterative 

procedures available for decoding of BCH codes. Majority of them can be programmed on a 

general purpose digital computer, which in many practical applications form an integral part 

of data communication networks. Clearly, in such systems software implementation of the 

algorithms has several advantages over hardware implementation  
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MODULE-III 

3.1 Covolutional Encoding: 

Convolutional codes are commonly described using two parameters: the code rate and the 

constraint length. The code rate, k/n, is expressed as a ratio of the number of bits into the 

convolutional encoder (k) to the number of channel symbols output by the convolutional 

encoder (n) in a given encoder cycle. The constraint length parameter, K, denotes the "length" 

of the convolutional encoder, i.e. how many k-bit stages are available to feed the 

combinatorial logic that produces the output symbols. Closely related to K is the parameter 

m, which indicates how many encoder cycles an input bit is retained and used for encoding 

after it first appears at the input to the convolutional encoder. The m parameter can be 

thought of as the memory length of the encoder. Convolutional codes are widely used as 

channel codes in practical communication systems for error correction. The encoded bits 

depend on the current k input bits and a few past input bits. The main decoding strategy for 

convolutional codes is based on the widely used Viterbi algorithm. As a result of the wide 

acceptance of convolutional codes, there have been several approaches to modify and extend 

this basic coding scheme. Trellis coded modulation (TCM) and turbo codes are two such 

examples. In TCM, redundancy is added by combining coding and modulation into a single 

operation. This is achieved without any reduction in data rate or expansion in bandwidth as 

required by only error correcting coding schemes. A simple convolutional encoder is shown 

in Fig. 3.1.1. The information bits are fed in small groups of k-bits at a time to a shift register. 

The output encoded bits are obtained by modulo-2 addition (EXCLUSIVE-OR operation) of 

the input information bits and the contents of the shift registers which are a few previous 

information bits. If the encoder generates a group of ‘n’ encoded bits per group of ‘k’ 

information bits, the code rate R is commonly defined as R = k/n. In Fig. 3.1.1, k = 1 and n = 
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2. The number, K of elements in the shift register which decides for how many codewords 

one information bit will affect the encoder output, is known as the constraint length of the 

code.  

 

                                       Fig. 3.1.1 A convolutional encoder with k=1, n=2 and r=1/2 

 

3.2 Convolutional Encoder Representation: 

The operation of a convolutional encoder can be explained in several but equivalent ways 

such as, by a) state diagram representation, b) tree diagram representation and c) trellis 

diagram representation. 

3.2.1 State Diagram Representation : 

A convolutional encoder may be defined as a finite state machine. Contents of the rightmost 

(K-1) shift register stages define the states of the encoder. So, the encoder in Fig. 3.1.1 has 

four states. The transition of an encoder from one state to another, as caused by input bits, is 

depicted in the state diagram. Fig. 3.1.2 shows the state diagram of the encoder in Fig. 3.1.1. 

A new input bit causes a transition from one state to another. The path information between 

the states, denoted as b/c1c2, represents input information bit ‘b’ and the corresponding 
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output bits (c1c2). Again, it is not difficult to verify from the state diagram that an input 

information sequence b = (1011) generates an encoded sequence c = (11, 10, 00, 01).  

 

 

 

 

Fig.3.1.2 State diagram representation for the encoder in Fig. 3.1.1 

 

 

 

 

3.2.2 Tree Diagram Representation : 

The tree diagram representation shows all possible information and encoded sequences for 

the convolutional encoder. Fig. 3.2.3 shows the tree diagram for the encoder in Fig. 3.1.1. 

The encoded bits are labeled on the branches of the tree. Given an input sequence, the 



97 
 

encoded sequence can be directly read from the tree. As an example, an input sequence 

(1011) results in the encoded sequence (11, 10, 00, 01).  

 

Fig. 3.2.3 A tree diagram for the encoder in Fig. 3.1.1 

3.2.4 Trellis Diagram Representation : 

The trellis diagram of a convolutional code is obtained from its state diagram. All state 

transitions at each time step are explicitly shown in the diagram to retain the time dimension, 
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as is present in the corresponding tree diagram. Usually, supporting descriptions on state 

transitions, corresponding input and output bits etc. are labeled in the trellis diagram. It is 

interesting to note that the trellis diagram, which describes the operation of the encoder, is 

very convenient for describing the behavior of the corresponding decoder, especially when 

the famous ‘Viterbi Algorithm (VA)’ is followed. Figure 3.2.4 shows the trellis diagram for 

the encoder in Figure 3.1.1. 

 

 

Fig. 3.2.5(a) Trellis diagram for the encoder in Fig. 3.1.1 
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Fig.3.2.4(b) Trellis diagram, used in the decoder corresponding to the encoder in Fig. 6.35.1 

 

3.3 Maximum likelihood decoder: 

If all input message sequences are equally likely, a decoder that achieves the minimum 

probability of error is one that compares the conditional probabilities, also called the 

likelihood functions P(Z|U<=l), where Z is the received sequence and u <m) is one of the 

possible transmitted sequences, and chooses the maximum. The decoder chooses u <m') if  

                        P(Z|U(m') = max P(Z|U<"'>) over all u <m)  

The maximum likelihood concept is a fundamental development of decision theory ; it is the 

formalization of a "common-sense" way to make decisions when there is statistical 

knowledge of the possibilities. In the binary demodulation treatment  there were only two 

equally likely possible signals, s 1(t) or s2(t), that might have been transmitted. Therefore, to 

make the binary maximum likelihood decision, given a received signal, meant only to decide 

that s1(t) was transmitted if p(z ~ ,) > p(zls2)otherwise, to decide that s2(t) was transmitted. 

The parameter z represents z(T), the receiver predetection value at the end of each symbol 

duration timet = T. However, when applying maximum likelihood to the convolutional 

decoding problem, we observe that the convolutional code has memory (the received 
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sequence represents the superposition of current bits and prior bits). Thus, applying 

maximum likelihood to the decoding of convolutionally encoded bits is performed in the 

context of choosing the most likely sequence. There are typically a multitude of possible 

codeword sequences that might have been transmitted. To be specific, for a binary code, a 

sequence of L branch words is a member of a set of 2L possible sequences. Therefore, in the 

maximum likelihood context, we can say that the decoder chooses a particular u <m') as the 

transmitted sequence if the likelihood P(Z iu <m'l) is greater than the likelihoods of all the 

other possible transmitted sequences. Such an optimal decoder, which minimizes the error 

probability (for the case where all transmitted sequences are equally likely), is known as a 

maximum likelihood decoder. The likelihood functions are given or computed from the 

specifications of the channe l. We will assume that the noise is additive white Gaussian with 

zero mean and the channel is memoryless, which means that the noise affects each code 

symbol independently of all the other symbols. For a convolutional code of rate lin, we can 

therefore express the likelihood as 

                    P(Z|u <m>) = II P(Z;u <r >) = II II P(zi;u<j) 

For the decoding of convolutional codes, either the tree or the trellis structure can be used. In 

the tree representation of the code, the fact that the paths remerge is ignored. Since for a 

binary code, the number of possible sequences made up of L branch words is 2L, maximum 

likelihood decoding of such a received sequence, using a tree diagram,requires the "brute 

force'' or exhaustive comparison of 2L accumulated loglikelihood metrics, representing all 

the possible different codeword sequences that could have been transmitted. Hence it is nol 

practical to consider maximum Likelihood decoding with a tree structure. It is shown in a 

later section that with the use of the trellis representation of the code, it is possible to 

configure a decoder which can discard the paths that could not possibly be candidates for the 
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maximum likelihood sequence. The decoded path is chosen from some reduced set of 

surviving paths. 

 

3.4 Channel model: 

Soft and hard decision decoding: 

Consider that a binary signal transmitted over a symbol interval (0, T) is representedby s 1(t) 

for a binary one and s2(t) for a binary zero. The received signal is r (r) =s1(1) + n(t), where 

n(l) is a zero-mean Gaussian noise process. the detection of r(t) in terms of two basic steps. In 

the first step the received waveform is reduced to a single number, z(T) =a;+ n0• where a, is 

the signal component of z(T) and n0 is the noise component. The noise component. n0, is a 

zero-mean 

Gaussian random variable, and thus z(T) is a GmLuian random variable with a mean of either 

a1 or a2 depending on whether a binary one or binary zero was sent. In the second step of the 

detection process a decision was made as to wl:tich signal was transmitted, on the basis of 

comparing 2( T) to a tlueshotd. The conditional probabilities of z(T ) , p( z~ 1), and p(z~·z) 

are s labeled likelihood of s1 and likelihood of s2• The demodulator in converts the set of 

time-ordered random variables {z(T)J into a code sequence Z, and passes it on to the decoder. 

The demodulator output can be configured in a variety of ways. lt can be implemented to 

make a firm or hard decision as to whether z(T) represents a zero or a one. In this case, the 

output of the demoduJator is quantized to two levels, zero and one. and fed into thedecoder 

(this is exaclly the same threshold decision . Since the decoder operates on the hard decisions 

made by the demodulator. the decoding is called hard-decision decoding. 

The demodulator can also he configured to feed the decode r with a quantized value o f z(T) 

greater than two levels. Such an implementation furnishes the decoder with more information 

than is provided in the hard-decision case. When the quantization level of the demodulator 
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output is greater than two. the decoding i:> called soft-decision decoding. When the demodul 

ator sends a hard binary decision to the decoder. it sends it a single binary symhol. When the 

demodulator sends a soft binary decision, quantized to eight levels, it sends the decoder a 3-

bit word describing ao interval along z(T). In effect, sending such a 3-bit word in place of a 

single binary symbol is equivalent to sending the decode r a measure of confidence along 

with the code-symbol decision. It should be clear that ultimately every message decision out 

of the decoder must be a hard decision; otherwise one might see computer printouts that read: 

''think it's a 1." ''think it's a o:· and so on . The idea behind the demodulator not making hard 

decisions and sending more data (soft decisions) to the decoder can be thought of as an 

interim step to provide 

the decoder with more inform ation, wbkh the decoder then uses for recovering the message 

sequence (with better e rror performance than it could in theca e of harddecision decoding 

).the 8-Jevel soft-decision me tric is often shown as - 7, -5, -3, -1 , 1, 3. 5, 7. Such a 

designation lends itselfto a simple interpretation of the soft decision. 

 

3.5 The viterbi convolutional decoding algorithm: 

The Viterbi decoding algorithm was discovered and analyzed by Viterbi  in 1967.The Viterbi 

algorithm essentially performs maximum likelihood decoding. however, it reduces the 

computational load by taking advantage of the special structure in the code trees. The 

advantage of Viterbi decodin , compared with brute-force decoding, is that the complexity of 

a Viterbi decoder is not a function of the number of symbols in the codeword sequence. The 

algorithm involves calculating a measure of similarity, or distance, between the received 

signal at time ti and all the trellis paths entering each state at time t. The Viterbi algorithm 

removes from consideration those trellis paths that could not possibly be candidates for the 

maximum 1ikelihood choice. When two paths enter the same state, the one having the best 



103 
 

metric is chosen; this path is called the surviving path. This selection of surviving paths is 

performed for all tbe states. The decoder continues in this way to advance deeper into the 

trellis, making decisions hy elimin ating the least likely paths. The early rejection of the 

unlikely paths reduces the decoding complexity. ln 1969, Omura demonstrated that the 

Viterbi algorithm is, in fact, maximum likelihood. Note that the goal of( selecting the 

optimum path can be expressed equivalently,as choosing the codeword with the maximum 

likelihood metric or as choosing the codeword with the minimum distance metric. 

 

3.6 An Example of Viterbi Convolutional Decoding 

For simplicity, a BSC is assumed; thus Hamming distance is a proper dislance measure. We 

start at time t1 in the 00 state (flushing the encoder between messages provides the decoder 

with starting-state knowledge). Since in this example, ther'e are nly two possible transitions 

leaving any state not all branches need be shown initially. The full trellis structure evolves 

after time t1. 

The basic idea behind the decoding procedure can best be understood by examining encoder 

trellis in concert with  decoder trellis. For the decoder trellis it is convenient at each time 

interval, to label each branch with the Hamming distance between the received code symbols 

and the branch word corresponding to the same branch from the encoder trellis. The example 

shows a message sequence m, the corresponding codeword sequence U, and a noise 

corrupted received sequence Z = 11 01 01 10 01 . .. . The branch words seen on the encoder 

trellis branches characterize the encoder  and are known a priori to both the encoder and the 

decoder. these encoder branch words are the code symbols that would be expected to come 

from the encoder output as a result of each of the state transitions. The labels on the decoder 

trellis branches are 
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accumulated by the decoder · That is, as the code symbols are received, each branch of the 

decoder trellis is labeled with a metric of similarity (Hamming distance) between the received 

code symbols and each of the branch words for that time interval. From the received 

sequence Z we see that the code symbols received at (following) time t1 are 11. In order to 

label the decoder 

brancJ1es at (departing) time t1 with the appropriate Hamming distance metric. Here we see 

that a  00 transition yields an output branch word of 00. But we received 11.Therefore, on the 

decoder trellis we label the state 00 --) 00 transition with Hamming distance between them 

namely 2. Looking at tbe encouer trellis again, we see that a state 00 ~ 10 transition yields an 

output branch word of 11, whlch corresponds exactly witb the code symbols we received at 

time t 1• Therefore. on the decoder tre llis, we label the stare 00 ~ 10 transition with a 

Hamming distance of 0. In summary. the metric entered on a decoder trellis br·anch 

represents the difference (distance) between what was received and what ''should have been" 

received had the branch word associated with that branch been transmilled. In effect, these 

metrics describe a correlation like measure between a received branch word and each of the 

candidate branch words. We continue labeling the decoder trellis branches in this way as the 

symbols are received at each time t1• The decoding algorithm uses these Hamming distance 

metrics to find the most likely (minimum distance) path through the trellis. The basis of 

Viterbi decoding is the following observation: If any two paths in trellis merge to a single 

slate, one of them can always be eliminated in the search for an optimum path. For example, 

two paths merging at time 15 to state 00. Let us define the cumulative Hamming path metric 

of a given path at  ti as the sum of the branch Hamming distance metrics along that pathup to 

time t. 
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3.7 Decoder Implementation: 

In the context of the trellis diagram, transitions during any one time interval can be grouped 

into 2n- 1 disjoint cells, each cell depicting four possible transitions. where v = K- 1 is called 

the encoder memory. For the K = 3 example, v = 2 and 2" _, = 2 cells. These cells  where a. 

b, c, and d refer to the states at time t,., and a', b ', c ', and d' refer to the states at time f; + t· 

Shown on each transition is the branch metric 8..-v• wllere the subscript indicates that the 

metric corresponds to the transition from st.ate x to state y. These cells and the associated 

logic units that update the state metrics (f_..}, where x designates a particular state, represent 

the basic building blocks ofthe decoder. Consider the same example that was used foT 

describing Vi terbi decoding. The message seq uence was m = 1 1 0 1 1. the codeword 

sequence was U = ·11 01 01 00 01, and the receive sequeuce was Z = ll 01 01 10 01 depicts a 

decoding trellis diagram similar. A branch metric that labels each branch is the Hamming 

distance between the received code symbols and the corresponding branch word from the 

encoder trellis. Additionally. the  trellis indicates a value at each state x. and for each time 

from time t2 to r .which is a state metric r .•. We perform the add-compare-select (ACS) 

operation when there are two transitions entering a state, as there are for times t and later. For 

example at time t4 , the value of the s tate metric for state n is obtained by incrementing the 

state metric r = 3 at time 13 with the branch metric yielding a candidate value of 4. 

Simultaneously, the state metric r,. = 2 at time t3 is incremented 

with the branch metric yielding a value of 3. The select operation of the ACS process selects 

the largest-likelihood (minimum distance) path metric as the new state metric; hence, for state  

at time 14• the new state metric is f 11• = 3. The winning path is shown with a heavy line and 

the path that has been dropped is shown with a lighter line. On the trellis , observe the state 

metrics from left to right. Verify that at each time, the value of each state metric  obtained by 
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incrementing the connected state metric from the previous time along the winning path 

(heavy line) with the branch metric between them. 

 

3.8 Path memory synchronisation: 

The storage requirements of the Viterbi decoder grow exponentially with constraint length K. 

For a code with rate l /11, the decoder retains a set of 2A - 1 paths after each decod ing step. 

With high prohahility, these paths wi ll not be mutually disjoint very far back from the 

present decoding depth [1 2). All of the 21<. - 1 paths tend to have a common stem which 

eventually branches ro the various states. Thus if the decoder sto res enough of the history of 

the 2". 1 paths, the oldest bits at1 all paths will  be the same. A simple decoder 

implementation. then. contain a fixed amount ofpath history and o utputs the oldest hit on an 

arbitrary path each time it steps one level deeper into the trellis. The amount of path storage 

required is [1 2] II = lz2" .  

where h is the tength of the inform ation bit path history per state. A refinement which 

minimize the value of h. uses the oldest bit on the most likely path as the decoder output 

instead of the oldes t bit on an arbitrary path. It has been demonstrated that a value of h of 4 

or 5 times the code constraint length is efficient for n optimum decoder performance. The 

storage requirement u is the basic limitation on the implementation of Viterbi decoders. 

Commercial decoders are limited to a constraint length of about K = 10. Efforts to inrease 

coding gain by further increasing constraint length arc met by the exponential  in memory 

requirements (and complexity).Branch word synchronisation is the process of determining 

the beginning of a branch word in the received sequence. Such synchronization can take 

place without new information being added to the transmitted symbol stream because the 

received data appear to have an excessive error rate when not synchronized. Therefore, a 

simple way of accomplishing synchronisation is to monitor some concomitant indication of 
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this large error rate, tbat is, the r at<:: at which the state metrics are increasing or the rate at 

which the surviving paths in the trellis merge. The monitored parameters are compared to a 

thre hold, and synchronization is then adjusted accordingly. 

 

3.9 Properties of convolutional codes: 

1. distance properties of convolutional code: 

We want to evaluate the distance between all possible pairs of codeword sequences. As in the 

case of block codes. we are interested in the minimum distance between all pairs of such 

codeword seq uences in the code , since the minimum distance is related to the error-

correcting capability of the code. Because a convolutional code is a group or linear code  

there is no loss in generality in simply finding the minimum distance between each of the 

codeword sequences and the all-zeros sequence. In other words, for a linear code. any test 

message is just as "good'' as any other Sl message. So, why not choose one that is easy to 

keep track of- namely the  sequence? Assumjng that the all-zeros input sequence was  

transmitted, the paths of inte-rest are those that start and end in the 00 state and do not return 

to the 00 s late anywhere in between. An error will occur whenever the distance of any other 

path that merges with the a= 00 state at time t; is less than that of the allzeros path up to time 

causing the all-zeros path to be discarded in the decoding 

process. In other words. given the all-zeros transmission. an error occurs whenever the all-

zero, path does not survive. Thus  an error of interest is associated with a surviving path that 

diverges from and then remerges to the all-zeros path. One might ask, Why is it necessary for 

the path to remerge? Isn't the divergence enough to indicate an error? Yes, of course, but an 

error characterized by only a divergence means that the decoder. from thar point on. will be 

outputting ''garbage" for the rest of the message duration. We want to quantify the decode r's 

capability in terms of errors that will usually take place  that is,  the easiest" way for the 
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decoder to make an error. The minimum distance for making such an error can be found by 

exhaustively examining every path from the 00 state to the 00 state. First. let us redraw the 

trellis diagram, labeling each 

branch with its Hamming distance from the all-zeros codeword instead of with its branch 

word symbols. The Hamming distance between two unequal-length sequences will be found 

by first appending the necessary number of zeros to the shorter sequence to make the two 

sequences equal in length. Consider all the paths that diverge from the all-zeros path and then 

remerge for the first time at some arbitrary node. From Figure 7.16 we can compute the 

distances of these paths from the all-zeros path. There is one path at distance 5 from the all-

zeros path; this path 

departs from the all-zeros path at time  and merges with it at time . Similarly, there are two 

paths at distance which departs at time t1 and merges at time t5• and the other which departs 

at time r1 and merges af time t1,. and :-;o on. We can also sec from the dashed and solid lines 

of the diagram that the input bits for the distance 5 path are 1 0 0: it diller in only one input 

bit from the all-zeros input sequence. Similarly, the input bits for the d istance 6 paths are I I 

0 0 and 1 0 1 0 0:each differs in two positions from the all-zeros path. The minimum distance 

in the set of all arbitrarily long paths that diverge and remerge, called the minimum free 

distance or simply the free distance. 

 

2.Systematic and Non-systematic Convolutional code: 

For linear block codes, any nonsystematic code can be transformed into a systematic code 

with the same block distance properties .A systematic convolutional code is one in which the 

input k-tuple appears as part of the output branch word n-tuple associated with that k-tuple. 

Figure  shows a binary, rate t, K = 3 systematic encoder.. 
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This is not the case for convolutional codes. The reason for this is  convolutional codes 

depend largely on free dis1ance; making the convolutional code systematic, in general 

reduces the maximum possible free distance for a given constraint length and rate. 

 

 

                              

                           Fig 3.9.1: Systematic Convolutional Encoder, rate=1/2,k=3 

 

                           Table:Comparision of systematic and non-systematic free distance 
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3.10 Catastrophic  Error Propagation in Convolutional Codes: 

A catastrophic error is defined as an event whereby a finite number of code symbol errors 

cause an infinite number of decoded data bit errors. Massey and Sain have derived a 

necessary and sufficient condition for convolutional codes to display catastrophic error 

propagation. For rate in codes with register taps designated by polynomial generators. as 

described the condition for catastrophic error propagation is that the generators have a 

common polynomial factor (of degree at least one). For example, Figure  illustrates a rate ~ - 

K = 3 encoder 

with upper polynomial g1(X) and lower polynomial glX), as follows: 

g1(X) = 1 +X 

g2(X) = 1 + X2 

The generators g1(X) and g2(X) have in common the polynomial factor 1 +X since 1 + X2 = 

(I + X )(l -X ).Therefore, the encoder in F igure 3.10.1a can manifest catastrophic error 

propagation. 

 

                    Fig 3.10.1:Encoder representing Catastrophic error propagation 
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                                             Fig 3.10.2: State diagram 

3.11Coding Gain: 

Coding gain is defined as the reduction usually expressed in decibels in the required E/N0 to 

achieve a specified error probability of the coded system over an uncoded system with the 

same modulation and channelcharacteristics. Table lists an upper bound on the coding gains, 

compared to uncoded coherent BPSK, for several maximum free distance convolutional 

codes with constraint lengths varying from 3 to 9 over a Gaussian challnel with hard decision 

decoding. The table illustrates that it is possible to achieve significant coding gain even with 

a simple convolutional code. The actual coding gain which vary with the required bit error 

probability . Table  lists the measured coding gains, compared to uncoded coherent BPSK, 

achieved with hardware implementation or computer simulation over a Gaussian channel 

with soft-decision decoding . The uncoded E/N0 is given in the leftmost column. From Table  

we can see that coding gain increases as the bit error probability is decreased. However, the 

coding gain cannot increase indefinitely; it has an upper bound as shown in the table. This 

bound in decibels can he 

shown  where r is the code rate and d1 is the free distance. Examination of Table also reveals 

that  
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for code rates the weaker codes tend to be closer to the upper bound than are the more 

powerful codes. Typically Viterbi decoding is u ed over binary input channels with either 

hard or 3-bit soft quantized outputs. The constraint lellgths vary between 3 and 9, the code 

rate is rarely smaller than t and to be path memory is usually a few constraint length. The 

path memory refers to the depth of the input bit history stored hy the decoder. From the 

Viterbi decoding example one might question the notion of a fixed path memory. It seems 

from the example that the decoding of a branch word. at any arbitrary node, can take place as 

soon as the Cr<.l is only a single surviving branch at that node. That is true; however, to 

actually implement the decoder in this way would entail an extensive amount of processing to 

continually check when the branch word can be decoded. Instead. a fixed delay is provided, 

after which the branch word is decoded. It has been shown that tracing back from the state 

with the lowest state metric, over a fixed amount of path history (about 4 or 5 times the 

constraint length), is sufficient to limit the degradation from the optimum decoder 

performance to about 0. L dB for the BSC and Gaussian channels. Typical error performance 

simulation results are shown for Viterbi decoding with bard decision quantization. Notice that 

each increment in constraint length improves the required Eb/N0 by a factor of approximately 

0.5 dB . 
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3.12 Best Known Convolutional Codes: 

The connection vectors or polynomial generators of a convolutional code are usually selected 

based on the code's free distance properties. The first criterion is to select a code that does not 

have catastrophic error propagation and that has the maximum free distance for th e given 

rate and constraint length. Then the number of paths at the free distance d1, or tbe number of 

data bit errors the paths represent, should be minimized. The selection procedure c.-an be 

furth er refined by considering the number of paths or bit errors at d1 + 1, at d1 + 2, and so 

on, until only one 

code or class of codes remains. A list of the best known codes of rate t K = 3 to 9, and rate!, 

K = 3 to 8, based on this criterion was compiled by Odenv,;alder and is given in Table. The 

connection vectors io this table represent the presence or absence ( 1 or 0) of a tap connection 

on the corresponding stage of the convolutional encoder, the leftmost term corresponding to 

the leftmost stage of the encoder register. lt is interesting to note that these connections can 

be inverted (leftmost and rightmost can be interchanged in the above description). Under the 

condition of Viterbi decoding that inverted connections give rise to codes with identical 

distance properties, and hence identical performance. as those inTable 



114 
 

 

3.13 Convolutional Code Rate Trade-off: 

Performance with Coherent PSK Signaling: 

The error-correcting capability of a coding scheme increases as the number of channel 

symbols n per information bit k increases or the rate k in decreases. However, the channel 

bandwidth and the decoder complexity both increase with n. The advantage of lower code 

rates when using convolutional codes with coherent PSK is that the required Eb/N0 is 

decreased (for a large range of code rates), permitting the transmission of higher data rates for 

a given amount of power, or permitting reduced power for <t given data rate. Simulation 

studies have shown for a fixed constraint length, a decrease in the code rate ( results in a 

reduction of the required Eb/N0 of roughly 0.4 d B. However, the corresponding increase in 
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decoder complexity is about 17%. For smaller values of code rate the improvement in 

performance relative to the increased decoding complexity diminishes rapidly. Eventually, a 

point is reached where further decrease in code rate is characterized by a reduction in coding 

gain. 

Performance with Noncoherent Orthogonal Signalling 

ln contrast to PSK, there is an optimum code rate of about i for noncoherent orthogonal 

signaling. Error performance at rates of 1, and i are each worse than those for rate j· For a 

fixedconstraint length  L the rate i and j codes typically degrade by about 0.25, 0.5. and 0.3 

dB, respectively relative to the rate  performance. 
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MODULE-IV 

4.1 Reed-Solomon codes: 

Reed-Solomon(RS) codes are a class of non-binary codes which are particularly useful in 

burst error correction. Errors in a communication system can be divided into 2 types- 

Independent errors or Random errors and Burst errors. As far as independent error is 

considered, this is usually caused by Gaussian noise. This type of error is random or 

independent in nature i.e. error introduced during a particular time interval does not affect the 

performance of system during the subsequent time interval. Whereas burst error is 

encountered due to impulse noise. It usually affects more than one symbol. Burst errors affect 

the performance of system during the subsequent time intervals i.e. these errors are dependent 

on each other. Channels having this type of error is said to be having memory. 

RS codes are important subclass of BCH codes.Theses codes operate on multiple bits. 

RS codes (n, k) on m-bit symbols exist for, 

0 < k < n <2m+ 2 

Where, m -- +ve integer >2 

k – no. of data symbols being encoded 

n – total no. of code symbols in the encoded block. 

Most conventional RS(n, k) codes, 

(n, k) = (2m - 1, 2m - 1 - 2t) 

t – symbol error correcting capability of the code. 
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Therefore, no. of parity bits = n-k = 2t. 

Extended RS codes --- 

n = 2m or n =2m+1 

Achieve largest possible minimum distance(dmin ) for any linear code, 

dmin = n-k+1 

and therefore error correcting capability(t) becomes, 

 

where LxJ means the largest integer not to exceed.Erasure correcting capability(p) of the 

code, 

p = dmin - 1 = n – k.Simultaneous error correction and erasure correction capability, 

2a + "Y < dmin < n – k 

where a is the number of symbol error patterns that can be corrected, and "Y is the number of 

symbol erasure patterns that can be corrected. 

Major advantages of RS-codes:-- 

Achieves large dmin  , 

Eg.  For binary(n, k) = (7, 3) code 

23 = 8 no. of codewords have to be chosen from 27 =  128 no. of words. 

Therefore,  ratio is 1:16 

And for RS(7, 3) code, for each symbol comprising of m = 3 bits, 

(2k)m = (23)3 = 512 no. of codewords have to be chosen from a total of 

(2n)m
 = 221 = 2097152 words. 

Therefore, ration is 1:4096. 
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Now, comparing both ratios we can easily conclude that for RS-codes, there is a larger 

availability of words per codewords resulting in larger dmin. Particularly useful for burst-error 

correction. 

4.1.2 Reed-Solomon Error Probability:- 

the R-S decoded symbol error probability, PE, in terms of the channel symbol error      

probability, p, can be written as follows, 

 

 

 

 

Fig. below shows PB versus the channel symbol error probability  p, plotted for 

various t-error correcting 32-ary orthogonal Reed-Solomon codes with n=31(thirty-

one 5-bit symbols per code block). 

 

 

 

 Fig.   PB versus p for 32-ary orthogonal signaling and n=31, t-error correcting Reed-Solomon coding. 
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Fig. below shows PB versus Eb/N0 for such a coded system using 32-ary MFSK modulation 

an  noncoherent demodulation over an AWGN channel. For R-S codes, error probability is an 

exponentially decreasing function of block length. 

 

 

4.1.3 Why R-S Codes perform well against burst noise;- 

In R-S codes, each symbol is made up of several bits and error correcting capability is 

expressed in terms of symbols. Assuming that each symbol is made up of 8 bits and there is a 

burst noise that is lasting for 21 continuous bits. But in terms of symbols this can be said to 

be of affecting 3 symbols. So, for a R-S code of having an error correcting capability of just 3 

symbols, it will be able to correct this 21 bit long burst error. 

So, the property that each symbol is composed of several bits gives R-S code a tremendous 

burst-noise advantage against binary codes. 

 

 

 

Fig.   Bit error probability versus Eb/N0 performance 
of several n=31, t-error correcting Reed-Solomon 
coding systems with 32-ary MFSK modulation over 
an AWGN channel. 
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4.1.4 R-5 Performance as a Function of Size, Redundancy, and Code Rate:- 

R-S codes are form an attractive choice whenever long block lengths are desired. This is 

clearly visible from the below figure where the rate of the code is held at a a constant 7/8, 

while its block size increases from n=32 symbols(with m=5 bits per symbol) to n=256 

symbols(with m= 8 bits per symbol). So, the block size increases from 160 bit to 2048 bits. 

 

 

As the redundancy of an R-S code increases (lower code rate), its implementation grows in 

complexity (especially for high speed devices). Also, the bandwidth expansion must grow for 

any real-time communications application. However, the benefit of increased redundancy, 

just like the benefit of increased symbol size, is the improvement in bit-error performance, as 

can be seen in figure below, where the code length n is held at a constant 64, while number of 

data symbols decreases from k = 60 to k = 4 (redundancy increases from 4 symbols to 60 

symbols). 

Fig.  R-S  code, rate 7/8, decoder 
performance as a function of 
symbol size. 



121 
 

 

4.2 Interleaving and concatenated  codes:- 

Throughout this and earlier chapters we have assumed that the channel is  memoryless, since 

we have considered codes that are designed to combat random independent errors. A channel 

that has memory is one that exhibits mutually dependent signal transmission impairments. A 

channel that exhibits multipath fading, where signals arrive at the receiver over two or more 

paths of different lengths, is an example of a channel with memory. The effect is that the 

signals can arrive out of phase with each other, and the cumulative received signal is 

distorted. Wireless mobile communication channels, as well as ionospheric and tropospheric 

propagation  channels, suffer from such phenomena.  Also, some channels suffer from 

switching noise and other burst noise (e.g., telephone channels or channels disturbed by pulse 

jamming). All of these time-correlated impairments result in statistical dependence among 

successive symbol transmissions. That is, the disturbances tend to cause errors that occur in 

bursts, instead of as isolated events. 

Under the assumption that the channel has memory, the errors no longer can be characterized 

as single randomly distributed bit errors whose occurrence is independent from bit to bit. 

Most block or convolutional codes are designed to combat random independent errors. The 

Fig.  Reed-Solomon (64, k) 
decoder performance as a 
function of redundancy. 
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result of a channel having memory on such coded signals is to cause degradation in error 

performance. Coding techniques for channels with memory have been proposed, but the 

greatest problem with such coding is the difficulty in obtaining accurate models of the often 

time-varying statistics of such channels. One technique, which only requires a knowledge of 

the duration or span of the channel memory, not its exact statistical characterization, is the 

use of time diversity or interleaving. 

The interleaver shuffles the code symbols over a span of several block lengths (for block 

codes) or several constraint lengths (for convolutional codes). The span required is 

determined by the burst duration. 

 

Fig. below  illustrates a simple interleaving example. 

 

 

 

 

 

Fig.  Interleaving example. (a) Original uninterleaved  codewords, each 
comprised of seven code symbols. 

 (b) Interleaved code symbols. 
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4.2.1 Block Interleaving 

A block interleaver accepts the coded symbols in blocks from the encoder, permutes the 

symbols, and then feeds the rearranged symbols to the modulator. The usual permutation of 

the block is accomplished by filling the columns of an M-row-by N-column (M x N) array 

with the encoded sequence. After the array is completely filled, the symbols are then fed to 

the modulator one row at a time and transmitted over the channel. Figure below illustrates an 

example of an interleaver with M = 4 rows and N = 6 columns 
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The most important characteristics of such a block interleaver are as follows: 

Any burst of less than N contiguous channel symbol errors results in isolated errors at the 

deinterlever output that are separated from each other by at least M symbols.Any bN burst of 

errors, where b > 1, results in output bursts from the deinterleaver of no more than I b l 

symbol errors. Each output burst is separated from the other bursts by no less than M - LbJ 

symbols. The notation lx l means the smallest integer no less than x, and LxJ means the 

largest integer no greater than x 

A periodic sequence of single errors spaced N symbols apart results in a single burst of errors 

of length Mat the deinterleaver output. 

The interleaver/deinterleaver end-to-end delay is approximately 2MN symbol times. To be 

precise, only M(N- 1) + 1 memory cells need to be filled before transmission can begin (as 

soon as the first symbol of the last column of the M x N array is filled). A corresponding 

number needs to be filled at the receiver before decoding begins. Thus the minimum end-to-

end delay is (2M N- 2M+ 2) symbol times, not including any channel propagation delay.  

The memory requirement is MN symbols for each location (interleaver and deinterleaver). 

However, since theM x N array needs to be (mostly) filled before it can be read out, a 

memory of 2MN symbols is generally implemented at each location to allow the emptying of 

one M x N array while the other is being filled, and vice versa. 
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4.2.2 Convolutional Interleaving:- 

Convolutional interleavers have been proposed by Ramsey and Forney. The structure 

proposed by Forney appears in fig. below. 

 

 

Fig.  Shift register implementation of a convolutional interleaver/deinterleaver. 

The code symbols are sequentially shifted into the bank of N registers; each successive 

register provides J symbols more storage than did the preceding one. The zeroth register 

provides no storage (the symbol is transmitted immediately). With each new code symbol the 

commutator switches to a new register, and the new code symbol is shifted in while the oldest 

code symbol in that register is shifted out to the modulator/transmitter. After the (N - 1 )th 

register, the commutator returns to the zeroth register and starts again. The deinterleaver 

performs the inverse operation, and the input and output commutators for both interleaving 

and de interleaving must be synchronized. 
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4.2.3 Concatenated codes:- 

A concatenated code is one that uses two levels of coding, an inner code and an outer code, to 

achieve the desired error performance. 

Figure below illustrates the order of encoding and decoding. 

 

 

Fig.  Block diagram of a concatenated coding system. 

 

The inner code, the one that interfaces with the modulator/demodulator and channel, is 

usually configured to correct most of the channel errors. 

The outer code, usually a higher-rate (lower-redundancy) code then reduces the probability of 

error to the specified level. 



127 
 

The primary reason for using a concatenated code is to achieve a low error rate with an 

overall implementation complexity which is less than that which would be required by a 

single coding operation. 

The interleaver required to spread any error bursts that may appear at the output of the inner 

coding operation. 

One of the most popular concatenated coding systems uses a Viterbi-decoded convolutional 

inner code and a Reed-Solomon (R-S) outer code. with interleaving between the two coding 

steps. 

4.2.4 CODING AND INTERLEAVING APPLIED TO THE COMPACT 

DISC DIGITAL AUDIO SYSTEM:- 

Philips & Sony Corp. defined a standard for digital storage & reproduction of audio signals 

called compact disc(CD) digital audio system. 

World standad 

120 mm diameter CD. 

• Stores digitized audio waveform. 

• Sampled at 44.1 ksamples per second for 20 Khz BW to 216 

levels(16 bits per sample). 

• Dynamic range 96 dB, harmonic distortion = 0.005%. 

• Stores about 1010 bits. 

 

Scratches & other damage to CD causes burstlike errors. 
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o CIRC(corss interleave Reed Solomon code) is used in these systems to 

encode and combat burst errors. 

 

Approximaterly 4000 bits (2.5 mm) burst errors can be corrected. Prob. of bit error, PB = 10-4. 

Hierarchy of errors control in CIRC system— 

(i) Decode first attempts for error correction. 

If error correction capability is exceeded, decoder goes for reassure correction. 

If the ereasure correction capability is exceeded the decoder attempts to conceal unreliable 

data samples by interpolation between reliable neighbouring samples. 

If the interpolation capability is exceeded, the decoder simply mutes the system for the 

duration of unreliable samples. 

4.3 CIRC Encoding:- 

 

 

Fig.  Block Diagram of CIRC Encoder & Decoder 

The steps are as follows:- 
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L1 interleave. Even-numbered samples are separated from odd-numbered samples by two 

frame times in order to scramble uncorrectable but detectable byte errors. This facilitates the 

interpolation process. 

C2 encode. Four Reed-Solomon (R-S) parity bytes are added to the 11-interleaved 24-byte 

frame, resulting in a total of n = 28 bytes. This (28, 24) code is called the outer code. 

D* interleave. Here each byte is delayed a different length, thereby spreading errors over 

several codewords. C2 encoding together with D* interleaving have the function of providing 

for the correction of burst errors and error patterns that the C1 decoder cannot correct. 

 

 

 

 

Fig.  Compact disc encoder. (a)~ interleave. (b) C2 encode. (c) D* interleave. (d) C1 encode. 

(e) D interleave. 
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C1 encode. Four R-S parity bytes are added to the k = 28 bytes of the D*-interleaved frame, 

resulting in a total of n = 32 bytes. This (32, 28) code is called the inner code. 

D interleave. The purpose is to cross-interleave the even bytes of a frame with the odd bytes 

of the next frame. By this procedure, two consecutive bytes on the disc will always end up in 

two different codewords. Upon decoding, this interleaving, together with the C1 decoding, 

results in the correction of most random single errors and the detection of longer burst errors. 

 

4.3.1 CIRC Decoding: 

The benefits of CIRC are best seen at the decoder, where the processing steps, shown in 

Figure 8.17 are in the reverse order of the encoder steps. The decoder steps are as follows: 

D deinterleave. This function is performed by the alternating delay lines marked D. The 32 

bytes (Bi1, ... , Bi32) of an encoded frame are applied in parallel to the 32  inputs of the D 

deinterleaver. Each delay is equal to the duration of 1 byte, so that the information of the 

even bytes of a frame is cross-deintcrleaved with that of the odd bytes of the next frame. 

C1 decode. The D deinterleaver and the C1 decoder are designed to correct a single byte error 

in the block of 32 bytes and to detect larger burst errors. If multiple errors occur, the C1  

ecoder passes them on unchanged, attaching to all 28 remaining bytes an erasure flag, sent 

via the dashed lines (the four parity bytes used in the C1 decoder are no longer retained). 
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Fig.  Compact disc decoder. 

D* deinterleave. Due to the different lengths of the deinterleaving delay lines D*(1, ... , 27), 

errors that occur in one word at the output of the C1 decoder are spread over a number of 

words at the input of the C2 decoder. This results in reducing the number of errors per input 

word of the C2 decoder, enabling the C2 decoder to correct these errors 

C2 decode. The C2 decoder is intended for the correction of burst errors that the C1 decoder 

could not correct. If the C2 decoder cannot correct these errors, the 24-byte codeword is 

passed on unchanged to the ~ deinterleaver and the associated positions are given an erasure 

flag via the dashed output lines, Bob ... , Bo24· 

 

Δ deinterleave. The final operation deinterleaves uncorrectable but detected byte errors in 

such a way that interpolation can be used between reliable neighboring samples. 
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4.4 TURBO CODES 

 Powerful codes uses concatenation.Turbo codes finds its origin in the will to compensate for 

the dissymmetry of the concatenated decoder.In this concept of feedback is used. 

 

 

 

Fig.  Effect of interleaving. (Rightmost event is at the earliest time.) 

 

 

A refinement of the concatenated encoding structure plus an iterative algorithm for the 

decoding the associated code sequence. Introduced in 1993 by Berrou, Glavieus & 

Thitimashime. Achieved a BER of 10-5
, with rate ½ over AWGN channel & BPSK 

modulation at Eb/N0=0.7 dB. 

 

 

Uses soft decisions information between between the two decoders and iterates it several 

times to produce more reliable decisions. 
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4.4.1 Turbo Code Concepts 

Likelihood Functions 

The mathematical foundations of hypothesis testing rests on Bayes' theorem. For 

communications engineering, where applications involving an AWGN channel are of great 

interest, the most useful form of Bayes' theorem expresses the a posteriori probability (APP) 

of a decision in terms of a  continuous-valued random variable x as 

 

 

 

where P (d = i/x) is the APP, and d = i represents data d belonging to the ith signal class from 

a set of M classes. Further, p(x ld = i) represents the probability density function (pdf) of a 

received contir:uous-valued data-plus-noise signal x, conditioned on the signal class d = i. 

Also, p(d = i), called the a priori probability, is the probability of occurrence of the ith signal 

class. Typically x is an "observable" random variable or a test statistic that is obtained at the 

output of a demodulator or some other signal processor. Therefore, p(x) is the pdf of the 

received signal x, yielding the test statistic over the entire space of signal classes. In the 

above equation, for a particular observation, p(x) is a scaling factor since it is obtained by 

averaging over all the classes in the space. Lower case p is used to designate the pdf of a 

continuous-valued random variable, and upper case P is used to designate probability (a priori 

and APP). 

 

 

 


