THIRD SEMESTER

Subject Code	MA1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Mathematics-III		
	SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Cumulative Distribution Function (CDF). Variance and standard deviation. Moments. Functions of a random variable. Distributions: Binomial, Poisson, normal, Gaussian, uniform (definitions and examples only). Moment generating function.		6 Hrs
Module-II	Pairs of random variables. Joint probability density function. Joint probability mass function. Marginal distribution. Functions of two random variables, PDF and expected values of the sum of two random variables		6 Hrs
Module-III	Probability Models of n Random Variables. Vector notation. Independence of random variables and random vectors. Functions of random vectors. Expected value vector and correlation matrix.		6 Hrs
Module-IV	Stochastic Processes. Definitions and examples. Types of stochastic processes. Random variables from random processes. The Poisson process.		6 Hrs
Module-V	Markov Chains. Discrete-time Markov chain. Discrete-Time Markov chain dynamics. Limiting state probabilities for a finite Markov chain. State classification		6 Hrs
Essential Reading	 Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley and Sons, INC. Gregory F Lawler, Introduction to Stochastic Processe, Chapman & Hall/CRC Press (Taylor Francis Group). 		
Course Outcomes	The objective of this course is to familiarize the prospective engineers witechniques in Probability and Statistics. It aims to equip the students to deal windvanced level of Statistics that would be essential for Engineering disciplines. CO1. To apply different distributions in real life problems of industries. CO2. To deal with problems that contains multivariable probability distribution. CO3.To enrich knowledge Probability Models of multi-Random Variables. CO4. To learn use of stochastic processes in daily life. CO5. Application of eigen values in solving matrices.		eal with

Subject Code	EE1201	Total Contact Hour	30
Semester	3rd	Total Credit	3
Subject Name	Electrical Machines-I		
Pre-requisites	Basic Electrical Engineering		
	SYLLABUS		
Module-I	Transformers: Review of Single phase transformer: no load and on load operation, Phasor diagram, equivalent circuit, losses and efficiency, condition for maximum efficiency, voltage regulation, open circuit and short circuit tests, Sumpner's test.		6 Hrs
Module-II	Review of DC Machines: armature windings, lap and wave windings, simplex and multiplex windings, E.M.F. Equation, Armature reaction: Cross magnetizing and demagnetizing AT/pole, compensating winding, commutation, reactance voltage, methods of improving commutation.		6 Hrs
Module-III	1 0		6 Hrs
Module-IV	Review of DC Motors: characteristics and application of shunt, series and compound motors, Starting of DC motor, Speed control of DC Motors: Armature voltage and field flux control methods, Ward Leonard method. Calculation of efficiency, Testing: brake test, Swinburne's test, Hopkinson's test, Field's test, Retardation test, separation of stray losses in a DC motor.		6 Hrs
Module-V	Three phase Transformers: Constructional features – three phase connection of transformers (Dd0, Dd6, Yy0, Yy6, Dy1, Dy11, Yd1, Yd11, zigzag), Scott connection, open delta connection, three phase to six phase connection, oscillating neutral, tertiary winding, three winding transformer, equal and unequal turns ratio, parallel operation, load sharing. Inrush of Switching currents.		6 Hrs
Essential Reading	 J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers. A. E. Clayton, N. Hancock, "Performance and Design of D.C Machines", BPB Publishers. 		nines",
Supplementary Reading	 A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery", TMH Publisher. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publishers. 		

Course	Upon completion of the subject the students will demonstrate the ability to:
Outcomes	CO1. Describe and analyze the performance of single phase transformers.
	CO2. Describe the construction and basic principles of dc machines.
	CO3.Express and analyze the performance of DC generators.
	CO4. Describe and analyze the performance of DC motors.
	CO5. Define and analyze the performance of three phase transformers.

Subject Code	EE1202	Total Contact Hour	30
Semester	3 rd	Total Credit	3
Subject Name	Network Theory		
Pre-requisites	Basic Electrical Engineering		
	SYLLABUS		
Module-II	Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, conductively coupled equivalent circuits- problems Electrical Circuit Analysis Using Laplace Transforms: Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, inverse Laplace transform, and transformed network with initial conditions. Transient Response: Transient study in series RL, RC, and RLC networks by time domain and Laplace transform method with DC and AC excitation. Response to step, impulse and ramp inputs of series RL, RC and RLC circuit.		10 Hrs
11204410 11	admittance parameter, open circuit impedance parameters, transmission parameters, condition of reciprocity and symmetry in two port network, inter-relationship between parameters, input and output impedances in terms of two port parameters, image impedances in terms of ABCD parameters, Tee and Pie circuit representation, Cascade and Parallel Connections.		0.1110
Module-III	Network Functions & Responses: Concept of complex frequency, driving point and transfer functions for one port and two port network, poles & zeros of network functions. Restriction on Pole and Zero locations of network function, Time domain behavior and stability from pole-zero plots, Time domain response from pole zero plots.		8 Hrs
Module-IV	Network Synthesis: Realizability concept, Hurwitz property, positive realness, properties of positive real functions, Synthesis of R-L, R-C and L-C driving point functions, Foster and Cauer forms.		8 Hrs
Module-V	Graph theory: Introduction, Linear graph of and cut-set schedule, incidence matrix, A network using cut-set and tie-set, Dual of Classification of filters, Characteristics of idea	nalysis of resistive a network. Filters:	6 Hrs

Essential Reading	 A. Chakrabarti, "Circuit Theory (Analysis and Synthesis)", Dhanpat Rai Publications. Mac. E Van Valkenburg, "Network Analysis", PHI Learning publishers. Franklin Fa-Kun. Kuo, "Network Analysis & Synthesis", John Wiley & Sons. 	
Supplementary Reading	 M. L. Soni, J. C. Gupta, "A Course in Electrical Circuits and Analysis", Dhanpat Rai Publications. Mac.E Van Valkenburg, "Network Synthesis", PHI Learning publishers. Joseph A. Edminister, Mahmood Maqvi, "Theory and Problems of Electric Circuits", Schaum's Outline Series, TMH publishers. 	
Course Outcomes	CO1. Study coupled circuits and learn the transient and steady state behavior of 1st and 2nd order circuit and understand the concept of time constant. CO2. Define the different parameters of two port network. CO3. Concept of network function and stability study from pole-zero plots. CO4. Synthesis of electrical networks. CO5. Analyze the network using graph theory and understand the importance of filters in electrical system.	

Subject Code	EC1201	Total Contact Hour	30
Semester	3 rd	Total Credit	3
Subject Name	Analog Electronic Circuits		
Course Objective	 Acquire basic knowledge of BJT biasing and stabilization and develop the ability to analyze transistor re and hybrid models. Study the characteristics and analyze different configurations of single-stage MOSFET amplifiers. Able to design amplifier circuits using BJT and study the low and high-frequency response of BJT amplifiers. Understanding of operational amplifier's specifications and parameters. Study of operational amplifier's various applications. Understand about various compound configurations. Study of various oscillator circuits. Analysis of various power amplifiers and voltage regulators. 		
SYLLABUS			
Module-I	BJT DC Analysis, Bias Stabilization, BJT modelling: The re model, Hybrid Model, BJT Low frequency small signal analysis, Effect of RS and RL.		
Module-II	MOSFET DC Analysis, Small signal modeling and operation, Single-stage MOSFET Amplifiers, Effect of RS and RL.		
Module-III	BJT Frequency Response: Low frequency analysis of single stage BJT amplifier, Bode Plot, Miller Effect Capacitance, High frequency response of BJT Amplifier, Square Wave testing of amplifiers.		
Module-IV	MOSFET compound configurations: Cascade, Cascode and Darlington connections, Current Source Circuits, Current Mirror Circuit, Differential amplifier Circuit.		
Module-V	Oscillator Circuits: Positive feedback circuit as Oscillator, 5 Hrs Barkhausen's criteria, R-C phase shift, Colpitt, and Hartley Oscillators, Power Amplifiers: Class A, Class B, Push-pull amplifier.		
Essential Reading	 Electronic Devices and Circuit Theory- R. Boyelsted and L. Nashelsky, Prentice Hall. Microelectronic Circuits- Sedra/Smith, Oxford University Press. Design of Analog CCMOS Integrated Circuit- B. Razavi, McGraw Hill. 		
Supplementary Reading	Millman's Integrated Electronics –Jacob Millman and Christos Halkias, Chetan D Parikh, Mcgraw Hill. Electronic Devices – Floyd, Pearson Education		

Course	After completion of course student should be able to:		
Outcomes	CO1. Acquire basic knowledge of BJT biasing and stabilization and		
	develop the ability to analyze transistor re and hybrid models.		
	CO2. Understand the characteristics and analysis of different		
	configurations of single stage MOSFET amplifiers.		
	CO3. Design amplifier circuits using BJT and study the low and high		
	frequency response of BJT amplifiers.		
	CO4. Understand operational amplifier's specifications and parameters and		
	its various applications. Student will learn about various compound		
	configurations.		
	CO5. Analyze various power amplifiers and voltage regulators and they		
	will have thorough knowledge of various oscillator circuits.		

Subject Code	EE1203	Total Contact Hour	35
Semester	3 rd	Total Credit	2
Subject Name	Optimization and Soft Computing		
Pre-requisites	Knowledge of MATLAB		
	SYLLABUS		
Module-I	Introduction to Optimization: Objective function and constraints, Solution approaches, Multiobjective optimization. Evolution of Soft Computing: What is Soft Computing? Difference between Hard and Soft computing, Requirement of Soft computing, Major Areas of Soft Computing, various types of soft computing techniques, Applications of Soft Computing.		8 Hrs
Module-II	Introduction to Fuzzy Logic: Fuzzy Sets: Basic Definition and Terminology, Set-theoretic Operations, Fuzzy versus Crisp set, Fuzzy Relation, Linguistic variables, Fuzzification and Defuzzification Method, Membership Function Formulation and Parameterization, Fuzzy Rules and Fuzzy Reasoning, Fuzzy If-Then Rules, Fuzzy Reasoning, Fuzzy Inference Systems, Mamdani Fuzzy Models, Some applications of Fuzzy logic.		8 Hrs
Module-III	Artificial Neural Network: Concept of Biological neurons and its working, Important Terminology in ANN, Supervised and Unsupervised Learning, Simulation of biological neurons to problem solving, Different ANNs architectures, Training techniques for ANNs, Applications of ANNs to solve some real-life problems.		8 Hrs
Module-IV			7 Hrs
Module-V	Introduction to Non-traditional Metaheuristic Optimization 4 Hrs Techniques, Concept of Swarm Intelligence Algorithm, Particle Swarm Optimization, Ant colony optimization (ACO).		
Essential Reading	 D.K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, Springer A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer S.N.Sivanandam, S.N.Deepa, Principles of Soft Computing, Wiley India Pvt Ltd. 		ringer.
Supplementary Reading	1. S S Rao, Engineering Optimization: Theory 2. Jang, Sun and Mizutani, Neuro-Fuzzy and 3 archive.nptel.ac.in/courses/106/105/106105173	Soft Computing:	

Course	CO1. Formulate optimization problem and evaluate the application of soft		
Outcomes	computing for solution.		
	CO2. Apply fuzzy logic and reasoning to handle uncertainty and solve		
	engineering problems.		
	CO3. Apply Artificial Neural Network to solve optimization problems.		
	CO4. Apply genetic algorithm to solve optimization problems.		
	CO5. Apply swarm intelligence algorithms to solve optimization problems.		

Subject Code	HS1201	Total Contact Hour	30
Semester	3 rd	Total Credit	2
Subject Name	Engineering Economics		
	SYLLABUS		
Module-I	Basic Principles of Economics: Definition, Nature, Scope and significance of economics for Engineers. Demand & Supply and their Determinants, Elasticity-Government policies and application. Basic Macroeconomics concept: National income accounting (GDP/GNP/NI/Disposable Income etc.) and identities for both closed and open economies.		6 Hrs
Module-II	Utility Analysis: Cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equimarginal utility; Indifference curve-Concepts, properties, Budget line, Equilibrium of the consumer, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis		6 Hrs
Module-III	0 71		6 Hrs
Module-IV	Money and Banking: Money-Function of Money, Demand for Money Theory. Quantity theory of money; Banking: Commercial Banks and their Functions, Central bank's Functions. Role of the Banks in Economic Development, Monetary and Fiscal Policy Tools and their impact on the economy.		6 Hrs
Module-V	Capital Budgeting and Investment Anal money: use of cash flow diagram, Annu present worth, future worth, Internal Rate of Present Value (NPV), Payback period method projects: Cost-Benefit analysis, Cost effectives	al economic worth, of Return (IRR), Net d, Analysis of public	6 Hrs

Essential Reading	1. Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press Ltd., London 2. Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics, Pearson India, New Delhi. 3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi. 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia.
Course Outcomes	CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making

SESSIONAL

Subject Code	EE1281	Total Contact Hour	16
Semester	3 rd	Total Credit	1.5
Subject Name	Electrical Machines Laboratory -I	I	
	List of Experiments		
1	Open circuit and short circuit on single phase	transformer	
2	Parallel operation of two single phase transformer and load sharing		
3	Back –to-back test of Single phase transformer		
4	Load characteristics of DC shunt/compound generator		
5	Load characteristics of DC series Motor		
6	Swinburne test of DC shunt machine		
7	Brake test of DC shunt machine		
8	Three phase connection of transformers		
Course Outcomes	CO1. Perform parallel connection of single pl CO2. Evaluate performance of DC series and CO3. Compute the efficiency of transformatests. CO4. Perform tests to evaluate performance transformers. CO5. Estimate load performance	shunt motors. mer by different experiormance of DC mach	

Subject Code	EE1282	Total Contact Hour	12
Semester	3 rd	Total Credit	1.5
Subject Name	Network Theory laboratory		
	List of Experiments		
1	Verification of Superposition and Thevenin's	Theorem.	
2	Verification of Maximum Power Transfer Theorem.		
3	Find out the resonance frequency, band width and Q-factor of a series R-L-C circuit.		
4	Transient response of a series R-L, R-C and R-L-C circuit using DC excitation.		
5	Determination of Z, Y, ABCD and h parameters of a two port network.		
6	Spectral Analysis of a non-sinusoidal waveform.		
Course Outcomes	Upon completion of the subject the students will demonstrate the ability to: CO1. Implement the linear circuits by using network theorems. CO2. Describe the resonant circuit by understanding its basic properties and find the resonance frequency, bandwidth, Q-factor and of a R-L-C series circuit. CO3. Describe and evaluate the Transient response of R-L, R-C and R-L-C circuits using DC excitation. CO4. Define ABCD, Z, Y and h parameters of a two port network and know the property of symmetry and reciprocity of network. CO5. Define and analyze the importance and reason that lead to a non-sinusoidal waveform.		

Subject Code	EC1281	Total Contact Hour	16	
Semester	3 rd	Total Credit	1.5	
Subject Name	Analog Electronic Circuits Laboratory			
Course Objective	 To make the students familiar with the operation of BJTs. To make the students familiar with the operation MOSFETs. To make students familiar with the operations of Oscillators To make students familiar with the operations of Power amplifiers. To make students familiar with the operation of OP-AMP 			
	List of Experiments			
1	Study of biasing circuits of BJT.			
2	Study of biasing circuits of MOSFET.			
3	Measurement of pinch off voltage and plot transfer characteristics and drain characteristics of MOSFET.			
4	Plotting of gain frequency response of RC coupled amplifier.			
5	Study of Class A, B power amplifier			
6	Study of integrator and differentiator circuits using OPAMP			
7	Study and calculation of phase-shift of RC phase shift oscillator.			
8	Calculation of rise time, tilt, and low cut off frequency by square wave testing of amplifier			
Course Outcomes	After completion of the sessional course st 1. Analyze the BJTs and MOSFETs biasin 2. Study and plot the characteristics of BJT 3. Design oscillators for applications. 4. Design and study power amplifier. 5. Know the applications OP-AMP.	g circuits.):-	

Subject Code	EE1283	Total Contact Hour	14
Semester	3rd	Total Credit	1.5
Subject Name	Optimization and Soft Computing Laborat	ory	
	List of Experiments		
1	Solution of single objective optimization problem using MATLAB Optimization Toolbox (lin-prog, quadprog, fmincon).		
2	Solution of single objective optimization using OCTAVE sqp and GAMS solvers.		
3	Implementation of fuzzy tool box to solve optimization problem.		
4	Design of Fuzzy rule base and Fuzzy Inference System to solve an optimization problem.		
5	Implementation of Genetic Algorithms to solve an optimization problem.		
6	Implementation of Artificial Neural Networks to solve optimization problems.		
7	Implementation of Particle Swarm Optimization to solve optimization problems.		
Course	Upon completion of the course, the students will be able to:		
Outcomes	CO1. Demonstrate the use of MATLAB, OCTAVE and GAMS solvers.		
	CO2. Demonstrate the use of fuzzy logic to solve optimization problems.		
	CO3. Demonstrate the use of genetic algorithm to solve optimization problems.		
	CO4. Demonstrate the use of artificial neural networks to solve optimization problems.		
	CO5. Demonstrate the use of swarm optimization algorithms to solve optimization problems		

FOURTH SEMESTER

Subject Code	EC1204	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Digital System Design		
Course Objective	 To understand concepts of digital electronics and to formulate, design and solve different digital circuits. To design, implement and simulate various combinational and sequential circuits. To understand various logic families and memory modules. To provide the students with a solid foundation in engineering fundamentals required to solve problems and also to pursue higher studies. To understand the fundamentals of VLSI design flow. 		
	SYLLABUS		
Module-I	Logic Simplification: Review of Boolean Algebra, SOP & POS forms, Canonical forms, Karnaugh maps up to 5 variables, Binary codes, Code Conversion, Binary addition and subtraction using 1's and 2's complements.		
Module-II	Combinational Logic Design: MSI devices like Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Binary multiplier, magnitude comparator, Multiplexers, Encoder, Decoder,		
Module-III	·		6 Hrs
Module-IV	Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing, Memory elements: RAM, ROM, Memory Decoding, Concept of Programmable logic devices like FPGA. Logic implementation using Programmable Devices.		6 Hrs
Module-V			4 Hrs

Essential	1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition,	
Reading	2009.	
	2. Digital Design, 4th edition by M. Morris Mano, M. D. Ciletti, Pearson	
	Education.	
	3. Samir Planitkar, "Verilog HDL", Prentice Hall, 2nd edition,2003.	
Course	After completion of course student should be able to:	
Outcomes	1. Understand different number systems and logic gates	
	2. Design and analysis of different combinational logic circuit.	
	3. Design and analysis of different sequential logic circuit.	
	4. Understand the characteristics of different logic families and memory.	
	5. Implement digital circuits in different models in Verilog HDL.	

Subject Code	EE1204	Total Contact Hour	30
Semester	4 th	Total Credit	3
Subject Name	Measurement and Instrumentation		
	SYLLABUS		
Module-I	Measuring Instruments: Classification, Absolute and secondary instruments, indicating instruments, deflecting, control and damping torques, Ammeters and Voltmeters, PMMC, Moving Iron (MI) type, expression for the deflecting torque and control torque, extension of range using shunts and series resistance.		6 Hrs
Module-II	Electrodynamometer type wattmeter – Theory & its errors – Methods of correction – LPF wattmeter – Phantom loading – Induction type KWH meter – Calibration of wattmeter, energy meter. Measurement of active and reactive powers in balanced and unbalanced systems. Galvanometers: General principle and performance equations of D'Arsonval Galvanometers, Vibration Galvanometer and Ballistic Galvanometer.		6 Hrs
Module-III	DC/AC Bridges: General equations for bridge balance, measurement of self-inductance by Maxwell's bridge (with variable inductance & variable capacitance), Hay's bridge, Owen's bridge, measurement of capacitance by Schearing bridge, errors, Wagner's earthing device. Method of measuring low, medium and high resistance: Kelvin's double bridge for measuring low resistance, Wheat-stone's bridge, measurement of high resistance – loss of charge method.		6 Hrs
Module-IV	Instrument Transformers: Potential and curre and phase angle errors, phasor diagram, me errors. Potentiometers: DC Potentiometer, Crom construction, standardization, application. Drysdale polar potentiometer; standardization,	ethods of minimizing npton potentiometer, AC Potentiometer,	6 Hrs
Module-V	Digital Multi-meter: Block diagram, print Accuracy of measurement, Digital Freque diagram, principle of operation Definition of transducers, Classification Advantages of Electrical transducers, Charact transducers; Principle operation of LV transducers; LVDT Applications, Strain gauge operation, gauge factor.	n of transducers, teristics and choice of TDT and capacitor	6 Hrs

Essential	1. A K. Sawhney, "A Course in Electrical & Electronics Measurements &	
Reading	Instrumentation", Dhanpat Rai Publications.	
	2. Helfrick& Cooper, "Modern Electronic Instrumentation and	
	Measurement Techniques",PHI Publshers.	
Supplementary	1. Larry Jones &A Foster Chin, "Electronic Measurement &	
Reading	Instrumentation Systems", John Wiley & Son Publishers.	
_	2. Golding & Waddis, "Electrical Measurement and Measuring	
	Instruments", Reem Publishers.	
Course	Upon completion of the subject the students will demonstrate the ability to:	
Outcomes	CO1. Implement the principles of basic electrical measuring instruments.	
	CO2. Analyze the performance characteristics of measurable	
	instrumentaions.	
	CO3. Design and analyze the working of different AC and DC bridges	
	CO4. Analyze instrument transformers and potentiometers to measure AC	
	and DC values of unknown voltage.	
	CO5. Evaluate the operation of Digital instruments and transducers.	

Subject Code	EE1205	Total Contact Hour	30
Semester	4th	Total Credit	3
Subject Name	Electrical Machines-II		
Pre-requisites	Basic Electrical Engineering, Electrical Ma	chines-I	
	SYLLABUS		
Module-I	Review of Three phase synchronous generators, Cylindrical rotor theory: armature reaction, armature reaction reactance, synchronous reactance, phasor diagram, open & short circuit characteristics, short-circuit ratio, load characteristics.		6 Hrs
Module-II	Voltage regulation: EMF method, MMF method, modified MMF method, ZPF method, Theory of salient pole machine: Blondel's two reaction theory, phasor diagram, direct and quadrature axis synchronous reactances, Slip Test. Power Angle characteristics.		6 Hrs
Module-III	Parallel operation: Synchronizing method, load sharing between alternators in parallel. Sudden Short Circuit of a Synchronous Generator, Transient and Sub transient reactances. Synchronous Motors: Operating principle, torque-angle characteristics, V-curves & inverted V-curves, Hunting.		6 Hrs
Module-IV	Review of Three Phase Induction Motors, condition for maximum torque, Losses and efficiency. Equivalent circuit, phasor diagram, circle diagram and performance equations. Methods of starting (DOL, stator resistance starter, autotransformer starter, star-delta starter, rotor resistance starter). Methods of speed control. Double cage induction motor, Cogging and Crawling of Induction motor.		6 Hrs
Module-V	Single phase induction motor: theory of operation (Double Revolving field theory, equivalent circuit, Determination of parameters). Methods of starting: split phase starting, Repulsion starting, shaded pole starting, performance characteristics. Single phase series motor, theory of operation performance and application. Universal motor.		6 Hrs
Essential Reading	 J. Nagrath, D. P. Kothari, "Electric Machines", TMH Publishers. M. G. Say, "Performance and design of AC machines", CBS Publ 		ishers
Supplementary Reading	1. A. E. Fritzgerald, C. Kingsley, and S. Umans, "Electric Machinery TMH Publisher. 2. P.S. Bhimra, Electrical Machinery (Part 1, Part 2), Khanna Publish		

Course	Upon completion of the subject the students will demonstrate the ability to:
Outcomes	CO1. Describe cylindrical rotor theory of synchronous machines.
	CO2. Evaluate voltage regulation and analyze power angle equation.
	CO3. Analyze and evaluate the performance characteristics of synchronous
	motors.
	CO4. Describe and evaluate the performance of three phase induction
	motors. CO5. Analyze and evaluate the performance of single phase motors and Universal motor.

Subject Code	EE1208	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Signals & Systems		
	SYLLABUS		
Module-I	Introduction of Signal and System: Introduction of Signals, Classification of Signals, General Signal Characteristics, Energy & Power Signal, Continuous-Time Signals, Discrete-Time Signals, Operations on independent variable. Basic System Properties, Systems with and without memory, Invertibility, Casuality, Stability, Time invariance, Linearity.		7 Hrs
Module-II	Convolution: Linear Time Invariant (LTI) Systems, Discrete Time LTI Systems, Convolution representation of Linear Time-Invariant Discrete-Time Systems, Convolution Representation of Linear Time-Invariant Continuous-Time Systems, Properties of convolution, Properties of LTI Systems, Step response.		5 Hrs
Module-III	Fourier Representations for Signals: Representation of Discrete Time Periodic signals, Continuous Time Periodic Signals, Discrete Time Non Periodic Signals, Continuous Time Non Periodic Signals, Properties of Fourier Representations.		8 Hrs
Module-IV	Frequency Response of LTI Systems: Frequency Response of LTI Systems, Fourier Transform representation for Periodic and discrete time Signals, Fourier Series representation for finite duration Nonperiodic signals.		5 Hrs
Module-V	Sampling, Reconstruction: Ideal Reconstruction, Zero- Order Hold reconstruction, Anti-imaging filter, First order hold interpolation. Discrete Time Processing of Continuous Time Signals: Basic discrete-time signal processing system, Over sampling and antialiasing filter, decimation, interpolation,		5 Hrs
Essential Reading	 Simon Haykin and Barry Van Veen, "Signals and Systems", John W & Sons Publisher. Tarun Kumar Rawat, "Signals and Systems", OXFORD University Press. 		-
Supplementary Reading	 Hwei Hsu, "Signals and Systems", Schaum's Outline TMH Publish J.G. Proakis and D.G.Manolakis, "Digital Signal Processing - Principles, Algorithms and Applications", PHI Publisher. 		her.

Course	CO1: Express the basic definition of different types of signals and systems.		
Outcomes	CO2: Implement the concept of convolution representation of LTI system.		
	CO3: Do the Fourier analysis of signals.		
	CO4: Evaluate frequency response of LTI system.		
	CO5: Implement Sampling, reconstruction of signals and analyse discrete		
	Time Processing of Continuous Time Signals.		

Subject Code	CS1205	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Programming in Python		
Course Objective	1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence dat Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling		ata and
	SYLLABUS		
Module-I	Beginning Python Basics Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops.		6 Hrs
Module-II	Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter		8 Hrs
Module-III	1 1 1		6 Hrs
Module-IV	Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destructor and Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally		6 Hrs
Module-V	Strings and Regular Expressions: Methods of String Objects, 4 F Escape Sequence, Iterating Strings, String Module, String Formatting, Regular Expressions: Re-Module File Handling: Introduction to File Handling, File Operations, Directories.		4 Hrs
Essential Reading	 Python Programming Python Programm Stewart. Python Cookbook By David Beazley and 		dam

Supplementary	1. Introduction to Python Programming by Gowrishankar S. Veena A.		
Reading	2. Python Programming: Using Problem Solving Approach, Oxford		
	University Press by Reema Thareja.		
	3. Python Programming University Press by Ch Satyanarayan, M Radhika,		
	B N Jagadesh.		
Course	CO1: Understand the Python Language and its features.		
Outcomes	CO2: Apply sequence data and control statements to solve problem		
	CO3: Able to create user defined functions to solve problems.		
	CO4: Analyze the concept of OOPs and its implementation.		
	CO5: Create the python program using strings and files.		

Subject Code	HS1202	Total Contact Hour	30
Semester	4th	Total Credit	2
Subject Name	Organizational Behaviour		
Course Objective	1: To understand the relevance of organizational behavior concepts and theories in real-life organizational settings & to develop skills in critical thinking, decision —making, problem-solving in applying organizational behavior concepts to practical situations. 2: To provide an understanding of individual behavior in the workplace, including personality, motivation, perception, learning, and attitudes. 3: To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivation and leadership in managing organization. 4: To explore how organizational culture affects behavior, communication and decision making by enhancing creativity and innovation and give an episteme how to cope with change and stress. 5: To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaboration across culture		
	SYLLABUS		
Module-I	Fundamentals of OB & Understanding the OB: Evolution of OB through Quality M Definitions, Scope & Importance of OB, Globalization & Ethical Perspective) and models of OB, applying OB to solving problem.	Inagement movement, Challenges (Diversity, opportunities for OB,	6 Hrs
Module-II	Understanding the Determinants of Personality: Determinants of personality; (Type &Psychoanalytic theory), MBTI, Big and other major traits influence workplace be Perception: Meaning, Perceptual Process, Agat Workplace. Motivation: Motivation Framework, Commeed hierarchy & Hertzberg's two factors (Adam's Equity & Vroom's Expectancy the motivation, Importance of motivation at Work Learning: Theories of learning (Classical Conditioning, & Cognitive Theory), Pr. Bhavioral modification through learning.	Theories of Personality grive personality traits havior. pplication of Perception tent theory (Maslow's theory), Process theory teory), Job Design and kplace. Conditioning, Operant	6 Hrs

Module-III	Understanding Group and Team Behavior at Workplace: Group & Team: Defining and classifying groups, the five-stage model of group development Group properties: Roles, norms, status, size and cohesiveness, Group decision making. Leadership: Meaning, Definition & types of leadership, Traditional theories of leadership: Trait theories, Behavioral theories, Contingency theories, Contemporary approaches to leadership, importance of leader in organizations.	6 Hrs
Module-IV	Understanding Group and Team Behavior at Workplace: Organizational Culture: Meaning, Definition, Cultural dimensions, effect of Organizational culture. Organizational Change & Development: Nature, Levels & types of Change, Change Agents: Resistance to Change, Force field theory of Change, Managing the Change.	6 Hrs
Module-V	Conflict & International Organizational Behavior: Managing Conflict and Negotiations: Meaning, views, & levels of Conflict, Process of conflict, Conflict resolution techniques. Transactional Analysis: Meaning, Importance of TA, Life position, Ego states and their encounters. IOB: Internationalization of Business, Cultural differences and similarities, Understanding Interpersonal behavior across culture through Hofstede's Cultural Dimensions.	6 Hrs
Essential Reading	 "Organizational Behavior: Text, Cases, & Games" by K. Aswathappa. Publisher: Himalaya Publishing House "Essentials of Organizational Behavior" by Stephen P. Robbins and Timothy A. Judge. Publisher: Pearson Education. 	
Supplementary Reading	 "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Michael J. Wesson. Publisher: McGraw-Hill Education. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-Hill Education. "Organizational Behavior and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: Wiley 	

Course
Outcomes

- CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices.
- CO2. Evaluate the effectiveness of different leadership styles and their application in different situations.
- CO3.Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organizational settings.
- CO4. Develop strategies for managing organizational change effectively and maintaining sustainability.
- CO5. Apply organizational behavior concepts and theories to practical organizational situations.

SESSIONALS

Subject Code	EE1286	Total Contact Hour	12
Semester	4 th	Total Credit	1.5
Subject Name	Measurement and Instrumentation Laboratory		
	List of Experiments		
1	Study the role of various sensors and actuators in measuring physical / electrical parameters or variables and able to distinguish between conventional and smart sensors.		
2	Measurement of unknown resistance, inductance and capacitance using bridges and its realizations using breadboard or using NI cRIO platforms.		
3	Study of LVDT and plot its displacement- vo	Itage characteristics.	
4	Study and plot the characteristics of RTD and Thermistor temperature sensors and their calibration with soft temperature sensors using LM 34/35 or AD590/AD 220 or equivalent.		
5	Study and plot the characteristics of Thermocouple temperature sensor and its calibration with soft temperature sensors using LM 34/35 or AD590/AD 220 or equivalent.		
6	Study of static characteristics of measuring instrument.		
Course Outcomes	CO1. Comprehend the basic principles and design requirements of smart / modern measurement Schemes. CO2. Able to design necessary signal conditioning circuits for the measurement of resistance, inductance and capacitance. CO3. Able to perform the principles of operations of displacement measurement using inductive method. CO4. Competent to understand the principles of operations of temperature sensors. CO5. Able to find out static characteristic of measuring instrument.		

Subject Code	EC1284	Total Contact Hour	20
Semester	4 th	Total Credit	1.5
Subject Name	Digital System Design Laboratory		
Course Objective	 Understanding different MSI ICs and their specifications used in laboratory and practical field. To formulate, design and implement various combinational and sequential circuits. To formulate, design and implement various sequential circuits. To design and implement memory. To familiar with the Hardware Description Language. 		
List of Experiments			
1	Digital logic gates: Design, Implement & test a given design example with Universal Gates only.		
2	Gate level minimization: Two level & multi-level implementation of Boolean function.		
3	Combinational circuits: design, construct & test: adder& subtractor, code converter, gray code to binary and 7 segment displays.		
4	Design with multiplexers & de multiplexers.		
5	Flip flop: Construct, test& investigate operation of SR, D, J-K flip flop.		
6	Shift register: Investigate the operation of all types of shift register with parallel load Design.		
7	Counters: design, construct& test various ripple & synchronous counters-decimal counter, Binary counter with parallel load.		
8	Design of Combinational circuit using Verilog HDL		
9	Design of Sequential circuit using Verilog HDL		
10	Design of memory using Verilog HDL		
Course	CO1. Identify different ICs used in laborat		
Outcomes	CO2. Design and analyze combinational circuits		
	CO3. Design and analyze sequential circuits		
	CO4. Have an brief idea of working princi CO5. Implement the digital circuits in HD		

Subject Code	EE1284	Total Contact Hour	20	
Semester	4 th	Total Credit	1.5	
Subject Name	Electrical Machines Laboratory-II		l	
	List of Experiments			
1	Voltage regulation of alternator by EMF met	hod		
2	Voltage regulation of 3 phase alternator by Z	PF method		
3	Synchronization of alternator with infinite bus			
4	Determination of power angle characteristics of an Alternator			
5	V curve and inverted V curve of a 3-Ph synchronous motor			
6	No load and Blocked rotor test of three phase Induction motor			
7	Load test of 3-Ph Induction Motor			
8	Speed control of a 3 phase induction motor			
9	Determination of Parameters of single phase induction motor			
10	Determination of Parameters of 3 phase three winding transformer and trace the waveform of Magnetizing Current & Induced e.m.f			
Course Outcomes	Upon completion of the subject the students will demonstrate the ability to: CO1. Perform various tests on synchronous machines and to determine their characteristics. CO2. Synchronize a given alternator to infinite bus.\ CO3. Determine parameters of three phase and single phase induction motors. CO4. Describe different losses of single phase transformer CO5. Determine characteristics, parameters and connections of three phase transformers			

Subject Code	CS1289	Total Contact Hour	20
Semester	4th	Total Credit	1.5
Subject Name	Programming in Python Laboratory		
Course Objectives	1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling		
List of Experiments			
1	Program on basics of python Programming Language.		
2	Program on basic Data Structures in Python.		
3	Program on Conversion from on data type to another.		
4	Program on Functions in Python.		
5	Program using Object Oriented Programming in Python.		
6	Program using Inheritance in Python.		
7	Program using String in Python.		
8	Program using Regular expression in Python.		
9	Program using File Handling in Python.		
10	Program using basics of Pandas and Matplotlib module in Python.		
Course Outcomes	CO1: Understand the Python Language and its features. CO2: Apply sequence data and control statements to solve problem. CO3: Able to create user defined functions to solve problems. CO4: Analyze the concept of OOPs and its implementation. CO5: Create the python program using strings and files.		