THIRD SEMESTER

Subject Code	MA1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Mathematics-III		
	SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Cumulative Distribution6 HFunction (CDF). Variance and standard deviation. Moments. Functions6 Hof a random variable. Distributions: Binomial, Poisson, normal,6 HGaussian, uniform (definitions and examples only). Moment generating6 H		6 Hrs
Module-II	Pairs of random variables. Joint probability probability mass function. Marginal distrib random variables, PDF and expected values of variables.	ution. Functions of two	6 Hrs
Module-III	Probability Models of n Random Variables. Vector notation. 6 Hrs Independence of random variables and random vectors. Functions of random vectors. Expected value vector and correlation matrix.		
Module-IV	Stochastic Processes. Definitions and examples. Types of stochastic processes. Random variables from random processes. The Poisson process.6 Hrs		
Module-V	Markov Chains. Discrete-time Markov chain. Discrete-Time Markov 6 Hrs chain dynamics. Limiting state probabilities for a finite Markov chain. State classification.		
Essential Reading	 Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley and Sons, INC. Gregory F Lawler, Introduction to Stochastic Processe, Chapman & Hall/ CRC Press (Taylor Francis Group). 		
Course Outcomes	The objective of this course is to familiarize the prospective engineers with techniques in Probability and Statistics. It aims to equip the students to deal with advanced level of Statistics that would be essential for Engineering disciplines. CO1. To apply different distributions in real life problems of industries. CO2. To deal with problems that contains multivariable probability distribution. CO3.To enrich knowledge Probability Models of multi-Random Variables. CO4. To learn use of stochastic processes in daily life. CO5. Application of eigen values in solving matrices.		

Subject Code	CH1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Fuels and Combustion		
Pre-requisites	Knowledge in undergraduate mathematics,	physics and chemistry	
Course Objective	 To study the solid, liquid and gaseous fuels origin, classification, properties, analysis, and handling. To understand different characterization techniques of fuels. To understand the conversion and treatment processes of fuels with their applications. To study the combustion processes of fuels. To understand combustion stoichiometry relationship 		
	SYLLABUS		
Module-I	Solid fuels: Coal origin, Chemical comp Classifications, Characteristics and Distributio		6 Hrs
Module-II	Storage and spontaneous combustion of coal, Coal washing and 5 Hrs blending, Petrographic constituents of coal, Carbonization of coal, Manufacture and properties of metallurgical coke, Recovery of by products		
Module-III	Liquid fuels: Origin and composition of crude and its products with Special reference to gase oil, Cracking and reforming, Shale oil, Fischer	oline, kerosene and diesel	7 Hrs
Module-IV	Gaseous fuels: Natural gas, Coal gas, Coke or Manufacture of water gas and Producer ga Synthetic fuels: Hydrogenation of coal		6 Hrs
Module-V	Combustion: Combustion of solid, liquid and g stoichiometry and thermodynamics, Calcu weights of air required for combustion, the gas	lation of volumes and	6 Hrs
Essential Reading	 Elements of Fuels, furnace and combustion by O P Gupta. Fuels and Combustion by Sameer Sarkar. 		
Supplementary Reading	 S.N. Saha, Fuel Combustion Energy Technology, DhanpatRai pub. Co. Himus, Elements of Fuel Technology. 		

Course	At the end of this course
Outcomes	CO1. Students will understand the basics of solid, liquid and gaseous fuels.
	CO2. Students will earn different characterization techniques of fuels.
	CO3. Students will earn the different conversion techniques of fuels.
	CO4. Students will understand the combustion process of fuels.
	CO5. Students will understand and analyze the combustion mechanisms of
	various fuels.

Subject Code	CH1202	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Fluid Mechanics		
Pre-requisites	Basic of Mathematics and Physics		
Course Objective	 To understand the properties of fluids and fluid statics. To derive the equation of conservation of mass and its application. To use important concepts of continuity equation, Bernoulli's equation and turbulence, and apply the same to problems. To understand the various flow measuring devices. To study in detail about boundary layer theory. 		
	SYLLABUS		
Module-I	Units and dimensional analysis, Types o Hydrostatic Pressure, Pressure measuring Dev		5 Hrs
Module-II	Introduction to fluids in motion, Flow in boundary layers. Its formation 7 Hrs & growth in tubes & plates. Basic equations of fluid flow continuity, momentum & Bernoulli's equation. Flow measuring devices: Venturi, Orifice, Pitot tube, and Rotameter.		
Module-III	Flow of incompressible fluid in pipes, Relation between skin friction & 8 Hrs wall shear. Laminar flow in pipes, Hagen–Poiseuille equation, Friction factor, Friction from changes in velocity or direction, Flow of compressible fluids, Basic equations. Flow past immersed bodies, Drag Coefficient. Motion of particles through fluids. Its mechanics, Terminal velocity.		
Module-IV	Friction inflow through beds of solids, Flu fluidization, pressure drop in fluidization, App		5 Hrs
Module-V	Transportation of fluids, reciprocating, rota Characteristics curves & calculation of powe Concept of slip.		5 Hrs
Essential Reading	 Unit Operations of Chemical Engineering, 7th ed. by W L McCabe, J C Smith, and P. Harriott, McGraw-Hill. Fluid Mechanics for Chemical Engineers, 3rd ed. by Noel de Nevers, McGraw-Hill. 		
Supplementary Reading	 A Textbook of Fluid Mechanics and Hydraulic Machines, 9th ed. by R K Bansal. Fluid Mechanics: Including Hydraulic Machines by A K Jain. Introduction to Fluid Mechanics and Fluid Machines, 3rd ed. by S K Som, G Biswas, and S. Chakraborty, McGraw-Hill, 2011. 		

Course	CO1. Apply the knowledge of differential equations of fluid mechanics
Outcomes	including the ability to apply and understand the impact of assumptions made in
	the analysis.
	CO2. Apply the concepts of boundary layer and its estimation in different
	flows.
	CO3. Describe the compressible flow equations and multiphase flow
	correlations.
	CO4. Describe the dynamics of drops and bubbles quantitatively.
	CO5. Describe fluid flow problems with the application of the momentum and
	energy equations.

Subject Code	CH1203	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Chemical Process Technology		
Pre-requisites	Basic of Chemistry and Physics		
Course Objective	 To understand the manufacturing of various fertilizers. To understand the manufacturing of inorganic chemicals. To Study various natural products industries. To study the various fermentation and coal based chemical industries. To understand manufacturing of various polymers. 		
	SYLLABUS		
Module-I	Introduction to chemical process technolo Instrumentation diagrams and process symbol NPK.	•••	5 Hrs
Module-II	Inorganic Chemical Industries: Manufacture of Soda ash, Caustic Soda and Chlorine. Manufacture of Sulphuric acid, Hydrochloric acid and Nitric acid. Manufacture of Silicon and Calcium carbide.		
Module-III	Natural Products Industries: Paper & pulp industries. Manufacture of 8 Hrs sugar and allied products. Extraction and refining of edible oil. Fat splitting and hydrogenation of oil. Soaps, detergents and recovery of glycerine.		
Module-IV	Fermentation Industries: Manufacture of alcohol. Coal based chemical industries.	industrial and absolute	5 Hrs
Module-V	Polymerization industries: Polyethylene, polyester synthetic fibres.	olypropylene, PVC and	5 Hrs
Essential Reading	 C. L. Dryden, Outlines of Chemical Technology, Edited and Revised by M. Gopala Rao and S. Marshall, 3rd Ed., Affiliated East West, New Delhi, 1997. T. G. Austin and S. Shreve, Chemical Process Industries, 5th Ed., McGraw Hill, New Delhi, 1984. 		
Supplementary Reading	 R. E. Kirk, and D. F. Othmer, Encyclopaedia of Chemical Technology, 4th Ed., Interscience, New York, 1991. P. H. Groggins, Unit Processes in Organic Synthesis, 5th Ed., McGraw Hill, 1984. 		

Course	CO1. Demonstrate the manufacturing of various fertilizers.
Outcomes	CO2. Demonstrate the manufacturing of inorganic chemicals.
	CO3. Express the knowledge of various natural products industries.
	CO4. Demonstrate the various fermentation and coal based chemical industries.
	CO5. Develop the manufacturing of various polymers.

Subject Code	CS1205	Total Contact Hour	30
Semester	3rd	Total Credit	2
Subject Name	Programming in Python		
Course Objective	 Introduction to Python Language and its features. To understand the concept of Python Program using sequence data and Control statements. To be able to understand and create User Defined Function. To understand the concept of OOPs and its implementation. To understand the concept of strings and file handling 		
	SYLLABUS		
Module-I	Beginning Python Basics: Introduction to Py Application of Python Data Types, Keywo Constants. Python Indentation. Operators a Conventions with examples, Managing Input Indentation. Conditional statement, Looping continue, pass & return statements, Nesting of	ords, Identifiers, Literals, nd expressions. Naming and Output, Concept of g statements, break and	6 Hrs
Module-II	Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter.8 Hrs		
Module-III	Tuple and methods, Sets and methods, Dic iterator and methods. Function: Introduction to Functions, passing functions (Lambda Function), Recursive Funct	g arguments, Anonymous	6 Hrs
Module-IV	Object Oriented Programming: Classes and Encapsulation, Data Abstraction, Constr Inheritance. Exception Handling: Handling Exceptions: tr	ructor, Destructor and	6 Hrs
Module-V	Strings and Regular Expressions: Methods of String Objects, Escape4 HrsSequence, Iterating Strings, String Module, String Formatting, Regular4 HrsExpressions: Re-Module.File Handling: Introduction to File Handling, File Operations, Directories.		
Essential Reading	 Python Programming for Beginners by Adam Stewart Python Cookbook by David Beazley and Brian K. Jones 		

Supplementary	1. Introduction to Python Programming ByGowrishankar S. Veena A.	
Reading	2.Python Programming: Using Problem Solving Approach, Oxford University	
	Press by ReemaThareja.	
	3.Python Programming University Press by ChSatyanarayan, M Radhika, B N	
	Jagadesh.	
Course	CO1: Understand the Python Language and its features.	
Outcomes	CO2: Apply sequence data and control statements to solve problem.	
	CO3: Able to create user defined functions to solve problems.	
	CO4: Analyze the concept of OOPs and its implementation.	
	CO5: Create the python program using strings and files.	

Subject Code	HS1202	Total Contact Hour	30
Semester	3rd	Total Credit	2
Subject Name	Organizational Behaviour		
Course Objective	 To understand the relevance of organizational behavior concepts and theories in real-life organizational settings & to develop skills in critical thinking, decision-making, problem-solving in applying organizational behavior concepts to practical situations. To provide an understanding of individual behavior in the workplace, including personality, motivation, perception, learning, and attitudes. To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivation and leadership in managing organization. To explore how organizational culture affects behavior, communication and decision making by enhancing creativity and innovation and give an episteme how to cope with change and stress. To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaboration across culture 		
	SYLLABUS		
Module-I	Fundamentals of OB & Understanding th OB: Evolution of OB through Quality Definitions, Scope & Importance of O Globalization& Ethical Perspective) and oppo of OB, applying OB to solving problems.	Management movement, B,Challenges (Diversity,	6 Hrs
Module-II	 Understanding the Determinants of Personality: Determinants of personality, (Type &Psychoanalytic theory), MBTI, Big to other major traits influence workplace behavior Perception: Meaning, Perceptual Process, App Workplace. Motivation: Motivation Framework, Contenn hierarchy & Hertzberg's two factors theory), Equity & Vroom's Expectancy theory), Job Importance of motivation at Workplace. Learning: Theories of learning (Classica Conditioning, & Cognitive Theory), Principle modification through learning. 	Theories of Personality five personality traits and or. oplication of Perception at t theory (Maslow's need Process theory (Adam's Design and motivation, l Conditioning, Operant	6 Hrs

Module-III	Understanding Group and Team Behavior at Workplace: Group & Team: Defining and classifying groups, the five-stage model of group development Group properties: Roles, norms, status, size and cohesiveness, Group decision making. Leadership: Meaning, Definition & types of leadership, Traditional theories of leadership: Trait theories, Behavioral theories, Contingency theories, Contemporary approaches to leadership, importance of leader in organizations.	6 Hrs
Module-IV	Understanding the Organizations & the Process Organizational Culture: Meaning, Definition, Cultural dimensions, effect of Organizational culture Organizational Change & Development: Nature, Levels & types of Change, Change Agents: Resistance to Change, Force field theory of Change, Managing the Change.	6 Hrs
Module-V	 Conflict & International Organizational Behavior: Managing Conflict and Negotiations: Meaning, views, & levels of Conflict, Process of conflict, Conflict resolution techniques. Transactional Analysis: Meaning, Importance of TA, Life position, Ego states and their encounters. IOB: Internationalization of Business, Cultural differences and similarities, Understanding Interpersonal behavior across culture through Hofstede's Cultural Dimensions. 	6 Hrs
Essential Reading	 "Organizational Behavior: Text, Cases, & Games" by K. Aswathappa. Publisher: Himalaya Publishing House "Essentials of Organizational Behavior" by Stephen P. Robbins and Timothy A. Judge. Publisher: Pearson Education. 	
Supplementary Reading	 Y 1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Michael J. Wesson. Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann VonGlinow. Publisher: McGraw-Hill Education. 5. "Organizational Behavior and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: Wiley 	

Course	CO1. Explain the importance of organizational behavior in improving
Outcomes	individual and organizational effectiveness with Ethical practices.
	CO2. Evaluate the effectiveness of different leadership styles and their
	application in different situations.
	CO3.Develop critical thinking, Creativity& Innovation, problem-solving, and
	communication skills necessary for success in organizational settings.
	CO4. Develop strategies for managing organizational change effectively and
	maintaining sustainability.
	CO5. Apply organizational behavior concepts and theories to practical
	organizational situations.

SESSIONALS

Subject Code	CH1281	Total Contact Hour	16
Semester	3rd	Total Credit	1.5
Subject Name	Fluid Mechanics Laboratory		
	List of Experiments		
1	Manometers – To find the pressure drop for flo	w through pipes.	
2	Fluidized bed – To determine minimum fluidization velocity and pressure drop		
3	Venturi meter- To find out the flow rate of fluid flowing inside a pipe.		
4	Reynold's Apparatus – To verify the flow whether it is laminar or turbulent.		
5	Bernoulli's Apparatus – To verify Bernoulli's equation.		
6	To measure the flow rate of a fluid by using V–Notch.		
7	To measure the flow rate of a fluid by using rectangular Notch.		
8	Orifice Meter -To find out the flow rate of fluid flowing inside a pipe.		

Subject Code	CH1282	Total Contact Hour	16
Semester	3rd	Total Credit	1.5
Subject Name	Fuel Technology- I Laboratory		
	List of Experiments		
1	To determine the composition of the supplied s Analysis.	sample of Coal by Proxim	ate
2	To perform the ultimate analysis of the supplie	ed sample of coal	
3	To determine the Gross calorific value of the supplied sample of coal using Bomb Calorimeter.		
4	To determine the Gross calorific value of the supplied sample of coal using Automatic Bomb Calorimeter.		
5	To determination of Caking Index of the supplied sample of Coal		
6	To determine the wash ability characteristics of the supplied sample of Coal		
7	To determine the Swelling Index of the supplied sample of coal		
8	To ascertain the agglomerating characteristics of the coal sample.		

Subject Code	CH1283	Total Contact Hour	18
Semester	3rd	Total Credit	1.5
Subject Name	Process Technology Laboratory		
	List of Experiments		
1	To prepare a soap and determination of the alk	ali content of soap.	
2	To determine the alkali content of soap.		
3	To determine the saponification value and bromine value of the oil.		
4	To determine the fat content of food stuff.		
5	To find the total organic carbon of the water sample.		
6	To find out the distribution coefficient of iodine in organic solvent and water.		
7	To determine the iron content of a given salt solution.		
8	To determine the lime content of the Portland cement.		
9	To determine the dye concentration using a spectrophotometer.		

Subject Code	CS1285	Total Contact Hour	20
Semester	3rd	Total Credit	1.5
Subject Name	Machine Learning Using Python Laboratory		
Course Objectives	 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling. 		
	List of Experiments		
1	Program on basics of python Programming La	nguage.	
2	Program on basic Data Structures in Python.		
3	Program on Conversion from on data type to another.		
4	Program on Functions in Python.		
5	Program using Object Oriented Programming in Python.		
6	Program using Inheritance in Python.		
7	Program using String in Python.		
8	Program using Regular expression in Python.		
9	Program using File Handling in Python.		
10	Program using basics of Pandas and Matplotlib module in Python.		
Course Outcomes	 CO1: Understand the Python Language and its features. CO2: Apply sequence data and control statements to solve problem. CO3: Able to create user defined functions to solve problems. CO4: Analyze the concept of OOPs and its implementation. CO5: Create the python program using strings and files. 		

FOURTH SEMESTER

Subject Code	MA1202	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Numerical Methods in Engineering		
	SYLLABUS		
Module-I	Logic: Proposition and logical operation, conditional statement, methods of proof, mathematical induction. Counting principle: permutation and combination, principle of inclusion and exclusion, pigeonhole principle		6 Hrs
Module-II	Relations: Properties of relations, equiva properties of relations, transitive closure by W		6 Hrs
Module-III	Recursive definition and structural induction, recurrence relations, 6 Hrs solution to recurrence relations, generating functions, partially ordered sets, Hass diagram, lattice, finite Boolean algebra.		6 Hrs
Module-IV	Graph Theory: Introduction to graph theory, Graph terminology, 6 Hrs Representation of graphs, Isomorphism, Euler and Hamiltonian paths, Planar graph, Graph coloring, Introduction to trees, Application of trees.		6 Hrs
Module-V	Semi groups, monoids, groups, subgroups, cosets, Lagrange theorem, 6 Hrs permuation groups, isomorphism, homomorphisms, normal subgroups, definitions and examples only for (Rings, integral domain and fields).		6 Hrs
Essential Reading	 1.Kenneth H Rosen, "Discrete mathematics and its applications", McGraw hill international. 2. C.L Liu, "Elements of Discrete mathematics" McGraw hill international 3. B. Kolman, R C Bosby, S Ross, "Discrete mathematical structure", PHI 		ational
Course Outcomes	 The objective of this course is to familiarize the prospective engineers with techniques in Discrete Mathematics. It aims to equip the students to deal with advanced level of Discrete Mathematics that would be essential for Engineering disciplines, especially for Computer Science, IT, Electronics, Electrical Engineering. The Students will Learn: CO1. To enrich knowledge of inference and logic CO2. To deal with problems that involves Warshall's algorithm. CO3. To apply Boolean algebra in engineering fields. CO4.To learn applications of graph theory in daily life CO5.To be familiar with groups, rings and fields in industry. 		

Subject Code	CH1204	Total Contact Hour	30	
Semester	4th	Total Credit	3	
Subject Name	Mechanical Operations			
Pre-requisites	Basic knowledge in mathematics and science	e		
Course Objective	 This course acquaints the students of the mechanical method of sizing, separating& transportation of particles. To impart the basic concepts of mechanical operations. To develop an understanding of size analysis, size reduction, and solid handling. Understand mechanical separation methods such as filtration, sedimentation, transportation of solids etc. and associated equipment used for achieving these methods. The students are exposed to basic theory, calculations, and machinery involved in various solid handling operations. 			
	SYLLABUS			
Module-I	Properties and storage of solids: Characteristics of solid particles and solids in bulk. Size Reduction: Objectives, Methods, and Principles of size reduction, Size reduction equipment's: Coarse, Intermediate, and Fine Crushers and Ultra-fine grinders, Open & closed circuit grinding.7 Hrs			
Module-II	Solid-solid separation: Screening, Electrical separation, Classification,5 HrsGravity concentration, and Floatation and their latest equipment's.5			
Module-III	Solid-liquid separation:Sedimentation and equipment's (Thickeners6 Hrsand clarifiers),Filtration:Theory and equipment's.		6 Hrs	
Module-IV	Gas-solid separation: Principle and equipment's. Transportation of 6 Hrs solids: Conveyors and elevators			
Module-V	Mixing: Theory of solid and liquid mixing and their equipment's. Size6 Hrsenlargement, Crystallization, Feeding, Weighing, and Coagulation.6			
Essential Reading	 C.M. Narayanan & B. C. Bhattacharyya, Mechanical Operation for Chemical Engineers, Khanna Publisher, Third Edition, 2005. WI McCabe & JC Smith, P Harriot, Unit Operations of Chemical Engineering, McGraw Hill publication, 2005. 			
Supplementary Reading	 1.M.C. Fuerstenau and K.N. Han, Principles of Mineral Processing, John Wiley, N.Y, 2003. 2. J. F. Richardson, J. H. Harker & J. Backhurst, Chemical Engineering Volume II, Butterworth-Heinemann, 1stEdn, 2002 			

Ability to understand fluid particle systems and equipment.	
CO2. Knowledge to select suitable size reduction equipment, solid-solid	
separation method and conveying system.	
Ability to analyze mixing processes.	
Understanding of different unit operations i.e. solid-solid, solid-liquid &	
gas-solid separations.	
CO5. Ability to understand about different storage & transportation devices for	
ing.	

Subject Code	CH1205	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Chemical Engineering Thermodynamics		
Pre-requisites	Basic of Mathematics and Chemistry		
Course Objective	 To understand the concept of system and surroundings. To study in detail about different laws of thermodynamics. To analyze the concept of Heat engine, refrigeration. To use important concepts internal energy, enthalpy, entropy and apply same to problems. To understand the concept of steady state, equilibrium, VLE, Cher Equilibrium and concept of fugacity. 		
	SYLLABUS		
Module-I	Basic concepts: Thermodynamics system and surroundings, types of systems, Thermodynamic equilibrium and Phase Rule, Zeroth law of thermodynamics, State and Path functions, Concept of Ideal gas, Properties of pure fluids; P-V-T behaviour of pure substances, Virial equations of state, The Ideal gas, Applications of Virial equations, Cubic equation of state, Theorem of corresponding states. Heat Effects of Phase Change.		7 Hrs
Module-II	The first law of Thermodynamics, Concept of Internal Energy and 7 H Enthalpy, Application of First law to Open Systems, Heat Engine and Second Law Statements: Carnot Heat engine cycle and Second Law, Concept of Entropy, work function, Introduction to third law		7 Hrs
Module-III			6 Hrs
Module-IV	Concept of Fugacity and fugacity coefficient, Lewis – Randall Rule, Activity coefficient for VLE data, Solution thermodynamics – thermodynamic properties and VLE from equation of state, Concept of Chemical Potential		
Module-V	Concept of Excess Properties and Residual Properties, Chemical reaction equilibria: Introduction, Reaction Coordinate, criteria to chemical reactions, Gibbs energy change, equilibrium constant of reaction, effect of temperature.		5 Hrs

Essential Reading	 J. M. Smith, H. C. V. Ness and M. M. Abbot, Introduction to Chemical Engineering Thermodynamics, McGraw and Hills Publication, 2005 K.V. Narayanan, A Textbook of Chemical Engineering Thermodynamics, second edition, PHI Learning private limited, 2013 Stanley I Sandler, Chemical, Biochemical and Engineering Thermodynamics, Fifth edition, Willey. 	
Supplementary	1. P.K.Nag, Engineering Thermodynamics 5th Edition.	
Reading	2. Y.A. Cengel, Thermodynamics an engineering approach, 9th Edition, Mc	
	Graw Hill.	
	3. K. Denbigh, The principles of Chemical equilibria with applications in	
	Chemistry and Chemical Engineering, 1981	
Course	CO1.Apply the knowledge of contemporary issues related to chemical	
Outcomes	engineering thermodynamics.	
	CO2. Apply the knowledge of phase equilibria in two-component and multi-	
	component systems.	
	CO3. Describe the thermodynamic properties of substances in gas or liquid	
	state of ideal and real mixture.	
	CO4.Describe intermolecular potential and excess property behaviour of multi-	
	component systems.	
	CO5.Apply the fundamental concepts of thermodynamics to engineering applications.	

Subject Code	CH1206	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Chemical Process Calculation		
Pre-requisites	Basic of Mathematics and Chemistry		
Course Objective	 To develop the basic knowledge in material and energy balance in process streams. To develop a systematic approach to make stoichiometric calculations. To provide a solid foundation for developing skills for solving complex chemical engineering process problems. To develop the basic knowledge in energy balance calculation. To develop a basic understanding in thermophysics and thermochemistry. 		
	SYLLABUS		
Module-I	Units and dimensions, composition of solids, liquids and gases, excess and limiting reactant, conversion, yield, Ideal gas equation, mixtures of ideal gases.		
Module-II	Real gases, equations of state, vapor pressure and boiling point, 7 Hrs Clapeyron equation, ClausiusClapeyron equation, Antoine equation, vapor pressure plot, Ideal solutions and Raoult's law.		7 Hrs
Module-III	Material balance calculations for unit operations like mixing, 8 Hrs evaporation, crystallization, distillation, bypass, recycle and purging		
Module-IV	Internal energy, enthalpy, heat capacities, mean heat capacity, heat 5 He capacity of mixtures of gases, heat of fusion, heat of vaporization, Clapeyron equation, Trouton's rule, standard heat of reaction, combustion, and formation, Hess's law of constant heat summation		5 Hrs
Module-V	Effect of temperature on heat of reaction, temperature of reaction, 5 Hrs adiabatic reaction temperature, adiabatic flame temperature.		
Essential Reading	 Stoichiometry and process calculations, K.V.Narayanan, B.Lakshmikutty, PHI Chemical process principles, Part 1, O.A.Hougen, K.M.Watson, R.A.Ragatz, CBS pub. Elementary principles of chemical processes, Richard M.Felder, Ronald W.Rousseau, John Wiley & sons. 		
Supplementary Reading	 Stoichiometry, B.I.Bhatt, S.M.Vora, MGH Basic principles and calculations in chemical engineering, David M.Himmelblau, Pearson education pvt. ltd. Chemical reactions and stoichiometry, R.K.Dave, Campus book international. 		

Course	CO1. Ability to make material balances on unit operations and processes.	
Outcomes	CO2. Knowledge to perform simultaneous material and energy balances.	
	CO3. Understanding of ideal gas and real gas behavior.	
	CO4. Understanding of bypass, recycle and purging operation.	
	CO5. Understanding different enthalpy concentration charts, flame temperature.	

Subject Code:	CS1209	Total Contact Hour	30	
Semester:	4 th	Total Credit	2	
Subject Name:	Artificial Intelligence and Machine Learning			
Course Objectives:	1.To familiarize students with the fundamental concepts, theories, and			
	applications of Artificial intelligence & Machine learning. Students will gain			
	insight into the various subfields of AI& ML.			
	2. Students will have a clear understanding of the fundamental concepts and			
	terminology of Artificial intelligence Machine learning, enabling them to discuss and comprehend AI-related topics.			
	3. Students will have a clear understanding about neural networks, Fuzzy logic.4. Students will have a clear understanding about Clustering and related			
	techniques.	istanding about clusterin	ing and related	
	5. Students will have a clear unders	tanding about Classificati	on and related	
	techniques.	6		
	SYLLABUS			
Module I	Introduction to Artificial Intelligence, A	Applications of AI, State-	8 Hrs	
	space problem, Problem solving by	6		
	DFS, Iterative Deepening Search, I			
	search: A*, AO*, MIN_MAX Algorith	m, Alpha-beta cutoff		
Module II	Knowledge representation and reasoni	ng: Formalized symbolic	5 Hrs	
	logic, propositional logic, First-orde	er predicate logic, wff		
	conversion to clausal form, inference ru	ales, resolution principle.		
Module III	Unsupervised Learning: K-means, H	K-Medoids, Hierarchical	5 Hrs	
	clustering, Density based clustering, Validation Method: LOO,			
	K-fold cross validation.			
Module IV	Supervised Learning: Decision Tree, N	Supervised Learning: Decision Tree, Naïve Bayes classifier, K- 6 Hrs		
	NN, Introduction to regression. Performance matrix: Confusion			
	matrix, Precision, Recall, Sensitivity, S			
Module V	Neural Network Artificial Neuron and its model, activation 6 Hrs			
	functions, Neural network architecture: single layer and			
	multilayer feed forward networks, recurrent networks, Training			
	of ANN, Back propagation, RBFNN.			
Essential Reading	1.E.Rich and K. Knight, Artificial Intel	e		
	2.Neuro Fuzzy and Soft Computing, J.		Aitzutani, PHI	
Supplementary	1.Artificial Intelligence, Dan W Patters			
Reading	2.Computational Intelligence Principl	les, Techniques and App	lications, Amit	
	Konar, Springer publication.			
	3. M. Gopal, Applied Machine Learnin	g, McGraw Hill Education	, 2018	
Course Outcomes:	CO1: Understand the basics of Search t	echniques, Knowledge rep	presentation and	
	reasoning in Artificial Intelligence.			
	CO2: Understand the Supervised mac	hine learning and Unsupe	rvised machine	
	learning.	1.1		
	CO3: Analyze various machine learnin	6		
	CO4: Implement various Supervised them	machine learning techniqu	les and analyze	
	them. CO5:Implement various Unsupervised	machine learning technicu	ies and analyze	
	CO5:Implement various Unsupervised machine learning techniques and analyz			
	them.			

Subject Code	HS1201	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Engineering Economics		
	SYLLABUS		
Module-I	Basic Principles of Economics: Definition, Nature, Scope and significance of economics for Engineers. Demand & Supply and their Determinants, Elasticity-Government policies and application. Basic Macroeconomics concept: National income accounting (GDP/GNP/NI/Disposable Income etc.) and identities for both closed and open economies.		6 Hrs
Module-II	Utility Analysis: Cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equi-marginal utility; Indifference curve-Concepts, properties, Budget line, Equilibrium of the consumer, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis		6 Hrs
Module-III			6 Hrs
Module-IV	Money and Banking: Money-Function of Money, Demand for Money Theory. Quantity theory of money; Banking: Commercial Banks and their Functions, Central bank's Functions. Role of the Banks in Economic Development, Monetary and Fiscal Policy Tools and their impact on the economy.		6 Hrs
Module-V	Capital Budgeting and Investment Analysi use of cash flow diagram, Annual econom future worth, Internal Rate of Return (IRR), N Payback period method, Analysis of publi analysis, Cost effectiveness.	ic worth, present worth, Net Present Value (NPV),	6 Hrs

Essential	1. Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press		
Reading	Ltd., London		
	2. Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics,		
	Pearson India, New Delhi.		
	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India,		
	New Delhi.		
	4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia.		
Course	CO1- Utilise economics principles in consumption process		
Outcomes	CO2- Describe the utility measurement and measure the utility associated with		
	risk		
	CO3- Efficient use of resources in production and take decision regarding		
	optimum output		
	CO4- Describe market mechanism and analyse product market to take proper		
	decisions		
	CO5- Implement economic principles in company related decision making		

SESSIONALS

Subject Code	CH1284	Total Contact Hour	16
Semester	4th	Total Credit	1.5
Subject Name	Fuel Technology - II Laboratory		
List of Experiments			
1	To determine the cloud and pour point of a given fuel using cloud and pour point apparatus.		
2	To determine the flash and fire point of a given fuel by using Pensky-Martins apparatus.		
3	To determine the Acid value of a given fuel/ lubricating oil		
4	To determine the viscosity of a given oil using Engler's viscometer.		
5	To determine the Aniline point of a given fuel or lubricating oil		
6	To determine the smoke point of a given oil using smoke point apparatus		
7	To determine the viscosity of a given oil sample using Red Wood viscometer		
8	To determine carbon residue of a given oil sample using Conradson Apparatus		

Subject Code	CH1285	Total Contact Hour	16
Semester	4th	Total Credit	1.5
Subject Name	Chemical Engineering Thermodynamics Laboratory		
List of Experiments			
1	To measure the specific latent heat of vaporization using an electric method.		
2	To do the study experiment of a water to water heat pump.		
3	To find out the C.O.P of the heat pump.		
4	To find out the dryness fraction of steam using a separating calorimeter.		
5	To do the study experiment of the air conditioner test rig.		
6	To find out the C.O.P of the air conditioner test rig.		
7	To construct the T-x-y plot for Binary Vapour Liquid Equilibrium for a given mixture		
8	To determine the Vapour Liquid Equilibrium curve for a given mixture		

Subject Code	CH1286	Total Contact Hour	20
Semester	4th	Total Credit	1.5
Subject Name	Mechanical Operation Laboratory		
	List of Experiments		
1	To find out the average size of particles in a sample (Volume-surface mean dia).		
2	To determine the critical speed and time of grinding in a ball mill for producing a product with 80% passing a given screen.		
3	To separate a mixture of coal into two fractions using froth flotation apparatus.		
4	Determination of the effectiveness of a vibrating screen.		
5	To study the characteristics of batch sedimentation using coal samples.		
6	To determine the specific cake resistance and filter medium resistance of a slurry in Plate and frame filter press.		
7	To separate a mixture of sand and iron powder by means of tabling.		
8	To find out the reduction ratio in Jaw Crusher and Hammer Mill.		
9	To find out the separation characteristics of Cyclone separators.		
10	To study the operation of a magnetic separator and finding its efficiency.		

Subject Code	CH1287	Total Contact Hour	20
Semester	4th	Total Credit	1.5
Subject Name	Environmental Engineering Laboratory		
List of Experiments			
1	To determine the pH value of given water samples.		
2	To determine turbidity of given water samples.		
3	To determine the hardness of a given samples by soap solution method.		
4	To determine the acidity of given water samples.		
5	To determine the alkalinity of given water samples.		
6	To determine the residual chlorine of given water samples.		
7	To determine the total solid of given samples.		
8	To determine chloride content of given water samples.		
9	To determine the BOD of given water samples.		
10	To determine the COD of given water samples.		