B.Tech/1st/All Basic Electronics

Full Marks: 70

Time: 3 hours

Answer Q. No. 1 which is compulsory and any five from the rest

The figures in the right-hand margin indicate marks

1. Answer the following questions:

 2×10

- (a) What is Zener breakdown? Give two reasons.
- (b) Derive the expression of $I_c V_S I_B$ for a CE transistor configuration.
- (c) An Amplifier has a voltage gain of 100 V/V and current gain of 1000 A/A. Express the voltage and current gains in the decibels and find power gain.
- (d) Draw the circuit of an op-amp Integrator.

- (e) Mention the two advantages of negative feedback.
- (f) What is 'α' and 'β' of a BJT? Write the relation between them.
- (g) Define 'stability factor' and derive its general expression.
- (h) Why a Time base voltage is generally given to the horizontal plate of CRO?
 - (i) What is the needs of modulation?
 - (j) Define slew rate of an op-amp. What is its significance?

Find the values of the resistors such that the above circuit provide $V_0 = V_1 + V_2 - 4V_3$.

(b)	What do you mean by clipper? Draw the circuit of a double ended clipper using ideal
	p-n junction diode, which limits the output
	from $+3$ volts to -3 volts for a sinusoidal
	inputs of 'SV' amplitude.

- 3. (a) Describe the principle and operation of an enhancement type MOSFET, with suitable diagram. Sketch its transfer characteristics.
 - (b) What is universal gate? Design all or then gates using NOR gate only.
- 4. (a) Derive the expression for I_{DC} and I_{RMS} for half-wave rectifier circuit and find its maximum efficiency.
 - (b) Design $A \oplus B \oplus C$ using only basic logic gates.
- 5. (a) If the gain of an amplifier is 90 dB and 60 dB without and with feedback respectively, then find out the feedback factor of the amplifier.

5

(b) Find out the values of R_B and R_C , for which the voltage gain (Amplification factor) of the amplifier is expected to be 200. Assume that collector current I = 2 mA, current gain $\beta = 10^{\circ}$ and the voltage drop across the base emitter junction is 600 mV. (Assume $V_T = 25$ mV)

6. (a) Minimize the given function using K-map and convert the minimised function in POS form.

$$f(A, B, C, D) = \sum (2, 3, 5, 7, 13)$$

- (b) Sketch the circuit diagram of a modulo 10 counter. Explain the operation.
- 7. (a) What is input impedance of an ideal CRO? Justify. Explain CRO as a voltmeter.
 - (b) Derive the expression for an amplitude modulated signal, if the message signal is represented as $A_m \sin w_n t$ and carrier signal is $A_c \sin w_c t$.
- 8. (a) Calculate forward current I_f for the silicon diode with dynamic resistance $r_d = 0.25 \Omega$ in the following circuit:

(b) With a neat diagram, explain the principle of an oscillator circuit. Derive the frequency of operation of an RC-phase shift oscillator. 5

5

5