COURSES OF STUDY

M. PHIL. DEGREE UNDER SEMESTER SYSTEM IN VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (Effective from July 2014)

DEPARTMENT OF PHYSICS VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY BURLA, SAMBALPUR- 768 018

COURSE STRUCTURE OF M.Phil. PROGRAMME (PHYSICS)

FIRST SEMESTER						
COURSE NO	COURSE TITLE	L	Т	Р	CREDIT	
MPPH-101	Research Methodology	4	0	0	4	
MPPH-102	Experimental Techniques	4	0	0	4	
MPPH-103	Elective-I	4	0	0	4	
MPPH-104	Elective-II	4	0	0	4	
MPPH-105	Review of Journal Paper and Seminar	0	0	6	4	
TOTAL			20			
SECOND SEMESTER						
COURSE	COURSE	L	Т	Р	CREDIT	
NO.	TITLE					
MPPH-201	Dissertation	0	0	24	16	
MPPH-202	Comprehensive viva voce	0	0	0	4	
	TOTAL			•	20	

Electives for M. Phil programme:

- 1. PHYSICS OF ULTRASONICS
- 2. RELATIVISTIC QUANTUM THEORY
- 3. PRINCIPLES AND METHODS OF CRYSTAL GROWTH
- 4. ASTRO PHYSICS
- 5. PHYSICS OF NANOMATERIALS
- 6. NUMERICAL METHODS & PROGRAMMING
- 7. QUANTUM SOLID STATE PHYSICS
- 8. NUCLEAR & HIGH ENERGY PHYSICS
- 9. MOLECULAR QUANTUM MECHANICS
- 10. ENERGY PHYSICS
- 11. PHYSICS OF AMORPHOUS MATERIALS
- 12. THIN FILM TECHNOLOGY
- 13. NON -LINEAR DYNAMICS
- 14. VACUUM SCIENCE & THIN FILMS
- 15. LASERS PHYSICS & NON-LINEAR OPTICS
- 16. NUCLEAR SCIENCE & TECHNOLOGY
- 17. LIQUID CRYSTALS
- 18. SPECTROPHYSICS
- 19. ULTRASONICS AND CHEMICAL PHYSICS
- 20. PHYSICS OF SUPERCONDUCTORS

Admission procedure through open advertisement and as per university norms

Academic regulation as per university rules Fee structure as per university norms

Duration of programme – 1 year

Academic calendar: July-2014 - June-2015

Head Department of Physics VSSUT, Burla

1. RESEARCH METHODOLOGY

Module 1:

Introduction to Research Methodology: Definition and objectives of Research. Types of research, Various steps in Research Process, Mathematical tools for analysis, Developing a research question-choics of aproblem, Literature review, Surveying, Synthesizing, Critical Analysis, Critical evaluation, interpretation, Research purposes, Ethics in Research, Citation, Impact factor,h-index, i-10 index.

Module 2:

Research report writing: Structure and component of research report, Types of reports, Lay-out of research reports, Mechanism of writing a research report, Thesis writing, scientific editing, Popular articles writing, Patent writing and filing.

Module 3:

Data collection and sampling designing: Data collection, Primary data, Secondary data, Processing and analysis of data, Measurement of relationship, Statistical measurement and significance, Random sampling, Systematic sampling, Stratified sampling, Cluster sampling and multistage sampling.

Module 4:

Quantative methods for problem solving: Probabilty, Sampling distribution, Fundamentals of statistical analysis and inference, Estimation, Hypothesis testing and application, Correlation and regression analysis, Types of study designing, Experimental designing, Error analysis.

Books for Reference

- Donald R Cooper, Pamela S. Schindler, Business Methods, 8/e, Tata McGraw-Hill Co. Ltd., 2006
- 2. Kothari C.K. (2004) 2/e, Research Methodlogy---- Methods and Techniques (New Age International, New Delhi).
- 3. Krishnswami K.N., Appa Iyer and Mathiranjan M. (2006) Management Research Methodology; Integration of Principles, Methods and Techniques(Pearson Education, New Delhi)
- 4. Bendar and Piersol, Random data: Analysis and Measurement Procedures, Willey Interscience, 2001.
- 5. Fundamentals of Research Methodology and Statistics, Yogesh Kumar Singh (New Age International Publisher)

2. EXPERIMENTAL TECHNIQUES

Module 1:

Low pressure & Low temperature:

Different types of Pumps:(Rotary, sorption, oil diffusion, turbo molecular, getter and cryo pumps); Mcleod, thermoelectric (thermocouple, thermister and pirani), penning, hot cathode and Bayard Alpert gauges; partial pressure measurement; leak detection; gas flow through pipes and apertures; effective pump speed; Gas liquifiers; Cryo-fluid baths; liquid He cryostat design; closed cycle He refrigerator; low temperature measurement

Module 2:

Analytical Techniques I: XRD; DSC, TGA & DTA, Neutron Scattering

Module 3:

Analytical Techniques II:

Spectrum analyzerb & Spectrophotometers

(FT-IR; UV-VIS-NIR, fluorescence and Raman spectrometer),

Module 4:

Analytical Techniques III: SEM, TEM, AFM, STM, LEED, HRTEM, **Books for Reference**

- **1.** A. D. Helfrick and W. D. Cooper, Modern electronic instrumentation and measurement techniques, Prentice Hall of India (1996).
- 2. J. P. Bentley, Principles of measurement systems, Longman (2000).
- **3.** G. K. White, Experimental techniques in low temperature physics, Calrendon (1993).
- **4.** A. Roth, Vacuum technology, Elsevier (1990).
- **5.** D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental analysis, Saunders Col. Pub

3. PHYSICS OF ULTRASONICS

Module 1:

Characteristics of ultrasonic waves - Propagation through matter-wave Equation, Characteristics, absorption, reflection and transmission of ultrasonic waves-acoustic impedance and intensity, ultrasonic transducers - piezoelectric, magneto restrictive transducers, electromagnetic transducers.

Module 2:

Propagation of ultrasonic waves in materials (gases, liquids, solids) – Absorption and attenuation in solids - general principles, Non-linear characteristics and Non-linear parameter.

Module 3:

Ultrasonic instrumentation - low intensity devices (Interferometer technique), pulse echo overlap and sing around technique - flaw detection, scanning methods - A, B and C scan techniques.

Module 4:

Ultrasonic propagation in pure liquids - low intensity methods for characterizing structure and interaction - high intensity waves - cavitations, emulsification and cleaning.

Books for Reference

- **1.** Ultrasonic methods and applications, by J. Blitz Butter worth Public.& co 1971.
- **2.** Introduction to Chemical Ultrasonics M.J.Blandamer Academic Press, London.
- **3.** Ultrasonics Bemsomcarlin McGraw Hill.
- **4.** Advances in Ultrasonics- R.Paikaray, G.Nath and A.K.Das.
- **5.** Ultrasonic methods in Solid State Physics John Truell and others; Academic Press.
- **6.** Physical Acoustics W.P.Mason Academic Press
- 7. Science and Technology of Ultrasonics Baldev Raj and Others Narosa.

4. RELATIVISTIC QUANTUM THEORY

Module 1:

KG equations: concepts of positive and negative energies, probability density and energy levels in H-atom, merit and demerits of KG equation

Dirac equation: covariant formulation, transformation properties, gamma matrices, plane wave solutions, Dirac equation in an electromagnetic field.

Module 2:

Zitterbewegung, orthonormality and completeness relation for spinors, H-atom in Dirac theory, Path integral approach: propagator in path integral approach, free particle propagator

Module 3:

Lagrangian formulation for particles, Scalar field, variational principle and Noether's theorem, complex scalar field, quantization of real and complex scalar field.

Module 4:

Applications of Non Relativistic Quantum Mechanics: infinite well, finite well with constant mass and its extension to multiple well systems, single and double barrier.

Quantum wire and dots: infinite deep rectangular wires, quantum boxes, density of states.

Books for Reference

- 1. Text book on Advanced Quantum Mechanics: J.J. Sakurai
- 2. Relativistic Quantum Mechanics: J.D.Bjorken & D.S. Drell
- 3. Quantum Mechanics and path integral: R.P. Feynman & A.R. Hibbs
- 4. Quantum Field Theory: C. Itzykson & J.B. Zuber
- 5. Quantum well, wires & dots: Paul Harrison (John Wiley & Sons Ltd.)

• Quantum Mechanics III

Relativistic Equations: Klein-Gordon and Dirac Equations; Lagrangian Field Theory, Symmetries and Conservation Laws, The Klein-Gordon Field, The Dirac Field, Photons: Covariant Theory, S-Matrix Expansion, Feynman Diagrams and Rules for QED, QED Processes in Lowest Order.

Advanced Topics: Radiative Corrections, Photon Self-Energy, Electron Self-Energy, Vertex Modification, Lamb Shift, Regularization, Vacuum Polarization, Anomalous Magnetic Moment, Renormalization of QED.

Recommended Texts

- 1. Quantum Mechanics by L. I. Schiff, Mc-Graw Hill.
- 2. Quantum Field Theory by F. Mandl and G. Shaw., Wiley
- 3. *An Introduction to Quantum Field Theory* by M. E. Peskin and D. E. Shroeder, Perseus Books