

Course Structure & Syllabus of

M. Tech. Programme in

CAD/CAM& Robotics

(Production Engineering)

Academic Year – 2019-20

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, ODISHA

Burla, Sambalpur-768018, Odisha<u>www.vssut.ac.in</u>

M.TECH. in ROBOTICS and CAD-CAM

PEOs:

The educational objectives of M. Tech. in Robotics and CAD-CAM of VSSUT, Burla are to prepare its graduates:

- PEO1: To broaden and deepen their capabilities in analytical and experimental research methods, analysis of data, and drawing relevant conclusions for scholarly writing and presentation pertaining to Robotics and CAD-CAM projects.
- PEO2: To make them enable to excel in their professional career/entrepreneurial skill/research and higher studies so as to develop sustainable and cost-effective products according to the prevailing socio-economic context.
- PEO3: To provide opportunity to work and communicate effectively in a team and to engage in the process of life-long learning.

PSOs:

- PSO1: The students will be able to understand, model and solve problems related to Robotics and CAD-CAM by applying engineering knowledge and management practices so as to offer technocommercially feasible and socially acceptable solutions.
- PSO2: The students will be effective communicator, aspire to learn and be able to handle problems with professional attitude while carrying out research investigations and developmental work independently as well as in group.

Program Outcomes (POs):

- PO1: Ability to independently carry out research/investigation and development work to solve practical problems pertaining to CAD-CAM and Robotics.
- PO2: Ability to write and present a substantial technical report/document
- PO3: Ability to demonstrate a degree of mastery over Production Engineering domain to further comprehend and inculcate Robotics and CAD-CAM related issues.
- PO4: Ability to apply techniques, skills and modern engineering tools to design, conduct, analyze and interpret experimental data for relevant engineering practices.
- PO5: Ability to identify, formulate, design, demonstrate and apply engineering ideas and management principles in executing production engineering projects to meet the sustainability, societal and environmental needs.
- PO6: Ability to recognize the need for self-improvement through continuing education and to engage in life-long learning.

	SEMESTER I									
Sl.No	Core/ Elective	Subject Code	IbjectSubject NameLT				Credits			
1.	Core-I	MPECC101	Advanced CAD	3	0	0	3			
2.	Core-II	MPECC102	Computer Aided Manufacturing	3	0	0	3			
3.		MCCPE101	Rapid Manufacturing Processes							
4.	DE I	MCCPE102	Precision Engineering	2	Δ	Δ	2			
5.	PE-I	MCCPE103	Design for Manufacturing and Assembly	3	0	0	3			
6.		MCCPE104	Finite Element Analysis in Manufacturing							
7.	PE-II	MCCPE105	Design Optimization	3	0	0	3			
8.		MCCPE106	Design of Hydraulic and Pneumatic Systems							
9.	Common		Research Methodology & IPR	3	0	0	3			
10.	Lab-I	MPECC103	Computer Aided Design Lab	0	0	3	2			
11.	Lab-II	MPECC104	CAM Lab	0	0	3	2			
12.	Audit-1									
			TOTAL C	RE	DI	ΓS	19			

	SEMESTER II								
Sl. No	Core/ Elective	Subject Code	Subject Name	L	Т	Р	Credits		
1.	Core-III	MPECC201	Robotics & Robots Application		0	0	3		
2.	Core-IV	MPECC202	Automation in Manufacturing	3	0	0	3		
3.		MCCPE201	Computer Integrated Manufacturing						
4.	PE-III	MCCPE202	Concurrent Engineering	3	0	0	3		
5.		MCCPE203	Computer Aided Process Planning						
6.		MCCPE204	Mechanics of Advanced Materials						
7.	PE-IV	MCCPE205	Simulation and modeling	3	0	0	3		
8.		MCCPE206	Robotic Material Handling						
9.	Common		Minor Project & Seminar	0	0	3	2		
10.	Lab-III	MPECC203	Robotics Lab	0	0	3	2		
11.	Lab-IV	MPECC204	Simulation Lab	0	0	3	2		
12.	Audit-2								
			TOTAL C	RE	DĽ	ΓS	18		

	SEMESTER III									
Sl. No	Core/ Elective	Subject Code	Subject Name	L	Т	Р	Credits			
1.		MCCPE301	Mechatronics & MEMS							
2		MCCPE302	Computer Aided Product							
∠.	PE-V		Design	3	0	0	3			
3		MCCPE303	Artificial intelligence							
5.			and expert systems							
4.		MCCOE301	Quality Engineering							
5.	OF I	MCCOE302	Life Cycle Engineering	3	0	Ο	3			
6	OL-I	MCCOE303	Advanced Maintenance	5	U	U	5			
0.			Technology							
7	Minor		Dissertation (Phase-I)	0	0	20	10			
/.	Project			U	U	20	10			
			TOTAL C	CRE	EDI	TS	16			

	SEMESTER IV								
Sl. No	Core/ Elective	Subject Code	Subject Name	L	Т	Р	Credits		
1.	Major Project		Dissertation (Phase-II)	0	0	32	16		
TOTAL CREDITS							16		

Subje	ct Code:MPECC101	Subject name : Advanced CAD
	•••	
Pre-R	equisite: None	Co-requisite: None
Modu	le -I	[06]
CA	AD Tools:Definition of CAD Tools, Graphics standard	ds, Graphics software: requirements of graphics software, Functional
are	as of CAD, Efficient use of CAD software. Basi	cs of Geometric Modelling: Requirement of geometric modeling,
Ge	ometric models, Geometric construction methods, Mo	delling facilities desired.
Modu		[06]
Ge	ometric modelling: Classification of wireframe en	tities. Curve representation methods. Parametric representation of
ana	alytic curves: line, circle, arc, conics, Parametric repr	esentation of synthetic curves: Hermite cubic curve, Bezier curve, B-
Sp	leen curvewire, NURBS, Curve manipulations.	•
Modu	le -III	[06]
Su	rface Modeling: Classification of surface entities, Surface surface revolutions	urface representation methods, Parametric representation of analytic
He	rmite cubic surface. Bezier surface. BSpleen surface.	Blending surface. Surface manipulations.
	······	Contraction of the second s
Modu	le -IV	[06]
So	lid Modelling:Geometry and topology, Boundary repr	esentation, The Euler-Poincare formula, Euler operators, Constructive
sol	id geometry: CSG primitives, Boolean operators, CS	G expressions, Interior, Exterior, closure, Sweeping: linear and non-
lin	ear, Solid manipulations.	
Modu	le -V	[06]
2-1	D and 3-D transformations: translation, scaling, rotati	ion, reflection, concatenation, homogeneous coordinates, Perspective
pro	pjection, orthotropic projection, isometric projection	, Hidden surface removal, shading, rendering. Evaluation Criteria:
Ev	aluation criteria of CAD software, Data exchange for	nats: GKS, IGES, PHIGS, CGM, STEP Dimensioning and tolerances:
Lii	hear, angular, angular dimensions, maximum materia	al condition (MMC), Least material condition (LMC), Regardless of
lea	iture size (RFS).	
TEXT	F BOOK(S):	
1.	Mastering CAD/CAM / IbrhimZeid / McGraw Hill Ir	nternational.
2.	CAD/CAM Concepts and Applications/ Alavala/ PHI	[.
I	· · ·	
REFF	CRENCE BOOK(S):	
1.	CAD/CAM Principles and Applications/ P.N. Rao/TM	MH/3rd Edition
2.	CAD/CAM /Groover M.P./ Pearson education	
3.	CAD / CAM / CIM, Radhakrishnan and Subramaniar	n/ New Age
4.	Principles of Computer Aided Design and Manufactu	ring/ FaridAmirouche/ Pearson
COU	RSE OUTCOMES:	
	Define CAD tools and their implementations.	-h
C02	Demonstrate and implement geometric modeling te	conniques.
C03	Develop skills to perform solid modeling	n suitate mouening.
C04	Express to learn other software systems	
005	Express to reall other software systems.	

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	2
CO3	3	3	3	3	3	2
CO4	3	3	3	3	3	2
CO5	3	3	3	3	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	3	3	3	2

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subject C	Subject Code MPECC102 Computer Aided Manufacturin						
Pre-Requis	isite: Basic Manufacturing Processes	Co-requisite:					
		[A/]					
Module -1	reduction to Automation – Goals of Automation	[06] evels of automation. Hard Vs Soft Automation. Computer Aided					
ma	anufacturing (CAM).	evers of automation, flate vs soft Automation, computer Auto					
Nu	imerical Control - Introduction, Problems with con-	ventional NC, Role of NC / CNC in CAM, Applications of NC /					
CN	VC, Benefits of NC / CNC, Limitations of CNC, DNC	C, Combined DNC/ CNC system.					
Module -II	T	[06]					
Bas	sic Components of CNC system - Part programming	, Machine control unit, Machine tool - Historical developments and					
the	eir role in control of machine tools, Classification of	NC / CNC systems - Based on type of Control (PTP\C\L), method					
of	programming, type of architecture - Hardwired / Sof	t-wired / Open.					
Module -II	π	[06]					
Ma	achine Control Unit - Data processing Unit - ele	ments and their functions; Interpolators - Types and Stages of					
Inte	erpolation, Principles of interpolation; Sequential co	ontrollers - Concepts, Relay ladder diagrams; Programmable Logic					
Cor	ontrollers - Elements of Hardware and Software, Meth	nods of programming.					
Module -I	V	[00]					
Par	rt programming - Introduction; Part Program and	its elements, Methods of Programming - Manual and Computer					
Ass	sisted Part programming - APT and its variations	, ATP language-macro statements, programming with interactive					
gra	aphics, NC part programming using CAD/CAM, Cor	cepts of CAM - Tool path generation and control methods.					
Module -V	J	[06]					
Ma	achine Tool - Components of CNC machine tool,	Drives and controls, Automatic Tool Changers, Automatic Pallet					
Cha	angers, tool offsets and work offsets, high speed and	precision machining concepts.					
Ad	laptive control manufacturing systems, Computer Int	egrated Manufacturing system, Machine Tools; Materials Handling					
sys	stem: AGV, Robots, Lean manufacturing.						
TEXT BO	OOK(S):						
1.	Koren Y, Computer Control of Manufacturing syste	ms, McGraw Hill, 1986.					
2.	CAD/CAM-M.P. Groover& E.W. Zimmers, PHI.						
3.	Automation, Production System and CIM- M.P. Green	bover, PHI.					
DEEDEN							
KEFEKEN 1	NCE BOOK(5): Reinhold II Blume C and Dilmann R Computer In	tegrated Mfg. Technology & Systems. Marcel Dekker, 1985					
2.	Petruzella F D. Programmable Logic Controllers. M	CGraw Hill, 1989.					
3.	CAD/CAM/CIM- Radhakrishnan&Subramanyan, V	Viley Eastern.					
COURSE	OUTCOMESS: Upon completion of this course stud	lents will be able to:					
CO1	Demonstrate the concept of automation in I	NC, CNC or combined systems.					
CO2	Recognize to distinguish between positiona	l control and tool path control in machining.					
CO3	Describe the function of different machine	control units in CNC.					
CO4	Develop part programs for machining of di	fferent job geometry.					
CO5	Express specific characteristics of CNC ma	chine tool components.					

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	1	1	2
CO2	3	3	3	1	1	2
CO3	3	3	3	1	1	2
CO4	3	3	3	1	1	2
CO5	3	3	3	1	1	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	3	1	1	2

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subject	Code: MCCPE101		Rapid Manufacturing Processes
Bubjeet			Kupiu Munufucturing Processes
Pre-requi	site: None	Co-requisite:	None
		1	
Module -	l traduction: Definition of GMP and Papid Prototyni	ng Tupos of prote	[10] Ituna Need for the compression in product
de	evelopment, Survey of applications, Issues related to	GMP, Classification	n of RP systems. Stereolithography Systems:
	evelopment, Applications.	paration, data mes	and machine details, Physical layer woder
Module -	Π		[10]
Se A	elective Laser Sintering: Type of machine, Principle pplications, Fusion Deposition Modeling: Principle, I uring: Principle of operation, Machine details, Ap aterials, process details, application.	e of operation, pro Process parameter, plications, Lamina	cess parameters, Data preparation for SLS, Path generation, Applications. Solid Ground ted Object Manufacturing: Principle, LOM
Module -	ш		[06]
	oncepts Modelers: Principle, Thermal jet printer, 3-D aser Engineering Net Shaping (LENS).	printer, GenisysXs	printer HP system 5, Object Quadra systems,
		1	[00]
Module -	IV prid Tooling: Indiract Parid tooling, Silicon rubbar too	ling Aluminum fil	[08]
ki Pr	rksite, 3D keltool, Direct Rapid Tooling-Direct, AIM, oMetal, Sand casting tooling, Laminate tooling, Soft T	Quick cast process, ooling vs. Hard tool	Copper polyamide, Rapid Tool, DMILS, ling.
Module -	V		[06]
So Co	oftware for RP: STL files, Overview of Solid view, ma ollaboration tools, Rapid Manufacturing Process Optim ilding errors, Error in finishing, influence of build ori rface modification- data transfer to solid models.	ngics, mimics, magi ization: factors influentation. Surface di	c communicator, etc. Internet based software, uencing accuracy, data preparation errors, Part gitizing, surface generation from point cloud,
TEVT B(
1.	Stereolithography and other RP& M Technologies- Pa	aul F. Jacobs. Socie	ty of Manufacturing Engineers, NY.
2.	Rapid Manufacturing: The Technologies and Applica S.S.Dimov, Springer Verlag	ations of Rapid Pro	totyping and Rapid Tooling- D.T. Flham and
REFERE	NCE BOOK(S):		1 D. ' W. 11 C. ''C'.
1.	Rapid Prototyping: Principles and Applications in Ma	inufacturing- Kai ar	id Fai, world Scientific.
2.	Enter Text Here		
5.	Enter Text Here		
COURSE	COUTCOMES: At the end of this course, students will	demonstrate the al	vility to
CO1	Develop the fundamentals of rapid prototype and	l their classification	ons.
CO2	Implement the Selective Laser Sintering technique	les.	
CO3	Analyze the Modelers printer techniques.		
CO4	Express the Rapid tooling and implement in rapid	d manufacturing.	
CO5	Write the software aspects of rapid manufacturin	g and product mo	deling.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1		2	3		2	
CO2			3	3	2	

CO3	3	2		3	2	2
CO4			3	3		
CO5	3	2	3	3		2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	2	3	3	2	2

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subject C	code:MC	CPE102			Precision Engineering		
		I					
Pre-Requi	site:	None		Co-requisite:	None		
Module -I					[4]		
Pre	cision En	gineering: Micromilling	g and Microdrilling,	Micro Electro Mecl	hanical Systems, Microelectronics fabrication		
me	thods, Pri	nciples of MEMS, mech	nanical MEMS, The	rmal MEMS, Magne	tic MEMS.		
Modulo II	r				[5]		
National Nat	notechnol	ogy- Carbon nanotubes	and Structures Pro	 ocessing system of r	anometre accuracies mechanism of material		
pro	cessing, N	Vano Physical processin	g of atomic bit-unit	s, Nano-chemical and	d electrochemical atomic-bit processing.		
		* *	-	-	· · · ·		
Module -I	I				[7]		
Na	no-Measu	ring Systems of Sub-Na	anometre Accuracy	and Resolution: In j	process or in situ measurement of position of		
pro	tems Ont	ern recognition and inspection systems					
393	tems, opt	ical measuring systems,	Lieed on beam mee	isunng systems, 1 ato	en recognition and inspection systems		
Module -I	V				[7]		
Nai	no-Positic	oning System of Nanom	etre Accuracy and	Repeatability: Guide	e systems for moving elements, Servo control		
sys	tems for	tool positioning, Com	puter aided digital	ultra-precision pos	ition control, Future development of micro		
act	uators.						
Module -V	7				[7]		
Ap	plications	of Nanotechnology: Na	ano-grating system,	Nano lithography, I	Photolithography, Electron beam lithography,		
Ma	chining o	f soft metal mirrors with	n diamond turning,	Mirror grinding of ce	eramics, Ultraprecision block gauges, balls for		
roll	ling bearii	ngs, Fabrication CCD's,	Optical fibres.				
TEXT BO	OK(S):						
1	Nanotech	nology- N. Taniguchi, O	Oxford University P	ress.			
2	Microma	nufacturing and Nanoted	chnology- N.P. Mał	nalik, Elsevier.			
DEFEDEN							
1	Foundation	on of MEMS-C Liu Pr	entice Hall				
2	Introduct	ion to Nanotechnology-	C.P. Poole and F.J.	Owens, Wiley Inters	science		
I							
COURSE	OUTCO	MES:					
CO1	Express the knowledge in micro and nano manufacturing methods.						
CO2	Develop	MEMS system for indus	strial use.				
CO3	Apply the	e quality concepts parts,	, accuracy requirem	ents of machine tool	s and use of latest machining process such as		
<u>CO1</u>	micro machining and micro fabrication.						
004	Demonst	rate tolerance allocation	and analysis for pre	ecision machine desig	gn and assessment.		
CO5	engineeri	sibility analysis for pre	ecision design opti	mization and aware	ness of the needs and benefits of precision		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2	2	2	2	3		2	2
CO2		3		3	2	2	2	2	3	3	3	2
CO3	3	3		3	2		2	2		3	3	2
CO4	3	3	2		2	2	2	2	3	3	2	2
CO5	3	3	2	3	2	2		2	3	3	2	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	2	2	2	2	3	3	2	2

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subject	Code:MCCPE1	03			Design for Manufacturing and Ass	sembly			
Pre-Rea	nicito	None		Co-requisite:	None				
	uisite.	None		co-requisite.	None				
Module	-I					[06]			
G	eneral design pri	inciples for manu	ıfacturabil	ity: strength and	mechanical factors, mechanisms sel	lection,			
e e	valuation method	, Process capabil	ity: Featur	e tolerances, Geo	ometric tolerances, Assembly limits,	Datum			
16	eatures, and Toler	ance stacks.							
Module	-II					[06]			
F	Factors Influencing form Design: Working principle, Material, Manufacture, Design- Possible solutions,								
N	laterials choice, 1	Influence of mate	erials on f	orm design, form	n design of Welded members, forgin	igs and			
Ca	astings.								
Modulo	ш					[06]			
	omponent Desig	n-I. Machining (onsiderat	ion [.] Design featu	ures to facilitate machining: drills	<u> </u>			
CI	utters, keyways, l	Doweling proced	ures, coun	ter sunk screws,	Reduction of machined area, simplif	fication			
b	y separation, sim	plification by am	algamatio	n, Design for mac	chinability, Design for economy, Des	ign for			
c	lampability, Desig	gn for accessibilit	y, Design	for assembly.					
Madaala	TX 7					[0/]			
Module	-IV	n-II: Casting Cor	sideration	· Redesign of car	stings based on parting line consider	[U0]			
	finimizing core r	equirements, mag	chined hol	es. redesign of ca	ast members to obviate cores. Identif	fication			
0	f uneconomical d	esign, Modifying	the design	n, group technolog	gy, Computer Applications for DFMA	¥.			
				I					
Module	-V		du ation T		institute Clabel issues Designal on	[06]			
	sues Basic DFF	methods Desig	n guide l	ines Lifecycle a	seessment Basic method Environm	d local			
re	esponsible produc	t assessment. W	eighted su	m assessment me	ethod. Techniques to reduce environ	imental			
ir	npact, Design to	minimize materia	al usage, l	Design for disass	embly, Design for recyclability, Des	ign for			
re	emanufacture, De	sign for energy ef	ficiency, l	Design to regulati	ons and standards.				
	BOOK(S):	Winter Wood F	a du at Da	aion Deensen Dul					
4.	Kevien Otto and	S D Engineer P	roduct De	sign. Pearson Put	Discussion				
5.	K.I. Ulrich and	S.D. Eppinger, P	roduct des	sign and developh	nent, Tata McGraw Hill				
REFER	ENCE BOOK	Ŋ•							
4.	Boothroyd, G, I	Design for Assem	bly Auton	nation and Produc	t Design. Marcel Dekker.				
5.	Bralla, Design f	or Manufacture h	andbook,	McGraw Hill.	6				
6.	6. Fixel, J. Design for the Environment McGraw Hill.								
COURS	E OUTCOMESS:								
CO1	Apply design pr	rinciples for manu	facturabil	ity mechanisms so	election and assembly limits.				
CO2	Plan form desig	n of welded mem	bers, forgi	ings and castings.					
CO3	Design for machinability, economy, clampability, accessibility and assembly.								
C04	Implement casti	ing consideration	and conce	pt of group technologies	ology while design.	turing			
COURS CO1 CO2 CO3 CO4	E OUTCOMESS: Apply design pr Plan form desig Design for macl Implement casti	inciples for manun n of welded mem ninability, econor ng consideration	ifacturabil bers, forgi ny, clampa and conce	ity mechanisms so ings and castings. ability, accessibili pt of group techno- ulations and store	election and assembly limits. ity and assembly. ology while design.	turing			

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	2	2	2
CO2	3	2	3	2	3	3
CO3	3	3	3	2	3	2
CO4	3	2	3	3	2	3
CO5	3	1	2	2	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	2	3	2	3	3

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Pre-req	uisite: None Co-requisite: None							
Module	-I [08] Design of EEM Initial value and houndary value problems. Colorbin and Delaigh Ditz methods. Store in EEA							
	Discretization, Interpolation, derivation of element characteristic matrix, shape function, assembly and imposition of boundary conditions- Solution and post processing for solving One dimensional solid mechanics, plane truss problems.							
Module	Module -II [07]							
	Global and Natural co-ordinates- Shape functions for one and two dimensional elements- Three noded triangular and four noded quadrilateral element, Isoparametric elements-Jacobian matrices and transformations- Basics of two dimensional axisymmetric analysis.							
Module	-111 [05]							
	FE analysis of metal casting- Special considerations, latent heat incorporation, Gap element-Time stepping procedures- Crank-Nicholson algorithm.							
Module	-IV [05]							
	Basic concepts of plasticity- Solid and flow formulation- Small incremental deformation formulation- FE analysis of metal cutting chip separation criteria, incorporation of strain rate dependency.							
	Pre Processing, Mesh generation, element connecting, boundary conditions, input of material and processing characteristics- Solution and post processing- Overview of application packages such as ANSYS and DEFORM- for one dimensional analysis and validation.							
	SOOK(S):							
1.	All Introduction to the Finite Element Method - J.N. Reddy, McGraw-Hill.							
۷.	Finde Element Method in Engineering- 5.5. Kao, rerganinion riess.							
REFER	ENCE BOOK(S):							
1.	Metal Forming and the Finite Element Methods- S. Kobayashi, Soo-Ik-Oh and T. Altan, Oxford University Press.							
2.	The Finite Element Method in Heat Transfer Analysis- R.W. Lewis, K. Morgan, H.R. Thomas and K.N. Seetharaman, John Wiley.							
3.	Fundamentals of Finite Element Analysis by David V. Hutton, TMH Publications, Edition 2005.							
COURS	RSE OUTCOMES: At the end of this course, students will demonstrate the ability to							
COI	Understand the steps of finite element methods and able to solve the simple engineering problems.							
CO2	Derive the shape functions of different elements for solving linear problems.							
CO3	Analyze metal casting problems using FEM.							
CO4	Analyze metal cutting problems using FEM.							
CO5	Utilize up-to-date interactive modeling and simulation techniques, and commercial software packages for solution of manufacturing problems.							

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	2
CO2	3	3	2	3	2	3
CO3	3	3	1	3	1	2
CO4	3	3	3	3	2	1
CO5	3	3	2	3	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	2	3	2	2

Subject (Codo: MCCDE105	Design Ontimization				
Subject	Loue: MCCPE105	Design Optimization				
Pre-requis	site: None	Co-requisite: None				
Module -I	· ·	[06]				
Ge ob tec	neral Characteristics of mechanical elements, adequised jective function, design constraints, classification chniques.	uate and optimum design, principles of optimization, formulation of of optimization problems. Single and multivariable optimization				
Module -I	1	[06]				
Te me	chnique of unconstrained minimization. Golden se ethods, equality and inequality constraints.	ction, Random, Pattern and Gradient search methods, interpolation				
Module -I	Π	[06]				
Di	rect methods and indirect methods using penalty	function. Lagrange multipliers. Geometric programming stochastic				
pro	ogramming, Genetic algorithms.					
Module -I	<u>V</u>	[06]				
En	gineering applications, structural-design application	n axial and transverse loaded members for minimum cost, maximum				
we						
Module -	V	[06]				
De	sign of shafts and torsion members, design optimiza stem, vibration absorbers. Application in mechanism	ation of springs. Dynamics applications for two-degree freedom				
TEVT DO						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UN(B): Engineering Optimization - Theory and Practice S ⁺	S Rao New Age				
2	Optimum Design of Mechanical elements, Johnson	Ray C Wiley John & Sons				
2.	optimum Design of Meenumeur clements, Johnson					
REFERE	NCE BOOK(S):					
1.	Genetic Algorithms in search, Optimization and Ma	achine, Goldberg D. E., Addison Wesley.				
2.	Optimization for Engineering Design Algorithms at	nd Examples, K. Deb, PHI.				
3.	Introduction to Optimum Design, Jasbir S. Arora, A	Academic Press.				
-						
COURSE	OUTCOMES: At the end of this course, students w	vill demonstrate the ability to				
CO1	Formulate optimization problems in single variable as well as multivariable.					
CO2	Apply the concept of optimality for various type of constrained and unconstrained optimization problems					
CO3	Apply the concept of optimality for various types of direct methods and indirect methods.					
CO4	Evaluate static industrial optimization problems.					
CO5	Evaluate dynamic industrial optimization problems.					

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		2	3	2	3
CO2	3		2	2	3	3
CO3	3		2	2	3	3
CO4	3		2	2	3	3
CO5	3		2	2	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	Н		М	М	Н	Н

Subject	Code: MCCPE106	Desig	n of Hydraulic & Pneumatic Systems
Pre-requi	isite: None	Co-requisite:	None
Module -	I		[06]
H	lydraulic Power Generators- Selection and specific	ation of pumps, pump	characteristics. Linear and Rotary Actuators-
se	election, specification and characteristics. Pressure	e - direction and flow	v control valves- relief valves, non-return and
sa	afety valves - actuation systems.		
Module -	П		[06]
R	eciprocation, quick return, sequencing, synchronizi	ng circuits- accumulate	or circuits- industrial circuits- press circuits.
Module -			[06]
H	lydraulic milling machine- grinding, planning,	copying, forklift, ear	th mover circuits- design and selection of
	supplients survey and emergency mandrens.		
Module -	IV		[06]
Pı	neumatic fundamentals- control elements, positi	ion and pressure ser	nsing-logic circuits- switching circuits-fringe
co	onditions modules and integration- sequential cir	rcuits- cascade metho	ds- mapping methods- step counter method-
CC	ompound circuit design- combination circuit design	•	
Module -	V		[06]
Pi	neumatic equipments - selection of components - de	esign calculations-appl	ication- fault finding- hydro-pneumatic circuits
- 1	use of microprocessors for sequencing - PLC, Low	cost automation- Robo	otic circuits.
TEVT D			
1 IEAI D	Fluid power with Applications- Antony Espossite	Prentice Hall	
2.	Basic Fluid Power- D. A. Pease and LJ. Pippenge	r. Prentice Hall.	
	Zuste Frank Forter Zerri Fouse and twe repponde	.,	
REFERE	ENCE BOOK(S):		
1.	Hydraulic and Pneumatics- A. Parr, Jaico Publish	ing House.	
2.	Pneumatic and Hydraulic Systems- W. Bolton, B	utterworth - Heineman	•
COURSE	E OUTCOMES: At the end of this course, students	will demonstrate the a	bility to
COI	Select proper hydraulic power generators for spec	cific industrial uses.	
CO2	Describe about hydraulic mechanisms and circuit	s ot industrial equipme	ent.
CO3	Handle hydraulic machines and design required c	ircuits.	
CO4	Handle pneumatic systems and design required ci	rcuits.	
CO5	Automate system using microprocessor for indust	trial application.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2		2	3	2
CO2	3	2		2	3	2
CO3	3	2		2	3	2
CO4	3	2		2	3	2
CO5	3	2		2	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	2		2	3	2

वीरसुरेंद्रसाएप्रौंद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा उत्पादनअभियांत्रिकीविभाग Sai University of Technology Burla, Odisha Voor Surondra

veer Suren	arasai Univ	ersity of	I echnology	Buria,
Department	of Production	n Enginee	ring	

Pre-requisite: None COURSE OBJECTIVES: After successful completion of this course, students will able: Image: Course of the second se	Research Methodolog			e	Code	Subje
Pre-requisite: None Co-requisite: None COURSE OBJECTIVES: After successful completion of this course, students will able: 1. <		<u> </u>			• •	
COURSE OBJECTIVES: After successful completion of this course, students will able: 1.	isite: None	Co-requisite:		None	usite:	Pre-ree
1. 2. 3. 4. 5. [00] Module -I [00]	ents will able:	rse, students will	sful completion of this co	JECTIVES: After succes	E OBJEC	COUR
2. 3. 4. 5. [00 Module -I [00		,	<u> </u>			1.
3. 4. 5.						2.
4. 5. Module -I Module -II						3.
5. Module -I Module -II [00] [4.
Module -I [00						5.
Module -1 [0]					T	M. J.J
Module -II [00					-1	Modul
Module -II [00						
Module -II [00						
Module -II [00						
					-11	Modul
						lilouul
Module -III [00					-III	Modul
Module -IV [00					-IV	Modul
Module -V [00					-V	Modul
TEXT BOOK(S):				(S):	OOK(S):	TEXT
1.						1.
<i>2</i> .						2.
REFERENCE BOOK(S):				BOOK(S):	ENCE BO	REFE
1.						1.
2.						2.
3.						3.
4.						4.
						00
COURSE OUTCOMES: At the end of this course, students will demonstrate the ability to	ate the ability to	emonstrate the a	his course, students will	TCOMES: At the end of t	E OUTC	
2						1. 2
3						2.
4.						4.
5.						5.

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subje	ct Code:MPE	ECC103			Subject name: CAD Lab
Pre-R	equisite:	None		Co-requisite:	None
LIST	OF EXPERIM	IENTS			
1.	An introduct	ion to CAD software.			
2.	To study all t	the basic features of a CAD software	e.		
3.	Design of sp	ur gear.			
4.	To design &	assembly different parts of a knuckl	e joint.		
5.	To study the	static analysis of a part using CAD s	software.		
6.	To study the	dynamic simulation of a part using	CAD software.	,	
7.	To study stru	ctural analysis using CAD software	•		
8.	To solve hear	t transfer problem using CAD softw	are.		
COU	RSE OUTCO	OMES:			
CO1	Define and i	mplement CAD software.			
CO2	Implement e	engineering design concepts.			
CO3	Analyze and	d Construct 3D part models.			
CO4	Develop ski	lls to perform solid modeling.			
CO5	Express to le	earn other software systems.			

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	2
CO3	3	3	3	3	3	2
CO4	3	3	3	3	3	2
CO5	3	3	3	3	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	3	3	3	2

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subject	Code: M	IPECC104		CAM Lab
Pre-requi	isite:	CAM	Co-requisite:	None
LIST OF	F EXPE	RIMENTS		
1.	Introdu	action to 3D machining process in CAMW	ORK Software.	
2.	Genera	te CNC code of different machining proce	ss in CAMWORK	X Software.
3.	To stud	ly Digital Manufacturing Platform in DEL	MIA Software.	
4.	To stud	dy Robot simulation system in DELMIA S	oftware.	
5.	To stuc	ly Manufacturing process and model simu	lation using DELN	/IA/QUEST Software
6.	To stud	ly Casting System using AutoCAST softw	are.	
7.	To Eva	luate the quality of casting in virtual envir	onments of AutoC	CAST software.
COURS	E OUTO	COMES:		
CO1	Acquir	e fundamental understanding of the princip	ples of CAM.	
CO2	Exposu	are to CAM software.		
CO3	Demon	strate to apply CAM concept to product de	esign and manufac	cturing
CO4	Develo	p geometric models using curves, surfaces	and solids.	
CO5	Write t	he program for product manufacturing.		

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3		2	3	
CO2		3	3			2
CO3	2		3	2	3	2
CO4	2	3			3	2
CO5				2	3	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	2	3	3	2	3	2

Subject Code: MPECC201	Robotics & Robots Application			
Pre-Requisite:	Co-requisite:			
Module -I				
Robot Fundamentals: Definitions, History of rob	bots, Laws of Robotics, Robot Specification,			
common types of arms Robot end effectors- Typ	es Tools as end effectors Considerations in			
gripper selection and design.				
Module -II	[06]			
Manipulator Kinematics: Homogeneous coordinat	te transformation, matrix representations of			
coordinate transformation, D-H representation of	kinematics linkages, Forward and Inverse			
Kinematics of manipulators, Euler's angle and fixed	rotation for specifying position and orientation.			
Module -III	[06]			
Robotics Dynamics: Velocity Kinematics, Accelerati	ion of rigid body, Lagrange-Euler Formulation,			
Newton-Euler's formulation. Trajectory Planning: (General considerations in path description and			
generation, Joint space schemes, Cartesian space sch	emes, 4-3-4 & trapezoidal velocity strategy for			
robots.				
Module IV	[06]			
Robot Actuators and Sensors: Internal and extern	nal sensors Position- potentiometric Optical			
sensors, Encoders - absolute, incremental, Touch	and slip sensors, Velocity and acceleration			
sensors, Proximity sensors, Force and torque se	nsors. Actuators- Hydraulic, Pneumatic and			
Electrical, Comparison of actuating systems and their	r relative merits and demerits.			
Modulo V	[04]			
Robot Programming: Methods of robot programmin	g. Textual and Leadthrough WAIT SIGNAL			
and DELAY commands. Capabilities and limitations	s of leadthrough programming. Robot language			
structure, Motion, sensor and end effectors command	ds, Programming examples. Robot application			
in Manufacturing- Material Transfer- Material hand	ling, loading and unloading, Processing - spot			
and continuous arc welding and spray painting, Asser	mbly and Inspection.			
1EXT BOOK(S): 6 Industrial Robotics- Groover M P et al Pearson Educ	ation			
7 Robotics and Control- Mittal R K & Nagrath I J TMH				
7. Roboties and control- wittar K K cryagram 13, 11				
REFERENCE BOOK(S):				
7. Robotics Technology and Flexible Automation- S.R.D	Deb, TMH.			
8. Robotic Engineering- Richard D. Klafter, PHI.				
COURSE OUTCOMESS:				
CO1 Express the components of a robotic system and their	working principles.			
CO2 Construct transformation of coordinate frames and	plan direct and inverse kinematic model of			
robotic manipulator.				
CO3 Write diverse formulations for robotics dynamics and	generate trajectory profiles for robots.			

CO4	Prescribe suitable sensors and actuators for diverse robotic functions.
CO5	Inscribe robot programming for different robot applications.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	3	1	2	3
CO2	3	1	3	2	3	3
CO3	2	2	3	2	3	3
CO4	2	-	3	1	3	2
CO5	2	3	3	1	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	2	2	3	1	3	3

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subject	Code MPECC202		Automation in Manufacturing			
Subject			Automation in Manufacturing			
Pre-requi	isite:	Co-requisite:				
Module -	<u>I</u>		[06]			
M	lanufacturing Systems- Components & classification	ations, Automation in m	anufacturing systems, principles and strategies,			
m	athematical models, costs. Single-station manufa	acturing cells.				
Module -	π		[06]			
A	utomated flow lines: Methods or work part tra	insport transfer Mechani	cal buffer storage control function, design and			
fa	brication consideration.	F				
Module -	Ш		[06]			
A	nalysis of Automated flow lines: General term	inology and analysis of	transfer lines without and with buffer storage,			
pa	artial automation, implementation of automated	flow lines. Assembly sy	stem and line balancing: Assembly process and			
sy	/stems assembly line, line balancing methods, wa	ays of improving line ba	ance, nexible assembly lines.			
Module -	IV		[06]			
A	utomated material handling: Types of equipmen	nt. functions. analysis an	d design of material handling systems conveyor			
sy	/stems, automated guided vehicle systems. Autor	mated storage systems, a	utomated storage and retrieval systems; work in			
pr	rocess storage, interfacing handling and storage v	with manufacturing.				
Module -	V		[06]			
Gi	roup Technology- Part classification & coding,	, Computer Aided Proc	ess Planning (CAPP) - Retrieval & Generative			
ty	pe process planning system.					
TEXT BO	OOK(S):					
1.	Automation. Production Systems and Compute	er Integrated Manufactur	ing- M.P. Groover, PHI.			
		0	<u> </u>			
REFERE	ENCE BOOK(S):					
1.	Computer Control of Manufacturing Systems-	Y. Coren, McGraw Hill				
2.	CAD/CAM/CIM- Radhakrishnan& Subramani	ian, Wiley Eastern.				
COURSE	COUTCOMES: Upon completion of this course	e students will be able to	•			
COI	Recognize different type of manufacturing syst	tems for specific applica	tions.			
CO2	Demonstrate the correlation between type of au	utomation and plant layo	ut with specific manufacturing system.			
CO3	Analyze for the optimization of automated flow	w lines and assembly sys	tems.			
CO4	Develop various material handling systems for	industrial applications.				
CO5	Describe automated material handling and storage / retrieval system for different manufacturing applications.					

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	3	3	2
CO2	2	2	3	3	3	2
CO3	2	2	3	3	3	2
CO4	2	2	3	3	3	2
CO5	2	2	3	3	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	2	2	3	3	3	2

Subject	Code: N	ICCPE201		Computer Integrated Manufacturing					
				-					
Pre-requi	isite:	None		Co-requisite:	None				
	_			1					
Module -	I				[06]				
In	itroductio	on: The meaning and	origin of CIM, The	changing manufac	cturing and management scenario, External				
co	communication, Islands of automation and software, Dedicated and open systems, Manufacturing automation protocol,								
Pr	roduct re	elated activities of a	company, Marketing	engineering, Prod	uction planning, Plant operations, Physical				
di	stribution	n, Business and financi	al management.						
				1					
Module -	<u>II</u>	A'1 1 D 1 1		· · · · · · · · · · · · · · · · · · ·	[06]				
C	omputer	Aided Process plannii	ig: Role of process pla	nning in CAD/CAF	M integration, Approaches to computer aided				
pr	cocess pla	inning- Variant approa	ch and Generative appro	baches, CAPP and C	MPP process planning systems.				
				I	[0.7]				
Module -	III hom Eloo		Shop floor control ph	acca Easterry data	[06]				
51	nop Floo	or Control and FMIS:	shop noor control-ph	n sustem	conection system, Automatic identification				
m	ethous- E	Sar code technology, A		n system,					
FI	MS-comp	onents of FMS - typ	es -FMS workstation,	Material handling a	and storage systems, FMS layout, Computer				
co	ontrol sys	tems-application and t	enefits.						
M. J. L.	117				[0/]				
Module -	IV IM Susta	m. Onon System On	n sustame inter conno		[V0]				
C.	nvi Syste	AD (TOD)	en systems inter conne	ction, Manufacturin	ig automations protocol and technical office				
pr		MAP / IOP).	Contraction of the second s	····· ···· · · · · · · · · · · · · · ·	IDEE madela Activita evola dia mana CIM				
C.	IN IMPR	ementation: CIM and	Company strategy, Sys	tem modering tools	-IDEF models, Activity cycle diagram, CIM				
or	pen syster		SA), Manufacturing en	erprise wheel, Clivi	architecture, Product data management, CIW				
111	npiement	ation software.							
Modulo	V				[06]				
D	v ata Com	munication: Communi	cation fundamentals I	ocal area networks	Topology I AN implementations Network				
m	ana com	nt and installations	cation fundamentais, L	ocal area networks	, Topology, Erit implementations, Network				
	anageme atabasa f	for CIM: Development	of databases. Databas	e terminology Arcl	nitecture of database systems. Data modeling				
	atabase 1 nd data as	sociations Relational	data basas. Databasa on	erators Advantages	of data base				
ai	iu uata as	sociations, Relational	data bases, Database op	crators, Advantages	of data base.				
TEXT BO	OOK(S).								
2	Autom	ation Production Syste	ems and Computer Integ	rated Manufacturin	9- M P Groover Pearson Education				
3	Compu	ter Integrated Manufac	turing System- Y Kore	n McGraw-Hill					
5.	compu	ter integrated Manufac	turing bystein 1. Role						
REFERE	NCE BO	OOK(S):							
3.	CAD/C	AM/CIM- P. Radhakr	ishnan. S. Subramanyar	and V. Raiu- New	Age International.				
4	Compu	ter Integrated Manufac	turing- Paul G Ranky	Prentice Hall Intern	ational				
	Compu	Brates Frandra							
COURSE	EOUTCO	OMES:							
CO1	Explain	the concept of open s	ystem in computer integ	grated manufacturing	g.				
CO^2	Develo	p common database fo	r integration in CIM sys	stems.	-				
CO2	Monito	r using shop floor cont	rol in flevible manufact	uring systems					
				Grand Contraction	•				
CO4	Design	CIM automation proto	cols and its architecture	e for specific industr	les.				
CO5	Develo	p database networks fo	r different applications.						

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	3
CO2	3	3		3	2	
CO3	3	3	2	3	2	
CO4		3	2	3	2	3
CO5	2	3	2		2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	2	3	2	3

Subject (Code:MCCPE202				Concurrent Engineering
Pre-Requ	uisite:	Theory of Machine,	Manufacturing	Co-requisite:	None
		Science, Basic	Electronics,		
		Mathematics			
Module	_1				[06]
Initial	- troduction: Extens	ive definition of CF	- CE design n	ethodologies -	Organizing for CE - CE tool box
	ollaborative product	development	- CE design n	iethodologies -	organizing for CE - CE toor box
		development			
Module ·	-11				[07]
U	se of Information	Technology: IT suppo	ort - Solid mo	deling - Product	t data management - Collaborative
pi	roduct commerce -	Artificial Intelligence -	Expert systems	s - Software hard	lware co-design.
		0	1 2		
Module ·	-111				[08]
D	esign Stage: Life-	cycle design of prod	ucts - opportu	nity for manuf	acturing enterprises - modality of
C	oncurrent Engineer	ing Design - Automate	d analysis idea	lization control	- Concurrent engineering in optimal
st	ructural design - Re	eal time constraints.	-		
Module ·	-IV				[10]
M	Ianufacturing Cond	epts and Analysis: N	/lanufacturing	competitiveness	- Checking the design process -
СС	onceptual design me	chanism - Qualitative	physical approa	ach - An intellig	ent design for manufacturing system
-	JIT system - low i	nventory - modular -	Modeling and	reasoning for co	omputer based assembly planning -
D	esign of Automated	l manufacturing.			
				1	
Module ·	-V				[09]
P	roject Managemen	t: Life Cycle semi r	realization - d	esign for econ	omics - evaluation of design for
m	anufacturing cost	- concurrent mechanic	al design - de	composition in	concurrent design - negotiation in
co	oncurrent engineeri	ng design studies - pro	oduct realization	n taxonomy - pl	an for Project Management on new
pı	roduct development	- bottleneck technolog	gy development		
	Οκ(ε).				
	Concurrent Engin	ooring Fundamentals: I	ntagrated Produ	uct Dovolonmon	t Presed Prontice Hell
<u>o.</u>					
9.	Concurrent Engin	eering: Automation To	ols and Techno	logy- Andrew K	usaik, Wiley.
REFEREN	ICE BOOK(S):				
9.	Integrated Produc	t Development- Anders	son MM and He	ein, L. Berlin, Sp	oringer Verlag.
10.	Successful Impler	nentation of Concurren	t Product and F	rocess- Sammy	G Sinha, Wiley.
COURSE	OUTCOMESS: At th	e end of this course, stude	ents will demonst	rate the ability to	
CO1	Evaluate the elem	ents and benefits of a c	oncurrent engin	neering approach	to product development
CO2	Design concurren	t engineering system fo	or product and p	process in manuf	acturing enterprises.
CO3	Describe the basic	concurrent engineerin	g concepts, app	oroaches, tools, a	nd computer applications in the
	practice of concur	rent engineering.			
CO4	Discuss the proce	ss models, fabrication p	process, assemb	ly processes, and	d models of manufacturing, testing
	and inspection.				
CO5	Plan for project m	anagement on new pro	duct developme	ent.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	1	1
CO2	3	3	2	1	1	1
CO3	3	3	2	3	1	1
CO4	3	3	2	2	1	1
CO5	3	3	1	2	1	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	2	2	1	1

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा उत्पादनअभियांत्रिकीविभाग Veer SurendraSai University of Technology Burla, Odisha

Department of Production Engineering

MCCPE2	203	Computer Aided Process Planning
Pre-Requ	isite: CAD & M	Co-requisite:
Module -	[[06]
In	troduction: The Place of Process Plan	ning in the Manufacturing cycle-Process planning and production Planning-
Pi	ocess planning and Concurrent Engineer	ring, CAPP, Group Technology.
Module -	П	[06]
Pa	urt Design Representation: Design D	Drafting-Dimensioning-Conventional Tolerance- Geometric Tolerance-CAD-
in	put/output devices-Topology – Geor	metric transformation-Perspective transformation-Data Structure-Geometric
m	odeling for process planning-GT Coding	g-The OPITZ system-The MICLASS System.
Module -		[06]
Pr	ocess Engineering and Process Plann	ling: Experience based planning-Decision table and Decision trees-Process
L Ca	put format AI	rant process praining-Generative approach-Forward and backward praining,
Module -	IV	[06]
C	omputer Aided Process Planning Syst	tems: Logical Design of process planning- Implementation considerations-
М	anufacturing system components, Produ	ction Volume, No. of production families – CAM-I, CAPP, MIPLAN, APPAS,
A	UTOPLAN and PRO, CPPP.	
Modulo	v7	[06]
A	n Integrated Process Planning Systems:	Totally integrated process planning systems-An Overview-Modulus structure-
D	ata Structure-Operation-Report Generatio	on, Expert process planning
	k	
TEXT BO	DOK(S):	
10.	Gideon Halevi and Roland D. Weill, "F	Principle of process planning- A Logical Approach", Chapman & Hall, 1995
11.	Chang T. C. & Richard A.Wysk, "An I	Introduction to automated process planning systems", Prentice Hall 1985
12.	CAD/CAM-M.P. Groover& E.W. Zimi	mers, PHI.
REFERE	NCE BOOK(S):	
11.	Chang, T.C., "An Expert Process Plann	ning System", Prentice Hall, 1985
12.	Nanua Singh, "Systems Approach to C	computer Integrated Design and Manufacturing", John Wiley & Sons, 1996
13.	CAD/CAM/CIM- Radhakrishnan⋐	pramanyan, Wiley Eastern.
COUDGE		
COURSE	OUTCOMESS: At the end of this cour	rse, students will demonstrate the ability to
	Diderstand the concept of computer as	sisted process planning.
C02	Compare constructions	using G1 coding systems.
C03	Compare generative and variant proces	ss planning for specific applications.
C04	Design reasible CAPP system to imple	ment in specific industry.
005	Develop common database for process	planning integration.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	3	3	1	2
CO2	3	1	3	3	1	2
CO3	3	1	3	3	1	2
CO4	3	1	3	3	1	2
CO5	3	1	3	3	1	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	1	3	3	1	2

Subject	Code			Mechanics of Advanced Materials
Bubjeet	couc			
Pre-requ	isite:	Computer Aided Design & Manufacturing	Co-requisite:	None
	T			10/1
Module ·	•I Optimition	and characteristicscomposite materials.	vorvious of advan	[06]
S	ignificanc	e and objectives of composite materials, curr	ent status and futur	re prospectus.
Module ·	• 11 'lassificati	on of composite materials. Scale of analysis	· Micromechanics	[00] Basic lamina properties Constituent materials
a	nd proper	ties, Properties of typical composite materials	, wheromeenames,	basic familia properties, constituent materials
Module .	.111			[06]
S	tress-strai	n relations. Relation between mathematical	and engineering	constants, transformation of stress, strain and
e	lastic para	meters		
Module ·		motions Strain displacement relations Stra	a strain relation of	[06]
	esultant. C	General load–deformation relations, Analysis	of different types of	f laminates
I	·····		<u> </u>	
Module ·	-V			[06]
S	tress anal	ysis and safety factors for first ply failure	of symmetric lam	inates, Micromechanics of progressive failure;
	besign me	modology for structural composite materials.		
TEXT B	OOK(S):			
1.	Robert	M. Jones, "Mechanics of Composite Ma	terials", Taylor a	nd Francis, Inc., 1999.
2.	Mathew Raton,	ws, F. L. and Rawlings, R. D., "Composit	e Materials: Eng	ineering and Science", CRC Press, Boca
REFERI	ENCE BC			
1.	Isaac N 1994.	A. Daniels, Orilshai, "Engineering Mecha	inics of Composit	te Materials", Oxford University Press,
2.	Bhagw	an D. Agarwal, Lawrence J. Broutman, "	Analysis and Per	formance of fiber composites", John Wiley
	and So	ns, Inc. 1990.		
3.	Madhu	jitMukhopadhyay, "Mechanics of Compo	osite Materials an	d Structures", University Press,
COURS	EOUTCO	MFS : At the end of this course students with	I demonstrate the	ability to
CO1	Apply	concepts of composite materials in manu	facturing of com	posite materials.
CO2	Execut	e characteristics of composite materials.	0 1	
CO3	Analys	e the stress-strain relations of a lamina.		
CO4	Analys	e the different types of Laminate.		
CO5	Analys	etheStresses, safety and Failure of lamina	ates.	
L	5			

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	2
CO2	3	2	2	3	2	3
CO3	3	2	1	3	1	2
CO4	3	1	3	3	2	1
CO5	3	2	2	3	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	2	2	3	2	2

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

MCCPE2	05				Simulation and Modeling
					· · · · · · · · · · · · · · · · · · ·
Pre-Requ	isite:	None		Co-requisite:	None
Module -	r				[06]
In sy Cl Ez	troduction to moc stems. System t assification, Type amples.	lelling and simulation: heory basics, its relates of Simulation, Steps	concept of tion to sir in a Simu	system, model and nulation. Simulatior lation study, Conce	simulation, System analysis, classification of Terminologies. Application areas, Model pts in Discrete Event Simulation, Simulation
Module -	I				[06]
St di so	atistical models stribution function lving on the statis	in simulation, Concept a for discrete systems, c tical models in simulation	ts of Discr continuous c on, analysis	ete Distribution and listribution functions of a single server qu	d Continuous Distribution, Input probability and empirical distribution functions, problem euing system.
Module -	II				[06]
Ra ra nu Re	andom numbers: ndom numbers, T umber generators- ejection technique	Random number tables 'echniques for generation uniformity, chi-square, , Composition & Convo	s, pseudo r ng random Generatin lution Meth	random numbers, Ge numbers, Mid-squar g Random Variates nod.	eneration of Random numbers, Properties of re random number generator, Testing random , Inverse Transform technique, Acceptance-
Module -	[V				[06]
In de Ou co	put modeling: Ide pendence, multiva utput modeling: C nfiguration, Term	ntifying distributions wi ariate input models. Dutput analysis of a sing inating Simulations, Ste	ith data, esti gle system, eady state si	mation of parameters Obtaining a specifie mulations, Validating	s, goodness of fit test and accessing sample ed precision, comparison of alternative system g Input–Output Transformations
NA LL Y	K 7			l	10/1
Si ra cr	v mulation of manu ndomness: system edibility	facturing and material down time, Monte carl	handling s lo simulatio	ystems, Issues in ma n, problem solving-I	aterial handling system, modeling of machine nventory system problems, model validity and
TEXT BO	DOK(S):				
13.	Jerry Banks, Joh Asia, 4th Edition	n S Carson, II, Berry L , 2007, ISBN: 81-203-2	Nelson, Dav 2832-9.	vid M Nicol, Discrete	e Event system Simulation,Pearson Education,
14.	Geoffrey Gordon	n, System Simulation, Pr	rentice Hall	publication.	
REFERE	NCE BOOK(S):				
14.	Averill M Law,	W David Kelton, Simula	ation Model	lling& Analysis, Mc	Graw Hill publication
15.	NarsinghDeo, Sy	stems Simulation with	Digital Con	nputer, PHI Publicati	on (EEE)
16.	Averill M. Law	and W. David Kelton, "S	Simulation	Modeling and Analys	sis, McGraw Hill,
COUDEE	OUTCOMESS.	At the and of this active	a studant-	will domonstrate the	ability to
COL	Explain the or	Ai the end of this course	e, siudenis v	ulation and identif	fu the application gross
CO2	Solve problem	neepi of system, mo	odels in c	initial and identify	y me application areas.
CO3	Generate rand	om numbers and re-	ndom ver	internation.	their testing
CO4	Derform input	output modeling of	f a single	ates and perioriti	the states and states
CO5	Implement of	-output modeling of	turing on	d material handlin	lit.
005	implement sit	nulation of manufac	and and	u materiai nanulli	18 2221112

Course Articulat	ion Matrix					
	PO1	PO2	PO3	PO4	PO5	PO6

CO1	3	3	1	2	1	1
CO2	3	3	1	2	1	1
CO3	3	3	1	2	1	1
CO4	3	3	1	2	1	1
CO5	3	3	1	2	1	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	1	2	1	1

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा उत्पादनअभियांत्रिकीविभाग Veer SurendraSai University of Technology Burla, Odisha

Department of Production Engineering

Pre-requi	isite: Robotics and Robot Applications	Co-requisite:	None					
			[0/]					
Module -	I verview of Smart Materials: Introduction to Smar	t Matarials Princip	[U6]					
M	aterials. Single Crystals vs Polycrystalline Systems	Piezoelectric Polyn	hers. Principles of Magnetostriction. Rare earth					
M	Magnetostrictive materials, Giant Magnetostriction and Magneto-resistance Effect, Introduction to Electro-active							
Μ	aterials, Electronic Materials, Electro-active Poly	mers, Ionic Polyme	r Matrix Composite (IPMC), Shape Memory					
Ef	ffect, Shape Memory Alloys, Shape Memory Polyme	ers, Electro-rheologic	cal Fluids, Magneto Rhelological Fluids.					
Madada 1	11		[0/]					
Module -	II igh Band Width, Low Strain Smart Sensors: Diaze	ooletric Strain Song	[V0] ors. In plane and Out of Plane Sensing, Shear					
Se	ensing. Accelerometers, Effect of Electrode Patter	n. Active Fibre Sen	sing, Magnetostrictive Sensing, Villari Effect.					
М	atteuci Effect and Nagoka-Honda Effect, Magnetic	c Delay Line Sensin	g, Application of Smart Sensors for Structural					
He	ealth Monitoring (SHM), System Identification usin	g Smart Sensors.						
			[0.2]					
Module -	III nert Actuatore: Modelling Diazoalactric Actuators	Amplified Diazo Ac	[V6] tuation Internal and External Amplifications					
M	agnetostrictive Actuation Joule Effect Wiedeman	n Effect Magnetovo	lume Effect Magnetostrictive Mini Actuators					
IP	MC and Polymeric Actuators, Shape Memory A	ctuators, Active Vib	ration Control, Active Shape Control, Passive					
Vi	ibration Control, Hybrid Vibration Control.							
Module -		<i>C</i> 1 M						
Sn ba	nart Composites: Review of Composite Materials, N	Altero and Macro-mee	Channels, Modelling Laminated Composites					
G	overning Equation of Motion. Finite Element Model	lling of Smart Compo	osite Beams.					
Module -	V		[06]					
Ac	dvances in Smart Structures & Materials: Self-	Sensing Piezoelectri	c Transducers, Energy Harvesting Materials,					
Αι	utophagous Materials, SelfHealing Polymers, Intelli	gent System Design,	Emergent System Design.					
TEXT BC								
1.	Brian Culshaw, Smart Structures and Mate	erials. Artech Hou	1se, 2000					
2.	Gauenzi P. Smart Structures Wiley 200	9						
		/						
REFERE	NCE BOOK(S):							
1.	Cady, W. G., Piezoelectricity, Dover Publ	ication						
2.	Bhagwan D. Agarwal, Lawrence J. Broutr	nan, "Analysis an	d Performance of fiber composites",					
	John Wiley and Sons, Inc. 1990.	· •						
3.	MadhujitMukhopadhyay, "Mechanics of C	Composite Materi	als and Structures", University Press,					
4.	Mazumdar S. K., "Composite Manufactur	ing – Materials, P	roduct and Processing Engineering",					
	CRC Press, Boca Raton.							
•	,							
COURSE	COUTCOMES: At the end of this course, students w	vill demonstrate the d	ability to					
CO1	Describe the basics of smart materials.							
CO2	Apply the principle of smart sensors in inc	lustrial application	ns.					
CO3	Apply the smart actuators in industrial app	olications.						
CO4	Analyze the different types of laminate co	mposites.						
CO5	Design Smart Structures for industrial wor	rk.						

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	1	3	3
CO2	3	3	3	1	3	3
CO3	3	2	3	3	3	3
CO4	3	1	3	3	3	3
CO5	3	1	3	2	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	2	3	2	3	3

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा उत्पादनअभियांत्रिकीविभाग Veer SurendraSai University of Technology Burla, Odisha

Department of Production Engineering

Subject Code: Common

Minor Project& Seminar

Pre-Requi	isite:	Co-req	uisite:

For the Minor Project and Seminar, the students are encouraged either to carry out minor projects (simulation or experimental) or collect the information on a specialized current topic pertaining to the domain of CAD/CAM and Robotics and prepare a technical report, showing his understanding of the project work/topic of interest, and submit it to the department. It shall be evaluated by the departmental committee consisting of head of the department, seminar supervisor and senior faculty members. The assessment is based on the quality of presentation, report and viva voce. Further, the allocation of supervisors for the minor and major project work will be done based on the exhibition of student's work in the seminar.

COUR	SE OUTCOMESS: After successful completion of this course, students will be able to:
CO1	Review the literature both at national and international levels and define a specific problem through gap
	analysis.
CO2	Identify and focus on an emerging area of research in the field of CAD/CAM and Robotics engineering,
	specifically automated manufacturing processes.
CO3	Perform research analysis to interpret the simulation/experimental data generated.
CO4	Draw conclusions and also suggest scope for further work.
CO5	Demonstrate satisfactorily the scientific principles and engineering ideas behind the research project
	undertaken and communicate effectively through oral or written or pictorial means.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	3	3	3
CO3	3	3	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	3	3	3	3

Subject	Code:	MPECC203		Robotics Lab							
		-		-							
Pre-requi	isite:	None	Co-requisite:	None							
LIST OF EXPERIMENTS											
1.	To jog the robot using joint axis control & teach multi points in SCARA robot.										
2.	To perf	orm pick and place in SCARA robot.									
3.	Draw different geometry sketch using robot command.										
4.	Teach the robot palletizing operations by picking the job from pallet1 and placing it in pallet 2 using Aristo Robot.										
5.	Teach t	he robot to load and unload a pneumatic chuck	in Aristo Robot.								
6.	Machin	ing in NC lathe by writing part program.									
7.	Machin	ing in CNC Milling by writing part program.									
8.	Operati	on of Flexible Manufacturing system.									
9.	Operati	on of ASRS.									
COURSE	COUTCO	OMES: At the end of this course, students will	demonstrate the a	ability to							
CO1	Develop	p the knowledge related to robotics and robot a	pplications.								
CO2	Perform palletizing operation by employing industrial robots.										
CO3	Describ	Describe and develop NC programmes for Lathe and Milling operations.									
	Write o	ffline programmes for industrial applications of	of robots.								
004	Operate	e FMS productively.									
CO5											

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3	3	3	3
CO2	3		2	3	3	1
CO3	3		1	3	3	1
CO4	3		2	3	3	2
CO5	3		2	3	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3		2	3	3	2

MPE	CC204	Simulation Lab					
Pre-R	Requisite:	Co-requisite:					
LIST	OF EXPERIMENTS						
1.	Computational Fluid Dynamics analysis using ANSYS	S software.					
2.	Finite Element analysis using ANSYS software.						
3.	To study Robot simulation system in DELMIA Software	are.					
4.	To study Manufacturing process and model simulation	n using DELMIA/QUEST Software					
5.	To estimate industrial manufacturing analysis using S	IMUL8 software					
6.	To study different mathematical problem simulation u	sing SOLIDWORK software.					
7.	To study the casting simulation using AutoCAST soft	ware					
COUI	RSE OUTCOMESS:						
CO1	1 Design, analyse and optimize automated flow lines	Design, analyse and optimize automated flow lines and assembly systems.					
CO2	Develop material handling systems industry application.						
CO3	Generate automated process plans for intended products.						
CO4	4 Understand the element simulation using various s	oftware.					
CO5	5 Understand automated material handling systems i	n software based.					

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	1	2	1	1
CO2	3	3	1	2	1	1
CO3	3	3	1	2	1	1
CO4	3	3	1	2	1	1
CO5	3	3	1	2	1	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	3	1	2	1	1

Subject	t Code: MCCPE301		Mechatronics& MEMS
Pre-requ	isite: Theory of Machine, Manufacturing Science, Basic Electronics, Mathematics	Co-requisite:	None
Module -	-I		[06]
Indudic	ntroduction: Introduction to Mechatronics: M	echatronic syste	em. measurement systems. Introduction
to N	o Mechanical, Electrical, Fluid and Thermal systems.	ystems, Rotatio	nal and Transnational systems, Electro-
Module -	-11		[06]
S F	Sensors: Desirable features, Displacement, p Force sensors, Time of flight sensors, Binary	osition and pro force sensor, to	emperature and Pressure measurement,
S	Sensor selection.		
Module -	_111		[06]
A R E m	Actuation Systems: Actuation Systems, Pneum Rotary actuator, Mechanical actuation systems Electrical Systems, Relays and Solenoids, D notors, Stepper Motors. Drive selection.	atic and Hydrau s- Mechanical S C brushed mo	ulic systems, Directional control valves, Systems, Electrical Actuation Systems- tors, DC brushless motors, DC servo
Module -	-IV		[06]
Ir p m d	ntroduction to MEMS technology: Basic d properties of materials used in MEMS nicrofabrication, Review of microelectronics f loping, etching, structural and sacrificial mater	efinitions, ME Microfabricatio abrication proce- ials, other lithog	MS Materials: Mechanical and other on / Micromachining: Overview of esses like photolithography, deposition, graphy methods,
Module -	-V		[06]
N an el	MEMS Modeling: Basic modeling elements analogy between 2nd order mechanical and electromagnetic systems.	in electrical, m l electrical sys	nechanical, thermal and fluid systems, stems. Modeling elastic, electrostatic,
TEVT D			
1EAT DU	Mechatronics- W Bolton Pearson Education	<u> </u>	
2.	MEMS and Microsystems Design and Manu	facture- Tai, Ra	an Hsu, TMH.
		,	
REFERE	ENCE BOOK(S):		
1.	Mechatronics Principles and Applications- C	3.C.Onwubolu,	Butterworth-Heinemann
2.	Foundations of MEMS- Chang Liu, Pearson	International E	dition.
3.	Fundamentals of Microfabrication- Madou,	CRC Press.	
COURSE	E OUTCOMES: At the end of this course students will	1	
CO1	Analyze the mechatronics system design and	l characteristics	of sensors and actuators.
CO2	Write the applications of Sensors.		
CO3	Express the applications of Actuation system	18.	
CO4	Implement the MEMS technology.		
CO5	Apply MEMS for various industrial applicat	ions.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	2	2
CO2	3	3	2	3	2	2
CO3	3	2	2	3	3	2
CO4	3	2	2	3	3	2
CO5	3	3	3	3	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	2.4	2.4	3	2.6	2

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subject	Code:MCCPE302	Computer Aided Product Design
		1
Pre-Rec	uisite: Automation and NC Machine	Co-requisite:
Madada	T	[0/]
Module	-1	of simulation simulation as a decision making
s to	ol types of simulation Pseudo random numbers met	hods of generating random variates discrete and
	ontinuous distributions, testing of random numbers, include	modes of generating random variates, discrete and
Module	-II	[06]
P	roblem formulation, data collection and reduction, t	ime flow mechanism, key variables, logic flow
cł v:	nart, starting condition, run size, experimental design	consideration, output analysis and interpretation
Module	-III	[06]
C	omparison and selection of simulation languages, s	tudy along with practice of any one simulation
la	nguage.	
	TX 7	
Module	-IV	[00]
	evelopment of simulation models using the simulat	ion language studied for systems like, queuing
5)	stenis, production systems.	
Module	-V	[06]
Si	imulation models for systems like Inventory sys	tems, maintenance and replacement systems,
in	vestment analysis and network.	
TEXT F	BOOK(S):	
15.	Discrete event system simulation- J. Banks, J. S. Car	rson, B. L. Nelson, D. M. Nicol, PHI.
16.	Simulation using GPSS- T. J. Schriber, John Wiley.	
DEEDD		
KEFEK	ENCE BOOK(S):	I Mitani Cambridge Haiyanita Dress
17.	Simulation Techniques for Discrete Event Systems-	1. Miltram, Cambridge University Press.
18.	Simulation Modeling and Analysis- A. M. Law, Mc	Graw Hill India.
COURS	E OUTCOMESS:	
CO1	Apply functional modeling method to model the acti	vities of a system.
CO2	Formulate a system problem besides analyzing and i	nterpreting of output.
CO3	Select and use any particular simulation language.	
CO4	Develop models using a simulation language for que	euing and production systems.
CO5	Organize and implement models for inventory, analysis.	maintenance and replacement systems besides

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	3	3	2
CO2	3	2	3	3	3	2
CO3	3	2	3	3	3	2
CO4	3	-	3	3	3	2
CO5	3	-	3	3	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	1	3	3	3	2

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subject	Code :	MCCPE303			Ar	tificial intelligence and expert systems
-	• •			I	<u> </u>	
Pre-requ	isite:	None			Co-requisite:	None
Module -	I					[06]
H So st ac	listory-E emantic tatement cquisitio	Definition of Al, Er nets - An abstract s using simple log on.	ulation of human view of modeling ic connectives- P	cognitive - Elemen redicate lo	process. The k tary knowledge ogic- Knowledg	cnowledge search trade off- Stored knowledge- - Computational logic - Analysis of compound ge organization and manipulation- Knowledge
Module -	.II					[06]
P P Se C F	roblem s erforma earch- comparir irst Sear	solving agents: Prob nce with examples Depth first search ng uniformed search rch, Branch- and- B	lem Definition- Fo Search Strategies Depth limited s strategies - Inform ound Search- Opti	ormulating s- Uninfor earch- Ite ned search mal search	problems- Searc rmed or Blinded rative deepening strategies - Heu and A* and iter	ching for solutions- Measuring problem, Solving I search- Breadth first search- Uniform cost g- Depth first search - Bidirectional search - ristic information- Hill climbing methods- Best ative deepening A*.
Module -	·III					[06]
K m Ir of	Inowled natching ntegratio f linguis	ge organization and - Fuzzy matching on of knowledge in tics - Basic semanti	communication: RETE matching memory organizat c analysis and repr	Matching algorithm ion system resentation	Techniques - N - Knowledge on ns- Perception- structures- Natu	leed for matching- Matching problem - Partial rganization- Indexing and Retrieval techniques- Communication and Expert System - Overview ral language generation.
	TX 7					10/1
Ir L O	ntroduct isp and Output sta	ion to programing its syntax- Lisp syn atements and declar	anguage: Introduc ax- Numeric funct ation of local varia	tion to Pro tion - Diffe bles- Inter	ogramming Langerence between I raction and recurs	guage of AI and its advantages- Introduction to Lisp and Pro log- Lisp syntax- Input statements- sion functions - Property list and arrays.
Module -	·V					[06]
K aı ac	Inowledg rchitectu cquisitio	ge based systems: are, representing & on, applications.	Expert systems, c using domain kn	components nowledge,	s, characteristic expert system s	features of expert systems, rule based system shell, explaining the reasoning and knowledge
TEXT B	OOK(S))•				
1 EAT D	Elaine	Rich and Kelvin K	night, Artificial In	telligence,	Tata McGraw H	Gill
2.	Patte Delh	rson, Introductio	n to Artificial I	ntelligen	ce and Expert	systems, Prentice Hall of India, New
DEFEDE	INCE B					
1.	Stuar Jerse	t Russell and P	eter Norvig, Ar	tificial I	ntelligence: A	modern approach. Prentice Hall, New
2.	Nilson	n, N. J., Principles o	f Artificial Intellig	ence, Sprin	nger Verlag Berl	in.
3.	Charn	iak, E and Drew M	Dermot, Introduct	tion to Arti	ficial Intelligenc	e, Addison Wesley Longman Inc.
4.	Rober	t J. Schalkoff, Artif	cial Intelligence: A	An Engine	ering Approach,	McGraw-Hill international Edition.
COUDG			<u> </u>	1		
COURSE CO1	EOUT	COMES: At the end	of this course, stud	dents will:		
CO1	Anal	use the diverse r	rept of AI.	aganta		
CO_2	Anal	yze the line set i	roblem solving	agents.	mmmiastic	
CO_{4}		ess me knowled	e or organizatio	ond state	ite education	l.
C04	Appl	y programming	anguage of Al	and state	rea of overant age	S.
	Evall	uate the compon	ms, characteris	suc reatu	ies of expert s	systems.

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	2
CO2	3	2	2	3	3	3
CO3	3	3	2	3	3	3
CO4	3	2	2			2
CO5	3			3		3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	2.5	2	3	3	3

Subject Code: MCC0E301 Quality Engineer	ing
Pre-requisite: Co-requisite:	
Madula I	0.61
Attributes of quality Evolution of philosophy of Quality Management Economics of quality and measurement of cos	<u>uoj</u> t of
quality, Data presentation techniques for quality analysis Principles of Quality Management- Pioneers of TQM, Quality costs, Quality system Customer Orientati	ion,
Benchmarking, Re-engineering, Concurrent Engineering.	
	0(1
Violule -11 Single Vender Concept IIT Quality Eurotion deployment Quality Circles KAIZEN SCA POKA VOKE Terr	<u>00]</u>
Methods. Leadership- Organizational Structure, Team Building, Information Systems and Documentation, Qua Auditing- ISO 9000- QS 9000.	lity
Madula III	0.61
Module -III Methods and Philosophy of Statistical Process Control Control Charts for Variables and Attributes. Cumulative sum ar	<u>voj</u> d
exponentially weighted moving average control charts, Others SPC Techniques- Process Capability Analysis- Six sigm accuracy.	a
Module -IV	06]
standards, The Dodge-Roming sampling plans.	
Module -V	061
Reliability analysis and predictions, Bath-Tub Curve, Exponential and Weibull distribution in modelling reliability	ity,
IEAT BOOK(S): 1 Total Quality Managament for Engineers M. Zairi, Woodhood Publishing	
I. Total Quality Management for Engineers- M. Zahl, woodhead Fublishing.	
2. Infloduction to Statistical Quanty Control- D.C. Montgomery, John whey and Sons.	
REFERENCE BOOK(S):	
1. ISO 9000- A Manual for Total Quality Management- S. Dalela and Saurabh, S.Chand and Company Ltd.	
2. Statistical Quality Control- E.L. Grant and Leavensworth, McGraw-Hill.	
COURSE OUTCOMES: Upon completion of this course students will be able to:	
CO1 Demonstrate the concept of quality as per quality management principles.	
CO2 Compile different quality management tools.	
CO3 Analyze manufacturing process control using statistical control charts.	
CO4 Evaluate different sampling plans for specific product quality control.	
CO5 Describe reliability for different angingering systems	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	3	3	3
CO2	2	2	2	3	3	3
CO3	2	2	2	3	3	3
CO4	2	2	2	3	3	3
CO5	2	2	2	3	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	2	2	2	3	3	3

Subjec	et Code: N	ACCOE302			Life Cycle Engineering
Pre-rec	quisite:	None		Co-requisite:	None
Module	e -I				[06]
	Product lif Backgrour Significan Involveme	fe cycle – Introduction, growth, nd for PLM-corporate challeng ce of PLM - life cycle problen ent.	maturity & d es, Needs of 1s to be reso	ecline, Product Li PLM, Compone lved, product dev	fecycle Management- Definition & Overview, ents/Elements of PLM, Emergence of PLM, relopment problems to be resolved, Customer
Module	• _TT				[06]
	PLM Life engineerin Weaving tisingularity times, glol – income,	e cycle model- plan, design, bu g data management (EDM), Pr the threads into PLM, comparis r, cohesion, traceability, reflective palization & regulation. Internal revenues & costs.	uild, support oduct data m on of PLM t eness, Informa drivers - prod	& dispose. Thre anagement (PDM o Engineering res ation Mirroring M uctivity, innovatio	ads of PLM computer aided design (CAD), I), computer integrated manufacturing (CIM). source planning (ERP). PLM characteristics - odel. External drivers- scale, complexity, cycle on, collaboration & quality. Board room drivers
Module	e -III				[06]
	Product li model, the PLM syste	fe cycle management system- product information data model ems	system archite , the product	ecture, Informatio model, functioning	on models and product structure, Information g of the system. Reasons for the deployment of
Module	e -IV				[06]
	Product D link betwe Company' PLM strate	ata issues – Access, applications, en Product Data and Product Wo s PLM vision, The PLM Strateg egy, Strategy identification and se	Archiving, A orkflow, Key J y, Principles election, Chan	vailability, Chang Management Issue for PLM strategy, ge Management fo	ge, and Confidentiality. Product Workflow, The es around Product Data and Product Workflow, Preparing for the PLM strategy, Developing a or PLM.
Module	• -V				[06]
	Different visualizati manageme resources	phases of product lifecycle an on, collaboration and enterprise ent, workflow and program ma in product lifecycle. PLM Case S	d correspond application in nagement, Fu tudy.	ing technologies, tegration, Core fun inctional application	Foundation technologies and standards e.g. nctions e.g., data vaults, document and content ions e.g., configuration management. Human
TEXT	BOOK(S):	: s Michael Product Lifecycle Ma	nagement Dr	iving the Next Ger	peration of Lean Thinking McGraw Hill
1.	AnttiS	aaksyuori AnselmiImmonen	Product L if	e Cycle Manager	ment - Springer
2.	7 muio		, I loudet Ell	e cycle Manager	ment opringer,
REFE	RENCE BO	DOK(S):			
1.	Stark, Verlag	John. Product Lifecycle Ma	nagement: 2	1st Century Par	radigm for Product Realization, Springer-
COLLE	OF OUTC		. 1	1	1.1.
COUR CO1	<u>Apply</u>	UMES: At the end of this course, the basics of PI M	, students will	demonstrate the a	ibility to
CO^2	Constr	uct product life cycle manage	ment and dri	ving environmer	nt
CO_2	Evored	ss product life cycle managem	ent system		it
CO4	Recor	nize product life cycle enviro	nment		
CO5	Analy	ze the components of product	life cycle ma	nagement.	
200	1 mary	components of product			

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2		3	3	3	3
CO2	3		3	2	2	3
CO3	3		3	2	2	3
CO4	3		2	2	2	3
CO5	2		3	3	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3		3	2	2	3

Subjec	ct Code:M	Subject Code:MCCOE303			Advanced Maintenance Technology			
Dro D	anicita	Maintananaa Enginaaring & Managamant	Con	noquisito.				
rre-N	equisite:	Maintenance Engineering & Management		requisite:				
Modu	le -I				[06]			
	Defect g	generation-types of failures, Defects report	ing and re	cording, Def	fect analysis, Failure			
	analysis,	Equipment downtime analysis, Breakdowr	n analysis-F	Failure tree a	analysis (FTA), Root			
	cause ana	alysis (RCA), failure modes and effective ana	lysis (FME.	A).				
Modu	le -II				[06]			
Modu	Planned	and unplanned maintenance-Breakdow	n mainten	ance. Corr	ective maintenance.			
	Opportur	nistic maintenance, Routine maintenance, Pre	ventive mai	ntenance, Pre	edictive maintenance.			
			Γ					
Modu	le -III				[06]			
	Condition	n Monitoring: online and off line monitorin	ig, C.M. tec	chniques, ten	nperature monitoring,			
	monitori	ng benefits of CM	on analysis	, oll analys	is techniques, crack			
Modu	le -IV				[06]			
	Selection	n and scope of computerization-Equipment	classificati	on, Codifica	tion of break down,			
	material	and facilities, Job sequencing, Material manage	gement mod	lule, Captive	Engineering module.			
	X 7				[0.7]			
Modu	le - V Total pr	aductivity maintanance (TDM) features or	d principle	Dillora of	F TPM Autonomous			
	maintena	ance equipment and process improvement u	sing Kaizer	n TPM verse	es TOM TPM verses			
	RCM. TH	PM benefits.	sing nuizer	,				
TEXT	BOOK(S)):						
17.	Industrial	Maintenance Management- S. K. SRIVASTA	AVA, S. Ch	and & Comp	any Ltd.			
18.	Handbook	k of Machine Tools- Vol. 3- M. Weck and H.	Bibring, Jol	hn Wiley &S	ons.			
DEEE								
REFE 10	RENCE B	iOOK(S):	k by Dunge	n Dichardson	McGrow Hill			
19.	Education	n ment & Mannenance Engineering Handboo	JK UY Dulica					
20.	Engineeri	ing Maintenance A Modern Approach by B.S.	Dhillon, C	RC Press				
21.	Plant Equ	lipment & Maintenance Engineering Handboo	ok by Dunca	n Richardson	n, McGraw Hill			
	Education	1.	5		,			
COUR	RSE OUTO	COMESS:		0.57				
C01	Analyze f	allure/equipment down time/breakdown by aj	pplying the	concept of F	IA, RCA and FMEA.			
CO2	Demonstr	ate breakdown maintenance, corrective, rou	itine, preve	ntive and pr	edictive maintenance			
CO3	Write ab	out condition monitoring techniques vibra	tion analys	is vibration	monitoring and oil			
	analysis.	out condition monitoring teeninques, viora	anarys	515, vioration	monitoring and OI			
CO4	Express a	bout computerization of maintenance system,	job sequen	cing, codifica	ation and cataloguing.			
CO5	Implemen	nt total productivity maintenance (TPM), T	TQM and H	RCM for eq	uipment and process			
	improvem	nent.		-	-			

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	3	3	2	1
CO2	3	-	3	3	3	1
CO3	3	2	3	3	2	1
CO4	2	-	3	2	3	1
CO5	3	-	3	3	3	-

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	3	1	3	3	3	1

वीरसुरेंद्रसाएप्रौद्योगिकीविश्वविद्यालयबुर्ला, ओडिशा

उत्पादनअभियांत्रिकीविभाग

Veer SurendraSai University of Technology Burla, Odisha Department of Production Engineering

Subje	ct Code					Dissertation (Phase-I)
Pre-ree	quisite:	None		Co-requisite:	None	
COUR	SE OUTC	COMES: At the end of this	s course, students wil	l demonstrate the	ability to	
1.	Identify a	and focus on an emerging	area of research in th	e field of producti	on engineering	
2.	Review t	the literature both at nation	al and international l	evels		
3.	Define a	specific program through	gap analysis.			
4.	4. Communicate effectively through oral or written or pictorial means.					
5.	5. Demonstrate satisfactorily the scientific principles behind the research project undertaken.					

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	3
CO2	3	3	2	3	2	3
CO3	3	3	2	3	2	3
CO4	3	3	2	3	2	3
CO5	3	3	2	3	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6
Course	Н	Н	М	Н	М	Н

Subject Code				Dissertation (Phase-II)			
Pre-requisite:	None	Co-requisite:	None				
COURSE OUTCO	DMES: At the end of this course, students wil	l demonstrate the	ability to				
1. Design research	project work related constituents.						
2. Develop research	n project work related constituents.						
3. Perform experiments and/or simulations pertaining to research project objectives.							
4. Produce research	4. Produce research project related control settings for parameter/process optimization.						

5. Evaluate and analyse parameters and processes concerning the research project.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	3
CO2	3	3	2	3	2	3
CO3	3	3	2	3	2	3
CO4	3	3	2	3	2	3
CO5	3	3	2	3	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6
Course	Н	Н	М	Н	М	Н