THIRD SEMESTER

Subject Code	MA1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Mathematics-III		
	SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Cumulative Distribution Function (CDF). Variance and standard deviation. Moments. Functions of a random variable. Distributions: Binomial, Poisson, normal, Gaussian, uniform (definitions and examples only). Moment generating function.		6 Hrs
Module-II	Pairs of random variables. Joint probability density function. Joint probability mass function. Marginal distribution. Functions of two random variables, PDF and expected values of the sum of two random variables		6 Hrs
Module-III	Probability Models of n Random Variables. Vector notation.6 HrsIndependence of random variables and random vectors. Functions of random vectors. Expected value vector and correlation matrix.6 Hrs		
Module-IV	Stochastic Processes. Definitions and examples. Types of stochastic6 Hrsprocesses. Random variables from random processes. The Poisson6 processes		6 Hrs
Module-V	Markov Chains. Discrete-time Markov chain. Discrete-Time6 HrsMarkov chain dynamics. Limiting state probabilities for a finite6 HrsMarkov chain. State classification.1000000000000000000000000000000000000		6 Hrs
Essential Reading	 Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley and Sons, INC. Gregory F Lawler, Introduction to Stochastic Processes, Chapman & Hall/ CRC Press (Taylor Francis Group). 		man &
Course Outcomes	The objective of this course is to familiarize the prospective engineers with techniques in Probability and Statistics. It aims to equip the students to deal with advanced level of Statistics that would be essential for Engineering disciplines. CO1. To apply different distributions in real life problems of industries CO2. To deal with problems that contains multivariable probability distribution. CO3.To enrich knowledge Probability Models of multi-Random Variables. CO4. To learn use of stochastic processes in daily life. CO5. Application of eigen values in solving matrices.		

Subject Code	EE1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Electrical Machines-I		
Pre-requisites	Basic Electrical Engineering		
	SYLLABUS		
Module-I	Transformers: Review of Single phase transf load operation, Phasor diagram, equivaler efficiency, condition for maximum efficiency open circuit and short circuit tests, Sumpner's	nt circuit, losses and cy, voltage regulation,	6 Hrs
Module-II	Review of DC Machines: armature wind windings, simplex and multiplex winding Armature reaction: Cross magnetizing AT/pole, compensating winding, com voltage, methods of improving commutation.	gs, E.M.F. Equation,	6 Hrs
Module-III	Review of DC Generators –Methods of Excitation, buildup of 6 Hrs E.M.F., critical field resistance and critical speed, causes for failure to self-excite and remedial measures, Load characteristics of shunt, series and compound generators, parallel operation of DC generators, load sharing		6 Hrs
Module-IV	Review of DC Motors: characteristics and application of shunt, series and compound motors, Starting of DC motor, Speed control of DC Motors: Armature voltage and field flux control methods, Ward Leonard method. Calculation of efficiency, Testing: brake test, Swinburne's test, Hopkinson's test, Field's test, Retardation test, separation of stray losses in a DC motor.		6 Hrs
Module-V	Three phase Transformers: Constructional f connection of transformers (Dd0, Dd6, Yy0, Yd11, zigzag), Scott connection, open delta c to six phase connection, oscillating neutral, winding transformer, equal and unequal operation, load sharing. Inrush of Switching c	eatures – three phase Yy6, Dy1, Dy11, Yd1, onnection, three phase tertiary winding, three turns ratio, parallel	6 Hrs
Essential Reading	 J. J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers. A. E. Clayton, N. Hancock, "Performance and Design of D.C Machines" BPB Publishers. 		hines",
Supplementary Reading	 A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publisher. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 		

Course	Upon completion of the subject the students will demonstrate the ability to:
Outcomes	CO1. Describe and analyze the performance of single phase transformers.
	CO2. Describe the construction and basic principles of dc machines.
	CO3.Express and analyze the performance of DC generators.
	CO4. Describe and analyze the performance of DC motors.
	CO5. Define and analyze the performance of three phase transformers.

Subject Code	EE1202	Total Contact Hour	30
Semester	3 rd	Total Credit	3
Subject Name	Network Theory		
Pre-requisites	Basic Electrical Engineering		
	SYLLABUS		
Module-I	Coupled Circuits: Self-inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, conductively coupled equivalent circuits- problems Electrical Circuit Analysis Using Laplace Transforms: Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, inverse Laplace transform, and transformed network with initial conditions. Transient Response: Transient study in series RL, RC, and RLC networks by time domain and Laplace transform method with DC and AC excitation. Response to step, impulse and ramp inputs of series RL, RC and RLC circuit.		10 Hrs
Module-II	Two Port networks: Types of port network, short circuit admittance parameter, open circuit impedance parameters, transmission parameters, condition of reciprocity and symmetry in two port network, inter-relationship between parameters, input and output impedances in terms of two port parameters, image impedances in terms of ABCD parameters, Tee and Pie circuit representation, Cascade and Parallel Connections.		8 Hrs
Module-III	Network Functions & Responses: Concept of driving point and transfer functions for or network, poles & zeros of network function and Zero locations of network function, Time stability from pole-zero plots, Time domain zero plots.	ne port and two port s. Restriction on Pole e domain behavior and	8 Hrs
Module-IV	Network Synthesis: Realizability concept, Hurwitz property, positive realness, properties of positive real functions, Synthesis of R-L, R-C and L-C driving point functions, Foster and Cauer forms.		8 Hrs
Module-V	Graph theory: Introduction, Linear graph of a cut-setschedule, incidence matrix, Analysis using cut-set and tie-set, Dual of a network. of filters, Characteristics of ideal filters.	of resistive network	6 Hrs

Essential Reading	 A. Chakrabarti, "Circuit Theory (Analysis and Synthesis)", Dhanpat Rai Publications. Mac.E Van Valkenburg, "Network Analysis", PHI Learning publishers. Franklin Fa-Kun. Kuo, "Network Analysis & Synthesis", John Wiley & Sons. 	
Supplementary Reading	 M. L. Soni, J. C. Gupta, "A Course in Electrical Circuits and Analysis", Dhanpat Rai Publications. Mac.E Van Valkenburg, "Network Synthesis", PHI Learning publishers. Joseph A. Edminister, Mahmood Maqvi, "Theory and Problems of Electric Circuits", Schaum's Outline Series, TMH publishers. 	
Course Outcomes	 CO1. Study coupled circuitsand learn the transient and steady state behavior of 1st and 2nd order circuit and understand the concept of time constant. CO2. Define the different parameters of two port network. CO3. Concept of network function and stability study from pole-zero plots. CO4. Synthesis of electrical networks. CO5. Analyze the network using graph theory and understand the importance of filters in electrical system. 	

Subject Code	EC1203	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Analog and Digital Electronic Circuits		
Pre-requisites	Basic Electronics		
	SYLLABUS		
Module-I	Biasing of BJT: Fixed bias circuit Transistor at Low Frequencies: h-parameter Model, amplifier Using h-parameter, Transistor at high frequency: Hybrid-pi CE transition	ers, Transistor hybrid Miller's theorem.	6 Hrs
Module-II			6 Hrs
Module-III	The basic operational amplifier (OP-AMP): inverting and non- inverting configurations and applications. Digital circuits: NOR DTL gates, HTL gate, TTL gate, RTL and DCTL.		6 Hrs
Module-IV	Boolean Algebra & Logic gates: Property and functions of Boolean algebra, Canonical & standard form; min-terms & max-terms, standard forms; Digital Logic Gates. Gate level Minimization: K- Map method, Product of Sum simplification, Sum of Product simplification, Don't care conditions.		6 Hrs
Module-V	Combinational digital systems: Standard ga adder, arithmetic functions, Multiplexer, De Sequential digital systems: A 1-bit memor registers, Counters and applications.	multiplexer, Encoder.	6 Hrs
Essential Reading	 Milliman. J, Halkias. C and Parikh. C.D., "Integrated Electronics", Tata Mc. Graw Hills 2nd Ed. 2010. R.L Boylestad and L. Nashelsky, "Electronic Devices & Circuit Theory: Pearson Education. M. Morris Mano, "Digital Design", PHI Publishers. 		
Supplementary Reading	 Mohammad Rashid, "Electronic Devi Learning Publishers. Sergio Fransco, "Design with Opera Integrated Circuits", TMH Publishers. Charles H.Roth, "Fundamentals of Logio Publishers. 	ational Amplifiers&	Analog

Course	Upon completion of the subject the students will demonstrate the ability to:
Outcomes	CO1. Design of various types of amplifiers using BJT and FET using the
	concept of DC and AC analysis
	CO2. Analyze the frequency response of various amplifiers. Comprehend
	the fundamental concepts in feedback amplifier circuits.
	CO3. Acquaint with the design of logic gates using BJT.
	CO4.Use the concept of Boolean algebra for the analysis and design of
	various combinational and sequential circuits. Design of various logic gates
	starting from simple ordinary gates to complex programmable logic
	devices.
	CO5. Analyze the sequential logic circuits design both in synchronous and
	asynchronous modes for various complex logic and switching devices.

Subject Code	EE1203	Total Contact Hour	35
Semester	3rd	Total Credit	2
Subject Name	Optimization and Soft Computing		
Pre-requisites	Knowledge of MATLAB		
	SYLLABUS		
Module-I	Introduction to Optimization: Objective fun Solution approaches, Multiobjective optim Soft Computing: What is Soft Computing Hard and Soft computing, Requirement of S Areas of Soft Computing, various types techniques, Applications of Soft Computing.	ization. Evolution of ? Difference between Soft computing, Major	8 Hrs
Module-II	Introduction to Fuzzy Logic: Fuzzy Sets : Basic Definition and 8 Hrs Terminology, Set-theoretic Operations, Fuzzy versus Crisp set, Fuzzy Relation, Linguistic variables, Fuzzification and Defuzzification Method, Membership Function Formulation and Parameterization, Fuzzy Rules and Fuzzy Reasoning, Fuzzy If- Then Rules, Fuzzy Reasoning, Fuzzy Inference Systems, Mamdani Fuzzy Models, Some applications of Fuzzy logic.		8 Hrs
Module-III	Artificial Neural Network: Concept of Biological neurons and its 8 Hrs working, Important Terminology in ANN, Supervised and Unsupervised Learning, Simulation of biological neurons to problem solving, Different ANNs architectures, Training techniques for ANNs, Applications of ANNs to solve some real-life problems.		8 Hrs
Module-IV	Introduction to genetic algorithm and their Principles, operators in genetic algorithm- co- over – mutation, Stopping condition for ge Introduction to Fitness function.	ding - selection - cross	7 Hrs
Module-V	Introduction to Non-traditional Metaheuristic Optimization 4 Hrs Techniques, Concept of Swarm Intelligence Algorithm, Particle Swarm Optimization, Ant colony optimization (ACO).		
Essential Reading	 D.K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, Springer A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer. S.N.Sivanandam, S.N.Deepa , Principles of Soft Computing, Wiley India Pvt Ltd. 		
Supplementary Reading	 S S Rao, Engineering Optimization: Theory and Practice, Wiley. Jang, Sun and Mizutani, Neuro-Fuzzy and Soft Computing: archive.nptel.ac.in/courses/106/105/106105173/ 		

Course	CO1. Formulate optimization problem and evaluate the application of soft	
Outcomes	computing for solution.	
	CO2. Apply fuzzy logic and reasoning to handle uncertainty and solve	
	engineering problems.	
	CO3. Apply Artificial Neural Network to solve optimization problems.	
	CO4.Apply genetic algorithm to solve optimization problems.	
	CO5.Apply swarm intelligence algorithms to solve optimization problems.	

Subject Code	HS1201	Total Contact Hour	30
Semester	3rd	Total Credit	2
Subject Name	Engineering Economics		
	SYLLABUS		
Module-I	Basic Principles of Economics: Definition, Nature, Scope and significance of economics for Engineers. Demand & Supply and their Determinants, Elasticity-Government policies and application. Basic Macroeconomics concept: National income accounting (GDP/GNP/NI/Disposable Income etc.) and identities for both closed and open economies.		6 Hrs
Module-II	Utility Analysis: Cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equi-marginal utility; Indifference curve-Concepts, properties, Budget line, Equilibrium of the consumer, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis		6 Hrs
Module-III			6 Hrs
Module-IV	Money and Banking: Money-Function of Money and Banking: Money-Function of Money: Banking their Functions, Central bank's Functions. Economic Development, Monetary and Fisca impact on the economy.	Commercial Banks and Role of the Banks in	6 Hrs
Module-V	Capital Budgeting and Investment Analysi use of cash flow diagram, Annual econom future worth, Internal Rate of Return (IRR), N Payback period method, Analysis of publi analysis, Cost effectiveness.	ic worth, present worth, Net Present Value (NPV),	6 Hrs

Essential	1. Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press
Reading	Ltd., London
	2. Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics,
	Pearson India, New Delhi.
	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India,
	New Delhi.
	4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia.
Course	CO1- Utilise economics principles in consumption process
Outcomes	CO2- Describe the utility measurement and measure the utility associated with
	risk
	CO3- Efficient use of resources in production and take decision regarding
	optimum output
	CO4- Describe market mechanism and analyse product market to take proper
	decisions
	CO5- Implement economic principles in company related decision making

SESSIONALS

Subject Code	EE1281	Total Contact Hour	16
Semester	3 rd	Total Credit	1.5
Subject Name	Electrical Machines Laboratory -I		
	List of Experiments		
1	Open circuit and short circuit on single phase	transformer	
2	Parallel operation of two single phase transfor	rmer and load sharing	
3	Back –to-back test of Single phase transformer		
4	Load characteristics of DC shunt/compound g	generator	
5	Load characteristics of DC series Motor		
6	Swinburne test of DC shunt machine		
7	Brake test of DC shunt machine		
8	Three phase connection of transformers		
Course Outcomes	CO1. Perform parallel connection of single pl CO2. Evaluate performance of DC series and CO3. Compute the efficiency of transformer l CO4. Perform tests to evaluate perform	shunt motors. by different experimenta	
	transformers. CO5. Estimate load performance of DC series	s motor	

Subject Code	EE1282	Total Contact Hour	12
Semester	3 rd	Total Credit	1.5
Subject Name	Network Theory Laboratory		
	List of Experiments		
1	Verification of Superposition and Thevenin's	Theorem.	
2	Verification of Maximum Power Transfer The	eorem.	
3	Find out the resonance frequency, band width and Q-factor of a series R-L-C circuit.		
4	Transient response of a series R-L, R-C and R-L-C circuit using DC excitation.		
5	Determination of Z, Y, ABCD and h parameters of a two port network.		
6	Spectral Analysis of a non-sinusoidal waveform.		
Course Outcomes	 Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwidth, Q-factor and of a R-L-C series circuit. CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprocity of network. CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform. 		

Subject Code	EC1283	Total Contact Hour	20
Semester	3 rd	Total Credit	1.5
Subject Name	Analog And Digital Electronic Circuits Laboratory		
	List of Experiments		
1	Determination of the frequency response of L	ow pass filters.	
2	Determination of the frequency response of H	ligh pass filters.	
3	Study of output characteristics of FET.		
4	Analysis of BJT biasing circuits.		
5	RC phase shift oscillator and to observe its output waveform.		
6	Realization of half-adder, full-adder, half-subtractor and full-subtractor.		
7	Design and implementation of multiplexer and demultiplexer.		
8	Realization of S-R and J-K flip flop using 7400.		
9	Design of 3-bit asynchronous counter and Mod-N counter.		
10	Design of SISO, SIPO, PISO, PIPO shift registers.		
Course Outcomes	 Upon completion of the subject the students will demonstrate the ability to: CO1. Demonstrate the operation of basic filter circuits, clipper and clamper circuits. CO2. Demonstrate the characteristics of transistors. CO3. Implement different power amplifier circuits. CO4. Design combinational circuits such as adder, subtractor and multiplexers. CO5. Design of sequential circuits such as FFs, counters and shift registers. 		

Subject Code	EE1283	Total Contact Hour	14
Semester	3rd	Total Credit	1.5
Subject Name	Optimization and Soft Computing Laboratory		
	List of Experiments		
1	Solution of single objective optimization Optimization Toolbox (lin-prog, quadprog, fn		ATLAB
2	Solution of single objective optimization using OCTAVE sqp and GAMS solvers.		
3	Implementation of fuzzy tool box to solve optimization problem.		
4	Design of Fuzzy rule base and Fuzzy Inference System to solve an optimization problem.		
5	Implementation of Genetic Algorithms to solve an optimization problem.		
6	Implementation of Artificial Neural Networks to solve optimization problems.		
7	Implementation of Particle Swarm Optimization to solve optimization problems.		
Course	Upon completion of the course, the students v	vill be able to:	
Outcomes	 CO1. Demonstrate the use of MATLAB, OCTAVE and GAMS solvers. CO2. Demonstrate the use of fuzzy logic to solve optimization problems. CO3. Demonstrate the use of genetic algorithm to solve optimization problems. CO4. Demonstrate the use of artificial neural networks to solve optimization problems. CO5. Demonstrate the use of swarm optimization algorithms to solve optimization problems. 		

FOURTH SEMESTER

Subject Code	EE1204	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Measurement and Instrumentation		
	SYLLABUS		
Module-I	Measuring Instruments: Classification, Absolute and secondary instruments, indicating instruments, deflecting, control and damping torques, Ammeters and Voltmeters, PMMC, Moving Iron (MI) type, expression for the deflecting torque and control torque, extension of range using shunts and series resistance.		6 Hrs
Module-II	Electrodynamometer type wattmeter – Theory & its errors – Methods of correction – LPF wattmeter – Phantom loading – Induction type KWH meter – Calibration of wattmeter, energy meter. Measurement of active and reactive powers in balanced and unbalanced systems. Galvanometers: General principle and performance equations of D'Arsonval Galvanometers, Vibration Galvanometer and Ballistic Galvanometer.		6 Hrs
Module-III	DC/AC Bridges: General equations for bridgebalance, measurement of self-inductance by Maxwell's bridge (with variable inductance & variable capacitance), Hay's bridge, Owen's bridge, measurement of capacitance by Schearing bridge, errors, Wagner's earthing device. Method of measuring low, medium and high resistance: Kelvin's double bridge for measuring low resistance, Wheat-stone's bridge, measurement of high resistance – loss of charge method.		6 Hrs
Module-IV	Instrument Transformers: Potential and current transformers, ratio and phase angle errors, phasor diagram, methods of minimizing errors. Potentiometers: DC Potentiometer, Crompton potentiometer, construction, standardization, application. AC Potentiometer, Drysdale polar potentiometer; standardization, application.		6 Hrs
Module-V	Digital Multi-meter: Block diagram, prin Accuracy of measurement, Digital Frequ diagram, principle of operation Definition of transducers, Classification Advantages of Electrical transducers, Characteristic transducers; Principle operation of LV transducers; LVDT Applications, Strain gauge operation, gauge factor.	uency meter: Block on of transducers, and choice of DT and capacitor	6 Hrs

Essential	1. A K. Sawhney, "A Course in Electrical & Electronics Measurements &		
Reading	Instrumentation", Dhanpat Rai Publications.		
	2. Helfrick& Cooper, "Modern Electronic Instrumentation and		
	Measurement Techniques", PHIPublshers.		
Supplementary	1. Larry Jones & A Foster Chin, "Electronic Measurement &		
Reading	Instrumentation Systems", John Wiley & Son Publishers.		
	2. Golding &Waddis, "Electrical Measurement and Measuring		
	Instruments", Reem Publishers.		
Course	Upon completion of the subject the students will demonstrate the ability to:		
Outcomes	CO1. Implement the principles of basic electrical measuring instruments.		
	CO2. Analyze the performance characteristics of measurable		
	instrumentaions.		
	CO3. Design and analyze the working of different AC and DC bridges		
	CO4. Analyze instrument transformers and potentiometers to measure AC		
	and DC values of unknown voltage.		
	CO5. Evaluate the operation of Digital instruments and transducers.		

Subject Code	EE1205	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Electrical Machines-II		
Pre-requisites	Basic Electrical Engineering, Electrical Ma	chines-I	
	SYLLABUS		
Module-I	Review of Three phase synchronous generators, Cylindrical rotor theory: armature reaction, armature reaction reactance, synchronous reactance, phasor diagram, open & short circuit characteristics, short-circuit ratio, load characteristics.		6 Hrs
Module-II	Voltage regulation: EMF method, MMF method, modified MMF method, ZPF method, Theory of salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadrature axis synchronous reactances, Slip Test. Power Angle characteristics.		6 Hrs
Module-III	Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Generator, Transient and Sub transient reactances. Synchronous Motors: Operating principle, torque-angle characteristics, V- curves & inverted V-curves, Hunting.		6 Hrs
Module-IV	Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor diagram, circle diagram and performance equations. Methods of starting (DOL, stator resistance starter, autotransformer starter, star-delta starter, rotor resistance starter). Methods of speed control. Double cage induction motor, Cogging and Crawling of Induction motor.		6 Hrs
Module-V	Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of parameters). Methods of starting: split phase starting, Repulsion starting, shaded pole starting, performance characteristics. Single phase series motor, theory of operation performance and application. Universal motor.		6 Hrs
Essential Reading	 J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers. M. G. Say, "Performance and design of AC machines", CBS Publish 		
Supplementary Reading	 A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machin TMH Publisher. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publisher 		-

Course	Upon completion of the subject the students will demonstrate the ability to:		
Outcomes	CO1. Describe cylindrical rotor theory of synchronous machines.		
	CO2. Evaluate voltage regulation and analyze power angle equation.		
	CO3. Analyze and evaluate the performance characteristics of synchronous		
	motors.		
	CO4. Describe and evaluate the performance of three phase induction		
	motors.		
	CO5. Analyze and evaluate the performance of single phase motors and		
	Universal motor.		

Subject Code	CH1206	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Power Electronics		
	SYLLABUS		
Module-I	Power Electronic Devices: Static and Dynamic characteristics of Power Diodes, Power BJTs, Power MOSFETs, Insulated Gate Bipolar Transistors (IGBT), Thyristor Family (SCR, DIAC, TRIAC, GTO, MCT). Thermal viewpoint.2-Transistor Model of Thyristor, Series and Parallel operation of Thyristors. Thyristor Protection from over voltage, overcurrent, dv / dt and di/ dt protection. Cooling and mounting techniques. Safe Operating Area and different current and voltage ratings. Triggering and basics of driver circuits of thyristors, Different types of commutation schemes: Natural and Forced commutation.		6 Hrs
Module-II	AC-DC Rectifiers: Uncontrolled rectifiers. 1-Phase Half & Full Wave Controlled Rectifier with various kinds of loads (R, R-L-E (motor)). Midpoint and Bridge type converters. Half Controlled and Fully Controlled Bridge circuits, different waveforms, Input Line Current Harmonics, Power factor, current distortion and displacement factors. Inverter Mode of Operation in Continuous mode. Effect of source inductance assuming constant load current in single phase converters. Effect of freewheeling diode. Three phase bridge converters for different types of load with constant load current, different waveforms.		6 Hrs
Module-III	DC-DC converter: Classification of types of choppers, One, Two and Four quadrant operations, Step up and down choppers, concepts of duty ratio and average voltage, power circuit of buck & boost converters in continuous mode of operation, analysis and waveforms at steady state, duty ratio control of output voltage. AC-AC Converters: Single-phase mid-point and bridge types of step-up and step-down Cycloconverter. Single-phase AC Voltage regulators and its basic analysis.		6 Hrs
Module-IV	DC-DC Regulators: Generic Linear Regulator. Different Topologies: Shunt, series, modified shunt, negative voltage regulator, protection. Switch Mode Power Supply: Basic scheme of SMPS and its difference & advantages over linear regulators. Different types of SMPS with single and bidirectional core excitation. Basic steady state operation and analysis of Forward and Flyback converters.		6 Hrs

Module-V	DC-AC Converters: Single-phase Half and Full bridge Inverter, Pulse Width Modulated (PWM) technique for voltage control, SPWM Technique 1-phase inverters, Three-phase Voltage Source Bridge type of Inverters. (120 and 180 Degree conduction modes), Current Source Inverter (Single-phase CSI with ideal switches, Single-phase capacitor commutated CSI and Single-phase auto- sequential capacitor commutated CSI). Applications: UPS, Induction Heating, Electronic Ballast, AC/DC drives speed control.	6 Hrs
Essential Reading	P. S. Bimbhra, Power Electronics, Khanna Publishers.	
Supplementary Reading	 L. Umanand, "Power Electronics: Essentials and Applications", Wiley India, 2009. N. Mohan and T. M. Undeland, "Power Electronics: Converters, Applications and Design", John Wiley & Sons, 2007. M. H. Rashid, "Power electronics: circuits, devices, and applications", Pearson Education India. 	
Course Outcomes	Upon completion of the course, the students will be able to:CO1. Describe power switching devices and their drive circuits.CO2. Analyze and evaluate the performance of thyristor rectifiers.CO3. Express and evaluate the performance of AC-AC and DC-DCconvertersCO4. Analyze and evaluate the performance of DC-DC linear regulatorsand SMPS.CO5. Analyze and evaluate the performance of single phase and three phaseinverters.	

Subject Code	EE1207	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Power Generation Transmission and Distri	bution	
	SYLLABUS		
Module-I	Conventional Power Generation: Hydro power potential, components of Hydro power plant, Hydraulic turbines. Block diagram of thermal power plant, relationship between MW capacity and fuel consumption, steam turbines. Nuclear power plant schematic and components. Boiling water reactors, pressurized water reactors, fast breeder reactors. Heavy water reactors. Diesel and Gas Turbine Station.		6 Hrs
Module-II	Economics of Power Generation: Load curve, load duration curve. 6 H Maximum demand, load factor, diversity factor, plant capacity and use factor. Choice of size and number of generating units, Types of reserves. Life Cycle Cost, Levelized cost of generation. Energy pricing and tariff structures. Power Exchanges.		
Module-III	Performance of transmission Lines: Resistance, inductance and capacitance of single and three phase lines with symmetrical and unsymmetrical spacing transposition, charging current, skin effect and proximity effect. Analysis of short, medium and long lines, equivalent circuit, representation of the lines and calculation of transmission parameters, Ferranti effect, reactive power compensation.		6 Hrs
Module-IV	Overhead line Insulators: Voltage distribution in suspension type insulators, method of equalizing, voltage distribution, economic use of insulators. Mechanical Design of Overhead Transmission Line, Sag and stress calculation, tension and sag at erection, effect of ice and wind, vibration dampers Under Ground Cable: Type and construction, grading of cables, capacitance in three core cables and dielectric loss, current ratings, types of cables.		6 Hrs
Module-V	Distribution Systems: types of distributors and feeders (radial & ring), voltage drop and load calculation for concentrated and distributed loads, Primary and secondary distribution network, Capacitor placement in distribution networks. Distribution system planning, Service area calculation.		
Essential Reading	 B. R. Gupta, Generation of Electrical Energy, S Chand Publishers. J. Nagrathand D.P. Kothari, "Power System Analysis", TMH Publi V.K. Mehta and Rohit Mehta, "Principles of Power Systems", S. and Company Ltd. S.L.Uppal, "Electric Power", Khanna Publisher, 1998. 		olisher.

Supplementary	1. John J Grainger, W. D. Stevenson, "Power System Analysis", TMH		
Reading	Publisher.		
	2. C L Wadhwa, "Electrical Power Systems", New Age International		
	Publishers.		
	3. Ashfaq Hussain, "Electric Power System", CBS Publisher and		
	Distributor.		
	4. Hadi Saadat, "Power System Analysis", 5th reprint, TMH publishing		
	Company Ltd.		
Course	Upon completion of the subject the students will demonstrate the ability to:		
Outcomes	CO1. Describe the components and working of conventional power plants.		
	CO2. Apply knowledge on power generation planning and economics.		
	CO3. Compute the transmission line parameters and evaluate performance.		
	CO4. Perform mechanical design and evaluate line insulators and		
	underground cables.		
	CO5. Evaluate performance of primary and secondary distribution systems.		

Subject Code	CS1205	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Programming in Python		
Course Objective	 Introduction to Python Language and its features. To understand the concept of Python Program using sequence da Control statements. To be able to understand and create User Defined Function. To understand the concept of OOPs and its implementation. To understand the concept of strings and file handling 		ata and
	SYLLABUS		
Module-I	Beginning Python Basics Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops.		6 Hrs
Module-II	Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter		8 Hrs
Module-III	Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods.Function:Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions.		6 Hrs
Module-IV	-		6 Hrs
Module-V	Strings and Regular Expressions: Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String Formatting, Regular Expressions: Re-Module File Handling: Introduction to File Handling, File Operations, Directories.		4 Hrs
Essential Reading	 Python Programming Python Programming for Beginners by Stewart. Python Cookbook By David Beazley and Brian K. Jones. 		Adam

Supplementary	1. Introduction to Python Programming by Gowrishankar S. Veena A.	
Reading	2.Python Programming: Using Problem Solving Approach, Oxford	
	University Press by Reema Thareja.	
	3.Python Programming University Press by ChSatyanarayan, M Radhika, B	
	N Jagadesh.	
Course	CO1: Understand the Python Language and its features.	
Outcomes	CO2: Apply sequence data and control statements to solve problem	
	CO3: Able to create user defined functions to solve problems.	
	CO4: Analyze the concept of OOPs and its implementation.	
	CO5: Create the python program using strings and files.	

Subject Code	HS1202	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Organizational Behaviour		
Course Objective	 To understand the relevance of organizational behavior concepts and theories in real-life organizational settings & to develop skills in critical thinking, decision -making, problem-solving in applying organizational behavior concepts to practical situations. To provide an understanding of individual behavior in the workplace, including personality, motivation, perception, learning, and attitudes. To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivation and leadership in managing organization. To explore how organizational culture affects behavior, communication and decision making by enhancing creativity and innovation and give an episteme how to cope with change and stress. To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaboration across culture 		
	SYLLABUS		
Module-I	Fundamentals of OB & Understanding the OB: Evolution of OB through Quality M Definitions, Scope & Importance of OB, Globalization & Ethical Perspective) and models of OB, applying OB to solving problem	anagement movement, Challenges (Diversity, opportunities for OB,	6 Hrs
Module-II	Understanding the Determinants of Dersonality: Determinants of personality: Type &Psychoanalytic theory), MBTI, Big and other major traits influence workplace be Perception: Meaning, Perceptual Proce Perception at Workplace. Motivation: Motivation Framework, Contineed hierarchy & Hertzberg's two factors to (Adam's Equity & Vroom's Expectancy the motivation, Importance of motivation at Work Learning: Theories of learning (Classical Conditioning, & Cognitive Theory), Pri Bhavioral modification through learning.	Theories of Personality g five personality traits ehavior. cess, Application of tent theory (Maslow's cheory), Process theory eory), Job Design and ckplace. Conditioning, Operant	6 Hrs

Module-III Module-IV	Understanding Group and Team Behavior at Workplace: Group & Team: Defining and classifying groups, the five-stage model of group development Group properties: Roles, norms, status, size and cohesiveness, Group decision making. Leadership: Meaning, Definition & types of leadership, Traditional theories of leadership: Trait theories, Behavioral theories, Contingency theories, Contemporary approaches to leadership, importance of leader in organizations.	6 Hrs 6 Hrs
Module-1 v	 Understanding Group and Team Behavior at Workplace: Organizational Culture: Meaning, Definition, Cultural dimensions, effect of Organizational culture. Organizational Change & Development: Nature, Levels & types of Change, Change Agents: Resistance to Change, Force field theory of Change, Managing the Change. 	o Hrs
Module-V	 Conflict & International Organizational Behavior: Managing Conflict and Negotiations: Meaning, views, & levels of Conflict, Process of conflict, Conflict resolution techniques. Transactional Analysis: Meaning, Importance of TA, Life position, Ego states and their encounters. IOB: Internationalization of Business, Cultural differences and similarities, Understanding Interpersonal behavior across culture through Hofstede's Cultural Dimensions. 	6 Hrs
Essential Reading	 "Organizational Behavior: Text, Cases, & Games" by K. Aswathappa. Publisher: Himalaya Publishing House "Essentials of Organizational Behavior" by Stephen P. Robbins and Timothy A. Judge. Publisher: Pearson Education. 	
Supplementary Reading	 "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Michael J. Wesson. Publisher: McGraw-Hill Education. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann VonGlinow. Publisher: McGraw-Hill Education. "Organizational Behavior and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: Wiley 	

Course	CO1. Explain the importance of organizational behavior in improving	
Outcomes	individual and organizational effectiveness with Ethical practices.	
	CO2. Evaluate the effectiveness of different leadership styles and their	
	application in different situations.	
	CO3.Develop critical thinking, Creativity& Innovation, problem-solving,	
	and communication skills necessary for success in organizational settings.	
	CO4. Develop strategies for managing organizational change effectively	
	and maintaining sustainability.	
	CO5. Apply organizational behavior concepts and theories to practical	
	organizational situations.	

SESSIONALS

Subject Code	EE1284	Total Contact Hour	20
Semester	4 th	Total Credit	1.5
Subject Name	Electrical Machines Laboratory-II		
	List of Experiments		
1	Voltage regulation of alternator by EMF m	ethod	
2	Voltage regulation of 3 phase alternator by ZPF method		
3	Synchronization of alternator with infinite bus		
4	Determination of power angle characteristics of an Alternator		
5	V curve and inverted V curve of a 3-Ph synchronous motor		
6	No load and Blocked rotor test of three phase Induction motor		
7	Load test of 3-Ph Induction Motor		
8	Speed control of a 3 phase induction motor		
9	Determination of Parameters of single phase induction motor		
10	Determination of Parameters of 3 phase three winding transformer and trace the waveform of Magnetizing Current & Induced e.m.f		
Course Outcomes	 Upon completion of the subject the students will demonstrate the ability to: CO1. Perform various tests on synchronous machines and to determine their characteristics. CO2. Synchronize a given alternator to infinite bus.\ CO3. Determine parameters of three phase and single phase induction motors. CO4. Describe different losses of single phase transformer CO5. Determine characteristics, parameters and connections of three phase transformers 		

Subject Code	EE1285	Total Contact Hour	20
Semester	4 th	Total Credit	1.5
Subject Name	Power Electronics Laboratory		
	List of Experiments		
1	Familiarization with power electronics components. (SCR, IGBT, MOSFET, GTO, BJT) & Draw the V-I Characteristics of BJT, MOSFET, SCR.		
2	Study of Single phase Full and Half wave converters with R and R-L- E(Motor) loads with and without freewheeling action		
3	Study of Three Phase Full and Half wave uncontrolled converters with R and R-L loads		
4	Study of Three Phase Full and Half wave controlled converters with R and R-L loads		
5	To study different triggering circuits for thyristors (Cosine Law & UJT Triggering)		
6	To study single phase AC regulator using Triac (R & R-L Loads)		
7	To study the single phase cycloconverter with R and R-L Loads		
8	To study IGBT based PWM Inverter.		
9	To study the speed control of DC motor using single-phase full wave converter.		
10	To study the operation single quadrant step-o	lown chopper circuit.	
Course Outcomes	Upon completion of the course, the students CO1. Demonstrate power electronics Characteristics. CO2. Produce waveforms across the loads ar CO3.Implement triggering circuits for power CO4. Demonstrate operation of AC-DC and CO5. Demonstrate operation of Inverter circu	components and the nd switches. electronic devices. AC-AC converters.	eir V-I

Subject Code	CS1289	Total Contact Hour	20
Semester	4 th	Total Credit	1.5
Subject Name	Programming in Python Laboratory		
Course Objectives	 Introduction to Python Language and its features. To understand the concept of Python Program using sequence data and Control statements. To be able to understand and create User Defined Function. To understand the concept of OOPs and its implementation. To understand the concept of strings and file handling 		
List of Experiments			
1	Program on basics of python Programming I	Language.	
2	Program on basic Data Structures in Python.		
3	Program on Conversion from on data type to another.		
4	Program on Functions in Python.		
5	Program using Object Oriented Programming in Python.		
6	Program using Inheritance in Python.		
7	Program using String in Python.		
8	Program using Regular expression in Python	1.	
9	Program using File Handling in Python.		
10	Program using basics of Pandas and Matplotlib module in Python.		
Course Outcomes	CO1: Understand the Python Language and i CO2: Apply sequence data and control stater CO3: Able to create user defined functions to CO4: Analyze the concept of OOPs and its in CO5: Create the python program using string	nents to solve problem. o solve problems. mplementation.	