(Set-1)

B.Tech-4th

Analog Communication Technique

Full Marks: 70

Time: 3 hours

Q. No. 1 is compulsory and answer any five from the rest

The figures in the right-hand margin indicate marks

All the symbols carry their usual meaning

- 1. Answer the following questions: 2×10
 - (a) Sketch, to scale, the spectrum of a full wave rectifier output if its input is $20 \sin 400\pi t$.
 - (b) Mention two sets of orthogonal functions.
 - (c) Give two functions for which Dirichlet's conditions are not satisfied.
 - (d) Give the autocorrelation function of white noise. Justify your answer.

- (e) Prove the differentiation theorem of Fourier transform.
- (f) Between an integrator and a differentiator, which one is more immune to random noise? Why?
- (g) Most often, white noise is modeled to be Gaussian distributed why?
- (h) Why is the AM broadcast band chosen in the range of 535-1605 kHz?
- (i) What are the two primary functions carried out by the RF amplifier?
- (j) Is an FM system a linear one? Justify.
- 2. (a) Find out the Fourier transform of the following Gaussian pulse given as

$$g(t) = e^{-\frac{t^2}{2\sigma^2}}$$
 own notion (4)

(b) Evaluate the energy contained in a Gaussian pulse given as

$$g(t) = \frac{1}{\sqrt{2\pi} \sigma} e^{\frac{t^2 + 3\sigma^2}{2\sigma^2}}$$

3. (a) Give the Fourier transform of a function given as

$$g(t) = \begin{cases} \sin c(2wt) \sec t \left(\frac{t}{T}\right); -\frac{T}{2} \le t \le \frac{T}{2} \\ 0 \qquad ; \text{ otherwise} \end{cases}$$

$$(b) \int_{-\infty}^{\infty} \delta(t+3) e^{-t} dt$$

(c) What is the power of a signal given as

$$g(t) = c_1 \cos(w_1 t + \theta_1) + c_2 \cos(w_2 t + \theta_2)$$
when $w_1 = w_2$.

- 4. (a) A signal $g(t) = [1 + m(t)] \cos w_c t$ is detected using a square-law detector. The Fourier transform of the signal m(t) is a constant μ_0 in the frequency range of $-f_m$ to f_m . Evaluate and sketch the spectrum of the output.
 - (b) The signal $g(t) = \sin c(10^5 t)$ is used to DSB-SC modulate a carrier with a frequency of 10 MHz. Evaluate the bandwidth of the modulated signal and sketch its spectrum.

5.	(a) .	A signal	is given as	

$$g(t) = 2\cos w_c t + 0.4\cos w_m t \sin w_c t$$

Determine the nature/type of modulation.

- (b) A phase modulator with $K_p = 4 \text{ rad/V}$ is fed with a sinewave modulating signal given as $3 \sin 4\pi \times 10^3 t$. What is the peak frequency deviation produced in the carrier frequency?
- 6. (a) Discuss the Foster-Seeley discriminator with the help of appropriate sketches and expressions (if any).
 - (b) Discuss the primary differences between an AM and an FM superheterodyne receiver.
- 7. (a) Derive an expression for the figure of merit of envelope detection.
 - (b) Evaluate the NEB of a first order RC low-pass filter.
- 8. (a) Discuss what do you mean by quadrature components of noise. What kind of noise is usually referred to here?

(b) Explain SNR improvement made possible with pre-emphasis.