Course Structure & Syllabus of M. Tech. Programme in Electronics & Telecommunication Engineering with Specialization VLSI SIGNAL PROCESSING Academic Year – 2019-20

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, ODISHA Burla, Sambalpur-68018, Odisha <u>www.vssut.ac.in</u>

DEPARTMENT VISION:

Developing new ideas in the field of communication to enable students to learn new technologies, assimilate appropriate skills and deliver meaningful services to the global society and improve the quality of life by training them with strength of character, leadership and self-attainment.

DEPARTMENT MISSION:

- □ Imparting futuristic technical education to the students.
- □ Promoting active role of Industry in student curriculum, projects, R&D and placements. Organizing collaborative academic and non-academic programmes with institutions of national and international repute for all round development of students.
- □ Organizing National and International seminars and symposium for exchange of innovation, technology and information.
- □ Expanding curricula to cater to demands of higher studies in internationally acclaimed institutes. Preparing students for promoting self-employment.
- □ Develop the department as a center of excellence in the field of VLSI and communication technology by promoting research, consultancy and innovation.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, ODISHA, BURLA Department of Electronics & Telecommunication Engineering

Course Structure & Curriculum of M. Tech Programme in VLSI SIGNAL PROCESSING

Core/	Subject	Subject Name	L	Т	P	Cr
Elective	Code					
	-	SEMESTER-I		r		
Core-1		Analog CMOS VLSI Design	3	0	0	3
Core-2		Advanced Signal Processing	3	0	0	3
PE-1			3	0	0	3
PE-2			3	0	0	3
Common		Research Methodology & IPR	2	0	0	3
Lab-1		VLSI Design Laboratory-I	0	0	3	2
Lab-2		VLSI Technology Laboratory	0	0	3	2
Audit-1		English for Research Paper Writing				
		Total Credits				19
		SEMESTER-II				
Core-3		VLSI Signal Processing	3	0	0	3
Core-4		Digital Signal Processor Architecture	3	0	0	3
PE-3			3	0	0	3
PE-4			3	0	0	3
Common		Term Paper	0	0	4	2
Lab-3		VLSI Design Laboratory-II	0	0	3	2
Lab-4		VLSI Signal Processing Laboratory	0	0	3	2
Audit-2		Pedagogy Studies				
		Total Credits				18
		SEMESTED III				
PE-5			3	0	0	3
OE-1			3	0	0	3
Minor		Project Progress Report	0	0	20	10
Project		rigeerregiess report	0	Ŭ	20	10
		Total Credits	i	<u>.</u>		16
ъл ·		SEMESTER-IV		0		1.0
IVIAJOT Project		Project & Thesis	U	U	32	10
1 10ject		Total Credits		<u> </u>		16
		Grand Total Credits				69
	Core-1 Core-2 PE-1 PE-2 Common Lab-1 Lab-2 Audit-1 PE-3 PE-4 Come-4 PE-3 PE-4 Common Lab-3 Lab-4 Audit-2 PE-5 OE-1 Minor Project	Core/ ElectiveSubject CodeCore-1CodeCore-2-PE-1-PE-2-Common-Lab-1-Lab-2-Audit-1-PE-3-PE-4-Common-Lab-3-Lab-4-Audit-2-PE-5-OE-1-Minor-Project-Major-Project-Major-Project-Major-Project-Major-Project-Major-Project-Major-Project-Major-Project-Major-Project-Major-Project-Major-Project-Major-Project-Major-Project-Manor-Project-Project-Project-Project-Project-Project-Project-Project-Project-Project-Project-Project-Project-Project-Project- <t< td=""><td>Core/ ElectiveSubject CodeSubject NameSEMESTER-ICore-1Analog CMOS VLSI DesignCore-2Advanced Signal ProcessingPE-1PE-2CommonResearch Methodology & IPRLab-1VLSI Design Laboratory-ILab-2VLSI Technology LaboratoryAudit-1English for Research Paper WritingCore-3VLSI Signal ProcessingCore-4Digital Signal Processing Laboratory-IILab-3VLSI Design Laboratory-IILab-4VLSI Signal Processing LaboratoryAudit-2Pedagogy StudiesTotal CreditsSEMESTER-IIIPE-5OE-1MinorProject Progress ReportProjectTotal CreditsSEMESTER-IVMajorProject & ThesisProjectTotal Credits</td><td>Core/ ElectiveSubject CodeSubject NameLSEMESTER-ICore-1Analog CMOS VLSI Design3Core-2Advanced Signal Processing3PE-133PE-233CommonResearch Methodology & IPR2Lab-1VLSI Design Laboratory-I0Aduit-1English for Research Paper Writing0Audit-1English for Research Paper Writing0Audit-1English for Research Paper Writing3SEMESTER-IICore-3VLSI Signal Processing3Core-4Digital Signal Processing3PE-333PE-433CormonTerm Paper0Lab-3VLSI Design Laboratory-II0Lab-4VLSI Signal Processing Laboratory0Audit-2Pedagogy Studies-Total CreditsSEMESTER-IIIPE-53OE-13MinorProject Progress Report0ProjectTotal CreditsSEMESTER-IVMajorProject & Thesis0ProjectTotal Credits</td><td>Core/ Elective CodeSubject Subject NameLTElective CodeAnalog CMOS VLSI Design30Core-1Analog CMOS VLSI Design30Core-2Advanced Signal Processing30PE-130PE-230CommonResearch Methodology & IPR20Lab-1VLSI Design Laboratory-I00Lab-2VLSI Technology Laboratory00Audit-1English for Research Paper WritingTotal CreditsSEMESTER-II30Core-3VLSI Signal Processor Architecture30PE-3300PE-4300Lab-3VLSI Design Laboratory-II00Lab-3VLSI Design Laboratory-II00Lab-3VLSI Signal Processor Architecture30Corre-4Digital Signal Processing Laboratory00Lab-3VLSI Design Laboratory-II00Lab-3VLSI Signal Processing Laboratory00Audit-2Pedagogy StudiesPE-5300OE-1300ProjectTotal Credits-MajorProject Progress Report00ProjectProject & Total Credits00ProjectSemESTER-IV00MajorProject & Total Credits0<t< td=""><td>Core/ Elective Subject Code Subject Name L T P Elective Code SEMESTER-I 3 0 0 Core-1 Analog CMOS VLSI Design 3 0 0 Core-2 Advanced Signal Processing 3 0 0 PE-1 3 0 0 0 PE-2 3 0 0 3 Core-1 Kesearch Methodology & IPR 2 0 0 Lab-1 VLSI Design Laboratory-I 0 0 3 Lab-2 VLSI Technology Laboratory 0 0 3 Audit-1 English for Research Paper Writing </td></t<></td></t<>	Core/ ElectiveSubject CodeSubject NameSEMESTER-ICore-1Analog CMOS VLSI DesignCore-2Advanced Signal ProcessingPE-1PE-2CommonResearch Methodology & IPRLab-1VLSI Design Laboratory-ILab-2VLSI Technology LaboratoryAudit-1English for Research Paper WritingCore-3VLSI Signal ProcessingCore-4Digital Signal Processing Laboratory-IILab-3VLSI Design Laboratory-IILab-4VLSI Signal Processing LaboratoryAudit-2Pedagogy StudiesTotal CreditsSEMESTER-IIIPE-5OE-1MinorProject Progress ReportProjectTotal CreditsSEMESTER-IVMajorProject & ThesisProjectTotal Credits	Core/ ElectiveSubject CodeSubject NameLSEMESTER-ICore-1Analog CMOS VLSI Design3Core-2Advanced Signal Processing3PE-133PE-233CommonResearch Methodology & IPR2Lab-1VLSI Design Laboratory-I0Aduit-1English for Research Paper Writing0Audit-1English for Research Paper Writing0Audit-1English for Research Paper Writing3SEMESTER-IICore-3VLSI Signal Processing3Core-4Digital Signal Processing3PE-333PE-433CormonTerm Paper0Lab-3VLSI Design Laboratory-II0Lab-4VLSI Signal Processing Laboratory0Audit-2Pedagogy Studies-Total CreditsSEMESTER-IIIPE-53OE-13MinorProject Progress Report0ProjectTotal CreditsSEMESTER-IVMajorProject & Thesis0ProjectTotal Credits	Core/ Elective CodeSubject Subject NameLTElective CodeAnalog CMOS VLSI Design30Core-1Analog CMOS VLSI Design30Core-2Advanced Signal Processing30PE-130PE-230CommonResearch Methodology & IPR20Lab-1VLSI Design Laboratory-I00Lab-2VLSI Technology Laboratory00Audit-1English for Research Paper WritingTotal CreditsSEMESTER-II30Core-3VLSI Signal Processor Architecture30PE-3300PE-4300Lab-3VLSI Design Laboratory-II00Lab-3VLSI Design Laboratory-II00Lab-3VLSI Signal Processor Architecture30Corre-4Digital Signal Processing Laboratory00Lab-3VLSI Design Laboratory-II00Lab-3VLSI Signal Processing Laboratory00Audit-2Pedagogy StudiesPE-5300OE-1300ProjectTotal Credits-MajorProject Progress Report00ProjectProject & Total Credits00ProjectSemESTER-IV00MajorProject & Total Credits0 <t< td=""><td>Core/ Elective Subject Code Subject Name L T P Elective Code SEMESTER-I 3 0 0 Core-1 Analog CMOS VLSI Design 3 0 0 Core-2 Advanced Signal Processing 3 0 0 PE-1 3 0 0 0 PE-2 3 0 0 3 Core-1 Kesearch Methodology & IPR 2 0 0 Lab-1 VLSI Design Laboratory-I 0 0 3 Lab-2 VLSI Technology Laboratory 0 0 3 Audit-1 English for Research Paper Writing </td></t<>	Core/ Elective Subject Code Subject Name L T P Elective Code SEMESTER-I 3 0 0 Core-1 Analog CMOS VLSI Design 3 0 0 Core-2 Advanced Signal Processing 3 0 0 PE-1 3 0 0 0 PE-2 3 0 0 3 Core-1 Kesearch Methodology & IPR 2 0 0 Lab-1 VLSI Design Laboratory-I 0 0 3 Lab-2 VLSI Technology Laboratory 0 0 3 Audit-1 English for Research Paper Writing

Sl.	Category	Subject Name
No.		
1	PE-1	Digital CMOS VLSI Design
2		Electronic Design Automation
3		VLSI Algorithm
1	PE-II	VLSI Technology
2		Semiconductor Device Modelling
3		JTFA & MRA
1	PE-III	High Level VLSI Design
2		RTL Simulation & Synthesis
3		CAD of Digital Systems
1	PE-IV	VLSI Design Verification & Testing
2		Low Power VLSI Design
3		Design with ASIC
1	PE-V	RF IC
2		FPGA Based DSP Design
3		Physical Design Automation
1	OE	Signal Processing
2		Basics of VLSI Engineering
3		Audio & Video Systems

ANALOG CMOS VLSI DESIGN (Core-1)

COURSE OBJECTIVE				
1. Learning the concepts of designing analog integrated circuits in the context of CMOS				
technology which enable the students to understand the operation of an analog CMOS				
circuit	and to know how to change its performance.			
2. Knowin	ng the key subjects of MOSFET large-signal and small signal model to p	redict the		
perform	nance of CMOS circuit.			
3. Design	ing of two stage op-amp with methods of compensation and to ki	now how		
uncom	pensated two stage op-amp acts as open loop comparator.			
MODULE	CONTENTS	HOURS		
MODULE 1	MOS Device and Modeling: The MOS Transistor, Passive	06		
	Components- Capacitors and Resistors, Integrated Circuit Layout,			
	CMOS Device Modeling- Simple MOS Large Signal Model, Other			
	MOS Large Signal Model Parameters, Small Signal Model of the MOS			
	Transistor, Computer Simulator Models, Subthreshold MOS Model.			
MODULE 2	Analog CMOS Sub Circuits: MOS Switch, MOS Diode/Active	08		
	Resistor, MOS Current Sinks and Sources, Current Mirrors- Current			
	Mirror with Beta Helper, Cascode Current Mirror and Wilson Current			
	Mirror, Voltage and Current References, Bandgap Reference.			
MODULE 3	CMOS Amplifiers: Inverters, Differential Amplifiers, Cascode	10		
	Amplifiers, Current Amplifiers, Output Amplifiers.			
MODULE 4	CMOS Operational Amplifiers: Design of Op-Amps, Compensation	08		
	of OP-Amps, Design of a Two-Stage OP-Amp, Power Supply			
	Rejection Ratio of Two Stage Op-Amp.			
MODULE 5	Comparators: Characterization of a Comparator, Two Stage Open	08		
	Loop Comparators, Discrete Time Comparators. Other Open Loop			
	Comparators, Improving the Performance of Open Loop Comparators.			
TEXT	1. Philip.E. Allen and Douglas.R. Holberg, "CMOS Analog Circuit	Design",		
BOOKS	Oxford University Press, Indian3rd Edition, 2012.			
	2. Paul.R. Gray, Paul.J. Hurst, S.H. Lewis and R.G.Meyer, "Analysis and	ıd Design		
	of Analog Integrated Circuits", Wiley India, Fifth Edition, 2010.	0		
REFERENCE	1. 1.R.J. Baker, H. W. Li, D. E. Boyce, "CMOS Circuit Design, La	yout, and		
BOOKS	Simulation", PHI, 2002			
	2. D.A. Johns and K. Martin, "Analog Integrated Circuit Design	"; Wiley		
	Student Edition, 2013			
	3. B. Razavi, "Design of Analog CMOS Integrated Circuits", Tata	McGraw-		
	Hill, 2002.			
COURSE OUTCOME				

After completion of this course, students should be able to

- 1. Know the key subjects of MOSFET large-signal and small signal model to predict the performance of CMOS circuit.
- 2. To visualize how sub circuits and amplifiers are used to design more complex analog circuits, such as op-amp.
- 3. Learn the design procedures of different CMOS amplifier circuits.
- 4. Design two stage op-amp with methods of compensation and to know how uncompensated two stage op-amp acts as open loop comparator.
- 5. Characterize different comparator circuits and improve their performances.

ADVANCED SIGNAL PROCESSING (Core-2)

COURSE OBJECTIVE

This subject aims to provide the students to

- 1. Analyze the process of Sampling, aliasing and the relationship between discrete and continuous signals. Review of Fourier transforms, the Z-transform, FIR and IIR filters, and oscillators
- 2. Implement the Filter design techniques, structures and numerical round-off effects. Understand the Auto-correlation, cross-correlation, power spectrum estimation techniques, forward and backward Linear prediction
- 3. Analyze Wiener filters, LMS adaptive filters, and applications, Multi-rate signal processing and sub-band transforms. Analyze the Time-frequency analysis, the short time Fourier transform, and wavelet transforms.

MODULE	CONTENTS	HOURS
MODULE 1	Multi-Rate Digital Signal Processing: Introduction, Decimation by	8
	A Factor D, Interpolation by A Factor I, Sampling Rate Conversion	
	by Rational Factor I/D, Filter Design and Implementation for	
	Sampling-Rate, Multistage Implementation of Sampling Rate	
	Conversion, Sampling Rate Conversion of Band-Pass Signal,	
	Application of Multi Rate Signal Processing: Design of Phase	
	Shifters, Implementation pf Narrowband Low Pass Filters.	
	Implementation of Digital Filter Banks	
MODULE 2	Linear Prediction and Optimum Linear Filters: Innovations	8
	Representation of a Stationary Random Process, Forward and	
	Backward Linear Prediction, Solution of The Normal Equations,	
	Properties of The Linear Prediction Error Filters, AR Lattice and	
	ARMA Lattice-Ladder Filters, Wiener Filter For Filtering and	
	Prediction: FIR Wiener Filter, Orthogonality, Principle in Linear	
	Mean-Square Estimation.	
		-
MODULE 3	Power Spectrum Estimation: Estimation of Spectra from Finite-	8
	Duration Observation of Signals, Non-Parametric Method for Power	
	Spectrum Estimation: Bartlett Method, Blackman And Turkey	
	Method, Parametric Method for Power Estimation: Yuke-Walker	
	Method, Burg Method, MA Model and ARMA Model. Filter Bank	
	and - Filters and Its Applications	
MODULE 4	Adaptive Signal Processing Least Mean Square Algorithm, Recursive	10
	Least Square Algorithm, Variants of LMS Algorithm: SK-LMS, N-	
	LMS, FX-LMS. Adaptive FIR & IIR Filters, Application of Adaptive	
	Signal Processing: System Identification, Channel Equalization,	
	Adaptive Noise Cancellation, Adaptive Line Enhancer.	
MODULE 5	HOS- Higher Order Statistics: Definitions and Properties, Moments,	6
	Cumulants, Blind Parameters and Order Estimation of MA & ARMA	
	Systems. Application of Higher Order Statistics: Applications to	
	Signal Processing and Image Processing.	

TEXT	1. J.G. Proakis and D.G. Manolakis, "Digital Signal Processing", 3rd Edition,
BOOKS	PHI.
REFERENCE	1. Oppenheim and Schafer, "Digital Signal Processing", PHI
BOOKS	2. B. Widrow and Stern, "Adaptive Signal Processing", PHI,1985
GOLID OF OLIT	

After completion of this course, students should be able to

- 1. Have a more thorough understanding of the relationship between time and frequency domain interpretations.
- 2. Implementations of signal processing algorithms.
- 3. Be familiar with some of the most important advanced signal processing techniques, including multi-rate processing and time-frequency analysis techniques
- 4. Understanding power spectrum estimation techniques.
- 5. Understand and be able to implement adaptive signal processing algorithms based on second order statistics.

DIGITAL CMOS VLSI DESIGN (PE-1)

- 1. Study the characteristics of MOS as an Inverter.
- 2. Study the behavior of MOS in combinational circuits.
- 3. Study the behavior of MOS in sequential circuits.

MODULE	CONTENTS	HOURS
MODULE 1	Introduction to MOSFETs: MOS Inverter, Static and Switching	08
	Characteristics, Voltage Transfer characteristics, Noise Margin,	
	Regenerative Property, Power and Energy Consumption, Stick/Layout	
	Diagrams; Issues of Scaling.	
MODULE 2	Combinational MOS Logic Circuits: Pass Transistors, Transmission	08
	Gates, Primitive Logic Gates; Complex Logic Circuits.	
MODULE 3	Sequential MOS Logic Circuits: Latches and Flip-flops, Dynamic	08
	Logic Circuits; Clocking Issues, Rules for Clocking, Performance	
	Analysis, Logical effort.	
MODULE 4	CMOS Subsystem Design; Data Path and Array Subsystems:	08
	Addition, Subtraction, Comparators, Counters, Coding, Multiplication	
	and Division.	
MODULE 5	Memory Design: SRAM, DRAM, ROM, Serial Access Memory,	08
	Content Addressable Memory, Field Programmable Gate Array.	
TEXT	1. Rabey J.M, A. Chandrakasan, and B.Nicolic, "Digital Integrated C	Circuits: A
BOOKS	design Perspective", Second Edition, Pearson/PH, 2003 (Cheap Edition).	
	2. N.H.E. Weste and D.M. Harris, "MOS VLSI design: A Cir	cuits and
	Systems Perspective", 4th Edition, Pearson Education India, 2011	
REFERENCE	1. Kang, Sung-Mo, and Yusuf Leblebici. "CMOS Digital Integrated Circuits",	
BOOKS	Tata McGraw-Hill Education, 2003.	

After completion of course student should be able to

- 1. Extract the MOS switching parameters.
- 2. Carryout efficient design of combinational circuits.
- 3. Design the sequential circuits.
- 4. Realize logic circuits with different design styles.
- 5. Demonstrate an understanding of working principle of operation of different types of memory.

ELECTRONIC DESIGN AUTOMATION (PE-1)

- 1. Study of Electronic design automation at various levels of IC design.
- 2. Study of automation in electronic system-level design and high-level synthesis.
- 3. Study of automation in fault simulation and test generation.

MODULE	CONTENTS	HOURS
MODULE 1	Introduction: Overview of Electronic Design Automation, Logic	08
	Design Automation, Test Automation, Physical Design Automation.	
ODULE 2	Design for Testability: Introduction, Testability Analysis, Scan	08
	Design, Logic Built-In Self-Test, Test Compression.	
MODULE 3	Fundamentals of Algorithms: Introduction, Computational	08
	Complexity, Asymptotic Notations, Complexity Classes, Graph	
	Algorithms, Heuristic Algorithms, Mathematical Programming,	
MODULE 4	Electronic System-Level Design and High-Level Synthesis:	08
	Introduction, Fundamentals of High-Level Synthesis, High-Level	
	Synthesis Algorithm Overview, Scheduling, Register Binding,	
	Functional Unit Binding. Logic and Circuit Simulation: Introduction,	
	Logic Simulation Models, Timing Models, Logic Simulation	
	Techniques, Hardware-Accelerated Logic Simulation, Circuit	
	Simulation Models, Numerical Methods for Transient Analysis.	
MODULE 5	Functional Verification: Introduction. Verification Hierarchy,	08
	Measuring Verification Quality. Simulation-Based Approach, Formal	
	Approaches. Fault Simulation and Test Generation: Introduction,	
	Fault Collapsing, Fault Simulation, Test Generation.	
TEXT	1. Laung-Terng Wang, Yao-Wen Chang. Kwang-Ting (Tim)	Cheng,
BOOKS	"Electronic Design Automation: Synthesis, Verification, and Test"	', Morgan
	Kaufmann Publishers is an imprint of Elsevier.	
	2. Mark Birnbaum, "Essential Electronic Design Automation (EDA)"	, Prentice
	Hall Modern Semiconductor Design Series.	
REFERENCE	1. Dirk Jansen, "The Electronic Design Automation Handbook"	, Kluwer
BOOKS	Academic Publishers Norwell, MA, USA ©2003, ISBN:140207502	223.

After completion of this course, students should be able to

- 1. Grasp the overview of electronic design automation at various stages of IC fabrication.
- 2. Learn the automation techniques of IC design for testability.
- 3. Know different algorithms for IC design.
- 4. How automation is being carried out in electronic system-level design and high-level synthesis.
- 5. Learn to implement automation in functional verification, fault simulation and test generation.

VLSI ALGORITHMS (PE-1)

- 1. Study of VLSI automation algorithms.
- 2. Study of Global routing.
- 3. Study of cell routing & via minimization

MODULE	CONTENTS	HOURS
MODULE 1	VLSI Automation Algorithms: General Graph Theory and Basic VLSI	
	Algorithms. <i>Partitioning</i> : Problem Formulation. Classification of	
	Partitioning Algorithms, Group Migration Algorithms, Simulated	
	Annealing & Evolution, Other Partitioning Algorithms.	
MODULE 2	Placement, Floor Planning & Pin Assignment: Problem Formulation,	
	Simulation Base Placement Algorithms, Other Placement Algorithms,	
	Constraint-Based Floor Planning, Floor Planning Algorithms for Mixed	
	Block & Cell Design. General & Channel Pin Assignment.	
MODULE 3	Global Routing: Problem Formulation, Classification of Global Routing	
	Algorithms, Maze Routing Algorithm, Line Probe Algorithm, Steiner	
	Tree Based Algorithms, ILP Based Approaches. Detailed Routing:	
	Problem Formulation, Classification of Routing Algorithms, Single	
	Layer Routing Algorithms, Two-Layer Channel Routing Algorithms,	
	Three-Layer Channel Routing Algorithms, And Switchbox Routing	
	Algorithms.	
MODULE 4	Over the Cell Routing & Via Minimization: Two Layers Over the Cell	
	Routers Constrained & Unconstrained Via Minimization.	
MODULE 5	Compaction: Problem Formulation, One-Dimensional Compaction, Two	
	Dimensions-Based Compaction, Hierarchical Compaction.	
TEXT	1. Naveed Shervani, "Algorithms for VLSI Physical Design Automatic	on",
BOOKS	Academic Publisher, Edition, 2005. Kluwer	
	2. Thorsten Theobald, "Algorithm and Data Structures for VLSI Desig	gn",
	KAP, 2002.	
REFERENCE	1. Rolf Drechsheler "Evolutionary Algorithm For VLSI", Second Edition,	2002.
BOOKS	2. Trimburger," Introduction to CAD For VLSI", Kluwer Academic I	Publisher,
	2002.	

After completion of this course, students should be able to

- 1. Formulate floor partitioning.
- 2. Make Placement, Floor Planning & Pin Assignment.
- 3. Implement multilayer routing.
- 4. Carryout over the Cell Routing & Via Minimization.
- 5. Do perfect compaction.

VLSI TECHNOLOGY (PE-2)

COURSE OBJ	COURSE OBJECTIVE:			
1. To understand the Fabrication of ICs and purification of Silicon in different technologies				
2. To impa	2. To impart in-depth knowledge about Etching and deposition of different layers.			
3. To unde	erstand the different packaging techniques of VLSI devices.			
MODULE	CONTENTS	HOURS		
MODULE 1	Crystal Growth, Wafer Preparation, Epitaxy and Oxidation:	10		
	Metallurgical Grade Silicon, Electronic Grade Silicon, Czochralski			
	Crystal Growing, Silicon Shaping, Etching, Polishing, Chemical			
	Cleaning, Gettering Treatment, Vapor Phase Epitaxy, Epitaxial			
	Evaluation, Growth Mechanism.			
MODULE 2	Oxidation: Oxidation Growth Mechanism and Kinetic Oxidation,	8		
	Oxidation Techniques and Systems, Oxide Properties, Oxide Induced			
	Defects, Characterization of Oxide Films, Use of Thermal Oxide and			
	CVD Oxide, Growth and Properties of Dry and Wet Oxide, Dopant			
	Distribution, Oxide Quality. Diffusion: Introduction, Diffusion			
	Equipment and Process, Diffusion Models, Modification of Flick's			
	Law, Oxidation Effects on Diffusion.			
MODULE 3	Ion Implantation - Range Theory, Equipment's, Ion Implantation	8		
	Parameter Affecting the Dose and Uniformity, Implant Damage and			
	Annealing, <i>Etching</i> : Wet Chemical Etching, Dry Etching.			
	Lithography: Introduction, Photolithographic Process, Photo Resist,			
	Non-Photo Resist, Light Source and Optical Exposure Systems,			
	Pattern Transferring Techniques and Mask Aligner, Optical			
	Lithography, Electron Lithography, X-Ray Lithography, Ion			
	Lithography.			
MODULE 4	Dielectric and Polysilicon Film Deposition: Introduction, Deposition	8		
	Process, Chemical Vapor Deposition, Physical Vapor Deposition,			
	Polysilicon, Silicon Dioxide, Silicon Nitride, Plasma Assisted			
	Deposition. <i>Metallization</i> - Different Types of Metallization, Uses &			
	Desired Properties. IC Manufacturing: Electrical Testing, Packaging,			
	Yield.			
MODULE 5	BJT Fabrication and Realization, Overview of MOS Transistor, MOS	6		
	Transistor Process Flow: MOS Transistor Fabrication, Device			
	Isolation, CMOS Fabrication, Latch - Up In CMOS, BICMOS			
	Technology.			

TEXT	1. Gary S. May, Simon M. Sze, "Fundamentals of Semiconductor
BOOKS	Fabrication", John Wiley Inc.,2004
	2. Stephen Cambell, "The Science and Engineering of Microelectronic
	Fabrication", Oxford University Press, 2001.
REFERENCE	1. Gauranga Bose, "IC Fabrication Technology", McGraw hill Education
BOOKS	2. J. D. Plummer, M. D. Deal and P. B. Griffin, "Silicon VLSI Technology
	Fundamentals", Practice and Models, Prentice Hall, 2000.
	3. Nandita Das Gupta, "VLSI Technology", NPTEL Courseware.

SEMICONDUCTOR DEVICE MODELLING (PE-2)

COURSE OBJECTIVE			
1. To understand the device parameters and characteristics and their implementation in			
SPICE			
2. Model	ling of diode, BJT and MOS transistor.		
3. Unders	stand the effect of noise and distortion on device modelling.		
MODULE	CONTENTS	HOURS	
MODULE 1	PN Junction Diode and Schottky Diode: DC Current Voltage Circuits,	08	
	Static Model, Large Signal Model, Small Signal Model, Schottky		
	Diode and Its Implementation in SPICE 2, Temperature and Area		
	Effect on The Diode Model Parameters, SPICE3, HSPICE & PSPICE		
	Models.		
MODULE 2	BJT: Transistor Conversion and Symbols, Ebers-Moll Static, Large	08	
	Signal and Small Signal Models, Gummel-Poon Static, Large Signal		
	Models, Temperature and Area Effect on The BJT Parameters, Power		
	BJT Models, SPICE3, HSPICE & PSPICE Models.		
MODULE 3	JFET: Static Model, Large Signal Model, Small Signal Model and Its	08	
	Implementation in SPICE 2, Temperature and Area Effect on The		
	JFET Model Parameters, SPICE3, HSPICE & PSPICE Models		
MODULE 4	Metal Oxide Semiconductor Transistor (MOST): Structure and	10	
	Operating Regions of the MOST, Level-1 And Level-2 Static Models,		
	Level-1 And Level-2 Large-Signal Models, Comment on The Three		
	Models, The Effect of Series Resistance, Small-Signal Models, The		
	Effect of Temperature on The MOST Model Parameters, BSIM1 &		
	BSIM2 Models, SPICE3, HSPICE & PSPICE Models		
MODULE 5	Noise and Distortion: Noise, Distortion In MOSEFT, ISFET,	06	
	THYRISTOR.		
TEXT	1. G. Massobrio and P.Antognetti, "Semiconductor Device Modeling	by	
BOOKS	SPICE", Second Edition, McGraw Hill, 1993.		
REFERENCE	1. N. Dasgupta and A. Dasgupta, "Semiconductor Device Modeling	ng", PHI	
BOOKS	Publication		
COURSE OUT	COME		
After completio	on of this course, students should be able to		

- 1. Model a diode.
- 2. Model a BJT.

- 3. Model a JFET
- 4. Model a MOSFET.
- 5. Model noise and distortion

JTFA & MRA (PE-2)

COURSE OBJECTIVE:			
1. Introduction to Transforms in signal processing			
2. To understand Time -Frequency Analysis & Multiresolution Analysis			
3. Study of Wavelets and its Applications			
MODULE	CONTENT	HOURS	
MODULE 1	Introduction: Review of Fourier Transform, Parseval Theorem and	8	
	Need for Joint Time-Frequency Analysis (JTFA), Concept of Non-		
	Stationary Signals, Short-Time Fourier Transforms (STFT),		
	Uncertainty Principle, And Localization/Isolation in Time and		
	Frequency, Hilbert Spaces, Banach Spaces, And Fundamentals of		
	Hilbert Transform.		
MODULE 2	Bases for Time-Frequency Analysis: Wavelet Bases and Filter Banks,	8	
	Tilings Of Wavelet Packet and Local Cosine Bases, Wavelet		
	Transform, Real Wavelets, Analytic Wavelets, Discrete Wavelets,		
	Instantaneous Frequency, Quadratic Time-Frequency Energy, Wavelet		
	Frames, Dyadic Wavelet Transform, Construction of Haar And Roof		
	Scaling Function Using Dilation Equation and Graphical Method.		
MODULE 3	Multiresolution Analysis: Haar Multiresolution Analysis (MRA),	8	
	MRA Axioms, Spanning Linear Subspaces, Nested Subspaces.		
	Orthogonal Wavelets Bases, Scaling Functions, Conjugate Mirror		
	Filters, Haar 2-Band Filter Banks. Study of Up Samplers and Down		
	Samplers. Conditions for Alias Cancellation and Perfect		
	Reconstruction. Discrete Wavelet Transform and Relationship with		
	Filter Banks. Frequency Analysis of Haar 2-Band Filter Banks, Scaling		
	and Wavelet Dilation Equations in Time and Frequency Domains,		
	Case Study of Decomposition and Reconstruction of Given Signal		
	Using Orthogonal Framework of Haar 2 Band Filter Bank.		
MODULE 4	Wavelets: Daubechies Wavelet Bases, Daubechies Compactly	6	
	Supported Family of Wavelets, Daubechies Filter Coefficient		
	Calculations, Case Study of Daub-4 Filter Design, Connection		
	Between		
	Haar And Daub-4, Concept of Regularity, Vanishing Moments. Other		
	Classes of Wavelets Like Shannon, Meyer, And Battle-Lamarie.		
MODULE 5	Bi-Orthogonal Wavelets and Applications: Construction and Design.	10	
	Case Studies of Biorthogonal 5/3 Tap Design and Its Use in JPEG		
	2000. Wavelet Packet Trees, Time-Frequency Localization,		
	Compactly Supported Wavelet Packets, Case Study of Walsh Wavelet		
	Packet Bases Generated Using Haar Conjugate Mirror Filters till Depth		

	Level 3. Lifting Schemes for Generating Orthogonal Bases of Second-
	Generation Wavelets. JTFA Applications: Riesz Bases, Scalograms,
	Time-Frequency Distributions: Fundamental Ideas, Applications:
	Speech, Audio, Image and Video Compression; Signal Denoising,
	Feature Extraction, Inverse Problem.
TEXT BOOK	1. S. Mallat, "A Wavelet Tour of Signal Processing," 2nd Edition, Academic
	Press, 1999.
	2. L. Cohen, "Time-frequency analysis," 1st Edition, Prentice Hall, 1995.
	3. G.Strang and T. Q. Nguyen, "Wavelets and Filter Banks," 2nd Edition,
	Wellesley Cambridge Press, 1998.
REFERENCE	1. Daubechies, "Ten Lectures on Wavelets," SIAM, 1992.
BOOK	2. P. P. Vaidyanathan, "Multirate Systems and Filter Banks," Prentice Hall,
	1993.
	3. M. Vetterli and J. Kovacevic, "Wavelets and Sub band Coding", Prentice
	Hall, 1995
COURSE OUT	COME: After completion of course, student should be able to
1. Get a su	rvey on evolution of JTFA from the classical transforms

- 2. Realize the role of wavelets as bases of time-frequency analysis
- 3. Have an in-depth theoretical & mathematical investigation of wavelets
- 4. Explore the applications of wavelets and JTFA
- 5. Understand application of wavelets in compression.

VLSI DESIGN LABORATORY-I (Lab-1)

SESSIONAL OBJECTIVE

- 1. Design of sub circuits to complex circuits
- 2. Simulation of analog circuits by CAD tools.
- 3. Use of industry standard software.

No.	CONTENTS
1	Design and Simulation of Current Mirror Circuits
2	Design and Simulation of Reference Circuits
3	Design and Simulation of Amplifiers
4	Design and Simulation of CMOS OP-Amp
5	Design and Simulation of Comparators

VLSI TECHNOLOGY LABORATORY (Lab-2)

SESSIONAL OBJECTIVE

- 1. Study of different fabrication processes.
- 2. Study of materials used for fabrication.
- 3. Use of industry standard software.

No.	CONTENTS
1	Study of crystal Growth and Wafer Preparation
2	Study of Epitaxial Growth
3	Study of Oxidation

4	Study of Lithography
5	Study of Etching
6	Study of Deposition
7	Study of Diffusion
8	Study of Ion Implantation
9	Study of Metallization
10	Study of Packaging

VLSI SIGNAL PROCESSING (Core-3)

- 1. To review VLSI design methods. To explore VLSI architecture.
- 2. To implement DSP algorithms onto digital hardware.
- 3. Applications of parallel processing and pipelining.

MODULE	CONTENTS	HOURS
MODULE 1	Pipelining and Parallel Processing: Introduction, Pipelining of FIR	06
	Digital Filters, Parallel Processing. <i>Pipelining and Parallel</i>	
	Processing for Low Power. Retiming: Introduction, Definition and	
	Properties, Solving System of Inequalities, Retiming Techniques.	
MODULE 2	Unfolding: Introduction an Algorithms for Unfolding, Properties of	06
	Unfolding, Critical Path, Unfolding and Retiming Application of	
	Unfolding.	
MODULE 3	Folding: Introduction to Folding Transformation, Register	08
	Minimization Techniques, Register Minimization in Folded	
	Architectures, Folding in Multirate Systems.	
MODULE 4	Systolic Architecture Design: Introduction, Systolic Array Design	10
	Methodology, FIR Systolic Arrays, Selection of Scheduling Vector,	
	Matrix Multiplication and 2D Systolic Array Design, Systolic Design	
	for Space Representations Containing Delays.	
MODULE 5	Fast Convolution: Introduction, Cook, Toom Algorithm, Winogard	10
	Algorithm, Iterated Convolution, Cyclic Convolution, Design of Fast	
	Convolution Algorithm by Inspection.	
TEXT	1. Keshab K. Parhi. "VLSI Digital Signal Processing Systems", W	iley-Inter
BOOKS	Sciences, 1999	
REFERENCE	1. Mohammed Ismail, Terri, Fiez, "Analog VLSI Signal and Ing	formation
BOOKS	Processing", McGraw Hill, 1994.	
	2. Kung. S.Y., H.J. While house T.Kailath, "VLSI and Mode	rn signal
	processing", Prentice Hall, 1985.	
	3. Jose E. France, Yannis Tsividls, "Design of Analog Digital VLS	I Circuits
	for Telecommunications and Signal Processing", Prentice Hall,	1994.
COURSE OUTCOME		
After completio	on of course student should be able to	

- 1. Understand VLSI design methodology for signal processing systems. Be familiar with VLSI algorithms and architectures for DSP.
- 2. Be able to implement basic architectures for DSP using CAD tools.
- 3. Design and analysis of FIR digital filters using pipelined architecture.
- 4. Design and analysis of FIR digital filters using parallel processing.
- 5. Implementing Cook, Toom Algorithm, Winogard Algorithms.

DIGITAL SIGNAL PROCESSOR ARCHITECTURES (Core-4)

- 1. To shift gradually from the design of DSP systems and algorithms to efficient implementation of the systems and algorithms.
- 2. To give an exposure to the concepts of real-time DSP and bridge the gap between theoretical signal processing and real-time implementations.
- 3. To know how the DSP processor is used in an embedded system with a minimum amount of external hardware to support its operation and interface it to the outside world

MODULE	CONTENTS	HOURS
MODULE 1	Introduction: A Digital Signal-Processing System, Analysis and	08
	Design Tool for DSP Systems, Computational Accuracy in DSP	
	Implementations: Number Formats for Signals and Coefficients in	
	DSP Systems, Dynamic Range and Precision, Sources of Error in DSP	
	Implementations-A/D Conversion Errors, DSP Computational Errors,	
	D/A Conversion Errors	
MODULE 2	Architecture for Programmable DSP Devices: Basic Architectural	08
	Features, DSP Computational Building Blocks, Bus Architecture and	
	Memory, Data Addressing Capabilities, Address Generation Module,	
	Programmability and Program Execution, Execution Control-	
	Hardware Looping, Interrupts, Stacks, Relative Branch Support, Speed	
	Issues, Pipelining-Pipelining and Performance, Pipeline Depth,	
	Interlocking, Branching Effects, Interrupt Effects, Pipeline	
	Programming Models. Features for External Interfacing	
MODULE 3	Programmable Digital Signal Processors: Commercial Digital	08
	Signal-Processing Devices, The Architecture of TMS320C54XX	
	Processors, Data Addressing Modes of TMS320C54XX Processors,	
	Memory Space of TMS320C54XX Processors, Program Control,	
	TMS320C54XX Instructions and Programming, On-Chip	
	Peripherals, Interrupts of TMS320C54XX Processors, Pipeline	
	Operation of TMS320C54XX Processors.	

MODULE 4	Implementation of DSP Algorithms: -The Q-Notation, FIR Filters, 08
	IIR Filters, Interpolation Filters, Decimation Filters, PID Controller,
	Adaptive Filters, An FFT Algorithm for DFT Computation, A
	Butterfly Computation-Overflow and Scaling, Bit-Reversed Index
	Generation, An 8-Point FFT Implementation on The
	TMS320C54XX, Computation of the Signal Spectrum.
MODULE 5	Interfacing Memory and Peripherals to DSP Processor: -Memory 08
	Space Organization, External Bus Interfacing Signals, Memory
	Interface, Parallel I/O Interface, Programmed I/O, Interrupts and I/O,
	Direct Memory Access (DMA). A Multichannel Buffered Serial Port
	(MCBSP), MCBSP Programming, A CODEC Interface Circuit,
	CODEC Programming, A CODEC-DSP Interface Example.
TEXT	1. Singh, A. and Srinivasan, S., "Programmable DSP Architecture and
BOOKS	Applications "Thomson, 2004. / Brooks/ Cole, a part of CENGAGE Learning 2004
	2. Lapsley, P. et.al. "DSP Processor Fundamentals: Architectures and
	<i>Features</i> ". John Wiley & Sons 1996
	3. Sen M. Kuo, Woon-Seng Gan "Digital Signal Processors-Architecture.
	Implementations and Applications". Pearson.2005.
REFERENC	E 1. Bateman, A. and Yates, W. "Digital Signal Processing Design", Computer
BOOKS	Science Press, 1989.
	2. Texas Instrument "Digital Signal Processing Applications with the TMS320
	Family", Prentice-Hall, 1988.
	3. Texas Instruments, "Linear Circuits: Data Conversion, DSP Analog
	Interface, and Video Interface", 1992
COURSE O	JTCOME
After compl	etion of this course, students should be able to
1. K	now the important basic concepts of Digital Signal Processing and the issues related
to	o computational accuracy of algorithms when implemented using Programmable
E	vigital Signal Processors.
2. A	rchitectural features of programmable DSP devices based on the DSP operations
tł	lese devices are generally required to perform.
3. K	now the architecture and programming of programmable DSP devices DSP320C54XX Processor).
4. II	nplementation of basic DSP algorithms in programmable DSP devices
(DSP320C54XX Processor).
5. Ii	iterfacing memory and serial and parallel I/O peripherals to programmable DSP
d	evices (DSP320C54XX Processor).

HIGH LEVEL VLSI DESIGN (PE-3)

COURSE OBJECTIVE			
1. This course is an introduction to the HDL language. The emphasis is on writing			
synthesizable code and enough simulation code to write a viable test-bench.			
2. This class addresses targeting Xilinx devices specifically and FPGA devices in general.			
3. The information gained can be applied to any digital design by using a top-down			
synthesis design approach.			
MODULE	CONTENTS	HOURS	
MODULE 1	Digital Design Flow: Design Entry, Test Bench in Verilog, Design	08	
	Validation, Post Synthesis Simulation, Timing Analysis, Hardware		
	Generation; Verilog HDL: Verilog Evolution, Verilog Attributes, The		
	Verilog Language; Characterizing Hardware Languages: Timing,		
	Concurrency, Timing And Concurrency Example; Module Basics:		
	Code Format, Logic Value System, Wires And Variables, Modules,		
	Module Ports, Names, Numbers, Arrays, Verilog Operators, Verilog		
	Data Types, Array Indexing; Compiler Directives: `Timescale,		
	`Default Net Type, `Include, `Define.		
MODULE 2	Abstraction Levels in VLSI Design; Adder Architectures, Multiplier	08	
	Architectures, Counter Architectures, ALU Architectures. Latches,		
	Flip-Flops, Registers and Register Files. PLA Design, Gate Array		
	Approach, Standard Cell Approach, PLA-Based Implementation,		
	Random Logic Implementation, Micro-Programmed Implementation		
	(ROM-Based Implementation).		
MODULE 3	State Machine: Introduction, Design Style 1, Design Style 2,	08	
	Encoding Style: Binary to One Hot, Moore Machine, Mealy Machine,		
	String Detector, Traffic Light Controller.		
MODULE 4	SRAM Cell, Different DRAM Cells, Arraying of Cells, Address	08	
	Decoding, Read / Write Circuitry, Sense Amplifier Design, ROM		
	Design.		
MODULE 5	Clock Skew, Clock, Distribution and Routing, Clock Buffering, Clock	08	
	Domains, Gated Clock, Clock Tree, Concept of Logic Hazards.		
TEXT	1. Z. Navabi, "Verilog Digital System Design", Second Edition, Tata	McGraw	
BOOKS	Hill, 2008.		
	2. S. Palnitkar, "Verilog HDL, A Guide to Digital Design and Synthesis"	", Second	
	Edition, Pearson Education, 2003.		
REFERENCE	1. C. H. Roth, "Digital Systems Design Using VHDL", Thomson Pub	lications.	
BOOKS	Fourth Edition, 2002.	,	
COURSE OUT	COME		
After completion of this course, students should be able to			

- 1. Implement the HDL portion of coding for synthesis.
- 2. Identify the differences between behavioral and structural coding styles efficient design of sequential circuits.
- 3. Understand the basic principle of circuit design and analysis.
- 4. Understand the sequential circuit and its synthesis.
- 5. Understand the RT level design and test.

RTL SIMULATION AND SYNTHESIS (PE-3)

- 1. Familiarity of Finite State Machines, RTL design using reconfigurable logic.
- 2. Design and develop IP cores and Prototypes with performance guarantees
- 3. Use EDA tools like Cadence, Mentor Graphics and Xilinx.

5. Use LDA tools like cadelice, Mentor Graphics and Athink.			
MODULE	CONTENTS	HOURS	
MODULE 1	Top Down Approach to Design, Design of FSMs (Synchronous and		
	Asynchronous), Static Timing Analysis, Meta-Stability, Clock Issues,		
	Need and Design Strategies for Multi-Clock Domain Designs		
MODULE 2	Design Entry by Verilog/VHDL/FSM, Verilog AMS.		
MODULE 3	Programmable Logic Devices, Introduction to ASIC Design Flow,		
	FPGA, SOC, Floor Planning, Placement, Clock Tree Synthesis,		
	Routing, Physical Verification, Power Analysis, ESD Protection		
MODULE 4	Design for Performance, Low Power VLSI Design Techniques. Design		
	for Testability		
MODULE 5	IP And Prototyping: IP In Various Forms: RTL Source Code,		
	Encrypted Source Code, Soft IP, Netlist, Physical IP, Use of External		
	Hard IP During Prototyping. Case Studies and Speed Issues.		
TEXT	1. Richard S. Sandige, "Modern Digital Design", MGH, International Contemporation of the International Contemporational Contemporationa Contemporationa Contemporational Contemporati	ernational	
BOOKS	Editions.		
	2. Donald D Givone, "Digital Principles and Design", TMH		
	3. Charles Roth, Jr. And Lizy K John, "Digital System Design Using	g VHDL",	
	Cengage Learning.		
REFERENCE	1. Samir Palnitkar, "Verilog HDL, A Guide to Digital Design and S	ynthesis",	
BOOKS	Prentice Hall.		
	2. Doug Amos, Austin Lesea, Rene Richter, "FPGA Based Pr	ototyping	
	Methodology Manual", Xilinx		
	3. Bob Zeidman, "Designing with FPGAs & CPLDs", CMP Book	s.	
COURSE OUT	ГСОМЕ		
After complet	ion of this course, students should be able to		
1. 1	Learn top down approach to design.		
2. 1	Understand design entry by different HDL.		

- 3. Learn the ASIC design flow.
- 4. Know the low power VLSI design techniques.
- 5. Gather knowledge on IP.

CAD OF DIGITAL SYSTEMS (PE-3)

COURSE OBJECTIVE

- 1. Fundamentals of CAD tools for modelling, design, test and verification of VLSI systems.
- 2. Study of various phases of CAD, including simulation, physical design, test and verification.
- 3. Demonstrate knowledge of computational algorithms and tools for CAD.

MODULE	CONTENTS	HOURS
MODULE 1	Introduction to VLSI Methodologies – Design and Fabrication of VLSI	08
	Devices, Fabrication Process and its Impact on Design	
MODULE 2	VLSI Design Automation Tools – Data Structures and Basic	08
	Algorithms, Graph Theory and Computational Complexity, Tractable	
	and Intractable Problems.	
MODULE 3	General Purpose Methods for Combinational Optimization -	08
	Partitioning, Floor Planning and Pin Assignment, Placement, Routing.	
MODULE 4	Simulation – Logic Synthesis, Verification, High Level Synthesis.	08
MODULE 5	MCMS-VHDL-Verilog-Implementation of Simple Circuits Using	08
	VHDL	
TEXT	1. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation	on".
BOOKS		
REFERENCE	2. S.H. Gerez, "Algorithms for VLSI Design Automation".	
BOOKS		
COURSE OUTCOME		
After completion	on of this course, students should be able to	

- 1. Know VLSI design methodologies.
- 2. Learn VLSI automation tools.
- 3. Learn about physical design methods of VLSI.
- 4. Understand the synthesis process in VLSI.
- 5. Implementation of simple circuits using HDL.

VLSI DESIGN VERIFICATION & TESTING (PE-4)

- 1. To expose the students, the basics of testing techniques for VLSI circuits and Test Economics.
- 2. Tackle the problems associated with testing of semiconductor circuits at earlier design levels so as to significantly reduce the testing costs.
- 3. Identify the design for testability methods for combinational & sequential CMOS circuits.

MODULE	CONTENT	HOURS
MODULE 1	Verilog For Verification: Language Introduction, Levels of	8
	Abstraction, Module, Ports Types And Declarations, Registers And	
	Nets, Arrays, Identifiers, Parameters, Relational, Arithmetic, Logical,	
	Bitwise Shift Operators, Writing Expressions, Behavioural Modelling,	
	Structural Coding, Continuous Assignments, Procedural Statements,	
	Always, Initial Blocks, Begin End, Fork Join, Blocking And Non-	

	Blocking Statements Operation Control Statements If Case Loops:	
	While For-Loop For-Fach Repeat Combination And Sequential	
	Circuit Designs, Memory Modelling, State Machines, Writing Tasks	
	Writing Functions System Tasks Delays Specify Block	
	Varification Mathadalagian Directed Va Dandom Eurotional	0
MODULE 2	Verification Methodologies: Directed VS Randolli, Functional	0
	Venification Process, Stimulus Generation, Bus Function Model,	
	Monitors and Reference Model, Coverage Driven Verification,	
	Verification Planning and Management. Introduction to System	
	Veruog: Datatypes, Structure & Unions, Arrays, Queues, Events,	
	Fork-Join, Semaphore, Mailbox. OOP Concept: OOP Basics, Classes	
	– Objects and Handles, Polymorphism and Inheritance, Encapsulation,	
	Abstract/Parameterized/Nested Class, Casting – Static & Dynamic,	
	Copy – Deep Copy, Shallow Copy, Scope Resolution Operator, This	
	& Null, Typedet Class, Pure Class.	-
MODULE 3	Randomization: Constraint Random Verification, Randomizing	8
	Objects/Variables/Methods, Constraint Block, Inline Constraint,	
	Global Constraint, Constraint Mode, Constraint Expressions, Rand	
	Case System Verilog - Threads and Virtual Interfaces: Fork Join,	
	Event Control Mailboxes and Semaphores, Interfaces	-
MODULE 4	Coverage: Functional Coverage- Introduction, Cover Group, Cover	8
	Point, Cover Point Expression, Coverage Bins – Explicit Bins,	
	Transition Bins, Wildcard Bins, Ignore Bins, Illegal Bins, Cross	
	Coverage, Coverage Options Coverage Methods Code Coverage:	
	Statement Coverage, Branch Coverage, Expression Coverage Path	
	Coverage, Toggle Coverages – State, Arc and Sequence Coverage	0
MODULE 5	Assertion Based Verification – System Verilog Assertion:	8
	Introduction to Assertion Based Verification, Immediate Assertions,	
	Concurrent Assertions Sequences Properties, Multi Clock Support,	
	Advanced SVA Features Assertion Coverage	
TEXT BOOK	1. Spear, C. (2008). "System Verilog For Verification: A Guide to	Learning
	the Testbench Language Features", Springer Science & Busine	ss Media.
	2. Vijayaraghavan, S., & Ramanathan, M. (2005). "A Practical	Guide for
	System Verilog Assertions", Springer Science & Business Medi	a.
REFERENCE	1. System Verilog 3.1a Language Reference Manual.	
BOOK	2. Bergeron, J., Cerny, E., Hunter, A., & Nightingale, A	. (2006).
	"Verification Methodology Manual for System Verilog", Springe	er Science
	& Business Media.	
	3. Bergeron, J. (2007). "Writing Testbenches Using System	Verilog".
	Springer Science & Business Media.	
COURSE OUT	COME: After completion of course, student should be able to	
1. Familia	rity of front-end design and verification techniques and create reus	sable test
environ	ments.	
2. Verify i	ncreasingly complex designs more efficiently and effectively.	
3. Use ED	A tools like Cadence, Mentor Graphics.	

- 4. Acquire knowledge about fault modeling and collapsing.
- 5. Learn about various combinational ATPG and sequence pattern generation.

LOW POWER VLSI DESIGN (PE-4)

- 1. Study of sources of power dissipation in digital IC systems
- 2. Study of model power consumption & understand the basic analysis methods.
- 3. Study of leakage sources and reduction techniques.

MODULE	CONTENTS	HOURS
MODULE 1	Technology & Circuit Design Levels: Sources of Power Dissipation in	08
	Digital ICs, Degree of Freedom, Recurring Themes in Low-Power,	
	Emerging Low Power Approaches, Dynamic Dissipation In CMOS,	
	Effects of V _{DD} & V _T on Speed, Constraints on V _T Reduction, Transistor	
	Sizing & Optimal Gate Oxide Thickness, Impact of Technology	
	Scaling, Technology Innovations.	
MODULE 2	Low Power Circuit Techniques: Power Consumption in Circuits, Flip-	08
	Flops & Latches, High Capacitance Nodes, Energy Recovery,	
	Reversible Pipelines, High Performance Approaches.	
MODULE 3	Low Power Clock Distribution: Power Dissipation in Clock	08
	Distribution, Single Driver Versus Distributed Buffers, Buffers &	
	Device Sizing Under Process Variations, Zero Skew Vs. Tolerable	
	Skew, Chip & Package Co-Design of Clock Network.	
MODULE 4	Logic Synthesis for Low Power Estimation Techniques: Power	08
	Minimization Techniques, Low Power Arithmetic Components-	
	Circuit Design Styles, Adders, Multipliers.	
MODULE 5	Low Power Memory Design: Sources & Reduction of Power	08
	Dissipation in Memory Subsystem, Sources of Power Dissipation In	
	DRAM & RAM, Low Power DRAM Circuits, Low Power SRAM	
	Circuits. Low Power Microprocessor Design System: Power	
	Management Support, Architectural Trade-Offs for Power, Choosing	
	the Supply Voltage, Low-Power Clocking, Implementation Problem	
	for Low Power, Comparison of Microprocessors for Power &	
	Performance	
TEXT	1. P. Rashinkar, Paterson and L. Singh, "Low Power Design Method	dologies",
BOOKS	Kluwer Academic, 2002	
	2. Kaushik Roy, Sharat Prasad, "Low Power CMOS VLSI Circuit Desi	ign", John
	Wiley sons Inc.,2000.	
	3. Gary Yeap, "Practical Low Power Digital VLSI Design", Kluwer,	1998.
REFERENCE	1. Rabaey, Pedram, Low power design methodologies, Kluwer Acader	nic, 1997
BOOKS	2. W. Nebel and J. Mermet, Low Power Design in Deep Sub-micron El	ectronics,
	Kluwer Academic Publishers, 1997	

	3. B.Kulo and J.H Lou, "Low voltage CMOS VLSI Circuits", Wiley, 1999.
	4. A.P.Chandrasekaran and R.W.Broadersen, "Low Power Digital CMOS
	Design", Kluwer, 1995
COURSE	OUTCOME
After comp	pletion of this course, students should be able to
1.	Identify the sources of power dissipation in digital IC systems & understand the
	impact of power on system performance and reliability.
2.	Understand various techniques for low power circuit design.
3.	Know clock distribution for low power circuits.
4.	Learn Power Minimization Techniques of Logic Synthesis for Low Power
	Estimation Techniques.
5.	How to design Low power memory and Microprocessor systems.

DESIGN WITH ASICS (PE-4)

COURSE OBJECTIVE			
1. Study design methodologies of ASIC.			
2. Stud	ly of various FPGA families.		
3. Case	e studies of electronic gadgets		
MODULE	CONTENTS	HOURS	
MODULE 1	Types of ASICs. ASIC Design Flow. Programmable ASICs. Anti-	10	
	Fuse, SRAM, EPROM, EEPROM Based ASICs. Programmable ASIC		
	Logic Cells and I/O Cells. Programmable Interconnects. An Overview		
	of Advanced FPGAs and Programmable SOCs: Architecture and		
	Configuration of Spartan and Virtex FPGAs. Apex and Cyclone		
	FPGAs. Virtex PRO Kits and Nios Kits. OMAP		
MODULE 2	ASIC Physical Design Issues. System Partitioning, Interconnect Delay	08	
	Models and Measurement of Delay. ASIC Floor Planning, Placement		
	and Routing.		
MODULE 3	Design Issues in SOC. Design Methodologies. Processes and Flows.	08	
	Embedded Software Development for SOC. Techniques for SOC		
	Testing. Configurable SOC. Hardware/Software Co-design. High		
	Performance Algorithms for ASICs/ SOCs.		
MODULE 4	SOC Case Studies- DAA and Computation of FFT and DCT. High	08	
	Performance Filters Using Delta-Sigma Modulators.		
MODULE 5	SOC Case Studies: Digital Camera, Bluetooth Radio/Modem,	06	
	SDRAM and USB Controllers.		
TEXT	1. M.J.S. Smith, "Application Specific Integrated Circuits", Pearson, 2	003	
BOOKS			
REFERENCE	1. K.K. Parhi, "VLSI Digital Signal Processing Systems", John-Wiley,	1999	
BOOKS			
COURSE OUTCOME			
After completion of this course, students should be able to			
1. A	1. About different ASIC and FPGAs.		

2. Have knowledge about design issues of ASIC.

- 3. Learn about SOC.
- 4. Compute FFT and DCT.
- 5. Familiar with SOC applications.

VLSI DESIGN LABORATORY-II (Lab-3)

SESSIONAL OBJECTIVE

- 1. Familiar with digital VLSI circuits using software.
- 2. Analyze various types of VLSI modelling techniques.
- 3. Use of different FPGA boards.

No.	CONTENTS
1	Design, Simulation and FPGA Implementation of Arithmetic Circuits.
2	Design, Simulation and FPGA Implementation of Encoder and Decoder Circuit.
3	Design, Simulation and FPGA Implementation of Counters.
4	Design, Simulation and FPGA Implementation of a Simple Microprocessor Data Path.
5	Design, Simulation and FPGA Implementation of a Simple Microprocessor Control Path.
6	Design, Simulation and FPGA Implementation of Memory.

VLSI SIGNAL PROCESSING LABORATORY (Lab-4)

SESSIONAL OBJECTIVE

- 1. Study of advanced simulation methods.
- 2. Analyze Higher Order Statistics.
- 3. To perform the spectrum estimation

	1 1
No.	CONTENTS
1	Decomposition using Multi Resolution Techniques.
2	Wavelet Coding Techniques
3	Spectral Estimation Using Parametric Method
4	Higher Order Statistics of a Signal
5	PCA/ICA Analysis

RF IC (PE-5)

COURSE OBJECTIVE:

- 1. To educate students fundamental RF circuit and system design skills.
- 2. To introduce students, the basic RF electronics utilized in the industry and how to build up a complex RF system from basics.

3. To offer students experience on designing and simulating RF circuits in computer.

MODULE	CONTENTS	HOURS
MODULE 1	Introduction, Basic Concepts in RF Design, Passive RLC Networks,	6
	Passive IC Components and Their Characteristics.	
MODULE 2	Voltage references & biasing, Feedback Systems, Noise, Phase	8

	Noise.	
MODULE 3	High frequency amplifier design, LNA design, RF power amplifier	10
MODULE 4	Oscillators, PLL, Synthesizers, Mixers.	12
MODULE 5	Transceiver Architecture and Practical Design Example	4
TEXT	1. T. H. Lee, "The Design of CMOS RF Integrated Circuits", C	ambridge
BOOKS	University Press.	
	2. B. Razavi, "RF Microelectronics", Pearson Education.	
REFERENCE 1. B. Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGra		McGraw-
BOOKS Hill, 2002.		
	2. Sorin Voinigescu, "High Frequency Integrated Circuits", C	ambridge
	University Press.	
	3. Reinhold Ludwig, Gene Bogdanov, "RF Circuit Design Th	neory and
	Applications", Pearson Education.	
COURSE OUT	COME: After completion of course, student should be able to	
1. Be c	conversant with RF design concepts, passive on-chip elements.	
2. Und	2. Understand biasing, feedback and noise.	
3. Design a RF amplifier, Power amplifier, LNA.		
4. Be p	proficient with frequency conversion and signal generation.	

5. 5. Present the different transceiver architecture.

FPGA BASED DSP DESIGN (PE-5)

COURSE OBJ	ECTIVE	
1. Study of multitone modulation.		
2. Brief idea about software radio.		
3. Study	of Speech Coding Using Linear Prediction	
MODULE	CONTENTS	HOURS
MODULE 1	Multirate Signal Processing- Decimation and Interpolation, Spectrum	08
	of Decimated and Interpolated Signals, Polyphase Decomposition of	
	FIR Filters and Its Applications to Multidate DSP. Sampling Rate	
	Converters, Sub-Band Encoder. Filter Banks-Uniform Filter Bank.	
	Direct and DFT Approaches.	
MODULE 2	Introduction to ADSL Modem, Discrete Multitone Modulation and Its	08
	Realization Using DFT. QMF. Short Time Fourier Transform	
	Computation of DWT Using Filter Banks. Implementation and	
	Verification on FPGAs. DDFS- ROM LUT Approach. Spurious	
	Signals Jitter.	
MODULE 3	Block Diagram of A Software Radio. Digital Down Converters and	08
	Demodulators. CORDIC Architectures. Universal Modulator and	
	Demodulator Using CORDIC. Computation of Special Functions	
	Using CORDIC. Vector and Rotation Mode Of CORDIC.	
	Implementation and Verification on FPGAs	

MODULE 4	Incoherent Demodulation - Digital Approach for I And Q	08	
	Generation, Special Sampling Schemes. CIC Filters. Residue		
	Number System and High-Speed Filters Using RNS. Down		
	Conversion Using Discrete Hilbert Transform. Under Sampling		
	Receivers, Coherent Demodulation Schemes.		
MODULE 5	Speech Coding- Speech Apparatus. Models of Vocal Tract. Speech	08	
	Coding Using Linear Prediction. CELP Coder. An Overview of		
	Waveform Coding. Vocoders. Vocoder Attributes. Block Diagrams		
	of Encoders and Decoders of G723.1, G726, G727, G728 And G729.		
TEXT	1. J. H. Reed, Software Radio, Pearson, 2002.		
BOOKS	2. U. Meyer – Baese, "Digital Signal Processing with FPGAs", Spring	ger, 2004	
REFERENCE	1. Tsui, "Digital Techniques for Wideband receivers", Artech House,	2001.	
BOOKS	2. S. K. Mitra, "Digital Signal Processing", McGraw Hill, 1998		
COURSE OUT	COURSE OUTCOME		

After completion of this course, students should be able to

- 1. Learn multirate processing.
- 2. Design the modem.
- 3. Learn CORDIC architecture.
- 4. Design high speed filters using redundant number system.
- 5. Understand the basics of speech coding.

PHYSICAL DESIGN AUTOMATION (PE-5)

- 1. This course focuses on various design automation problems in the physical design process of VLSI circuits, including: logic partitioning, floor planning, placement, global routing, detailed routing, clock and power routing, and new trends in physical design.
 - 2. To impart knowledge on implementation of graph theory in VLSI.
- 3. To impart knowledge on automation methods for VLSI physical design.

MODULE	CONTENT	HOURS
MODULE 1	Preliminaries: Introduction to Design Methodologies, Design	08
	Automation Tools, Algorithmic Graph Theory, Computational	
	Complexity, Tractable and Intractable Problems. General Purpose	
	Methods for Combinational Optimization: Backtracking, Branch and	
	Bound, Dynamic Programming, Integer Linear Programming, Local	
	Search, Simulated Annealing, Tabu Search, Genetic Algorithms.	
MODULE 2	Layout Compaction, Placement, Floor Planning and Routing	08
	Problems, Concepts and Algorithms. Modeling and Simulation: Gate	
	Level Modeling and Simulation, Switch Level Modeling and	
	Simulation.	

		0.0
MODULE 3	Logic Synthesis and Verification: Basic Issues and Terminology,	08
	Binary-Decision Diagrams, Two-Level Logic Synthesis. <i>High-Level</i>	
	Synthesis: Hardware Models, Internal Representation of The Input	
	Algorithm, Allocation, Assignment and Scheduling, Some	
	Scheduling Algorithms, Some Aspects of Assignment Problem,	
	High-Level Transformations.	
MODULE 4	Physical Design Automation of FPGAs: FPGA Technologies,	08
	Physical Design Cycle for FPGAs, Partitioning and Routing for	
	Segmented and Staggered Models. Physical Design Automation of	
	MCMs: MCM Technologies, MCM Physical Design Cycle,	
	Partitioning,	
MODULE 5	Placement - Chip Array Based and Full Custom Approaches, Routing	08
	– Maze Routing, Multiple Stage Routing, Topologic Routing,	
	Integrated Pin – Distribution and Routing, Routing and Programmable	
	MCMs.	
TEXT	1. Naveed Shewani, "Algorithms for VLSI Physical Design Auto	omation",
BOOKS	Kluwer Academic, 1993	
	2. S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley,	, 1998.
REFERENCE	1. S.M. Sait & H. Youssef, "VLSI Physical Design Automation	", World
BOOKS	Scientific, 1999.	
	2. M. Sarrafzadeh, "Introduction to VLSI Physical Design", McGraw	Hill (IE).
COURSE OUT	COME	
After completion	on of this course, students should be able to	
1. Lea	arn General Purpose Methods for Combinational Optimization.	
2. Lea	rn techniques of modelling and simulation at different abstraction levels.	
3. Analyze physical design problems and Employ appropriate automation algorithms for		
Synthesis.		
4. Decompose large mapping problem into pieces, including logic optimization with		
partitioning, placement and routing.		
5. Know how to place the blocks and how to partition the blocks while for		
desi	gning the layout for IC.	

SIGNAL PROCESSING (OE)

COURSE OBJECTIVE			
1. To explore the filter design and characterization techniques			
2. To analyze multirate DSP systems.			
3. To kno	w the concept of optimum linear filters		
4. To ana	lyze the power spectrum estimation methods		
5. To exp	lore the model of adaptive filters		
MODULE	CONTENTS	HOURS	
MODULE 1	Overview of DSP, Characterization in Time and Frequency, FFT	8	
	Algorithms, Digital Filter Design and Structures: Basic FIR/IIR Filter		
	Design & Structures, Design Techniques of Linear Phase FIR Filters,		
	IIR Filters by Impulse Invariance, Bilinear Transformation, FIR/IIR		
	Cascaded Lattice Structures, And Parallel All Pass Realization Of IIR.		
MODULE 2	Multi Rate DSP, Decimators and Interpolators, Sampling Rate	8	
	Conversion, Multistage Decimator & Interpolator, Poly Phase Filters,		
	QMF, Digital Filter Banks, Applications in Sub-Band Coding.		
	Application of DSP & Multi Rate DSP, Application to Radar,		
	Introduction to Wavelets, Application to Image Processing, Design of		
	Phase Shifters, DSP In Speech Processing & Other Applications		
MODULE 3	Linear Prediction & Optimum Linear Filters, Stationary Random	8	
	Process, Forward-Backward Linear Prediction Filters, Solution of		
	Normal Equations, AR Lattice and ARMA Lattice-Ladder Filters,		
	Wiener Filters for Filtering and Prediction.		
MODULE 4	Estimation of Spectra from Finite-Duration Observations of Signals.	8	
	Nonparametric Methods for Power Spectrum Estimation, Parametric		
	Methods for Power Spectrum Estimation, Minimum Variance Spectral		
	Estimation, Eigen Analysis Algorithms for Spectrum Estimation.		
MODULE 5	Adaptive Filters, Applications, Gradient Adaptive Lattice, Minimum	8	
	Mean Square Criterion, LMS Algorithm, Recursive Least Square		
	Algorithm.		
TEXT	1. J.G. Proakis and D.G. Manolakis, "Digital Signal Processing", Thir	d	
BOOKS	Edition, Prentice Hall.		
	2. B. Widrow and Stern, "Adaptive Signal Processing".		
REFERENCE	1. Sanjit K Mitra, "Digital Signal Processing", New edition, TMH.		
BOOKS	2. Digital Signal Processing, by Salivahanan, New edition, TMH.		
	3. N. J. Fliege, "Multirate Digital Signal Processing: Multirate S	Systems -	
	Filter Banks – Wavelets", 1st Edition, John Wiley and Sons Ltd,	1999.	
	4. S. Haykin, "Adaptive Filter Theory", 4th Edition, Prentice Hall,	2001.	
COURSE OUTCOME: After completion of course, student should be able to			
1. Design	1. Design and analyze the DSP signals and systems		
2 Design officient filters for compling rate conversion for different applications			

Design efficient filters for sampling rate conversion for different applications
 Appreciate the significance of normal equations in linear optimum filters and techniq

3. Appreciate the significance of normal equations in linear optimum filters and techniques used to solve them

4. Estimate the spectrum of signals from finite-duration observation of signals

5. Design adaptive filter models for different signal processing applications

BASICS OF VLSI ENGINEERING (OE)

COURSE OBJECTIVE		
1. Study of basic design procedure of digital MOS circuits.		
2. Writing VHDL code for digital circuits.		
3. Writing Ve	rilog code for digital circuits.	
MODULE	CONTENTS	HOURS
MODULE 1	VLSI Basics VLSI - Digital. System: VLSI Design Flow, Y Chart,	06
	Design Hierarchy Structural. VLSI - FPGA Technology: FPGA -	
	Introduction, Gate Array Design, Standard Cell Based Design, Full	
	Custom Design.	
MODULE 2	VLSI MOS Transistor: Structure of a MOSFET, Working of a	06
	MOSFET, MOSFET Current – Voltage Characteristics. VLSI – MOS	
	Inverter: Principle of Operation, Resistive Load Inverter, Inverter with	
	N type MOSFET Load, Enhancement Load NMOS, Depletion Load	
	NMOS, CMOS Inverter – Circuit, Operation and Description	
MODULE 3	VLSI - Combinational MOS Logic Circuits: CMOS Logic Circuits,	08
	Complex Logic Circuits, Complex CMOS Logic Gates, VLSI -	
	Sequential MOS Logic Circuits: CMOS Logic Circuits, CMOS Logic	
	Circuits.	
MODULE 4	VHDL - Introduction: Data Flow Modeling, Behavioral Modeling,	10
	Structural Modeling, Logic Operation – AND GATE, Logic Operation	
	- OR Gate, Logic Operation - NOT Gate, Logic Operation - NAND	
	Gate, Logic Operation - NOR Gate, Logic Operation - XOR Gate,	
	Logic Operation – X-NOR Gate, VHDL – Programming for	
	Combinational Circuits: VHDL Code for a Half-Adder, VHDL Code	
	for a Full Adder, VHDL Code for a Half-Subtractor, VHDL Code for	
	a Full Subtractor, VHDL Code for a Multiplexer, VHDL Code for a	
	Demultiplexer, VHDL Code for a 8 x 3 Encoder, VHDL Code for a 3	
	x 8 Decoder, VHDL Code – 4 bit Parallel adder, VHDL Code – 4 bit	
	Parity Checker, VHDL Code - 4 bit Parity Generator, VHDL -	
	Programming for Sequential Circuits ; VHDL Code for an SR Latch,	
	VHDL Code for a D Latch, VHDL Code for an SR Flip Flop, VHDL	
	code for a JK Flip Flop, VHDL Code for a D Flip Flop, VHDL Code	
	for a T Flip Flop, VHDL Code for a 4 - bit Up Counter, VHDL Code	
	for a 4-bit Down Counter.	
MODULE 5	Verilog - Introduction: Behavioral level, Register-Transfer Level,	10
	Gate Level, Lexical Tokens, Gate Level Modelling, Data Types,	
	Operators, Operands, Modules, Verilog - Behavioral Modelling &	
	Timing Control: Procedural Assignments, Delay in Assignment (not	
	for synthesis), Blocking Assignments, Nonblocking (RTL)	
	Assignments, Conditions, Delay Controls, Procedures: Always and	
	Initial Blocks.	
TEXT	1. Kang, Sung-Mo, and Yusuf Leblebici. "CMOS Digital Integrated	Circuits",
BOOKS	Tata McGraw-Hill Education, 2003.	

	2. S. Palnitkar, "Verilog HDL, A Guide to Digital Design and Synthesis", Second	
	Edition, Pearson Education, 2003.	
	3. Volnei A. Pedroni, "Circuit Design with VHDL", PHI, 2005.	
REFERENCE	1. N.H.E. Weste and D.M. Harris, "MOS VLSI design: A Circuits and	
BOOKS	Systems Perspective", 4th Edition, Pearson Education India, 2011	
	3. Z. Navabi, "Verilog Digital System Design", Second Edition, Tata McGraw	
	Hill, 2008.	
	3. Douglas L. Perry, "VHDL: Programming by Example", 4th Edition, Tata	
	McGraw Hill, 2004.	
COURSE OUTCOME		
After completion of this course, students should be able to		

- 1. Understand basics of VLSI circuits and systems.
- 2. Understand basic principles of MOS transistor and MOS inverters.
- 3. Design combinational as well as sequential logic circuits.
- 4. Write VHDL programming for logic circuits.
- 5. Write Verilog programming for logic circuits

AUDIO & VIDEO SYSTEMS (OE)

- 1. To study characteristics of sound and audio devices.
- 2. To study characteristics of digital television.
- To know the display systems

MODULE	CONTENTS	HOURS
MODULE 1	Characteristics of Sound: Nature of Sound, Pressure and Intensity of	
	Sound Waves, Sensitivity of Human Ear for Sound, Frequency of	
	Sound Waves, Overtones and Timbre, Intervals Octaves and	
	Harmonics, Pitch, Resonance Effect in Sound Systems, Helmholtz	
	Resonator, Reflection and Diffraction of Sound Waves. Audio Devices	
	and Their Applications: Microphones, Loudspeakers.	
MODULE 2	Loudspeaker: Column or Line Source Speakers, Baffles and	
	Enclosures, Multi-Way Speaker System (Woofers and Tweeters),	
	Consequence of Mismatch Between Amplifier Output and	
	Loudspeaker Impedance. Optical Recording: Types of Optical	
	Recording of Sound, Methods of Optical Recording of Sound on Film,	
	Reproduction of Sound from Films, Modern Method of Recording of	
	Sound for Movie Films, Compact Disc, Optical Recording on Disc,	
	Playback Process, Comparison of Compact Discs and Conventional	
	(Gramophone) Discs. Introduction to Blue Ray Technology,	
	Introduction to High Fidelity (Hi-Fi) Systems, Introduction to Public	
	Address Systems (PA-Systems), Introduction to Audio Amplifiers,	
	Introduction to Acoustic Reverberation, Introduction to AM/FM	
	Tuners, Introduction to USB MP3 Players.	

MODULE 3	Television Fundamentals: Elements of TV Communication System,
	Scanning, Synchronization, Aspect Ratio, Pixels, Resolution,
	Bandwidth, Composite Video Signal, Modulation of Video and Audio
	Signals, Monochrome and Color Cameras, Compatibility, Luminance
	and Chrominance Signal Picture Tubes Solid State Picture
	Transducers TV Broadcasting Systems Video Monitors Digital
	Television-Transmission and Recention: Digital System Hardware
	Signal Quantizing and Encoding Digital Satellite Television Direct
	To Home (DTH) Satellite Television Digital TV Receiver Merits of
	Digital TV Pacaivars Digital Tarrestrial Talavision (DTT)
	Introduction to Video on Demond Introduction To CCTV
	Introduction To CATV
MODULE 4	Stereophonic Sound Flat Panel TV Receivers 3-Dimensional TV
	EDTV <i>HDTV And Digital Studio Equipment</i> : Stereo Sound Systems
	Projection Television Flat Panel Display TV Receivers Three
	Dimensional (3-D) Television, Advances In 3D TV Technology
	Present Status Of New 3D Receivers Extended Definition
	Television(EDTV) Digital Equipment For Television Studios
	Electronic Control Of Studio Lights Digital Audio Recorders And
	Editing, Colour Receivers Of New Generation, Liquid Crystal And
	Plasma Screen Televisions: LCD Technology, LCD Matrix Types And
	Operation, LCD Screens For Television, Plasma And Conduction Of
	Charge, Plasma Television Screens, Signal Processing In Plasma TV
	Receivers, A Plasma Colour Receiver, LCD Colour Receivers, Single
	LCD Receivers, 3-LCD Colour Receivers, Plasma Or LCD-Which Is
	The Best Choice, Performance Comparison Of Plasma And LCD
	Televisions, Introduction To LED TV, RGB Dynamic LEDs, Edge-
	LEDs, Differences Between LED-Backlit And Backlit LCD Displays,
	Comparison Of Plasma TV And LED TV, Introduction To OLED TVs
MODULE 5	Projection Display Systems And Television Home Theatres: Direct
	View And Rear Projection Systems, Front Projection TV System,
	Transmittive Type Projection Systems, Reflective Projection Systems,
	Digital Light Processing(DLP) Projection System, Projection
	Television For Home Theatres, Choice Of Projection TV System,
	Essential Features Of Front Projectors, Comparison And Choice Of
	Rear Projection Receivers, Satellite Off-Air Tuners And Digital Video
	Recorders, Surround Sound Stereo Receiver, Top Of The Line Home
	Theatre.
TEXT	1. Modern Television Practice (Fourth revised edition) - R. R. Gulati, New
BOOKS	Age International Publishers.
	2. Audio and Video Systems (Second Edition) - R. G. Gupta, McGraw Hill
	Education Limited
REFERENCE	1. Television & Video Engineering (Second edition) - A. M. Dhake, McGraw
BOOKS	Hill Education Limited.
	2. Essential Guide to Digital Video - John Watkinson, Snell & Wilcox Inc.

 Publication.

 3. Guide to Compression - John Watkinson, Snell & Wilcox Inc. Publication Consumer Electronics - S. Bali, Pearson Education.

 COURSE OUTCOME

 After completion of this course, students should be able to

 1. Explain importance of Digital Audio and Video systems.

 2. Distinguish between Stereo & Hi-fi Amplifier

 3. Understand CD/DVD player mechanism.

 4. Explain AM/FM tuners, MP3 players and Blue-Ray Technology.

5. Explore advanced Digital colour Television systems.