B.Tech-2 (All) Chem bushness in sulay on noncertaining of Set-2.

Full Marks: 70

renegy visabe is Zem. What is the value

Time: 3 hours

second on of the base in a 0-4 M solu Q. No. 1 is compulsory and answer any five from the rest

The figures in the right-hand margin indicate marks

1. Answer the following questions:

2×10

- (a) Find the uncertainty in the velocity of an electron if the uncertainty in its position is lpm.
- (b) Between super oxide and peroxide, which one has larger bond length?
- (c) An object of mass 1.0 kg suspended from the end of a rubber band has a vibrational frequency of 2 Hz. Calculate the force constant of the rubber.

- (d) For a reversible reaction, the value of standard free energy change is Zero. What is the value of its equilibrium constant?
- (e) If the dissociation constant of weak base is 1.6×10^{-5} at 25 °C, what is the percentage of dissociation of the base in a 0.1 M solution?
- (f) Considering one mole of an ideal gas, prove $(\partial P/\partial T)_{\nu} (\partial T/\partial V)_{P} (\partial V/\partial P)_{T} = -1$
- (g) What are the value of pressure and temperature at which all the three phases of water are coexist in equilibrium?
- (h) The Standard EMF of the Diniel cell involving the cell reaction

$$Zn + Cu^{+2}(aq) \rightleftharpoons Cu + Zn^{+2}(aq)$$
 is 1·10V.

(b) Between super oxide and pergrade, which one

Calculate the equilibrium constant of the cell reaction at 25 °C.

- (i) Two particles A and B are in motion. The wavelength of A is 5×10^{-8} m. Calculate the wavelength of B, if its momentum is half of A.
- (j) If the ionic radii of M⁺ and X⁻ are 147 and 195 pm respectively, what is the most probable coordination number of M⁺ ion in MX?
- 2. (a) Compare the relative stability of O_2^- and N_2^+ and predict their magnetic behaviour.
 - (b) Derive the expression for the energy of a particle of mass m confined in an one dimensional box.
- 3. (a) Derive the relationship between moment of inertia and internuclear distance of a diatomic molecule consist of two atoms of mass M_1 and M_2 .
 - (b) The spacing of the lines in a rotational spectrum of $C^{12}O$ molecule is 10.590 cm⁻¹. Calculate the energy (in cm⁻¹) of rotational state with j = 2 for $C^{13}O$ molecule. Assuming

5

5

the replacement of C12 by	C13 leaves the bondi)	
length unchanged.	wavelength of A	5
to that at empression at it	wavelength of A	

4. (a) Show that $C_p - C_v = R$ for a one mole of ideal gas.

(b) Show that I not "M to redinan normalibroop

2.
$$(a) \cap O(a) = \frac{1}{2} \left(\frac{a}{a}\right) + \frac{1}{2} \left(\frac{\partial U}{\partial P}\right)_{T} + \frac{1}{2} \left(\frac{\partial U}{\partial P}\right)_{T} = \frac{1}{2} \left(\frac{\partial U}{\partial P}\right)_{T$$

5. (a) Derive the expression for the rate constant of a first order reaction.

(a) Derive the expression (or the energy of a

- (b) The rate constant of a certain reaction is found to be doubled when temperature is raised from 27 °C to 37 °C. What is the activation energy? 5
- 6. (a) Calculate the equilibrium constant of the cell reaction

 $Ag^{+2} + Zn \rightleftharpoons Ag^{+} + Zn^{+2}$ occurring in the silver cell at 25 °C when

$\left[\operatorname{Zn}^{+2}\right] = 0.1 \mathrm{M}$ and $\left[\operatorname{Ag}^{+}\right] = 10 \mathrm{M}$. The EMF of	
the cell is found to be 1.62 V.	5
(b) What are the difference between Frenkel defect and Schottky defect? Which of the two defect changes the density of the solid?	5
7. (a) The degree of dissociation of acetic acid in a 0·1 M solution is 1·32 × 10 ⁻² . Find out the dissociation constant of the acid and pK _a value.	5
(b) Derive Gibbs-Helmholtz equation for a process at constant volume and constant pressure.	5
8. (a) Draw and explain the phase diagram of sulphur system.	5
(b) NaCl is a face centered cubic lattice. Calculate its density if the edge of the cube is 5.62×10^{-10} m long.	5