THIRD SEMESTER

Subject Code	MA1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Mathematics-III		
	SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Continuous Continuous (CDF). Variance and standard deviation a random variable. Distributions: Binomial, Poiss uniform (definitions and examples only). Moment g	Moments. Functions of son, normal, Gaussian,	6 Hrs
Module-II	Pairs of random variables. Joint probability d probability mass function. Marginal distribution. Fu variables, PDF and expected values of the sum of tw	inctions of two random	6 Hrs
Module-III	Probability Models of n Random Variable Independence of random variables and random random vectors. Expected value vector and correlate	vectors. Functions of	6 Hrs
Module-IV	Stochastic Processes. Definitions and examples processes. Random variables from random proprocess.	• 1	6 Hrs
Module-V	Markov Chains. Discrete-time Markov chain. I chain dynamics. Limiting state probabilities for a State classification		6 Hrs
Essential Reading	 Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley and Sons, INC. Gregory F Lawler, Introduction to Stochastic Processe, Chapman & Hall/ CRC Press (Taylor Francis Group). 		
Course Outcomes	The objective of this course is to familiarize the prospective engineers with techniques in Probability and Statistics. It aims to equip the students to deal with advanced level of Statistics that would be essential for Engineering disciplines. CO1. To apply different distributions in real life problems of industries. CO2. To deal with problems that contains multivariable probability distribution. CO3.To enrich knowledge Probability Models of multi-Random Variables. CO4. To learn use of stochastic processes in daily life. CO5. Application of eigen values in solving matrices.		

Subject Code	MT1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Metallurgical Thermodynamics and	Kinetics	
Pre-requisites	Mathematics-I, Mathematics – II		
	SYLLABUS		
Module-I	Importance of Thermodynamic Thermodynamics; concept of state Equation of states, thermodynamic pr of a single component system, Interna- enthalpy.	ocesses, Phase diagram	6 Hrs
Module-II	First law of thermodynamics, thermodynamics, entropy, and entropy processes, free energy and its significance as a function of temper irreversible process, criteria of functions, combined statements, Maximulated Helmoltz equation, Concept of standards.	by changes for various nificance, free energy rature, reversible and equilibrium, auxiliary well's relations, Gibbs-	6 Hrs
Module-III	Fugacity, activity, equilibrium const law of thermodynamics, temperature statistical interpretation of entrop C _p andC _v , consequences of third law, E diagrams.	ant, Concept of Third dependence of entropy, by, relation between	6 Hrs
Module-IV	Solutions: partial molal quantities, solutions, Roult's law; Henry's la equation, regular solution, Chemical proposition diagrams for bindetermination of liquidus, solidus and	aw, Gibbs – Duhem potential, Free energy – ary alloy systems,	6 Hrs
Module-V	Introduction of metallurgical kinetics: kinetics: gas-solid, solid-liquid, liquid systems, Concept of Johnson-Me analysis, Thermodynamics of electrelectrolytes.	heterogeneous reaction d-liquid and solid-solid hl equation, thermal	6 Hrs
Essential Reading	 Introduction to the Thermodynamic Taylor and Francis. Textbook of Materials and Meta Ghosh; Prentice Hall of India Pvt. Ltd 	llurgical Thermodynami	ics by A.
Supplementary Reading	 Problems in Metallurgical The Upadhyaya, G. S., &Dube, R. K.; Science and Technology, Elsevier. Textbook of Materials and Metal Ghosh; Prentice Hall of India Pvt. Ltd 	International Series on Ilurgical Thermodynami	Materials

Course	CO1. Analyze and incorporate the modern thermodynamic models for
Outcomes	description of chemical reaction and phase transformation in materials
	CO2. Demonstrate reaction kinetics and stability criteria of different
	metals based on its energy content and temperature.
	CO3. Define the use thermodynamic laws in day-to-day applications in
	both domestic and industrial sector.
	CO4. Analyze and express the kinetics of the mass transport in solids
	including the process of surface and interfaces
	CO5. Work independently with the literature in search, choice and
	checking of correctness of the necessary information

Subject Code	MT1202	Total Contact Hour	30
Semester	3 rd	Total Credit	3
Subject Name	Introduction to Physical Metallurgy		
Pre-requisites	Chemistry, Physics		
	Syllabus		
Module-I	Introduction, Atomic structure of aspects in crystals, crystal systems directions, atomic packing efficience crystal systems, Solidification of pure and heterogeneous nucleation proceed concept of super cooling, microstructure solidification of metal in ingot mould.	s, crystal planes and ey, voids in common e metal, Homogeneous esses, cooling curve, ctures of pure metals,	6 Hrs
Module-II	Mechanical properties of metals, deformation of metals, CRSS, Slip and equilibrium, Concept of alloy format solid solutions, factors governing solid solutions, phase rule, binary phase	concept of plastic d twinning. Concept of ation, types of alloys, olid solubility; Unary	6 Hrs
Module-III	Isomorphous, Eutectic, Peritectic, Monotectic and Monotectoid system application, interpretation of solidit microstructure of different alloys below effect of non-equilibrium conhomogenization.	n, Lever rule and its fication behavior and	6 Hrs
Module-IV	Concept of heat treatment of s normalizing, hardening and temper effects brought about by these process on mechanical properties. Effect elements on the Fe-Fe ₃ C and Fe-C diagram of the second seco	ering; Microstructural ses and their influences of common alloying	6 Hrs
Module-V	Iron cementite and iron- graph microstructure and properties of diffe and cast irons). Physical metallurgy of Al, Bronze, and Brass.	ite phase diagrams, rent alloys (both steels	6 Hrs
Essential Reading	1. Avner S.H., Introduction to Physic McGraw Hill Education (India) Limite 2. Callister W D 2007 Callister's Ma Indian Adaptation adapted by R Balass	ed). aterials Science and Eng	gineering:
Supplementary Reading	1. Physical metallurgy principle by R 2. Foundations of Materials Science William F. Smith and JavadHashe Education (April 9, 2009)	e and Engineering; 5th	n Edition

Course Outcomes

- CO1. After successful completion of the course, the learners would be able to Familiarize themselves with those terms, concepts, and definitions used to describe the properties and processes of common engineering metals.
- CO2. Students will be reacquainted with fundamental principles of chemistry and physics which predetermine and control behavior of metals in response to external forces, whether mechanical, physical (electrical, magnetic, optical, thermal) or chemical in nature.
- CO3. A fundamental understanding can be developed about the relationships between material composition, structure, and properties resulting from processing or service.
- CO4. Students can understand the testing procedures used to characterize some of the more common physical properties for engineering metals, and how these properties should be used when specifying conditions where optimum performance without failure can be expected.
- CO5. Students can get insight idea about atomistic and defect structures, and how they result in the microstructure and influence the properties of metals

Subject Code	MT1203	Total Contact Hour	30
Semester	3 rd	Total Credit	3
Subject Name	Transport Phenomena		
Pre-requisites	Calculus		
	SYLLABUS		
Module-I	Fluid Flow: Classification of fluids, E and Turbulent flows. Flow through measurement, Application of dimensiflow.	pipes and ducts. Flow	6 Hrs
Module-II	Steady state and Transient condu dimensional steady state problems composite walls, Cylinder and Sphere	of heat flow through	6 Hrs
Module-III	Convective heat transfer, equation of convections Concept of boundary layer and applications.		6 Hrs
Module-IV	Radiation, Nature of thermal radia bodies, Stefan and Boltzmann la Intensity of radiation, lamberts law, V	aw, Kirchhoff's laws, liew factor.	6 Hrs
Module-V	Heat transfer between two black walls in an enclosure. Combined effect of convection, conduction and radiation. Overall heat transfer coefficient. Mass Transfer and Kinetics: Steady state one-dimensional mass diffusion of component through stationary media. Convective mass transfer in fluids, concept of concentration boundary layer, Mass transfer coefficient.		
Essential Reading	1. F.P. Incropera, D. P. Dewitt, T. Fundamentals of Heat and Mass Trans 2. H.S. Ray, Kinetics of Metallurgical	sfer, Wiley.	5. Lavine,
Supplementary Reading	1. Heat and Mass Transfer: Fundamentals and Applications 5 Edition, Yunus A. Cengel, Afshin J. Ghajar 2. Heat Transfer 10thEdition by JP Holman Mc Graw Hill		
Course Outcomes	CO1. Students will be able to express the different mode of heat transfer and develop heat transfer equipment as per need. CO2. Demonstrate basic equations and Laws for heat transfer problems CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state or transient state for conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Convection heat transfer by Theoretically and Experimentally. CO5. Apply the concepts of Heat Transfer theory and application in Industrial and day to day life.		

Subject Code	CS1205	Total Contact Hour	30
Semester	3rd	Total Credit	2
Subject Name	Programming in Python		
Course Objective	 Introduction to Python Language and its features. To understand the concept of Python Program using sequence data and Control statements. To be able to understand and create User Defined Function. To understand the concept of OOPs and its implementation. To understand the concept of strings and file handling 		ence data
	SYLLABUS		
Module-I	Beginning Python Basics: Introduction to Python, Application of Python Data Identifiers, Literals, Constants. Python Ir and expressions. Naming Convention Managing Input and Output, Conce Conditional statement, Looping state continue, pass & return statements, Nesting	Types, Keywords, adentation. Operators as with examples, ept of Indentation. ements, break and ag of loops.	
Module-II	Modules: Built-in Modules, Import states and Time Modules. Array and its operation and Characters, List: slicing, bound, clo and methods, Adding Element: append, and insert). Mutability: Sort, reverse, remap, Filter.	ons, Handling Strings ning, nested list, list extend, count, index	8 Hrs
Module-III	Tuple and methods, Sets and methods operation, iterator and methods. Function: Introduction to Functions, Anonymous functions (Lambda Fu Functions.	passing arguments,	6 Hrs
Module-IV	Object Oriented Programming: Classe methods. Encapsulation, Data Abstraction Destructor and Inheritance. Exception Handling: Handling Exception finally	action, Constructor,	6 Hrs
Module-V	Strings and Regular Expressions: Objects, Escape Sequence, Iterating String Formatting, Regular Expressions: File Handling: Introduction to Foperations, Directories.	ings, String Module, Re-Module.	4 Hrs
Essential Reading	1. Python Programming for Beginners by 2. Python Cookbook by David Beazley an		

Supplementary	1. Introduction to Python Programming By Gowrishankar S. Veena A.		
Reading	2. Python Programming: Using Problem Solving Approach, Oxford		
	University Press by ReemaThareja.		
	3. Python Programming University Press by ChSatyanarayan, M		
	Radhika, B N Jagadesh.		
Course	CO1: Understand the Python Language and its features.		
Outcomes	CO2: Apply sequence data and control statements to solve problem.		
	CO3: Able to create user defined functions to solve problems.		
	CO4: Analyze the concept of OOPs and its implementation.		
	CO5: Create the python program using strings and files.		

Subject Code	HS1202	Total Contact Hour	30
Semester	3rd	Total Credit	2
Subject Name	Organizational Behaviour		
Course Objective	1: To understand the relevance of organizational behavior concepts and theories in real-life organizational settings & to develop skills in critical thinking, decision—making, problem-solving in applying organizational behavior concepts to practical situations. 2: To provide an understanding of individual behavior in the workplace, including personality, motivation, perception, learning, and attitudes. 3: To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivation and leadership in managing organization. 4: To explore how organizational culture affects behavior, communication and decision making by enhancing creativity and innovation and give an episteme how to cope with change and stress. 5: To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaboration across culture		
	SYLLABUS		
Module-I	Fundamentals of OB & Understanding the OB: Evolution of OB through Quality Definitions, Scope & Importance of OB Globalization Ethical Perspective) and opport of OB, applying OB to solving problems.	Management movement, B,Challenges (Diversity,	6 Hrs
Module-II	Understanding the Determinants of Personality: Determinants of personality, (Type &Psychoanalytic theory), MBTI, Big of other major traits influence workplace behavior Perception: Meaning, Perceptual Process, Apworkplace. Motivation: Motivation Framework, Content hierarchy & Hertzberg's two factors theory), Equity & Vroom's Expectancy theory), Job Importance of motivation at Workplace. Learning: Theories of learning (Classical Conditioning, & Cognitive Theory), Principle modification through learning.	t theory (Maslow's need Process theory (Adam's Design and motivation, Conditioning, Operant	6 Hrs
Module-III	Understanding Group and Team Bel Group & Team: Defining and classifying group of group development Group properties: Role cohesiveness, Group decision making. Leadership: Meaning, Definition & types of theories of leadership: Trait theories, Behavior theories, Contemporary approaches to leadership in organizations.	oups, the five-stage model es, norms, status, size and of leadership, Traditional oral theories, Contingency	6 Hrs

Module-IV	Understanding the Organizations & the Process	6 Hrs
	Organizational Culture: Meaning, Definition, Cultural dimensions,	
	effect of Organizational culture	
	Organizational Change & Development: Nature, Levels & types of	
	Change, Change Agents: Resistance to Change, Force field theory of	
	Change, Managing the Change.	
Module-V	Conflict & International Organizational Behavior:	6 Hrs
	Managing Conflict and Negotiations: Meaning, views, & levels of	
	Conflict, Process of conflict, Conflict resolution techniques.	
	Transactional Analysis: Meaning, Importance of TA, Life position, Ego states and their encounters.	
	IOB: Internationalization of Business, Cultural differences and	
	similarities, Understanding Interpersonal behavior across culture	
	through Hofstede's Cultural Dimensions.	
Essential	1. "Organizational Behavior: Text, Cases, & Games" by K. Aswat	happa
Reading	Publisher: Himalaya Publishing House	ларра.
3	2. "Essentials of Organizational Behavior" by Stephen P. Robbins and Ti	imothy
	A. Judge. Publisher: Pearson Education.	-
Cumplementers	"Organizational Behavior: Improving Performance and Commitment	in the
Supplementary Reading	Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Michael J. W	
Keaung	Publisher: McGraw-Hill Education.	CSSOII.
	2. "Organizational Behavior: Human Behavior at Work" by John W. New	vstrom
	and Keith Davis. Publisher: McGraw-Hill Education.	
	3. "Organizational Behavior: An Evidence-Based Approach" by Fred Lu	uthans.
	Publisher: McGraw-Hill Education.	Ctavan
	4. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann VonGlinow. Publisher: McGraw-Hill Education.	
	5. "Organizational Behavior and Management" by Ivancevich, Konopask	
	Matteson. Publisher: McGraw-Hill Education.	20, 00110
	6. "Organizational Behavior: Theory, Research, and Practice" by Jo	ohn R.
	Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: Wile	ey
Course	CO1. Explain the importance of organizational behavior in imp	roving
Outcomes	individual and organizational effectiveness with Ethical practices.	o
	CO2. Evaluate the effectiveness of different leadership styles and	l their
	application in different situations.	
	CO3.Develop critical thinking, Creativity& Innovation, problem-solving	g, and
	communication skills necessary for success in organizational settings.	1 1
	CO4. Develop strategies for managing organizational change effective	ly and
	maintaining sustainability. CO5. Apply organizational behavior concepts and theories to pr	actical
	organizational situations.	actical

SESSIONAL

Subject Code	MT1281	Total Contact Hour	16
Semester	3 rd	Total Credit	1.5
Subject Name	Metallurgical Thermodynamic & Ki	inetics Laboratory	
	List of Experiments		
1	To determine the tumbler and abrasion	indices of iron ore, sam	ple.
2	To determine the micuum indices of co	ock sample.	
3	To determine the partial molal volume solution	of each component in b	inary
4	To determine the aquarium constant and free energy change for the C+CO2 =2CO reaction.		
5	Reduction of iron ore pellets by cock powder and calculation of % reduction and % swelling.		
6	Reduction of iron ore by non-coking coal power and calculation of % reduction and % swelling.		
7	To carry out palletization of iron ore fi	nes.	
8	To carry out firing of pellets and measurement of their crushing strength.		
Course	CO1. Analyze and demonstrate the transport processes.		
Outcomes	CO2. Ability to analyze the heat, mass CO3. Ability to analyze the industrial boundary conditions. CO4. Ability to develop steady and tin their limitations. CO5. Analyze and demonstrate the pel	problems along with apmedependent solutions a	opropriate

Subject Code	MT1282	Total Contact Hour	16
Semester	3 rd	Total Credit	1.5
Subject Name	Introduction to Physical Metallurgy	Laboratory	
	List of Experiments		
1	To make the crystal structures and to s of ball models.	tudy these systems, with	the help
2	To study the principles and operation of	of metallurgical microsco	ope.
3	To prepare specimen of some metals a examination.	nd alloys for microstruct	tural
4	To study the microstructure, grain size of the carbon steels.		
5	To study the microstructure, of the given cast iron samples.		
6	To study the microstructure, grain size of the selected nonferrous alloys.		
7	To find out the grain size number of the given metals and alloys.		
8	Colour metallography of different ferrous metals.		
Course Outcomes	CO1. Demonstrate the different features of optical microscope and their use in metallography. CO2. Develop fundamental skills to prepare best metallographic sample for metallography study. CO3. Develop skills to analyze the microstructure type and evaluate the corresponding property the sample will show. CO4. Define different microstructures and defects seen under a microscope. CO5. Characterize different sample both ferrous and nonferrous with the help of color etching techniques.		

Subject Code	MT1283	Total Contact Hour	20
Semester	3 rd	Total Credit	1.5
Subject Name	Transport Phenomena Laborato	ry	
	List of Experiment	ts	
1	Study the type of flow by Reynolds	s experiment	
2	Determination of total thermal resistance composite wall	stance and thermal cond	uctivity of a
3	Determination of thermal conductive	vity of Asbestos	
4	Determination of thermal conductiv	vity of a given metal rod	
5	Determination of heat transfer coef	ficient in natural convec	tion
6	Determination of heat transfer coefficient in forced convection		
7	Determination of emissivity of a given surface		
8	Determination of Stefan Boltzmann constant		
9	Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness of the given heat exchanger		
10	Determination of exchange capacity of a cationic resin in the softening of water		
Course Outcomes	CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state or transient state for conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Convection heat transfer by Theoretically and Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life.		

Subject Code	CS1285	Total Contact Hour	20
Semester	3rd	Total Credit	1.5
Subject Name	Machine Learning Using Python I	Laboratory	
Course Objectives	 Introduction to Python Language and its features. To understand the concept of Python Program using sequence data and Control statements. To be able to understand and create User Defined Function. To understand the concept of OOPs and its implementation. To understand the concept of strings and file handling. 		
	List of Experimen	nts	
1	Program on basics of python Progra	mming Language.	
2	Program on basic Data Structures in Python.		
3	Program on Conversion from on data type to another.		
4	Program on Functions in Python.		
5	Program using Object Oriented Programming in Python.		
6	Program using Inheritance in Python.		
7	Program using String in Python.		
8	Program using Regular expression in Python.		
9	Program using File Handling in Python.		
10	Program using basics of Pandas and Matplotlib module in Python.		
Course Outcomes	CO1: Understand the Python Language and its features. CO2: Apply sequence data and control statements to solve problem. CO3: Able to create user defined functions to solve problems. CO4: Analyze the concept of OOPs and its implementation. CO5: Create the python program using strings and files.		

FOURTH SEMESTER

Subject Code	MT1204	Total Contact Hour	30
Semester	4 TH	Total Credit	3
Subject Name	Phase Transformation		
Pre-requisites	Introduction to Physical Metallurgy	y	
	SYLLABUS		
Module-I	Classification of phase transformat and Kinetics: Introduction, Equ energy change with single Thermodynamic parameters in be phase diagrams, Free energy V diagrams.	component system, binary system, Binary	7Hrs
Module-II	C		5Hrs
Module-III	Nucleation and growth: Hom homogeneous nucleation rate, Het Heterogeneous nucleation rate, G	ogeneous nucleation, erogeneous nucleation, rowth of a pure solid, netics, Diffusional diagrams, Effect of	6Hrs
Module-IV	Ferrite: Nucleation and growth, P mechanism, nucleation and transformation: mechanism, nucleation in age hardening decomposition, massive transformations.	earlitic transformation: growth, Bainitic cleation and growth, ng alloys, spinodal	6Hrs
Module-V	Diffusionless transformation transformations: characteristics, cr of Martensitic nucleation, martens Recrystallization and grain growth.	rystallography, theories site growth. Recovery,	6Hrs
Essential Reading	 Phase transformations in metal Easterling and Sharif, CRC press. Phase transformation in mater publishers & Distributors. 	ls and alloys by D.A.	

Supplementary Reading	 Solid State Phase Transformations by V Raghavan, PHI. Materials Science and Engineering by W D Callister and adapted by R Balasubramaniam (New Delhi: Wiley) 		
Course	CO1. Develop enhanced critical thinking, analytical and problem-		
Outcomes	solving skills in materials science and engineering based on concepts		
	of metallurgical thermodynamics and kinetics.		
	CO2. Demonstrate the basic principles underlying liquid to solid and		
	solid-state phase transformations in a range of materials.		
	CO3. Implement the importance of phase transformations for		
	controlling microstructure and properties in engineering alloys.		
	CO4. Define the driving forces and kinetic barriers for phase		
	transformations in solid state.		
	CO5.Produce the desired properties of materials which are affected by		
	the atomistic diffusion processes.		

Subject Code	MT1205	Total Contact Hour	30	
Semester	4 th	Total Credit	3	
Subject Name	Mineral Processing			
Pre-requisites	Mathematics-I, Mathematics - II			
	SYLLABUS			
Module-I	Introduction to mineral beneficiation		6 Hrs	
	=	studies and its importance. Comminution: Fundamentals of comminution, crushing: construction and operational		
	features of jaw, gyratory, cone and	-		
Module-II	Grinding: Construction and opera		6 Hrs	
111000010	mill, Critical speed of the ball		0 1115	
	closed circuit, Size separation: S	Sieving and screening,		
	laboratory sizing and its important	-		
	interpretation of size analysis data,			
Module-III	Classification: Movement of solid	_	6 Hrs	
	and hindered settling of particle classifiers, e.g. sizing and sorting	• • •		
	mineral industry. Concentration:			
	media separation.	jigging, tuomig, tense		
Module-IV	Froth flotation: Construction and	operational features of	6 Hrs	
	froth floatation cell, reagents used in floatation processes,			
	Magnetic and electrostatic separation: Theory and			
	application of magnetic and electrostatic separation			
N.C. 1 1. X7	techniques in mineral industry.	:	C II	
Module-V		intering, palletizing,	6 Hrs	
	briquetting and their applications in ferrous and non- ferrous metal industries, testing of agglomerates,			
	important mineral deposits in India			
Essential	1	Dressing by A. M.	I. Gaudin.	
Reading	2. Mineral Processing Technology	by Berry A. Willis.		
Supplementary	1. Rate Processes In Metallurov I	ov Mohanty, A. K. Pl	II Learning	
Reading	 Rate Processes In Metallurgy by Mohanty, A. K.; PHI Learning. Callister W D 2007 Callister's Materials Science and Engineering: 			
8	Indian Adaptation adapted by R Balasubramaniam (New Delhi:			
	Wiley).			
Course	CO1. Analyze and demonstrate the	mineral beneficiation p	process in an	
Outcomes	economical way.			
	CO2. Evaluate different mineral beneficiation process according to the nature of the minerals and selectively apply the most suitable process			
	of beneficiation.	ery appry the most suit	anie process	
	CO3. Develop the technology to u	se the available low-ora	ade ores and	
	minerals.	se the available low git	and oron und	
	CO4. Use of wastes and recovery	of associated minerals	and metals,	
	which will satisfy the "go green slo	gan".		
	CO5. Analyze and demonstrate the	-	r to improve	
	the productivity of mineral benefici	ation plants.		

Subject Code	MT1206	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Unit Process and Principle of Ext	raction	
	SYLLABUS		
Module-I	Overview of Extractive Metallurgy processes; Pyrometallurgy, Hydrometallurgy and Electrometallurgy; Thermodynamic and Kinetic Principles of metal extraction; Ellingham diagrams, Calcinations; Roasting; Predominance Area Diagram, Roasting Practices, Smelting, Formation and function of slag and their calculations,		5Hrs
Module-II	Metallo-thremic and carbothermic reduction of oxides, Smelting Furnaces, Matte Smelting, Pyro metallurgical processes using vacuum Hydrometallurgy: Leaching; Theory of Leaching; Role of oxygen in leaching operation; Bacterial and microbial leaching; Contact reduction of metals in aqueous solutions;		
Module-III	Gaseous reduction of metals in aqueous solutions; Ion exchange, Solvent Extraction and Electrolysis, Electrometallurgy: laws of electrolysis, electrolyte Structure of solvent media; Electrolysis of aqueous solution; Electrolysis of fused salts; Cell design; Electrorefining.		
Module-IV	Halide Metallurgy and Halogenation., Basic approaches of refining, preparation of pure compounds; Purification of crude metals produced in bulk;		
Module-V	Concept of activity, chemical potential, fugacity, real and idle solution, and thee significance in metal extraction, Numerical problems relevant to Pyro, Hydro and Electrometallurgical processes		
Essential Reading	 Principles of Extractive Metallurgy: A. Ghosh & H.S. Ray, IIN Publications, Kolkata 1984 Principles of Extractive Metallurgy: Rosenquist, T., McGrawhill - Kogakusha International – 1983 		
Supplementary Reading	1. Mineral Processing and Extractive Metallurgy by Corby G. Anderson (Editor), Robert C. Dunne (Editor), John L. Uhrie (Editor) 2. Metallurgy a Brief Outline of the Modern Processes for Extracting the More Important Metals by W. Borchers.		

Course	CO1. Illustrate flowsheet of process route for any types of ore.		
Outcomes	CO2. Student can able to apply thermodynamics principles when dealing with any type of ore.		
	CO3. Students can clearly analyze the proper requirement of different		
	raw materials for metal production.		
	CO4. Student can solve existing issue and new issues which occurs in a		
	plant.		
	CO5. Analyze the best route and techniques for metal extraction and		
	refining economically n profitably.		

Subject Code	MT1207	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Deformation Behavior of Materia	als	
	SYLLABUS		
Module-I	Introduction: Scope of the subject visco-elastic deformation. Deforms and compression testing, effect of rate Continuum mechanics: Conce in 3D stress and strain tensor.	ation behavior: Tensile temperature and strain	6 Hrs
Module-II	Principal stresses and strains and principal axes, mean stress, stress deviator, maximum shear, equilibrium of stresses, equations of compatibility. Elastic behavior of materials: Constitutive equations in elasticity for isotropic and anisotropic materials, strain energy, elastic stiffness and compliance tensor.		
Module-III	Effect of crystal structure on elastic constants. Plastic response of materials-a continuum approach: classification of stress-strain curves, yield criteria. Microscopic basis of plastic deformation: Elements of dislocation theory, movement of dislocation, elastic properties of dislocation.		
Module-IV	Intersection of dislocation, dislocation of dislocation, dislocations. Plastic deformation Critical resolved shear stress, deformation band and kink band single crystal; stress-strain curves materials.	and multiplication of n of single crystals: ormation by twinning, l, strain hardening of	6 Hrs
Module-V	Plastic deformation of polycrystal grain boundaries in deformation, boundaries, yield point phenom strengthening by solutes, precipi fibres. Deformation in non-metall and deformation of polymers, dislocations in intermetallics, an associated with dislocations in cera	strengthening by grain nenon, strain ageing, tates, dispersoids and lic materials: structure concept Super lattice and concept of charge mics.	6 Hrs
Essential Reading	 Mechanical Metallurgy, 3rd Ed., McGraw Hill Book Company, New Delhi, 1986 - G.E Dieter. Mechanical Behavior of Materials, McGraw Hill Book Company, New Delhi, 1990 - T.H. Courtney. 		
Supplementary Reading	1. Mechanical Behaviour of Materials by Norman E. Dowling 2. Mechanical Behaviour and Testing of Materials" by a K Bhargava and C P Sharma.		

Course	CO1. Calculate and develop the concepts of stress and strain
Outcomes	relationships for homogenous, isotropic materials.
	CO2. Calculate and predict the yielding phenomena occurs in metals
	and alloys using yield criteria.
	CO3. Calculate and describe the internal stresses and deformations that
	result in combined loading conditions
	CO4. Evaluation of different strengthening mechanism occurs in
	metals and alloys.
	CO5. Basic knowledge of deformation mechanism in polymers and
	intermetallics.

Subject Code:	CS1209	Total Contact Hour	30
Semester:	4 th	Total Credit	2
Subject Name:	Artificial Intelligence and Machine Learning		
Course Objectives:	1.To familiarize students with the fundamental concepts, theories, and		
	applications of Artificial intelligence& Machine learning. Students will gain		
	insight into the various subfields of AI& ML.		
	2.Students will have a clear understanding of the fundamental concepts and		
	terminology of Artificial intelligence& Machine learning, enabling them to		
	discuss and comprehend AI-related topics.		
	3. Students will have a clear understand	•	• •
	4. Students will have a clear under	erstanding about Clusteri	ng and related
	techniques.	tending about Classificati	ion and related
	5. Students will have a clear unders techniques.	tanding about Classificati	ion and refated
	SYLLABUS		
Module I	Introduction to Artificial Intelligence, A	Applications of Al State-	8 Hrs
MIOGUIC I	space problem, Problem solving by		O III S
	DFS, Iterative Deepening Search, I		
	search: A*, AO*, MIN_MAX Algorith		
Module II	Knowledge representation and reasoni		5 Hrs
1110441011	logic, propositional logic, First-orde	-	
	conversion to clausal form, inference ru		
Module III	Unsupervised Learning: K-means, H		5 Hrs
Wiodule III	clustering, Density based clustering, Validation Method: LOO,		
	K-fold cross validation.		
Module IV	Supervised Learning: Decision Tree, N	Jaïve Baves classifier. K-	6 Hrs
TVIOUGIC I V	NN, Introduction to regression. Perform		0 1115
	matrix, Precision, Recall, Sensitivity, S		
Module V	Neural Network Artificial Neuron a	- ·	6 Hrs
1,100,010	functions, Neural network architec	,	V 1115
	multilayer feed forward networks, recurrent networks, Training		
	of ANN, Back propagation, RBFNN.	··· · · · · · · · · · · · · · · · · ·	
Essential Reading	1.E.Rich and K. Knight, Artificial Intelligence-TMH		
g	2.Neuro Fuzzy and Soft Computing, J. S. R. JANG, C.T. Sun, E. Mitzutani, PHI		
Supplementary	1.Artificial Intelligence, Dan W Patterson, Prentice Hall of India		
Reading	2.Computational Intelligence Principles, Techniques and Applications, Amit		
Reading	Konar, Springer publication.		
	3. M. Gopal, Applied Machine Learning, McGraw Hill Education, 2018		
Course Outcomes:	CO1:Understand the basics of Search techniques, Knowledge representation and		
Course Outcomes:	reasoning in Artificial Intelligence.		
	reasoning in Artificial Intelligence. CO2:Understand the Supervised machine learning and Unsupervised machine		
	learning.		
	CO3:Analyzevarious machine learning models.		
	CO4:Implement various Supervised machine learning techniques and analyze		
	them.		
	CO5:Implement various Unsupervised machine learning techniques and analyze		
	them.		

Subject Code	HS1201	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Engineering Economics		
	SYLLABUS		
Module-I	Basic Principles of Economics: Definition significance of economics for Engineers. Description Determinants, Elasticity-Government policies Macroeconomics concept: National (GDP/GNP/NI/Disposable Income etc.) and and open economies.	mand & Supply and their s and application. Basic income accounting	6 Hrs
Module-II	-		6 Hrs
Module-III	Production, Cost and Market Structure: Production function: short run production function and law of variable proportion; Long run production function: Isoquants, isocost line, returns to scale, Optimum factor combinations, Cost Analysis: Concepts, Classification- Short run and Long run cost curves, Analytical and accounting cost concepts; Market structure: Market classifications, Perfect competition: Characteristics, price and output determination in Short run and long run, Monopoly market: Price and output determination, price discrimination Modern theories of firms: Baumol's theory of sales revenue maximisation, Bain's limit pricing model.		6 Hrs
Module-IV	Money and Banking: Money-Function of Money, Demand for Money Theory. Quantity theory of money; Banking: Commercial Banks and their Functions, Central bank's Functions. Role of the Banks in Economic Development, Monetary and Fiscal Policy Tools and their impact on the economy.		6 Hrs
Module-V	Capital Budgeting and Investment Analysis: Time value of money: use of cash flow diagram, Annual economic worth, present worth, future worth, Internal Rate of Return (IRR), Net Present Value (NPV), Payback period method, Analysis of public projects: Cost-Benefit analysis, Cost effectiveness.		
Essential Reading	 Koutsoyiannis, A. (1979). Modern Microel Ltd., London Pindyck, R. S., D. N. Rubinfeld and P. L. Pearson India, New Delhi. Panneerselvam, R. (2007). Engineering Ed New Delhi. Mankiw Gregory N. (2002). Principles of Education 	Meheta (2009). Microecon conomics, Prentice-Hall of	omics,

Course	CO1- Utilise economics principles in consumption process		
Outcomes	CO2- Describe the utility measurement and measure the utility associated with		
	risk		
	CO3- Efficient use of resources in production and take decision regarding		
	optimum output		
	CO4- Describe market mechanism and analyse product market to take proper		
	decisions		
	CO5- Implement economic principles in company related decision making		

SESSIONALS

Subject Code	MT1284	Total Contact Hour	16
Semester	4 th	Total Credit	1.5
Subject Name	Mineral Processing Laborator	y	
	List of Experime	nts	
1	To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker		
2	Crushing of ore/coal in the jaw of by sieving.	crusher and average size	determination
3	To study the jaw crusher and determine the actual capacity and reduction ratio, and verification of Rittinger's law of crushing.		
4	Crushing of ore/coal in a roll crusher and average size determination by sieving.		
5	To study the effect of grinding with grinding time in ball mill.		
6	To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density of each fraction of the products		
7	Beneficiation of ore pulp mix using floatation cell.		
8	Study of magnetic separator and effect of field on the efficiency of the process.		
Course Outcomes	CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze the role of average size and reduction ratio on mineral beneficiation process. CO4. To demonstrate and analyze different crushing laws to define the relationship between the energy consumption and final product size. CO5. Demonstrate the role of gravity separation using wilfley table.		

Subject Code	MT1285	Total Contact Hour	20		
Semester	4th	Total Credit	1.5		
Subject Name	Process Metallurgy Laboratory				
List of Experiments					
1	To study the calcination process using carbonate ore and roasting process using sulphide ore.				
2	To find out percentage reduction of given iron ore using coal and coke separately.				
3	To find out percentage swelling of given iron ore using coal and coke separately.				
4	To carryout palletisation of iron ore fines and to measure its green strength and strength after hardening.				
5	To carry out extraction of metals from oxide and sulphide ore using hydrometallurgy route.				
6	To carry cementation process /contact reduction process of copper from leach liquor (copper sulphate).				
7	To carryout electro refining/electro plating of metals like cu/nickel/zinc.				
8	To prepare a sand mould for casting.				
9	To perform casting of low melting point metals and to study the ingot microstructure from different zones.				
10	To carry out purification of two liquid compounds using distillation process.				
Course Outcomes	CO1. Produce a suitable product from carbonate and sulphide ore for subsequent metal production CO2. Evaluate the property of iron ore pellet and lump iron ore so as to select the best raw materials from iron making CO3. Develop skills to produce metal using hydrometallurgy route. CO4. Develop skills to produce metal by melting and casting route and can evaluate the macor structure of ingot. CO5. Develop skills to produce pure metals out of a given ore.				

Subject Code	MT1286	Total Contact Hour	16		
Semester	4th	Total Credit	1.5		
Subject Name	Phase Transformation Laboratory				
List of Experiments					
1	Measurement of volume fraction, surface area in two phase and single-phase materials.				
2	To study the Recovery, Recrystallization and Grain growth behavior of given material.				
3	To study the phase transformation of Pb-Sn eutectic alloy using DSC.				
4	Draw the cooling curves of Pb-Sn alloy with the help of DTA.				
5	To study the precipitation Hardening behavior mechanism in Alalloys.				
6	Nucleation of Ice from Water: A Modelling Approach.				
7	Study of nucleation and growth in Eutectoid steel.				
8	To study the surface hardening treatments like carburizing/Boronizing on steels.				
Course Outcomes	CO1. Analyze the role of phase transformations on the development of microstructure and properties of metallic materials. CO2. Produce the microstructures resulting from near-equilibrium vs. far-from-equilibrium thermal treatments CO3. Apply the fundamental principles that determine the evolution of structures from liquid melt as well as diffusion processes. CO4. Demonstrate the experimental techniques in correlating the structure with the desired properties. CO5. Implement the mechanism of phase transformation in surface hardening treatments.				

Subject Code	MT1287	Total Contact Hour	12	
Semester	4 th	Total Credit	1.5	
Subject Name	Fuel Testing Laboratory			
List of Experiments				
1	To determine the calorific value of coal and coke using bomb calorimeter.			
2	Proximate analysis of coal and coke.			
3	To determine flash point and fire point of a given sample such as kerosene oil. Diesel and petrol by Pensky- Martins /or other apparatus.			
4	To determine the effect of temperature on kinematic viscosity of glycerin by redwood viscometer.			
5	To determine the bulk and true density of coal sample by using density meter.			
6	To determine the flow rate of oil with the help of flow meter.			
Course Outcomes	CO1. Able to measure the calorific value of solid fuels. CO2. Proximate analysis of coal and coke. CO3. Evaluate the concept of flash and fire point of liquid fuels. CO4. Analyze the kinematic viscosity of different liquid fuels. CO5. Demonstrate the significance of testing of solid and liquid fuels.			