THIRD SEMESTER

Subject Code	MA1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Mathematics-III		
	SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Cu Function (CDF). Variance and standard deviation. I a random variable. Distributions: Binomial, Poiss uniform (definitions and examples only). Moment ge	Imulative Distribution Moments. Functions of on, normal, Gaussian, enerating function.	6 Hrs
Module-II	Pairs of random variables. Joint probability de probability mass function. Marginal distribution. Fu variables, PDF and expected values of the sum of tw	ensity function. Joint nctions of two random o random variables	6 Hrs
Module-III	Probability Models of n Random Variables. Vector notation. Independence6 Hrsof random variables and random vectors. Functions of random vectors.Expected value vector and correlation matrix.		
Module-IV	Stochastic Processes. Definitions and examples. Types of stochastic6 Hrsprocesses. Random variables from random processes. The Poisson process.6		
Module-V	Markov Chains. Discrete-time Markov chain. Discrete dynamics. Limiting state probabilities for a finite classification	ete-Time Markov chain e Markov chain. State	6 Hrs
Essential Reading	 Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley andSons, INC. Gregory F Lawler, Introduction to Stochastic Processe, Chapman & Hall/ CRC Press (Taylor Francis Group). 		
Course Outcomes	The objective of this course is to familiarize the prospective engineers with techniques in Probability and Statistics. It aims to equip the students to deal with advanced level of Statistics that would be essential for Engineering disciplines. CO1. To apply different distributions in real life problems of industries. CO2. To deal with problems that contains multivariable probability distribution. CO3.To enrich knowledge Probability Models of multi-Random Variables. CO4. To learn use of stochastic processes in daily life. CO5. Application of eigen values in solving matrices.		

Subject Code	CE1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Mechanics Of Material		
Pre-requisites	Knowledge in Engineering Mechanics is essential		
Course Objective	To learn the principles of mechanics applied to different materials and to develop problem solving skills through application of these principles to basic engineering problems.		
	SYLLABUS		
Module-I	Simple Stresses and Strains: Load, Stress, Principle Direct stress, Hooke's Law, Modulus of Ela Complementary shear stress, shear strain, modulus of between elastic constants. Stress and strain diagram and plasticity - Types of stresses and strains, Wo safety, Lateral strain, Bars of varying section, s problems, Composite bars, Temperature stresses. Str	e of St. Venant, Strain, asticity, Shear stress, of rigidity, Relationship of mild steel, Elasticity orking stress, Factor of tatically indeterminate rain Energy, Resilience	6 Hrs
Module-II	Compound Stresses and Strains: Two dimensional s on a plane, principal stresses and principal pla stresses, Mohr's stress circle, Two dimensiona Principal strains and principal axis of strain, ca stresses from principal strains, Analysis of strains Strain rosettes, determination of principal strains fro	system, stress at a point anes, Maximum shear l stress-strain system alculation of principal s, Mohr's strain circle, m strain measurements	6 Hrs
Module-III	Shear stress: Derivation of formula for Shear str various beam sections like rectangular, circular, tri sections. Flexural Stresses: Theory of simple bending, Assu simple bending equation, Neutral axis, Determinati Section modulus of rectangular and circular sections T, Angle and Channel sections. Distribution Torsion: Torsion in solid and hollow circular sha strength of solid and hollow circular shafts, strength bending and twisting, closed coil helical spring.	ess distribution across angular, I, T and angle mptions, Derivation of on of bending stresses, s (Solid and Hollow), I, of normal stresses. fts, Twisting moment, n of shafts in combined	6 Hrs
Module-IV	Thin cylinders and spheres: Derivation of formul hoop stress, longitudinal stress in a cylinder, an internal pressuresBuckling of Columns: Short and I load, eccentric loading of columns, core of the sec initially straight columns with various end condition and direct stress.	ae and calculations of d sphere subjected to ong columns with axial ction, Euler's theory of ons. Combined bending	6 Hrs
Module-V	Theories of failure: Maximum normal stress theory strain theory, maximum shearing strain theory, m theory, maximum distortion energy theory, maximum stress theory.	bry, maximum normal maximum strain energy um octahedral shearing	6 Hrs
Essential Reading	 Strength of Materials by S. P. Timoshenko and D. Strength of Materials by G. H. Ryder, Macmillan 	H. Young, East- West F India Ltd.	Press.

Supplementary	1. Mechanics of Materials by E.Popov	
Reading	2. Strength of materials by S S Ratan, Tata McGraw-Hill Education	
Course	CO1. Apply the formal theory of mechanics of materials to calculate stresses and	
Outcomes	strains under varying loading conditions.	
	CO2. Analyze and design the structural members under tension, compression,	
	torsion, bending and combined stresses employing the fundamental concepts of	
	stress, strain and elastic behavior of materials.	
	CO3. Utilize basic properties of materials to solve isotropic elasticity problems in	
	two dimension.	
	CO4. Solve engineering problems in accordance with ethical and economic	
	constraints on design of structures.	
	CO5. Use appropriate materials in design considering engineering properties.	
	sustainability, cost and weight.	

Subject Code	CE1202	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Geotechnical Engineering-I		
Pre-requisites	Engineering Mechanics, Strength of Material		
Course Objective	This course will enable students to build their strong fundamental knowledge in the behavior of soils and will develop their practical problem-solving capabilities.		ge in the s.
	SYLLABUS		
Module-I	Introduction: Origin of soils, formation of soils, C terminology and their relations, index proper classification: Particle size distribution, use of pa curve, Particle size classification, Unified classifi standard soil classification system, Stress condition Pore Pressure and Effective stress.	Clay mineralogy, basic erties of soils. Soil article size distribution ication system, Indian as in soil: Total stress,	5 Hrs
Module-II	Permeability: Darcy's law of permeability, factors determination of permeability (laboratory and field of stratified soil deposits. Seepage analysis: Seepage pressure, quicksand cond for two –dimensional flow, flow net, proper construction of flow net, application of flow anisotropic soil and non-homogenous soil.	affecting permeability, methods), permeability lition, Laplace equation ties and methods of net, seepage through	6 Hrs
Module-III	Soil compaction: Compaction mechanism, factors effect of compaction on soil properties, dens relationship in compaction test, standard and r compaction. Soil consolidation: Introduction, spring analog consolidation, Terzaghi's theory of one dime consolidation test, determination of coefficient of co	affecting compaction, sity moisture content nodified proctor field gy, one dimensional nsional consolidation, nsolidation	6 Hrs
Module-IV	Shear strength of soils: Mohr's stress circle, theo determination of shear strength (direct shear test, tri- unconfined compression test, van shear test).	ry of failure for soils, axial compression test,	8 Hrs
Module-V	Stabilization of soil: Introduction, mechanical stabilization, lime stabilization, bituminous s stabilization, thermal stabilization, electrical stabilization,	stabilization, cement tabilization, chemical ation	5 Hrs
Essential Reading	Geotechnical Engineering, C. Venkatramaiah, New Age International publishers.		
Supplementary Reading	 Geotechnical Engineering, T.N. Ramamurthy & T.G. Sitharam, S. Chand & Co. Soil Mechanics, T.W. Lambe& Whiteman, Wiley Eastern Ltd, New Delhi 		

Course	CO1. Classify soil and solve three phase soil system.
Outcomes	CO2. Solve any practical problems related to soil stresses estimation, permeability
	and seepage including flow net diagram.
	CO3. Formulate practical problems related to consolidation settlement and time rate
	of settlement.
	CO4. Validate problem related to compaction in the field.
	CO5. Use stabilization techniques for soft and expansive soil by using various
	methods.

Subject Code	CE1203	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Fluid Mechanics		
Pre-requisites	Knowledge on core Physics, Mathematical Appli Behaviour	cations and Concepts of	of Fluid
Course Objective	 To understand the properties of Fluid and Fluid statics. To understand different applications of fluid. Understanding fluid laws and different flow parameters. To introduce flow measurement processes through different devices. Understanding the flow behavior while flowing through pipe. 		
	SYLLABUS		
Module-I	Properties of fluids: Introduction, development of f measurement, mass density, specific weight, spe gravity, viscosity, vapor pressure, compressibility tension and capillarity. Fluid pressure and its measur a point, variation of pressure in a fluid, Pascal'slaw gauge and vacuum pressure, measurement of pressure	luid mechanics, unit of cific volume, specific and elasticity, surface rement:Fluidpressure at , atmospheric absolute, re	6 Hrs
Module-II	Hydrostatic forces on surfaces: Total pressure and center of pressure, total pressure on plane surface (horizontal, vertical, inclined, curved), center of pressure on vertical and inclined plane surface, pressure diagram. Buoyancy and Flotation: Buoyancy, buoyant force and center of buoyancy, metacenter andmetacentric height, stability of submerged and floating body, determination of metacentric height (experimental and theoretical)6 Hrs		
Module-III	Kinematics of fluid flow: Introduction, velocity of a fluid flow, description off low pattern, basic pre- continuity equation, acceleration of a fluid pa- irrotational motion, velocity potential, stream equipotential lines, flow net, its uses Dynamics of fluid flow: Introduction, forces actin Euler's equation of motion, Bernoulli's equation of correction factor, Bernoulli's equation for acompa pplication (venture meter, orificemeter, pitot tube) motion (free and forced).	fluid particles, types of inciple of fluid flow, article, rotational and function, streamlines, and limitations. and n fluid in motion, motion, Kinetic energy pressible fluid and its , free liquid jet, vortex	6 Hrs
Module-IV	Flow through pipes: Introduction, types of flow, (laminar flow and turbulentflow), Formulae for head pipes (Darcy-Weisbach equation, Chezy's formula Hazen-William's formula),other energylosses in pip and energy grade line, flow through long pipes, flo and parallel, equivalent, by-pass, branched, sypho pipe, Orifices and mouthpieces: Introduction, cla flow through an orifice, hydrauliccoefficients (ver discharge), flow through large orifices.	laws of fluid friction d loss due to friction in a, Manning's formula, e, Hydraulic grade line w through pipes(series, nic), water hammer in ssification of orifices, locity, contraction and	6 Hrs

Module-V	Laminar flow through pipes: Introduction, steady laminarflow in circular pipe, laminar flowparallel plates (both plates at rest, one plate at rest and other moving), variation of friction factor f forlaminar flow. Turbulent flow through pipes: Introduction, shear stress, hydro dynamically smooth and roughboundaries, velocity distribution for turbulent flow in hydro dynamically smooth and rough pipes, criteria for smooth and rough pipes, velocity distribution for turbulent flow in terms of mean velocity for smooth and rough pipes.	rs
Essential	Hydraulics and Fluid Mechanics including Hydraulic Machines by P.N.Modi and	
Reading	S.M. Seth, Standard Book House.	
Supplementary	1. Fluid mechanics by A.K.Jain, Khanna Publishers.	
Reading	2. Engineering Fluid Mechanics by K.L.Kumar, S.Chand& Co.	
Course	CO1. Explain about fluid properties and pressure measurement.	
Outcomes	CO2. Analyze hydrostatic forces on surfaces and study of buoyancy and flotation.	
	CO3. Revise basics of kinematics and dynamics of fluid flow.	
	CO4. Observe flow through pipes and computation of coefficients of orifices a	ınd
	mouthpieces.	
	CO5. Differentiate between laminar and turbulent flows through pipe.	

Subject Code	CS1205	Total Contact Hour	30
Semester	3rd	Total Credit	2
Subject Name	Programming in Python		
Course Objective	 Introduction to Python Language and its features. To understand the concept of Python Program using sequence data and Control statements. To be able to understand and create User Defined Function. To understand the concept of OOPs and its implementation. To understand the concept of strings and file handling 		
	SYLLABUS		
Module-I	Beginning Python Basics: Introduction to Py Application of Python Data Types, Keywo Constants. Python Indentation. Operators a Conventions with examples, Managing Input Indentation. Conditional statement, Looping continue, pass & return statements, Nesting of	withon Features of Python, rds, Identifiers, Literals, nd expressions. Naming and Output, Concept of g statements, break and loops.	6 Hrs
Module-II	Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter.		
Module-III	Tuple and methods, Sets and methods, Dic iterator and methods. Function: Introduction to Functions, passing functions (Lambda Function), Recursive Funct	tionary: Basic operation, g arguments, Anonymous ions.	6 Hrs
Module-IV	 Object Oriented Programming: Classes and Encapsulation, Data Abstraction, Constr Inheritance. Exception Handling: Handling Exceptions: tr 	l Objects, Class methods. ructor, Destructor and y-except, try-finally	6 Hrs
Module-V	 Strings and Regular Expressions: Methods Sequence, Iterating Strings, String Module, St Expressions: Re-Module. File Handling: Introduction to File Handling: Directories. 	of String Objects, Escape tring Formatting, Regular ndling, File Operations,	4 Hrs
Essential Reading	 Python Programming for Beginners by Adar Python Cookbook by David Beazley and Br 	n Stewart ian K. Jones	

Supplementary	1. Introduction to Python Programming By Gowrishankar S. Veena A.	
Reading	2.Python Programming: Using Problem Solving Approach, Oxford University	
	Press by ReemaThareja.	
	3.Python Programming University Press by ChSatyanarayan, M Radhika, B N	
	Jagadesh.	
Course	CO1: Understand the Python Language and its features.	
Outcomes	CO2: Apply sequence data and control statements to solve problem.	
	CO3: Able to create user defined functions to solve problems.	
	CO4: Analyze the concept of OOPs and its implementation.	
	CO5: Create the python program using strings and files.	

Subject Code	HS1202	Total Contact Hour	30
Semester	3rd	Total Credit	2
Subject Name	Organizational Behaviour		
Course Objective	 To understand the relevance of organizational behavior concepts and theories in real-life organizational settings & to develop skills in critical thinking, decision-making, problem-solving in applying organizational behavior concepts to practical situations. To provide an understanding of individual behavior in the workplace, including personality, motivation, perception, learning, and attitudes. To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivation and leadership in managing organization. To explore how organizational culture affects behavior, communication and decision making by enhancing creativity and innovation and give an episteme how to cope with change and stress. To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaboration across culture 		
	SYLLABUS		
Module-I	Fundamentals of OB & Understanding th OB: Evolution of OB through Quality Definitions, Scope & Importance of OI Globalization& Ethical Perspective) and oppo of OB, applying OB to solving problems.	he Basic Framework of Management movement, B,Challenges (Diversity, ortunities for OB, models	6 Hrs
Module-II	 Understanding the Determinants of Personality: Determinants of personality, (Type &Psychoanalytic theory), MBTI, Big f other major traits influence workplace behavio Perception: Meaning, Perceptual Process, Ap Workplace. Motivation: Motivation Framework, Conten hierarchy & Hertzberg's two factors theory), Equity & Vroom's Expectancy theory), Job Importance of motivation at Workplace. Learning: Theories of learning (Classical Conditioning, & Cognitive Theory), Principle modification through learning. 	Individual Behavior: Theories of Personality ive personality traits and r. plication of Perception at t theory (Maslow's need Process theory (Adam's Design and motivation, Conditioning, Operant es of Learning. Bhavioral	6 Hrs

Module-III	Understanding Group and Team Behavior at Workplace: Group & Team: Defining and classifying groups, the five-stage model of group development Group properties: Roles, norms, status, size and cohesiveness, Group decision making. Leadership: Meaning, Definition & types of leadership, Traditional theories of leadership: Trait theories, Behavioral theories, Contingency theories, Contemporary approaches to leadership, importance of leader in organizations.	6 Hrs
Module-IV	Understanding the Organizations & the Process Organizational Culture: Meaning, Definition, Cultural dimensions, effect of Organizational culture Organizational Change & Development: Nature, Levels & types of Change, Change Agents: Resistance to Change, Force field theory of Change, Managing the Change.	6 Hrs
Module-V	 Conflict & International Organizational Behavior: Managing Conflict and Negotiations: Meaning, views, & levels of Conflict, Process of conflict, Conflict resolution techniques. Transactional Analysis: Meaning, Importance of TA, Life position, Ego states and their encounters. IOB: Internationalization of Business, Cultural differences and similarities, Understanding Interpersonal behavior across culture through Hofstede's Cultural Dimensions. 	6 Hrs
Essential Reading	 "Organizational Behavior: Text, Cases, & Games" by K. Aswathappa. Publisher: Himalaya Publishing House "Essentials of Organizational Behavior" by Stephen P. Robbins and Timothy A. Judge. Publisher: Pearson Education. 	
Supplementary Reading	 y 1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Michael J. Wesson. Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann VonGlinow. Publisher: McGraw-Hill Education. 5. "Organizational Behavior and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: Wiley 	

Course	CO1. Explain the importance of organizational behavior in improving
Outcomes	individual and organizational effectiveness with Ethical practices.
	CO2. Evaluate the effectiveness of different leadership styles and their
	application in different situations.
	CO3.Develop critical thinking, Creativity& Innovation, problem-solving, and
	communication skills necessary for success in organizational settings.
	CO4. Develop strategies for managing organizational change effectively and
	maintaining sustainability.
	CO5. Apply organizational behavior concepts and theories to practical
	organizational situations.

SESSIONALS

Subject Code	CE1281	Total Contact Hour	32
Semester	3rd	Total Credit	1.5
Subject Name	Concrete Laboratory		
Pre-requisites	Knowledge about building material behavior and	properties	
Course Objective	To understand the building material characteriza	tion process	
	List of Experiments		
1	Standard Consistency of Cement		
2	Initial and Final setting time of Cement		
3	Soundness of Cement		
4	Fineness (sieve analysis) of Cement		
5	Compressive strength of Cement		
6	Grain size distribution (coarse and fine aggregate)		
7	Specific gravity (coarse and fine aggregate)		
8	Bulk density and Voids of aggregates		
9	Bulking of fine aggregate		
10	Workability (slump test, compaction factor test) of C	Concrete	
11	Compressive strength of Concrete		
12	Tensile strength (split tensile strength, mod. of ruptu	re) of Concrete	
13	Stress strain curve for concrete to find its Modulus o	f elasticity and Poission	's ratio
14	Shape and size determination of brick		
15	15 Water absorption of brick		
16	Compressive strength of brick		

Course	CO1. To understand about various cement property tests.
Outcomes	CO2. To understand about various fine aggregate property tests.
	CO3. To understand about various course aggregate property tests.
	CO4. To understand about various Concrete property tests.
	CO5. To understand about various brick property tests.

Subject Code	CE1282	Total Contact Hour	20
Semester	3rd	Total Credit	1.5
Subject Name	Geotechnical Engineering Laboratory		
Pre-requisites	Building material, geotechnical engineering		
Course Objective	This course will enable students to determine various soil properties to identify soil type.		
	List of Experiments		
1	Determination of specific gravity of soil grains		
2	Determination of water content of soil sample.		
3	Determination of grain size distribution of soil: a) Sieve analysis b) Hydrometer/pipette test		
4	Determination of liquid limit of soil sample.		
5	Determination of plastic of soil sample.		
6	Determination of shrinkage of soil sample.		
7	7 Determination of bulk density of sand by pore cylinder method.		
8	Measurement of unit weight of soil in the field by co	re cutter method	
9	Measurement of unit weight of soil in the field by sa	nd replacement method.	
10	10 Determination of Density-water content relationship of soil: Proctor compaction tests.		npaction
Course Outcomes	 CO1. Classify soil by physical observation of the soil CO2. Observe soil based on estimated index and eng CO3. Examine soil properties in field. CO4. Estimate density water content relationship. CO5. Measure consolidation and shear parameter to 	ls. ineering characteristics of design foundation.	of soils.

Subject Code	CE1283	Total Contact Hour	20
Semester	3rd	Total Credit	1.5
Subject Name	Fluid Mechanics Laboratory		
Pre-requisites	Core Physics, Fluid Properties and Behaviour		
Course Objective	This course will enable students to be acquainted with different flow properties, its measurement and scope for real time applications.		
	List of Experiments		
1	Study of Discharge Measuring, Pressure measuring equipment.	ing, Depth measuring an	d Velocity
2	Verification of Bernoulli's Theorem		
3	Determination of metacentric height for a ship model		
4	Determination of Darcy-Weisbach Friction factor for pipe flow		
5	Study of Moody's chart for a pipe flow		
6	Study of flow pattern using Reynold's apparatus		
7	Study of free and forced vortex.		
8	Determination of Co-efficient of discharge for a Venture meter		
9	Determination of Co-efficient of discharge for an	Orifice meter	
10	Determination of Co-efficient of discharge for a	Nozzle meter.	
Course Outcomes	CO1. Conversant with the basic flow measuring CO 2. Validating the Bernoulli's theorem corresp CO 3. Understanding effect of friction in pipe flo CO 4. Determining flow patterns through experin CO 5. Measurement of discharge through differe	equipment. conding to different energ w. nents. nt instruments.	gy heads.

Subject Code	CS1285	Total Contact Hour	20
Semester	3rd	Total Credit	1.5
Subject Name	Machine Learning Using Python Laborator	·y	
Course Objectives	 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling. 		
	List of Experiments		
1	Program on basics of python Programming La	nguage.	
2	Program on basic Data Structures in Python.		
3	Program on Conversion from on data type to a	nother.	
4	Program on Functions in Python.		
5	Program using Object Oriented Programming	in Python.	
6	Program using Inheritance in Python.		
7	Program using String in Python.		
8	Program using Regular expression in Python.		
9	Program using File Handling in Python.		
10	Program using basics of Pandas and Matplotli	o module in Python.	
Course Outcomes	CO1: Understand the Python Language and its CO2: Apply sequence data and control stateme CO3: Able to create user defined functions to a CO4: Analyze the concept of OOPs and its imp CO5: Create the python program using strings	features. ents to solve problem. solve problems. plementation. and files.	

FOURTH SEMESTER

Subject Code	CE1204	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Surveying and Geomatics		
Pre-requisites	Building drawing, Engineering drawing		
Course Objective	Enable students to plot contour map and setting of	of geometrical curves.	
	SYLLABUS		
Module-I	Geo-informatics – (Definition & Importance, reference spheroids, Coordinate Systems), (Definition & Objective, Plane and Geode Classification of Surveys and its Principles) (Sources, Types of errors and their treatment, Ac importance, scales, conventional symbols, topographic maps, map projection systems), Instruments.	Concept of Geoid and Basic Surveying – etic Surveys, General b, Surveying Errors – ccuracy), Maps- (Types, and generalization; Idea about measuring	5 Hrs
Module-II	Linear Measurements – (Direct and indirect Correction of linear measurement, Optical n trigonometric levelling;Levelling: Types of lev permanent adjustment, curvature and refraction e	t methods, Error and nethods Levelling and velling and their uses, effects	6 Hrs
Module-III	Angular Measurement – (Principle, Instrum Theodolite, Meridian, Bearing & Bearing Syst Theodolite traversing, Concept of Latitu Triangulation and Trilateration. Electronic m stations	nent - Compass and stem, Local attraction, ude and Departure) nethods- EDMs, total	6 Hrs
Module-IV	Curve Survey – (Curve – types &elements, settin Photogrammetric - Principle, Scale, flying Photographs, Deduction of distance & height sca	ng out work) height, Number of le.	8 Hrs
Module-V	Remote sensing - basics, platform and s interpretation. Basics of Geographical informa Geographical positioning system (GPS).	sensors, visual image tion system (GIS) and	5 Hrs
Essential Reading	 Surveying – Punmia, Vol. – I, Laxmi Publication. Surveying – Vol –II – By B.C. Punmia, A K Jain and A K Jain, Laxmi Publishers 		
Supplementary Reading	 1.Surveying (Vol -1 & 2) By S.K. Duggal, Tata McGraw Hill Publishing Co. Ltd. New Delhi 2. Surveying and Levelling by R. Agor, Khanna Publishers. 3. Higher Surveying – Vol –II By B.C. Punmia, A K Jain, Laxmi Publishers. 		

Course	CO1. Comprehend the definitions, importance, and concepts of Geo-informatics	
Outcomes	including the Geoid and reference spheroids, and coordinate systems.	
	CO2. Application of the principles and objectives of basic surveying methods.	
	CO3. Interpretation of different types of maps to understand their importance.	
	CO4. Perform and evaluate linear and angular measurements using appropriate	
	methods and instruments, understand errors and corrections, and conduct various	
	types of levelling.	
	CO5. Utilize advanced surveying methods, including triangulation, trilateration,	
	EDMs, total stations, and apply principles of curve surveying, photogrammetry,	
	remote sensing, GIS, and GPS in civil engineering projects.	

Subject Code	CE1205	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Structural Analysis		
Pre-requisites	Knowledge in Engineering and Solid Mechani	cs is essential	
Course Objective	To determine the reactions, internal forces, such as axial, shear, bending and torsional, and deformations at any point of a given structure caused by the applied loads and forces.		
	SYLLABUS		
Module-I	General Introduction on Concept of Analysis, Co of Analysis, Statically Determinate vs. Indeterm Indeterminacy, External and Internal Static Inde to kinematically determinate /indeterminate Indeterminacy estimation for rigid joint frame ar for 2D and 3D structures).	oncept of Force Method hinate Structures, Static terminacy, Introduction structures. Degree of ad Pin Joint Truss (both	6 Hrs
Module-II	Bending moment and Shear Force Diagrams fo beams like cantilevers, simply supported with under different types of loadings. Relationship loading. B.M. shear and normal thrust of Suspension Cables: Three hinged stiffening girde	r statically determinate or without overhangs between B.M, S.F and three hinged arches. ers.	6 Hrs
Module-III	Moment Curvature Relation, Elastic Curve, De Statically Determinate Beams by geometrical Integration Method, Macaulay's Method, Mom Conjugate Beam Method.Concepts of Strain Ene to Axial, Bending, Shear and Torsion Effects, Deflection calculation of Statically Determin Energy Method, Castigliano's Method, virtual Deflection of pin-jointed trusses using strain en method.	eflection calculation of methods like Double ent Area Method, and ergy, Strain Energy Due Castigliano's Theorem, ate Beams by Strain work and Unit Load ergy method, unit load	6 Hrs
Module-IV	Bending Moment and Shear Force Diagrams for beams like propped cantilever, fixed beam Use consistent deformation method, moment a moment theorems.	statically indeterminate and continuous beam. area method and three	6 Hrs
Module-V	Introduction to Rolling Loads, Concept of Infl Line diagram (ILD) for determinate beams for S.F. at given section, B.M. at a given section maximum bending moment at given section.	uence Lines, Influence reactions at supports, , Maximum shear and	6 Hrs
Essential Reading	 Structural Analysis – Norris & Wilber Structural Analysis – R. C. Hibbeler 		
Supplementary Reading	 Reddy, Basic Structural Analysis, Tata McGra Indeterminate Structures – J.S. Kenney 	w Hill, Third Edition	

CO1. Ability to understand various internal forces like axial force, shear force and
bending moment in structures.
CO2. Ability to determine internal forces in statically determinate structures like
beams, arches, cables and stiffening girders.
CO3. Ability to determine deformation of statically determinate beams and in pin-
jointed plane trusses using appropriate methods.
CO4. Ability to determine internal forces in the statically indeterminate beams like
propped cantilever beam, fixed beam and continuous beam.
CO5. Ability to determine various internal forces due to rolling or moving loads
and their maximum influence on determinate beams, arches, cables with stiffening
girders.

Subject Code	CE1206	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Geotechnical Engineering-II		
Pre-requisites	Geotechnical Engineering-I		
Course Objective	This course will enable students to design four attaining knowledge regarding the sub soil explo	ndations and earthen stru ration.	ictures, with
	SYLLABUS		
Module-I	Stress distribution in soil: Boussinesq's equati pressure bulb concept, pressure distribution on planes, stresses due to point load, line load, strip circular and rectangular areas. Use of Newmark solution	ons, Stress isobar and horizontal and vertical load, uniformly loaded 's chart. Westergaard's	5 Hrs
Module-II	Lateral earth pressure and retaining structures: active and passive earth pressure. Earth pressu theory, Coloumb's wedge theory, stability co walls.	Earth pressure at rest, are theories, Rankine's onditions for retaining	7 Hrs
Module-III	Terzaghi's and Meyerhoff's bearing capacity the table; Contact pressure; Settlement analysis Deep foundations – dynamic and static formulae piles in sands and clays, pile load test, pile growskin friction.	neories, effect of water in sands and clays. , Axial load capacity of oup efficiency, negative	8 Hrs
Module-IV	Subsoil exploration: Methods, direct (test pits, (borings soil sampling, types of samples, standar penetration test.	trenches), semi-direct d penetration test, cone	4 Hrs
Module-V	Stability of earth slopes: Stability of infinite slop finite slopes, Swedish method of slices, fiction of method. Use of Taylor stability number.	bes, stability analysis of circle method, Bishop's	6 Hrs
Essential Reading	 Geotechnical Engineering, C. Venkatramaiah, New Age International publishers. Soil Mechanics and Foundations, B.C.Punmia, A.K.Jain&Jain, Laxmi Publication. 		
Supplementary Reading	 Geotechnical Engineering, T.N. Ramamurthy & T.G. Sitharam, S. Chand & Co. Soil Mechanics, T.W. Lambe& Whiteman, Wiley Eastern Ltd, New Delhi. Foundation Engineering, P.C. Verghese, Prentice Hall of India Principle of Geotechnical Engineering, Braja M. Das, Cengage 		
Course Outcomes	 CO1. Analysis of stress distribution in soil using Boussinesq'sequations and related concepts. CO2. Evaluation of lateral earth pressure and design retaining structures using relevant theories. CO3. Estimation of bearing capacity of soils and analysis of settlement using Terzaghi's and Meyerhoff's theories. CO4. Assessment of the load capacity of deep foundations and evaluate pile group efficiency. CO5. Preparation of Subsoil exploration and analysis of stability of earth slopes using various methods. 		

Subject Code	CE1207	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Transportation Engineering - I		
Pre-requisites	 Basic knowledge of civil engineering principles and engineering survey techniques. Understanding of geometry, trigonometry, and road design principles. Familiarity with statistics, data analysis, and traffic flow theories. Knowledge of materials science and laboratory testing methods for construction materials. Background in mechanics of materials 		
Course Objective	To equip students with the knowledge and skills to analyze transportation systems and modes, apply geometric design principles for highways, conduct traffic engineering studies, evaluate pavement materials, and design flexible and rigid pavements in accordance with IRC specifications, thereby fostering a comprehensive understanding of highway development and planning.		
SYLLABUS			
Module-I	Transportation System, Modes of transportation limitation, Historical Development of road Development & Planning in India: Classificat patterns, Highway alignment: Requirements alignment & Engineering surveys for Highway a	n – their importance & construction. Highway ion of roads and road s, factors controlling lignment.	4 Hrs
Module-II	Geometric Design of Highways: Cross-sect Distances, Horizontal alignments: Horizontal C design, Attainment of Super elevation, Radius Extra Widening, Transition Curve and Setba alignments- Gradients, Types and Length of V Compensation on Horizontal Curve.	ional elements, Sight Curves, Super elevation s of horizontal Curve, ack Distance. Vertical Vertical Curves, Grade	8 Hrs
Module-III	Traffic Engineering: Traffic Studies- Volume stu D Studies, Capacity Studies and Level of serv parking study, accident study and analysis, Stati data, Microscopic and macroscopic parame fundamental relationships, Operations and Tr Signal design by Webster's method. Types channelization.	idies, Speed Studies, O- vice, Peak hour factor, stical analysis of traffic eters of traffic flow, raffic Control devices, of intersections and	6 Hrs
Module-IV	Highway Pavements materials: Aggregate - quality control tests of Aggregates, Bitumen-T properties & quality control tests of bitumen. Cl of bituminous paving mixes by Marshall Method	desirable properties & ypes, Source, desirable 3R Test of Soil, Design	6 Hrs
Module-V	Highway Pavement Design: Requirements, typ Design of flexible pavement using IRC: 37, Des using IRC: 58, Stress analysis, Design of Joints i	bes & Design Factors. sign of rigid pavements n Rigid Pavement.	6 Hrs
Essential Reading	Highway Engineering-By Khanna & Justo (Nem	chand& Bros., Roorkee ((U. A)

Supplementary Reading	 Principles & Practice of Highway Engineering – By Dr. L.R. Kadiyalli (Khanna publisher) Relevant IRC codes/ Specifications.
Course	CO1. Analyze transportation modes for their significance in urban and rural
Outcomes	development, recognizing their limitations and historical contexts.
	 CO2. Demonstrate geometric highway design skills, focusing on cross-sectional elements, sight distances, horizontal/vertical alignments, and curve calculations. CO3. Conduct traffic studies (volume, speed, O-D) and statistical analyses to assess traffic flow and create effective traffic control devices and signal designs. CO4. Evaluate properties and quality control tests for highway pavement materials, including aggregates, bitumen, and CBR testing of soil. CO5. Design flexible and rigid pavements per IRC specifications, incorporating stress analysis, joint design, and relevant design factors.

Subject Code:	CS1209	Total Contact Hour	30
Semester:	4 th	Total Credit	2
Subject Name:	Artificial Intelligence and Machine Learning		
Course Objectives:	1.To familiarize students with the fundamental concepts, theories, and		
	applications of Artificial intelligence & Machine learning. Students will gain		
	insight into the various subfields of AI& ML.		
	2. Students will have a clear understand	Ing of the fundamental cor	cepts and
	discuss and comprehend AL related top	ios	ig them to
	3 Students will have a clear understand	ding about neural networks	Fuzzy logic
	4 Students will have a clear understand	erstanding about Clusteri	ng and related
	techniques		
	5. Students will have a clear unders	tanding about Classificati	ion and related
	techniques.	8	
	SYLLABUS		
Module I	Introduction to Artificial Intelligence, A	Applications of AI, State-	8 Hrs
	space problem, Problem solving by	Intelligent search: BFE,	
	DFS, Iterative Deepening Search, Hill climbing, Heuristic		
	search: A*, AO*, MIN_MAX Algorithm, Alpha-beta cutoff		
Module II	Knowledge representation and reasoning: Formalized symbolic 5 Hrs		
	logic, propositional logic, First-order predicate logic, wff		
	conversion to clausal form, inference rules, resolution principle.		
Module III	Unsupervised Learning: K-means, K-Medoids, Hierarchical 5 Hrs		
	clustering, Density based clustering, V	Validation Method: LOO,	
	K-fold cross validation.		
Module IV	Supervised Learning: Decision Tree, Naïve Bayes classifier, K- 6 Hrs		
	NN, Introduction to regression. Perform	mance matrix: Confusion	
	matrix, Precision, Recall, Sensitivity, Specificity, MAE, MSE		
Module V	Neural Network Artificial Neuron and its model, activation 6 Hrs		
	functions, Neural network architecture: single layer and		
	multilayer feed forward networks, recurrent networks, Training		
	of ANN, Back propagation, RBFNN.		
Essential Reading	1.E.Rich and K. Knight, Artificial Intelligence-TMH		
	2.Neuro Fuzzy and Soft Computing, J. S. R. JANG, C.T. Sun, E. Mitzutani, PHI		
Supplementary	1.Artificial Intelligence, Dan W Patterson, Prentice Hall of India		
Reading	2.Computational Intelligence Principles, Techniques and Applications, Amit		
	Konar, Springer publication.		
	3. M. Gopal, Applied Machine Learning, McGraw Hill Education, 2018		
Course Outcomes:	CO1: Understand the basics of Search techniques, Knowledge representation and		
	reasoning in Artificial Intelligence.		
	CO2: Understand the Supervised machine learning and Unsupervised machine		
	learning.		
	CO3: Analyzevarious machine learning models.		
	them		
	CO5: Implement various Unsupervised machine learning techniques and analyze		
	them.	i maenine rearining teening	acts and analyze

Subject Code	HS1201	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Engineering Economics		
	SYLLABUS		
Module-I	Basic Principles of Economics: Definition, Nature, Scope and significance of economics for Engineers. Demand & Supply and their Determinants, Elasticity-Government policies and application. Basic Macroeconomics concept: National income accounting (GDP/GNP/NI/Disposable Income etc.) and identities for both closed and open economies.		6 Hrs
Module-II	Utility Analysis: Cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equi-marginal utility; Indifference curve-Concepts, properties, Budget line, Equilibrium of the consumer, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis		6 Hrs
Module-III	Production, Cost and Market Structure: F run production function and law of variab production function: Isoquants, isocost line, r factor combinations, Cost Analysis: Concepts, and Long run cost curves, Analytical and a Market structure: Market classifications Characteristics, price and output determination run, Monopoly market: Price and output discrimination Modern theories of firms: B revenue maximisation, Bain's limit pricing mo	Production function: short le proportion; Long run eturns to scale, Optimum , Classification- Short run ccounting cost concepts; , Perfect competition: on in Short run and long ut determination, price aumol's theory of sales del.	6 Hrs
Module-IV	Money and Banking: Money-Function of Me Theory. Quantity theory of money; Banking their Functions, Central bank's Functions. Economic Development, Monetary and Fisca impact on the economy.	oney, Demand for Money Commercial Banks and Role of the Banks in al Policy Tools and their	6 Hrs
Module-V	Capital Budgeting and Investment Analysi use of cash flow diagram, Annual econom future worth, Internal Rate of Return (IRR), N Payback period method, Analysis of publi analysis, Cost effectiveness.	s: Time value of money: ic worth, present worth, Net Present Value (NPV), c projects: Cost-Benefit	6 Hrs

Essential	1. Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press		
Reading	Ltd., London		
	2. Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics,		
	Pearson India, New Delhi.		
	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India,		
	New Delhi.		
	4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia.		
Course	CO1- Utilise economics principles in consumption process		
Outcomes	CO2- Describe the utility measurement and measure the utility associated with		
	risk		
	CO3- Efficient use of resources in production and take decision regarding		
	optimum output		
	CO4- Describe market mechanism and analyse product market to take proper		
	decisions		
	CO5- Implement economic principles in company related decision making		

SESSIONALS

Subject Code	CE1284	Total Contact Hour	22
Semester	4 th	Total Credit	1.5
Subject Name	Survey Practice		
Pre-requisites	 Basic surveying principles and traditional land measurement methods. Foundation in mathematics (particularly geometry and trigonometry). Understanding of engineering principles, basic computer literacy for data handling and software usage. 		
Course Objective	To equip students with a comprehensive understanding of advanced surveying techniques and equipment, such as digital theodolites, total stations, and DGPS, while developing practical skills in applications like height and distance determination, profile leveling, and stakeout operations for effective use in engineering projects.		
List of Experiments			
1	Study of Digital Theodolite		
2	Determination of Tacheometric Constant		
3	Solution for Height and Distance		
4	Study of Auto level, Profile Levelling and Contouring		
5	Land Surveying using Digital Theodolite		
6	Study of Total Station		
7	Land Surveying using Total Station		
8	Stake out operation using Total Station		
9	Setting out of Simple Circular using Total Station	n	
10	Setting out of Transition Curve using Total Station		
11	Land Surveying using DGPS		

Course	CO1. Proficiency in operating digital theodolites, total stations, and auto levels for		
Outcomes	diverse surveying applications.		
	CO2. Ability to determine and apply tacheometric principles for solving height and		
	distance measurement problems effectively.		
	CO3. Ability to Conduct profile leveling and contouring surveys for interpretation		
	and creation of detailed topographic features of the terrain.		
	CO4. Capability to perform stakeout operations and accurately set out geometric		
	features, including simple circular curves and transition curves, utilizing tota		
	station technology.		
	CO5. Utilize DGPS technology for precise land surveying practices.		

Subject Code	CE1285	Total Contact Hour	22
Semester	4 th	Total Credit	1.5
Subject Name	Structural Engineering Laboratory		
Pre-requisites	Knowledge about behaviour of steel, concrete and RCC		
Course Objective	To understand the building material characterization process.		
List of Experiments			
1	Determination of Tensile strength of Steel (mild steel and tor steel)		
2	Determination of Percentage elongation for steel		
3	Determination of Stress- strain curve of steel		
4	Determination of Modulus of Elasticity of Steel		
5	Experiment on bend and re-bend test of steel reinforcement		
6	Experiment on Mix design of Concrete		
7	Experiment on Non-destructive tests of concrete: Ultrasonic Pulse Velocity		
8	Experiment on Non-destructive tests of concrete: Rebound Hammer		
9	Testing of RCC beam in flexure		
10	Influence line diagram for two hinged arch		
11	Finding reactions and forces for three hinged arch		
Course Outcomes	 CO1. Connect theory with practice and application by demonstration. CO2. Practice to get exposure on equipment's and machines like UTM, rebound hammer, three and two hinged arch, concrete mixeretc. CO3. Facilitate all inputs required to help to attain professional expertise to analyze data, interpret results, and write technical reports. CO4. Understanding concrete mix design for different field conditions. CO5. Summarize the knowledge and application of safety regulations. 		

Subject Code	CE1286	Total Contact Hour	16
Semester	4th	Total Credit	1.5
Subject Name	Building Drawing		
Pre-requisites	Knowledge about building material & construction, engineering drawing		
Course Objective	To understand the plan and elevation for different types of buildings.		
List of Experiments			
1	Plan, elevation, side view of residential/office building		
2	Detailing of doors/windows		
3	Drawing of several types of footing, brick work, floor staircase, masonry, arches and lintels.		
4	Types of steel roof trusses		
5	Drawing of 2 bedroom/3 bedroom houses (single and two storied), ground and first floor plans, elevation and section for load bearing and framed structures		
6	Project on establishment like Bank building/Post.		
7	Office/Hostel/Library/Auditorium/Factory building etc.		
8	Introduction to Auto-CAD: Use of Auto-CAD in building drawing		
Course Outcomes	 CO1. Apply the principles of planning and bylaws used for building planning CO2. Use Drawing for plan, section and elevation for various structures. CO3. Evaluate several types of footing. CO4. Explain staircase. CO5.Building drawing by Auto-CAD. 		

Subject Code	CE1287	Total Contact Hour	20
Semester	4th	Total Credit	1.5
Subject Name	Transportation Engineering Laboratory		
Pre-requisites	 Knowledge about soil properties and behavior under load. Knowledge of aggregate characteristics. Familiarity with bitumen properties. Basic concepts of stress, strain, and material strength. 		
Course Objective	To equip students with practical knowledge and skills in material testing methods essential for transportation engineering. To conduct standardized tests on soil, aggregates, bitumen, and bituminous mixes to evaluate their properties for pavement design and construction, ensuring quality, durability, and performance of road infrastructure.		
List of Experiments			
1	Determination of subgrade soil strength for pavement design – California Bearing Ratio (CBR) Test.		
2	Determination of aggregate strength under compressive loads – Crushing Value Test.		
3	Assessment of aggregate toughness and resistance to impact forces – Impact Value Test.		
4	Measurement of aggregate resistance to surface wear and degradation – Los Angeles Abrasion Test.		
5	Evaluation of aggregate shape factors, including flakiness and elongation indices – Shape Test.		
6	Determination of bitumen consistency under varying temperature conditions – Penetration Test.		
7	Identification of the temperature value at which bitumen softens – Softening Point Test.		
8	Measurement of bitumen's elongation property before breaking – Ductility Test		
9	Determination of bitumen density and purity – Specific Gravity Test.		
10	Evaluation of the strength and stability of bituminous mixes under loading conditions – Marshall Stability Test.		
Course Outcomes	 CO1. Evaluate subgrade strength through Cl suitability. CO2. Conduct and interpret aggregate tests (cru assess material quality for pavements. CO3. Perform bitumen tests (penetration, so gravity) to determine its suitability in road constrict CO4. Assess bituminous mix properties using pavement performance. CO5. Apply standard testing protocols and dessettings. 	BR testing for pavement shing, impact, abrasion, oftening point, ductility ruction. g the Marshall Stability monstrate teamwork in	nt design shape) to , specific , Test for laboratory