THIRD SEMESTER

Subject Code	MA1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Mathematics-III		
	SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Cumulative Distribution Function (CDF). Variance and standard deviation. Moments. Functions of a random variable. Distributions: Binomial, Poisson, normal, Gaussian, uniform (definitions and examples only). Moment generating function.6 Hrs		6 Hrs
Module-II	Pairs of random variables. Joint probability density function. Joint probability mass function. Marginal distribution. Functions of two random variables, PDF and expected values of the sum of two random variables		
Module-III	Probability Models of n Random Variables. Vector notation. 6 Hrs Independence of random variables and random vectors. Functions of random vectors. Expected value vector and correlation matrix.		
Module-IV	Stochastic Processes. Definitions and examples. Types of stochastic processes. Random variables from random processes. The Poisson process.6 Hrs		
Module-V	Markov Chains. Discrete-time Markov chain. Discrete-Time6 HrsMarkov chain dynamics. Limiting state probabilities for a finite6 HrsMarkov chain. State classification.6 Hrs		6 Hrs
Essential Reading	 Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley and Sons, INC. Gregory F Lawler, Introduction to Stochastic Processes, Chapman & Hall/ CRC Press (Taylor Francis Group). 		
Course Outcomes	The objective of this course is to familiarize techniques in Probability and Statistics. It ai with advanced level of Statistics that woul disciplines. CO1. To apply different distributions in real CO2. To deal with problems that cont distribution. CO3.To enrich knowledge Probability Mode CO4. To learn use of stochastic processes in CO5. Application of eigen values in solving mat	ms to equip the students ld be essential for Engi life problems of industri ains multivariable pro els of multi-Random Va daily life.	to deal neering es bability

Subject Code	EC1201	Total Contact Hour	30	
Semester	3rd	Total Credit	3	
Subject Name	Analog Electronic Circuits			
Course Objective	 Acquire basic knowledge of BJT biasing and stabilization and develop the ability to analyze transistor re and hybrid models. Study the characteristics and analyze different configurations of single-stage MOSFET amplifiers. Able to design amplifier circuits using BJT and study the low and high-frequency response of BJT amplifiers. Understanding of operational amplifier's specifications and parameters. Study of operational amplifier's various applications. Understand about various compound configurations. Study of various oscillator circuits. Analysis of various power amplifiers and voltage regulators. 			
	SYLLABUS			
Module-I	BJT DC Analysis, Bias Stabilization, BJT modelling: The re model, Hybrid Model, BJT Low frequency small signal analysis, Effect of RS and RL.			
Module-II	MOSFET DC Analysis, Small signal modeling and operation, Single-stage MOSFET Amplifiers, Effect of RS and RL.7 Hrs			
Module-III	BJT Frequency Response: Low frequency analysis of single stage6 HrsBJT amplifier, Bode Plot, Miller Effect Capacitance, High6 frequency response of BJT Amplifier, Square Wave testing of amplifiers.			
Module-IV	MOSFET compound configurations: Cascade, Cascode and 5 Hrs Darlington connections, Current Source Circuits, Current Mirror Circuit, Differential amplifier Circuit.			
Module-V	Oscillator Circuits: Positive feedback circuit as Oscillator, 5 Hrs Barkhausen's criteria, R-C phase shift, Colpitt, and Hartley Oscillators, Power Amplifiers: Class A, Class B, Push-pull amplifier.			
Essential Reading	 Electronic Devices and Circuit Theory- R. Boyelsted and L. Nashelsky, Prentice Hall. Microelectronic Circuits- Sedra/Smith, Oxford University Press. Design of Analog CCMOS Integrated Circuit- B. Razavi, McGraw Hill. 			
Supplementary Reading	 Millman's Integrated Electronics –Jacob Millman and Christos Halkias, Chetan D Parikh, Mcgraw Hill. Electronic Devices – Floyd, Pearson Education 			

Course	After completion of course student should be able to:	
Outcomes	1. Acquire basic knowledge of BJT biasing and stabilization and develop the	
	ability to analyze transistor re and hybrid models.	
	2. Understand the characteristics and analysis of different configurations of	
	single stage MOSFET amplifiers.	
	3. Design amplifier circuits using BJT and study the low and high frequency	
	response of BJT amplifiers.	
	4. Understand operational amplifier's specifications and parameters and its	
	various applications. Student will learn about various compound	
	configurations.	
	5. Analyze various power amplifiers and voltage regulators and they will	
	have thorough knowledge of various oscillator circuits.	

Subject Code	EC1202	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Basic Communication Engineering		
Pre-requisites	Statistics, Signal and System		
Course Objective	 To understand time domain and frequency domain spectrum representation of signals To analyze the transmitted power and bandwidth of AM and FM transmission To understand and analyze the generation and detection of AM and FM Signals To analyze the performance of AM and FM transmission in presence of channel noise Comparison of output SNR for AM and FM receivers. To understand the role of preemphasis and deemphasis filters for 		
Module-I	improvement in SNRFourier Series, Fourier Transform, Scaling, Time-shifting and Frequency shifting properties, Convolution, Parseval's Theorem, Correlation between waveforms, Auto and cross correlation,.6 Hrs		
Module-II	Amplitude Modulation, Generation of AM, Spectrum of AM6 HrsSignal, Balanced Modulator, Envelope Demodulator, Square lawDemodulator, DSB-SC, SSBSC, and VSBSC: Generation andDemodulationDemodulation		6 Hrs
Module-III	Frequency Modulation Systems: Conc Frequency, Generalized concept of Frequency modulation, Frequency Deviation, Spectr Sinusoidal Modulation, Bandwidth of Fl and wideband FM, Carson's Rule, Generation Demodulator, Pre-emphasis and De-emph	Angle Modulation, um of FM Signal with M Signal Narrowband on of FM Signal, FM	6 Hrs
Module-IV	Mathematical Representation of Noise, Frequency Domain Representation of Noise, Power Spectral Density, Spectral Components of Noise, Linear Filtering, Noise Bandwidth, Quadrature Components of noise.6 HrsNoise in AM Systems: Super heterodyne Principle, Calculation of Signal Power and Noise Power in SSB-SC, DSB-SC and DSBC, Figure of Merit Calculation.0		
Module-V	Noise in FM System: Mathematical Repro Limiter and Discriminator, Figure of Mer FM and AM, SNR improvement usi Deemphasis.	it comparison between	6 Hrs

Essential Reading	Principles of Communication Systems by Taub & Schilling,2ndEdition.Tata Mc Graw Hill.
Supplementary Reading	 Modern analog and digital communication system, by B. P. Lathi, 3rd Edition, Oxford University Press. Communication Systems by Simon Haykin, 4th Edition, John Wiley and Sons Inc.
Course Outcomes	 After successful completion of the course, the students are able to CO1. Understand basic analog transmission system. CO2. Analyze modulation format, calculation of transmitted power and bandwidth. CO3. Understand practical implementation and limitation of analog receiver CO4. Analyze the AM and FM receiver performance in presence of noise by calculating output SNR. CO 5. Calculate Figure of Merit for AM and FM transmission in presence of noise.

Subject Code	EE1202	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Network Theory		
Course Objective	 To make the students capable of analyzing electrical network using theorems. To study resonating circuit, transient response & Laplace transform methods of Reactive linear circuit. To Infer and evaluate two port network parameters and their interrelationship & Graph Theory. To Examine the properties of Network functions and check the stability. To synthesize the Passive networks. 		
	SYLLABUS		
Module-I	ELEMENTARY CIRCUIT ANALYSI THEOREMS: Series and parallel com Kirchhoff's laws, Node and Mesh transformation, Source transformation, A Theorems in DC & AC Circuits (Superposition, Maximum Power Transfer	bination of elements, Analysis, Star-Delta pplication of Network Thevenin's, Norton's,	6 Hrs
Module-II	RESONANCE: Series Resonance, Selectivity. Q-factor TRANSIENT RESPONSE OF Transient response of series R-L, R-C & and sinusoidal excitation. LAPLACE AND ITS APPLICATION: Laplace derivative and an Integral function, In theorem, Convolution. WAVEFORM SYNTHESIS: The Unit st Function, Waveform Synthesis.	PASSIVE CIRCUITS: R-L-C circuit with DC TRANSFORMATION transformation of a nitial and final value	6 Hrs
Module-III	TWO PORT NETWORK ANALYSIS: N Y, Hybrid & ABCD}-Parameters, Con and Symmetry, Inter relationship between network, different types of Interconn networks, Image Impedances, Equivale representation. INTRODUCTION TO GRAPH THEOI twig and link. Properties of tree in graph, I Matrix, Tie-Set matrix, Cut-Set matrix.	dition of Reciprocity Parameters of two port ections of two port ent T- & π - section RY: Relation between	6 Hrs
Module-IV	PROPERTIES OF NETWORK FUNC Transfer Impedance & admittance, Voltag Ratio, Concept of Poles and Zeros i Restriction on location of poles & zeros, R of Stability, Time domain behavior from p	e and Current Transfer n network functions, outh-Hurwitz Criterion	6 Hrs

Module-V	SYNTHESISOFPASSIVENETWORKS:Hurwitz6 HrsPolynomials, properties of Hurwitz polynomials, procedure of testing for Hurwitz characteristics, Properties of positive real functions, procedure for testing of PR function, Network Synthesis, Reactive Networks, Pole-Zero interpretation in LC networks, LC network synthesis, Foster's canonic forms, Cauer Canonic forms, Identification of Foster & Cauer form of RL/RC networks, Foster & Cauer form synthesis of Lossy networks.6 Hrs		
Essential Reading	1. Network Analysis, by M.E. Van Valkenburg, 3rd Edition, PHI 2.Citcuit Theory, Analysis & Synthesis By A. Chakrabarti, Dhanpat Rai & Co.		
Supplementary Reading	1.Network Analysis and Synthesis, By Franklin F. Kuo, Wiley 2. Network Theory: Analysis And Synthesis 1st Edition By Smarajit Ghosh.		
Course Outcomes	 2. Network Theory: Analysis And Synthesis 1st Edition By Smarajit Ghosh. CO1. Analyze the electrical networks using Theorems. CO2. Select the resonating circuit and solve the transient behavior of passive circuits. CO3. Verify the reciprocal and symmetrical circuits using circuit parameters and to apply the graph theory. CO4. Check the stability of a network and to understand the location of the network. CO5. Synthesize the network from its equation. 		

Subject Code	EE1203	Total Contact Hour	35
Semester	3 rd	Total Credit	2
Subject Name	Optimization and Soft Computing		•
Pre-requisites	Knowledge of MATLAB		
	SYLLABUS		
Module-I	Introduction to Optimization: Objective function and constraints, Solution approaches, Multiobjective optimization. Evolution of Soft Computing: What is Soft Computing? Difference between Hard and Soft computing, Requirement of Soft computing, Major Areas of Soft Computing, various types of soft computing techniques, Applications of Soft Computing.		8 Hrs
Module-II	Introduction to Fuzzy Logic: Fuzzy Sets : Basic Definition and Terminology, Set-theoretic Operations, Fuzzy versus Crisp set, Fuzzy Relation, Linguistic variables, Fuzzification and Defuzzification Method, Membership Function Formulation and Parameterization, Fuzzy Rules and Fuzzy Reasoning, Fuzzy If-Then Rules, Fuzzy Reasoning, Fuzzy Inference Systems, Mamdani Fuzzy Models, Some applications of Fuzzy logic.		8 Hrs
Module-III	Artificial Neural Network: Concept of Biological neurons and its working, Important Terminology in ANN, Supervised and Unsupervised Learning, Simulation of biological neurons to problem solving, Different ANNs architectures, Training techniques for ANNs, Applications of ANNs to solve some real-life problems.		8 Hrs
Module-IV	Introduction to genetic algorithm and their terminology, Working Principles, operators in genetic algorithm- coding - selection - cross over – mutation, Stopping condition for genetic algorithm flow, Introduction to Fitness function.		7 Hrs
Module-V	Introduction to Non-traditional Metaheuristic Optimization Techniques, Concept of Swarm Intelligence Algorithm, Particle Swarm Optimization, Ant colony optimization (ACO).		4 Hrs
Essential Reading	 D.K. Chaturvedi, Soft Computing Techniques and its Application Electrical Engineering, Springer A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Spri 3. S.N.Sivanandam, S.N.Deepa, Principles of Soft Computing, Wiley Pvt Ltd. 		pringer.
Supplementary Reading			

Course	CO1. Formulate optimization problem and evaluate the application of soft	
Outcomes	computing for solution.	
	CO2. Apply fuzzy logic and reasoning to handle uncertainty and solve	
	engineering problems.	
	CO3. Apply Artificial Neural Network to solve optimization problems.	
	CO4.Apply genetic algorithm to solve optimization problems.	
	CO5.Apply swarm intelligence algorithms to solve optimization problems.	

Subject Code	HS1201	Total Contact Hour	30
Semester	3rd	Total Credit	2
Subject Name	Engineering Economics		
	SYLLABUS		
Module-I	Basic Principles of Economics: Definition, Nature, Scope and significance of economics for Engineers. Demand & Supply and their Determinants, Elasticity-Government policies and application. Basic Macroeconomics concept: National income accounting (GDP/GNP/NI/Disposable Income etc.) and identities for both closed and open economies.		6 Hrs
Module-II	Utility Analysis: Cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equi-marginal utility; Indifference curve-Concepts, properties, Budget line, Equilibrium of the consumer, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman- Savage hypothesis		6 Hrs
Module-III	Production, Cost and Market Structure: Production function: short run production function and law of variable proportion; Long run production function: Isoquants, isocost line, returns to scale, Optimum factor combinations, Cost Analysis: Concepts, Classification- Short run and Long run cost curves, Analytical and accounting cost concepts; Market structure: Market classifications, Perfect competition: Characteristics, price and output determination in Short run and long run, Monopoly market: Price and output determination, price discrimination Modern theories of firms: Baumol's theory of sales revenue maximisation, Bain's limit pricing model.		6 Hrs
Module-IV	Money and Banking: Money-Function of Money, Demand for Money Theory. Quantity theory of money; Banking: Commercial Banks and their Functions, Central bank's Functions. Role of the Banks in Economic Development, Monetary and Fiscal Policy Tools and their impact on the economy.		6 Hrs
Module-V	Capital Budgeting and Investment Analysi use of cash flow diagram, Annual economic w worth, Internal Rate of Return (IRR), Net Prese period method, Analysis of public projects: C effectiveness.	orth, present worth, future ent Value (NPV), Payback	6 Hrs

Essential	1. Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press		
Reading	Ltd., London		
	2. Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics,		
	Pearson India, New Delhi.		
	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India,		
	New Delhi.		
	4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia.		
Course	CO1- Utilise economics principles in consumption process		
Outcomes	CO2- Describe the utility measurement and measure the utility associated with		
	risk		
	CO3- Efficient use of resources in production and take decision regarding		
	optimum output		
	CO4- Describe market mechanism and analyse product market to take proper		
	decisions		
	CO5- Implement economic principles in company related decision making		

SESSIONALS

Subject Code	EC1281	Total Contact Hour	16
Semester	3 rd	Total Credit	1.5
Subject Name	Analog Electronic Circuits Laboratory		
Course Objective	 To make the students familiar with the operation of BJTs. To make the students familiar with the operation MOSFETs. To make students familiar with the operations of Oscillators To make students familiar with the operations of Power amplifiers. To make students familiar with the operation of OP-AMP 		
List of Experiments			
1	Study of biasing circuits of BJT.		
2	Study of biasing circuits of MOSFET.		
3	Measurement of pinch off voltage and plot transfer characteristics and drain characteristics of MOSFET.		
4	Plotting of gain frequency response of RC coupled amplifier.		
5	Study of Class A, B power amplifier		
6	Study of integrator and differentiator circu	its using OPAMP	
7	Study and calculation of phase-shift of RC	C phase shift oscillator.	
8	Calculation of rise time, tilt, and low cut off frequency by square wave testing of amplifier		
Course Outcomes	 After completion of the sessional course students should be able to:- 1. Analyze the BJTs and MOSFETs biasing circuits. 2. Study and plot the characteristics of BJTs and MOSFETs. 3. Design oscillators for applications. 4. Design and study power amplifier. 5. Know the applications OP-AMP. 		

Subject Code	EC1282	Total Contact Hour	20
Semester	3 rd	Total Credit	1.5
Subject Name	Basic Communication Engineering Laboratory		
Pre-requisites	Signal and systems, Fourier Analysis		
Course Objective	 To familiar with signal and spectrum generation using DSO To analyze the results for AM Generation and Detection Circuit To analyze the results for FM Generation and Detection Circuit To understand AM and FM using MATLAB programming To understand the suppressed carrier modulation and demodulation using MATLAB programming 		
	List of Experiments		
1	Write MATLAB code to find convolution, autocorrelation, cross-correlation and power spectral density of different functions and Modulation.		
2	Write MATLAB program for generation and detection of i)DSB-SC ii)SSB-SC		
3	Study of balanced modulator and detector of AM signal (using H/W Kit-C020).		
4	To study amplitude modulated waveforms for different modulation depths and measure the value of modulation index (using H/W Kit- C09A).		
5	Study the demodulation process and measure detection efficiency (using H/W Kit- C009).		
6	Generate and detect frequency modulation (FM) signals using MATLAB.		
7	Detect FM signal using Foster-Seely discr	iminator (using H/W K	it- C15C).
8	Study of PLL using MATLAB code and detection of FM signal (using H/W Kit- C15B).		
9	Write MATLAB code to generate and det	ect PM.	
10	Study of Voltage Controlled Oscillator (us	sing H/W Kit- C25A)	
Essential Reading	Principles of Communication Systems by Taub & amp; Schilling,2nd Edition.Tata Mc Graw Hill.		
Supplementary	1. Modern analog and digital communication system, by B. P. Lathi, 3rd		
Reading	Edition, Oxford University Press.		
	2. Communication Systems by Simon Ha	ykin, 4th Edition,John	Wiley and
	Sons Inc.		
Course	After completion of course, student should	1 be able to	
Outcomes	CO1 Understand spectrum of signals.	of AM signal	
	CO2 Understand generation and detection CO3Understand generation and detection	-	
	-		
	CO4 Understand spectrum of AM and FM signals. CO5Understand principle of operations of Voltage Controlled Oscillator used in modulation.		

Subject Code	EE1282	Total Contact Hour	20
Semester	3 rd	Total Credit	1.5
Subject Name	Network Theory Laboratory		
Course Objective	 To make the students capable of analyzing electrical network using theorems. To study resonating circuit, transient response of Reactive linear circuit. To Infer and evaluate two port network parameters. To Examine the properties of Network functions. To analyze the Passive networks 		
	List of Experiments		
1	To verify the maximum power transfer theorem for different internal resistance.		
2	Study of Norton's, Thevenin's and superp	osition Theorem.	
3	Study of transient response of series and parallel RL & RC circuit		
4	Study of transient response of series and parallel RLC circuit.		
5	Determination of Impedance (Z), Admittance (Y) & Hybrid parameters of two port network		
6	Determination of driving point and transfer functions of a two port ladder network and verify with theoretical values.		
7	Measurement of Z- parameter of T- and π - networks.		
8	To verify all the theorems (Norton's, Thevenin's, superposition and maximum power transfer theorem) using circuit maker.		
9	Determination of Impedance (Z) & Ac port network using circuit maker.	lmittance(Y) parameter	rs of two
10	Determination of driving point and transfer functions of a two port ladder network using circuit maker.		
Course Outcomes	 CO1. Analyze the electrical networks using Theorems. CO2. Select the resonating circuit and solve the transient behavior of passive circuits. CO3. Verify the reciprocal and symmetrical circuits using circuit parameters CO4. Check the stability of a network. CO5. Synthesize the network. 		

Subject Code	EE1283	Total Contact Hour	14
Semester	3rd	Total Credit	1.5
Subject Name	Optimization and Soft Computing Laboratory		
	List of Experiments		
1	1 Solution of single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadprog, fmincon).		
2	Solution of single objective optimization using OCTAVE sqp and GAMS solvers.		
3	Implementation of fuzzy tool box to solve opt	imization problem.	
4	Design of Fuzzy rule base and Fuzzy Inference System to solve an optimization problem.		
5	Implementation of Genetic Algorithms to solve an optimization problem.		
6	Implementation of Artificial Neural Networks to solve optimization problems.		
7	Implementation of Particle Swarm Optimization to solve optimization problems.		
Course	1		
Outcomes	 Upon completion of the course, the students will be able to: CO1. Demonstrate the use of MATLAB, OCTAVE and GAMS solvers. CO2. Demonstrate the use of fuzzy logic to solve optimization problems. CO3. Demonstrate the use of genetic algorithm to solve optimization problems. CO4. Demonstrate the use of artificial neural networks to solve optimization problems. CO5. Demonstrate the use of swarm optimization algorithms to solve optimization problems 		

FOURTH SEMESTER

Subject Code	EC1204	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Digital System Design		
Course Objective	 To understand concepts of digital electronics and to formulate, design and solve different digital circuits. To design, implement and simulate various combinational and sequential circuits. To understand various logic families and memory modules. To provide the students with a solid foundation in engineering fundamentals required to solve problems and also to pursue higher studies. To understand the fundamentals of VLSI design flow. 		
	SYLLABUS		
Module-I	Logic Simplification: Review of Boolean Algebra, SOP & POS forms, Canonical forms, Karnaugh maps up to 5 variables, Binary codes, Code Conversion, Binary addition and subtraction using 1's and 2's complements.4 Hrs		
Module-II	Combinational Logic Design: MSI devices like Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Binary multiplier, magnitude comparator, Multiplexers, Encoder, Decoder,		
Module-III	Sequential Logic Design: Building blocks like S-R, D, T, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Analysis of clocked sequential circuits, Finite state machines, Design of synchronous FSM,6 Hrs		
Module-IV	Sequential Logic Design: Building blocks like S-R, D, T, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Analysis of clocked sequential circuits, Finite state machines, Design of synchronousFSM,6 Hrs		
Module-V	VLSI Design flow: Design entry: Schematic, FSM & HDL, Digital Design using Verilog: Introduction, Verilog Naming Conventions, Operators in Verilog, Verilog Data types, Behavioural Modelling, Structural Modelling, Combinational and Sequential Logic in Verilog, blocking and Non-Blocking Statement, Procedural Statements.4 Hrs		
Essential Reading	 R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009. Digital Design, 4th edition by M. Morris Mano, M. D. Ciletti, Pearson Education. Samir Planitkar, "Verilog HDL", Prentice Hall, 2nd edition,2003. 		

Course	After completion of course student should be able to:		
Outcomes	1. Understand different number systems and logic gates		
	2. Design and analysis of different combinational logic circuit.		
	3. Design and analysis of different sequential logic circuit.		
	4. Understand the characteristics of different logic families and memory.		
	5. Implement digital circuits in different models in Verilog HDL.		

Subject Code	EC1205	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Advanced Communication Engineering		
Pre-requisites	Analog Communication Systems, Stochas	tic Process, Random Va	riables
Course Objective	 To explain basic concepts analog to digital conversion using sampling, quantization and encoding. To introduce the concept of line codes and basic digital baseband data transmission. To discuss the effect of different modulation schemes on the digital communication systems To elaborate the importance of pulse shaping and limitation of ideal Nyquist channel. To introduce the data acquisition system. 		
	SYLLABUS		
Module-I	Sampling Theorem, Low Pass Signal, Band Pass Signal, Signal8 HrsReconstruction, Practical Difficulties, The Treachery of Aliasing, The Anti-aliasing Filter, Application of Sampling Theorem, PAM, PWM and PPM Signal Generation and Detection.8 Hrs		
Module-II	 Pulse Code Modulation: Quantization of Signals, Uniform and Non-Uniform Quantization, Encoder, Transmission Bandwidth and output SNR, Output SNR of PCM in presence of quantization noise. Differential PCM, Delta Modulation(DM), Adaptive Delta Modulation, Noise in DM, Output SNR of DM, Comparison of SNR between PCM and DM 		
Module-III	Line Coding, Various line codes, Characteristics of Line Codes6 Hrs		
Module-IV	Pulse Shaping: Nyquist Criterion for zero ISI, Scrambling, Regenerative Repeater, Preamplifier, Equalizer, Eye diagram, Timing Extraction, Timing Jitter, Base-band Signal Receiver, Matched Filter as Optimum Receiver, , Probability of Error of the Matched Filter, Matched Filter as Integrate and Dump Circuit		
Module-V	Passband Digital Data Transmission, Geometrical Representation of Signals, Relation between Signal and Vector domain using concept of analyzer and synthesizer ,Matched Filter receiver and Correlator, BPSK, BFSK, QPSK, Minimum Shifting Keying (MSK), Use of Signal Space to calculate probability of Error for BPSK, BFSK and QPSK, Comparison of PSD of different digital modulated signals, Constellation Mapper in MIMO OFDM communication51		

Essential	1. Principles of Communication Systems by Taub& Schilling,2nd Edition.	
Reading	Tata Mc Graw Hill.	
	2. Modern analog and digital communication system, by B. P. Lathi, 3rd Edition, Oxford University Press.	
Supplementary	1. Communication Systems by Simon Haykin, 4th Edition, John Wiley and	
Reading	Sons Inc.	
Course	After successful completion of the course, the students are able to	
Outcomes	understand	
	CO1. Basic steps to generate digital signals and the basic building blocks of	
	a digital communication system.	
	CO2. Effect of noise in baseband pulse transmission and performance	
	evaluation using SNR.	
	CO3. Signal Space Diagram using different digital modulation and	
	demodulation techniques.	
	CO4. Understand the reconstruction of data sequence in presence of noise	
	and ISI.	
	CO5. Analysis of BER and BER performance of Digital Receiver.	

Subject Code	EC1206	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Electromagnetics		
Course Objective	 1.To acquire the knowledge of basic mathematical concepts of vector fields and their applications. 2.To impart the knowledge of electrostatic fields and their behavior. 3.To familiar with Maxwell's Equations and their importance in Electromagnetic field theory. 4.To identify, formulate and solve the electromagnetic fields and waves propagation problems in different mediums. 5.To introduce the concepts of EM wave propagation through transmission lines with their problems and solutions. 		
	SYLLABUS		
Module-I	Vector calculus – orthogonal Coordinate System, Transformations of coordinate systems; Gradient, Divergence, Curl – their physical interpretations; Laplacian operator, Divergence Theorem, Stokes Theorem. Coulomb's law, electric field intensity, Field due to a continuous volume distribution, Electric Flux, flux density and its properties.		
Module-II	Gauss' law, Application of Gauss's law, Potential and Potential gradient, work done in moving a charge in an electric field, Potential difference, Electric dipole, Energy density in Electrostatic field, Conductors, Continuity Equation and relaxation time, Boundary conditions, Poisson's & Laplace's equations. Uniqueness theorem, Method of Images.		6 Hrs
Module-III	Biot-Savart's law, Ampere's circuit law and applications, Maxwell's equation for static fields, Scalar and Vector Magnetic Potential. Forces due to magnetic fields, Magnetic torque and moment, Magnetic dipole. Magnetic Boundary conditions.5 Hrs		
Module-IV	Faraday's law, Concept of Displacement Current. Maxwell's equations in final form, Time-harmonic EM fields, Helmholtz wave equation, Plane Wave Propagation in lossless, lossy dielectric medium and conducting medium, Plane wave in good conductor, Surface resistance, depth of penetration, Poynting's Theorem.6 Hrs		
Module-V	High Frequency Transmission line: The Lumped-Element Circuitmodel for a Transmission line. Wave propagation. The losslessline. Field Analysis of Co-axial Transmission Lines. R,L,C, Gparameters of Co-axial & Two wire.		7 Hrs

Essential	1. Elements of Electromagnetic by Mathew N. O. Sadiku, Oxford University	
Reading	Press.	
	 Knowledge of VectotMicrowave Engineering by D. M. Pozar, John Willy & Sons. 	
Supplementary	1. Electromagnetic Fields Theory Fundamental, B.S. Guru & Huseyn R.	
Reading	Hiziroglu, Thomson Asia Pvt. Ltd. Singapore	
-	2. Electromagnetic Waves and Radiating Systems, E.C. Jordan & K.G.	
	Balmain, PHI publication	
	3. Microwave Devices and Circuits, Samuel Y, Liao, Pearson Education	
Course	CO1. Knowledge of Vector calculus and to be familiar with orthogonal co-	
Outcomes	ordinate system.	
	CO2. Understanding of basic laws related with electrostatic and electro-	
	dynamics.	
	CO3. Solving Maxwell's equation for Electromagnetic wave propagation.	
	CO4.Understanding the nature of Electromagnetic wave propagation in various	
	medium.	
	CO5.Familiar with transmission lines and their properties used at microwave	
	frequency.	

Subject Code	EC1207	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Electronics Instrumentation		
Pre-requisites	Basic electronics, Basic electrical engine	eering	
Course Objective	 To explain basic concepts of measurement and bridge configurations. To understand the applications of instruments used for measurement of basic parameters. To discuss the circuits of CRO and its applications. To elaborate the importance of signal generators and analyzers in Measurement. To introduce the data acquisition system. 		
	SYLLABUS		
Module-I	Basics of Measurements: Accuracy, Precision, Resolution, Reliability, Repeatability, Validity, Errors and their analysis, Classification of Standards of measurement. Bridge Measurement: DC bridges- Wheatstone, Kelvin, AC 		
Module-II	Oscilloscopes: Cathode Ray Tube, Vertical and Horizontal Deflection Systems, Delay lines, Probes and Transducers, Oscilloscope measurement Techniques. Special Oscilloscopes – Sampling oscilloscope, Digital storage oscilloscope.		
Module-III	Signal Generators:Sine wave generator,Frequency –6 HrsSynthesized Signal Generator,Sweep frequency Generator.Function Generators.Signal Analysis:Wave Analyzer,Analyzer (Basic type and FFT).		
Module-IV	Signal Generators:Sine wave generator, Frequency – Synthesized Signal Generator, Sweep frequency Generator. Function Generators.6 HrsFunction Generators.Signal Analysis: Wave Analyzer, Spectrum Analyzer (Basic type and FFT).6 Hrs		
Module-V	Digital Data Acquisition System: Interfacing transducers to Electronics Control and Measuring System. Instrumentation Amplifier, Isolation Amplifier. Computer-Controlled Test Systems: Interfacing using IEEE-488 GPIB Bus. Controller: Open Loop, Feed Forward and Feed Back, ON-OFF,P,I,D, PID control (A.K. Sawhney, and P. Sawhney , 9th edition ch 35).6 Hrs		6 Hrs

Essential	1. Modern Electronics Instrumentation & Measurement Techniques, by		
Reading	Albert D. Helstrick and William D. Cooper, Pearson Education. Selected		
	portion from Ch.1, 5-13.		
	2. Electrical and Electronic Measurements and Measuring Instruments -		
	A.K. Sawhney, and P. Sawhney (19th edition, 2011), Dhanpat Rai		
	Publication (Selected portion from Ch. 2,3, 14,16,20,21,22,23,25 and 35).		
Supplementary	1. Elements of Electronics Instrumentation and Measurement-3rd Edition		
Reading	by JoshphJ.Carr. Pearson Education. Selected portion from		
	Ch.1,2,4,7,8,9,13,14,18,23 and 25.		
	2. Doebelin, E.O., Measurement systems, McGraw Hill, Fourth edition,		
	Singapore, 1990.		
Course	CO1.Gain basic knowledge about measurement and measuring Instruments.		
Outcomes	CO2.Understand CRO circuits in details with special types and applications.		
	CO3. Familiar with signal generators and analyzers.		
	CO4.Learn about frequency counters and transducers.		
	CO5. Introduced with digital data acquisition system, IEEE-488 GPIB Bus		
	Interface and basic controllers.		

Subject Code	CS1205	Total Contact Hour	30
Semester	4 th	Total Credit	2
Subject Name	Programming in Python		
Course Objective	 Introduction to Python Language To understand the concept of P Control statements. To be able to understand and created and created the concept of OC To understand the concept of Striptic Stript	ython Program using sequence d ate User Defined Function. PPs and its implementation.	ata and
	SYLLABUS		
Module-I	Beginning Python Basics Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops.		6 Hrs
Module-II	 Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter 		8 Hrs
Module-III	Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods.6 IFunction: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions.6 I		
Module-IV	Object Oriented Programming: Classes and Objects, Class methods.6 IEncapsulation, Data Abstraction, Constructor, Destructor and1Inheritance.Exception Handling: Handling Exceptions: try-except, try-finally		
Module-V	Strings and Regular Expressions: Methods of String Objects, Escape4 HrSequence, Iterating Strings, String Module, String Formatting, Regular Expressions: Re-Module4 HrFile Handling: Introduction to File Handling, File Operations, Directories.4 Hr		
Essential Reading	 Python Programming Python Programming for Beginners by Adam Stewart. Python Cookbook By David Beazley and Brian K. Jones. 		Adam

Supplementary	1. Introduction to Python Programming by Gowrishankar S. Veena A.		
Reading	2. Python Programming: Using Problem Solving Approach, Oxford		
	University Press by Reema Thareja.		
	3. Python Programming University Press by Ch Satyanarayan, M Radhika, B		
	N Jagadesh.		
Course	CO1: Understand the Python Language and its features.		
Outcomes	CO2: Apply sequence data and control statements to solve problem		
	CO3: Able to create user defined functions to solve problems.		
	CO4: Analyze the concept of OOPs and its implementation.		
	CO5: Create the python program using strings and files.		

Subject Code	HS1202	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Organizational Behaviour		
Course Objective	 To understand the relevance of organizational behavior concepts and theories in real-life organizational settings & to develop skills in critical thinking, decision -making, problem-solving in applying organizational behavior concepts to practical situations. To provide an understanding of individual behavior in the workplace, including personality, motivation, perception, learning, and attitudes. To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivation and leadership in managing organization. To explore how organizational culture affects behavior, communication and decision making by enhancing creativity and innovation and give an episteme how to cope with change and stress. To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaboration across culture 		
	SYLLABUS		
Module-I	Fundamentals of OB & Understanding the OB: Evolution of OB through Quality M Definitions, Scope & Importance of OB, Globalization & Ethical Perspective) and models of OB, applying OB to solving problem	anagement movement, Challenges (Diversity, opportunities for OB,	6 Hrs
Module-II	 Understanding the Determinants of E Personality: Determinants of personality, T (Type &Psychoanalytic theory), MBTI, Big and other major traits influence workplace be Perception: Meaning, Perceptual Process, Ag at Workplace. Motivation: Motivation Framework, Cont need hierarchy & Hertzberg's two factors t (Adam's Equity & Vroom's Expectancy th motivation, Importance of motivation at Workplace. Learning: Theories of learning (Classical Conditioning, & Cognitive Theory), Pr Bhavioral modification through learning. 	Theories of Personality g five personality traits ehavior. pplication of Perception tent theory (Maslow's cheory), Process theory eory), Job Design and ckplace. Conditioning, Operant	6 Hrs

Module-III	Understanding Group and Team Behavior at Workplace: Group & Team: Defining and classifying groups, the five-stage model of group development Group properties: Roles, norms, status, size and cohesiveness, Group decision making. Leadership: Meaning, Definition & types of leadership, Traditional theories of leadership: Trait theories, Behavioral theories, Contingency theories, Contemporary approaches to leadership, importance of leader in organizations.	6 Hrs
Module-IV	 Understanding Group and Team Behavior at Workplace: Organizational Culture: Meaning, Definition, Cultural dimensions, effect of Organizational culture. Organizational Change & Development: Nature, Levels & types of Change, Change Agents: Resistance to Change, Force field theory of Change, Managing the Change. 	6 Hrs
Module-V	 Conflict & International Organizational Behavior: Managing Conflict and Negotiations: Meaning, views, & levels of Conflict, Process of conflict, Conflict resolution techniques. Transactional Analysis: Meaning, Importance of TA, Life position, Ego states and their encounters. IOB: Internationalization of Business, Cultural differences and similarities, Understanding Interpersonal behavior across culture through Hofstede's Cultural Dimensions. 	6 Hrs
Essential Reading	 "Organizational Behavior: Text, Cases, & Games" by K. Aswa Publisher: Himalaya Publishing House "Essentials of Organizational Behavior" by Stephen P. Robbi Timothy A. Judge. Publisher: Pearson Education. 	
Supplementary Reading	 y 1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Michael J. Wesson. Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-Hill Education. 5. "Organizational Behavior and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: Wiley 	

Course	CO1. Explain the importance of organizational behavior in improving	
Outcomes	individual and organizational effectiveness with Ethical practices.	
	CO2. Evaluate the effectiveness of different leadership styles and their	
	application in different situations.	
	CO3.Develop critical thinking, Creativity& Innovation, problem-solving,	
	and communication skills necessary for success in organizational settings.	
	CO4. Develop strategies for managing organizational change effectively and	
	maintaining sustainability.	
	CO5. Apply organizational behavior concepts and theories to practical	
	organizational situations.	

SESSIONALS

Subject Code	EC1284	Total Contact Hour	20
Semester	4 th	Total Credit	1.5
Subject Name	Digital System Design Laboratory		
Course Objective	 Understanding different MSI ICs and their specifications used in laboratory and practical field. To formulate, design and implement various combinational and sequential circuits. To formulate, design and implement various sequential circuits. To design and implement memory. To familiar with the Hardware Description Language. 		
List of Experiments			
1	Digital logic gates: Design, Implement & test a given design example with Universal Gates only.		
2	Gate level minimization: Two level & multi-level implementation of Boolean function.		
3	Combinational circuits: design, construct & test: adder& subtractor, code converter, gray code to binary and 7 segment displays.		
4	Design with multiplexers & de multiplexers.		
5	Flip flop: Construct, test& investigate ope	eration of SR, D, J-K fli	p flop.
6	Shift register: Investigate the operation of all types of shift register with parallel load Design.		
7	Counters: design, construct& test various ripple & synchronous counters- decimal counter, Binary counter with parallel load.		
8	Design of Combinational circuit using Verilog HDL		
9	Design of Sequential circuit using Verilog HDL		
10	Design of memory using Verilog HDL		
Course	1. Identify different ICs used in laboratory	1	
Outcomes	2. Design and analyze combinational circuits		
	3. Design and analyze sequential circuits		
	4. Have an brief idea of working principle5. Implement the digital circuits in HDL a		

Subject Code	EC1285	Total Contact Hour	14
Semester	4 th	Total Credit	1.5
Subject Name	Advanced Communication Engineering Laboratory		
Pre-requisites	Basic Communication Concept, Statistics	and Random Process	
Course Objective	 To study Sampling, Quantization and Encoding Process Comparative Analysis of PCM, DM , ADM based ADC Modulation and Demodulation Analysis of ASK/PSK/FSK Generation of PAM/PPM/PWM. Generation of DM/ADM. 		
	List of Experiments		
1	Study the Pulse code Modulation and Demodulation using Experimental Boards		
2	Study of Delta Modulation and Adaptive Delta Modulation using Experimental Boards		
3	Study the ASK/PSK/FSK and Demodulation using Experimental Boards		
4	Study of PAM/PPM/PWM using Experimental Boards		
5	MATLAB Coding for ASK/PSK/FSK Generation and Detection		
6	MATLAB Coding for PCM, DM, ADM Generation		
7	Performance Analysis of Transmitter and Receiver in presence of Noise using MATLAB.		
Essential	1. Principles of Communication Systems by Taub & amp; Schilling, 2 nd		
Reading	Edition. Tata Mc Graw Hill.		
	2. Modern analog and digital communication system, by B. P. Lathi,3rd		
Supplementary	Edition, Oxford University Press.		
Reading	1. Communication Systems by Simon Haykin, 4th Edition, John Wiley and Sons Inc.		
Course	After completion of course, student should be able to		
Outcomes	CO1 Understand spectrum of digital modu		
	CO2 Understand generation and detection of digital modulated signals.		
	CO3 Understand the constellation diagram of different digital modulated		
	signals.		
	CO4 Understand the use of MATLAB for generation and detection of digital		
	modulated signals.		
	CO5 Understand the effect of noise on digital modulated signals.		

Subject Code	EC1286	Total Contact Hour	20
Semester	4th	Total Credit	1.5
Subject Name	Electronics Instrumentation Laboratory		
Pre-requisites	Basic electronics, Electronics Instrumentation & Measurement		
Course Objective	 To familiar with DC and AC bridges. To study LVDT and Strain gage. To understand concept of PID control. To study characteristics of optical transducers. To understand principle of operation of IC temperature transducer. 		
	List of Experiments		
1	Determination of unknown resistance usin		
2	Determination of unknown capacitance and dissipation factor using Schering bridge.		
3	Study input characteristics of LVDT and determination of linearity and sensitivity.		
4	Study the phase difference between secon	daries of LVDT.	
5	Study of Strain gauge cantilever assembly.		
6	Determination of sensitivity of the Strain	gauge.	
7	Understand different blocks of PID controller and observe their open loop characteristics.		
8	Study the characteristics of Photoconductive cell.		
9	Study the characteristics of Photovoltaic cell.		
10	Study of IC Temperature sensor.	•	
Essential Reading	 Modern Electronics Instrumentation & Measurement Techniques, by Albert D. Helstrick and William D. Cooper, Pearson Education. Selected portion from Ch.1, 5-13. Electrical and Electronic Measurements and Measuring Instruments – A.K. Sawhney, and P. Sawhney (19th edition, 2011), Dhanpat Rai Publication (Selected portion from Ch. 2,3, 14,16,20,21,22,23,25 and 35). 		
Supplementary	1.Elements of Electronics Instrumentation and Measurement-3rd Edition by		
Reading	Joshph J. Carr. Pearson Education. Selected portion from		
	Ch.1,2,4,7,8,9,13,14,18,23 and 25.		
	2. Doebelin, E.O., Measurement systems, McGraw Hill, Fourth edition,		
Course	Singapore, 1990. CO1 Understand working of AC and DC	hridges	
Outcomes	CO2 Understand operational characteristi		
Outcomes	CO3 Know about uses of Strain gauge.		
	CO4 Understand the working of PID cont		
	CO5 Understand principle of operations of IC temperature transducer and		
	photo transducers.		

Subject Code	CS1289	Total Contact Hour	20	
Semester	4th	Total Credit	1.5	
Subject Name	Programming in Python Laboratory			
Course Objectives	 Introduction to Python Language and its features. To understand the concept of Python Program using sequence data and Control statements. To be able to understand and create User Defined Function. To understand the concept of OOPs and its implementation. To understand the concept of strings and file handling 			
	List of Experiments			
1	Program on basics of python Programming Language.			
2	Program on basic Data Structures in Python.			
3	Program on Conversion from on data type to another.			
4	Program on Functions in Python.			
5	Program using Object Oriented Programming in Python.			
6	Program using Inheritance in Python.			
7	Program using String in Python.			
8	Program using Regular expression in Python	1.		
9	Program using File Handling in Python.			
10	Program using basics of Pandas and Matplotlib module in Python.			
Course Outcomes	CO1: Understand the Python Language and i CO2: Apply sequence data and control stater CO3: Able to create user defined functions to CO4: Analyze the concept of OOPs and its in CO5: Create the python program using string	nents to solve problem. o solve problems. mplementation.		