VEER SURNDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA, ODISHA LESSON PLAN

Name of Faculty: Dr. Gyan Ranjan Biswal

Semester: 2nd M.Tech. (Control and Instrumentation Engineering), Session: 2016-17 Subject: Process Control and Instrumentation, (Theory)

Branch: Electrical Engineering,

Module No. Topics to be Covered Signature of Faculty Period 1 I. Process dynamics: Introduction to process control-objective of modelling-models of industrial process, Process control principles Classifications, order and types of process 2 Т 1st order and 2nd order systems 3 I Self regulating processes, dead time elements 4 Т 5 T Common systems: fluid flow system, Heat transfer system 6 Т 7 T Vibration control of machineries Chemical Reaction System: liquid level 8 L system without resistance elements. linearization of nonlinear terms. with nonlinear elements 9 Non-interacting two-tank system with linear Т resistance elements, Interacting two-tank system with linear resistance elements Tubular Heat Discillation 10 Т Exchanger, columns and 11 Ш Control actions controller tuning: classifications, controller terms Basic control actions-on/off, 12 Ш time proportional control 13 Ш Continuous Control: P, P+I 14 Ш P+D types, P+I+D Simplified and Robust Design of OPAMP П 15 based PID controller **Digital Controller** Ш 16 Ш Design consideration of digital control 17 Pneumatic Controller: pneumatic relays 18 Ш Ш Pneumatic booster/ Bellows 19 Design consideration of pneumatic control 20 Ш *Complex* Control Techniques: cascade 21 Ш control, Thumb rules, benefits Generalized Design procedure 22 Ш feedforwording controllers, lead-lag elements 23 Ш Practical aspect of designing feedforword control, Ratio control

24	III	Adaptive control, Split range control
25	III	MRAC, STR, Multivariable control
26	III	Programmable Logic Controllers: Evolution
		of PLC
27	111	Difference between PC based control and
		PLC
28	111	Opto-isolation and Bumpless restart
29	Ш	Sequential and Programmable controllers
30	Ш	Architecture of PLC
31	Ш	Programming of PLC: classifications
32	ш	Relay logic and Ladder logic, Functional
		blocks
33	Ш	Programming of Digital Instructions, Logic
		using PLC
34	Ш	Relat Diagram, Ladder Diagram, Algorithms
		and Programming
35	111	Case Studies: Level Control of closed and
		open type Reserviors
36	III	Case Studies:Elevators
37	111	Case Studies: Refrigeration system
38	Ш	Communication Networks for PLC
39	IV	Computer control of processes: PLC based
		control of processes
40	IV	Computer control of liquid level system: a
		case study
41	IV	Computer control of heat exchangers
42	IV	Smart sensors: classifications and design in
		brief
43	IV	Networked Sensors
44	IV	Field bus
45	IV	Field bus

Signature of Course Instructor

Signature of HOD (EE & EEE)