VEER SURNDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA, ODI: LESSON PLAN

Semester: 2nd MTECH Session: 2015-16 Subject: POWER SYSTEM OPTIMIZATION (Theory)

Branch: Electrical Engineering, Name of Faculty: Miss Sagarika Rout

Branch: Electrical Engineering,		Name of Faculty: Miss Sagarika Rout
Period	Module No.	Topics to be Covered
1	I	Economic Load Dispatch Of thermal Generating Units
2	I	Generator operating cost
3	1	Economic Dispatch problem on a bus bar
4	I	Economic Dispatch problem on a bus bar
5	1	Optimal generation scheduling
6	1	Economic dispatch using Newton-Raphson method
7	1	Economic dispatch using Newton-Raphson method
8	I	Economic dispatch using the approximate Newton-Raphson method
9	I	Economic dispatch using efficient method,: Function of generation & loads.
10	1	Economic dispatch using efficient method,: Function of generation & loads.
11	II	Optimal Hydro thermal Scheduling: Introduction
12	II	Hydro plant performance Models,
13	II	Short- Range Fixed-Head Hydro thermal Scheduling
14	II	Newton-Raphson for short-range fixed –head hydro thermal scheduling
15	II	Approximate Newton-Raphson method for short range fixed-head hydro thermal Scheduling
16	II	Short-Range variable-head hydro thermal scheduling-Classical Method
17	II	Approximate Newton-Raphson method for short -range variable-head hydro thermal scheduling
18	II	Hydro plant modeling for long term operation
19	II	Hydro plant modeling for long term operation
20	II	Long-Range generation scheduling of hydro thermal systems
21	III	Multi-Objective Generation Scheduling: Introduction
22	III	Multi-Objective Generation Scheduling: Introduction
23	III	State of the art
24	III	Fuzzy set theory in power system
25	III	the surrogate worth trade of approach for multi objective thermal problem
		-
26	III	power dispatch problem
26 27	III III	power dispatch problem multi objective thermal power dispatch

29	III	multi objective dispatch for active & reactive power balance
30	III	multi objective dispatch for active & reactive power balance
31	IV	Stochastic Multi Objective Generation Scheduling: Introduction
32	IV	multi-objective stochastic optimal thermal power dispatch-constant method
33	IV	multi-objective stochastic optimal thermal power dispatch- The surrogate worth trade-off method
34	IV	weighing method
35	IV	stochastic economic-emission load dispatch
36	IV	risk/dispersion method
37	IV	stochastic multi-objective short term hydro thermal scheduling
38	IV	stochastic multi-objective short term hydro thermal scheduling
39	IV	stochastic multi -objective long-term hydro thermal scheduling
40	IV	stochastic multi -objective long-term hydro thermal scheduling