VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 1st & 7th Subject: Group T Session: Odd 2016–2017 Branch/Course: M.Sc. (IC) and Int. M.Sc. (Chemistry)

Subject: Group Theory and Wave Mechanics (CH-411) Theory/Sessional

Name of the Faculty Member: Dr. Aruna Kumar Barick

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Symmetry Elements and Symmetry Operations, Matrix Representation of Symmetry Operation, Classes of Operations	
2	Ι	Point Groups (C_n , C_{nv} , C_{nh} , S_n , D_n , D_{nd} , and D_{nh})	
3	Ι	Point Groups $(T_d, O_h, D_{\infty a}, C_{\infty v}, \text{ and } D_{\infty h})$	
4	Ι	Properties of Point Groups,	
5	Ι	Irreducible and Reducible Representation, Bases of Representation	
6	Ι	Character of a Representation, Reduction Formula	
7	Ι	The Great Orthogonality Theorem (Without Proof) and Its Explanation	
8	Ι	Construction of Character Tables for C_{2v} and C_{3v}	
9	Ι	Construction of Character Tables for T (Cubic), C_4 (Cyclic) and D_{∞} Groups	
10	Ι	Projection Operator and Direct Product	
11	II	Postulates of Quantum Mechanics, Quantum Mechanical Operators	
12	II	Application of Schrodinger Wave Equation to Particle in a Box	
13	II	Harmonic Oscillator	
14	II	Rigid Rotator	
15	II	Hydrogen Atom, Transformation of Co-ordinates	
16	II	Separations of Variables	
17	II	ϕ , θ and <i>R</i> Equations, Spherical Harmonics	
18	II	Shapes of <i>s</i> , <i>p</i> and <i>d</i> Orbital	
19	II	Probability Density in 1s Orbital, Physical Interpretation of Hydrogen Orbitals	
20	II	Radial Distribution Function and Curves	
21	III	Definition	
22	III	Generalized Angular Momentum	
23	III	Eigen Functions and Eigen Values of Angular Momentum	
24	III	Operator using Ladder Operators	
25	III	Addition of Angular Moments	

27IIIRussel–Saunder's Coupling28IIIj-j Coupling29IIIGround State Term Symbols and Hund's Rule30IIIMicro States and Derivation of Russel–Saunder's Term for P², d² and pd Configuration31IVVariation Theorem and its Application to Hydrogen atom in Derivation of its Ground State Energy32IVPerturbation Theory (First Order and Non-degenerate)33IVSecular Equations34IVLinear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory)35IVApplication to Hydrogen Molecule Ion36IVHuckel Theory of Conjugated Systems37IVDand Orden and Charge Durging Calculations
28IIIj-j Coupling29IIIGround State Term Symbols and Hund's Rule30IIIMicro States and Derivation of Russel–Saunder's Term for P², d² and pd Configuration31IVVariation Theorem and its Application to Hydrogen atom in Derivation of its Ground State Energy32IVPerturbation Theory (First Order and Non-degenerate)33IVSecular Equations34IVLinear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory)35IVApplication to Hydrogen Molecule Ion36IVHuckel Theory of Conjugated Systems37IVBand Orden and Charge Density Calculations
29IIIGround State Term Symbols and Hund's Rule30IIIMicro States and Derivation of Russel–Saunder's Term for P², d² and pd Configuration31IVVariation Theorem and its Application to Hydrogen atom in Derivation of its Ground State Energy32IVPerturbation Theory (First Order and Non-degenerate)33IVSecular Equations34IVLinear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory)35IVApplication to Hydrogen Molecule Ion36IVHuckel Theory of Conjugated Systems
30IIIMicro States and Derivation of Russel–Saunder's Term for P², d² and pd Configuration31IVVariation Theorem and its Application to Hydrogen atom in Derivation of its Ground State Energy32IVPerturbation Theory (First Order and Non-degenerate)33IVSecular Equations34IVLinear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory)35IVApplication to Hydrogen Molecule Ion36IVHuckel Theory of Conjugated Systems
31IVVariation Theorem and its Application to Hydrogen atom in Derivation of its Ground State Energy32IVPerturbation Theory (First Order and Non-degenerate)33IVSecular Equations34IVLinear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory)35IVApplication to Hydrogen Molecule Ion36IVHuckel Theory of Conjugated Systems
32IVPerturbation Theory (First Order and Non-degenerate)33IVSecular Equations34IVLinear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory)35IVApplication to Hydrogen Molecule Ion36IVHuckel Theory of Conjugated Systems37IVDanad Orden and Change Danaity Colonations
33 IV Secular Equations 34 IV Linear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory) 35 IV Application to Hydrogen Molecule Ion 36 IV Huckel Theory of Conjugated Systems 37 IV Dend Orden and Change Density Colsulations
34 IV Linear Combination of Atomic Orbitals (LCAO) Approximation (Molecular Orbital Theory) 35 IV Application to Hydrogen Molecule Ion 36 IV Huckel Theory of Conjugated Systems 37 IV Dend Order and Charge Density Colsulations
35 IV Application to Hydrogen Molecule Ion 36 IV Huckel Theory of Conjugated Systems
36 IV Huckel Theory of Conjugated Systems 37 IV Dend Orden and Change Density Coloradations
27 W Dand Orden and Change Density Calculations
5/ IV Bond Order and Charge Density Calculations
38 IV Applications to Ethylene, Butadiene
39 IV Applications to Cyclopropenyl Radical, Cyclobutadiene, etc.
40IVSpin and Anti-symmetric Nature of Wave Function (Pauli's Exclusion Principle)

Signature of Faculty Member:

Date:

Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

LESSON PLAN

Semester: 1st & 7th

Session: Odd 2016-2017

Subject: Structure and Reactivity (CH-413)

Theory/Sessional

Branch/Course: M.Sc. (IC) and Int. M.Sc. (Chemistry)

Name of the Faculty Member: **Dr. Sukalyan Dash**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Delocalized Chemical Bonding, Conjugation	
2	Ι	Cross Conjugation	
3	Ι	Resonance	
4	I	Hyperconjugation, Bonding in Fullerenes, Tautomerism.	
5	Ι	Aromaticity in Benzenoid and Non-benzenoid Compounds, Alternant and Non-alternant Hydrocarbons	
6	Ι	Huckel's Rule, Energy Levels of π -molecular Orbitals of Simple Systems, Annulenes, Anti-aromaticity, Homo-aromaticity	
7	Ι	Bonds Weaker than Covalent (Addition compounds)	
8	Ι	Crown Ether Complexes and Cryptands	
9	Ι	Inclusion Compounds, Cyclodextrins	
10	Ι	Catenanes and Rotaxanes	
11	II	Types of Mechanisms, Types of Reactions	
12	II	Thermodynamic and Kinetic Requirements	
13	II	Kinetic and Thermodynamic Control	
14	II	Hammond's Postulate, Curtin-Hammett Principle	
15	II	Potential Energy Diagrams, Transition States and Intermediates	
16	II	Methods of Determining Mechanisms	
17	II	Methods of Determining Mechanisms	
18	II	Hard and Soft Acids and Bases	
19	II	Hammett Equation and Linear Free Energy Relationship	
20	II	Substituent and Reaction Constants. Taft Equation	
21	III	Non-classical Carbocations	
22	III	Generation and Structure of Free Radicals	
23	III	Generation and Structure of Carbenes	
24	III	Generation and Structure of Nitrenes	
25	III	Generation and Structure of Arynes	
26	III	General Discussion on Isotope Effect	

27	III	General Discussion on Isotope Effect		
28	III	Stereoselective, Regioselective Reactions		
29	III	Stereospecific and Regiospecific Reactions		
30	III	Stereospecific and Regiospecific Reactions		
31	IV	S_N^2 , S_N^1 Mechanisms		
32	IV	Mixed S_N^1 and S_N^2 Mechanism		
33	IV	SET Mechanisms. The Neighboring Group Mechanism		
34	IV	Neighboring Group Participations by Sigma and Pi Bonds		
35	IV	Classical and Non-classical Carbocations, Phenonium Ions, Norbornyl System		
36	IV	Nucleophilic Substitution at Allylic, Carbon		
37	IV	Nucleophilic Substitution at Aliphatic Trigonal and Vinylic Carbon		
38	IV	Effects of Substrate Structure, Attacking Nucleophile		
39	IV	Effects of Leaving Group and Reaction Medium		
40	IV	Phase Transfer Catalysis, Ambident Nucleophile, Regioselectivity		
Signatu	re of Facul	lty Member:		
Date:	Date: Counter Signature of H.O.D.			

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA					
Semester -7 th &1st M.Sc					
M.Sc		LESSON PLAN			
		Subject: <u>Thermodynamics & Chemical dynamics (CH-41</u>	(4)		
Session:	2016	Theory			
Branch/C	Course: Integrated I	M.Sc & M.Sc Name of the Faculty Member: Dr Trinath Biswal			
Period	Module /Number	Topic to be covered			
1	Ι	Laws of Thermodynamics			
2	Ι	Free Energy			
3	Ι	Partial Molar Properties & Chemical Potential			
4	I	Third Law of Thermodynamics & Determination of Entropy			
5	I	Entropy & Probability			
6	Ι	Boltzmann-Planck equation			
7	I	Partial free energy ,molar volume ,molar heat content			
8	l	Problems			
9	l	Fugacity &its Determination			
10	I	Determination of fugacity by Graphical Method			
11	1	Method			
12	II	Probability Distribution, Ensemble averaging &its types			
13	II	Postulates of Ensemble averaging ,Canonical , Grand			
		Canonical& Microcanonical			
14	II	Corresponding Distribution Law			
15	II	Translational & Rotational Partition Function			
16		Vibrational Partition Function, Electronic Partition Function			
17	11	Calculation of thermodynamic properties of Partition			
10	п	Function Applications of Destition Equation			
10		Applications of Partition Function Rehavior of solids Formi Direc Statistics			
20	II	Chemical equilibria & equilibrium constant in terms of			
20		Partition function			
21	II	Bose-Einstein Statistics , Distribution Law & application to He			
22	II	Phosphate group transfer & ATP, Biological oxidation& reduction Reaction			
23	Ш	Interionic attraction Theory & Debye- Huckel Treatment			
24	III	Onsagar Limiting law its Verification & Modification			
25	III	Activity & Activity coefficient			
26	III	Debye- Huckel – Bronsted Equation, Salt effect			
27	III	Primary salt effect & secondary salt effect			
28	III	Determination of activity coefficient by solubility Method			
		, Ion Association			
29	III	Determination of thermodynamic dissociation constant of			
20	тт	weak electrolytes by Shedlovsky Method & EMF Method			
21		Ammo acids ,Hydrogen ion concentration			
31	III IV	Introduction colligion theory of Posterion Pate			
33	IV	Theory of Absolute Reaction rate of both unimolecular $\&$			
55	1 V	Bimolecular Reaction			
34	IV	Lindeman Mechanism			
35	IV	Arrehenious theory & Activated complex			
36	IV	Reaction between ions			
37	IV	Stedy-State Kinetics &its Problems, Examples			
38	IV	Dynamic chain reactions of Hydrogen & Bromine			
39	IV	Pyrolysis of Acetaldehyde ,Ethane			
40	IV	Fast reaction &its study by Relaxation Method			
41	IV	Flash photolysis & NMR Technique			

١	/EER SURE <u>ND</u>	RA SAI UNIVERSITY OF TECHNOLOGY, B	URLA
Semeste	r -1 st &7 th	SSON PLAN Subject: Polymer Chemis	try (CH-415)
Session:	2016	The	ory/ Sessional
Branch/C	Course: M.Sc &Integr	rated M.Sc Name of the Faculty Member: Dr Trina	th Biswal
Period	Module /Number	Topic to be covered	
1		Introduction, classification of polymer, DP, Tacticity,	
2		Functionality, crystallinity, Degree of crystallinity	
3		Glass Transition temperature &its application	
4	I	Inorganic polymer & Elemento -Organic polymer ,Crystallisability	
5	I	Chain-growth polymerization ,its mechanism , Kinetics of Chain –growth polymerization	
6	I	Polyaddition polymerization , Step-growth polymerization , its mechanism , Kinetics of step – growth polymerization	
7	I	Distinction between Step-growth & Chain-growth polymerization , Molecular weight control & Molecular weight distribution of linear polymer	
8	I	Polyfunctional step polymerization, Newer type of step polymerization	
9	I	Radical chain polymerization ,Molecular weight , chain transfer, Inhabitation &Retardation	
10	I	Determination of absolute rate constant, Auto acceleration	
11	II	Emulsion Polymerization ,Qualitative aspect , Mechanism	
12	II	CMC, Salient features, Application, Advantages	
13	II	Ionic chain polymerization ,comparison of radical & ionic chain polymerization	
14	II	Kinetics of cationic chain polymerization ,Carother equation	
15	II	Kinetics of anionic chain polymerization ,features of cationic & anionic chain polymerization	
16	II	Cationic polymerization & Anionic polymerization of carbon-carbon double bond	
17	II	Block copolymer ,types synthesis ,properties & Application	
18		Chain copolymerization ,classification properties , application	
19		Radical chain co-polymerization &its kinetic study	
20		Ionic chain co-polymerization &its kinetic study	
21		Ring opening polymerization, Examples & Mechanism	
22	III	General characteristic Ring opening polymerization of cyclic ethers & cyclic amides	

23	==	Stereoisomerism, types of stereoisomerism in polymers	
24	III	.Properties of Stereo- regular polymers	
25		Forces of Stereo -regulation in alkene polymerization	
26		Ziegler-Natta polymerization ,Types ,Mechanism &	
		kinetic study	
27	III	Crystalline melting point, Glass transition temperature	
28	===	.Relationship of T _g with molecular weight , plasticizer	
		,n copolymer	
29	=	Properties involving Large deformation	
30	IV	Properties involving small deformation	
31	IV	Ideal , Azeotropic , Alternating Copolymerization	
32	IV	Property requirement & Utilization of polymers	
33	IV	Fracture & Deformation of polymer	
34	IV	,Fracture Mechanism , Types of Fracture	
35	IV	Crack growth & its Mechanism	
36	IV	Cyclic deformation &its Molecular aspects	
37	IV	Healing of polymer. Adhesives	
38	IV	Conducting polymer , characteristics & Examples	
39	IV	Different types of Molecular weight	
40	IV	Molecular weight Determination	
41	IV	Molecular weight Determination & Short questions	

Signature of Faculty member: Date:

Counter Signature of H.O.D

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

Semester: 2nd, 8th

LESSON PLAN Subject: Stereochemistry (CH-422)

Session: Even 2016–2017 Branch/Course: M.Sc and

Theory/Sessional Name of the Faculty Member: Dr. Ramakrishna D.S.

Int. MSc

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Chirality, Fischer projection and R and S notations,	
2	I	Three and erythro nomenclature, E and Znomenclature,	
3	Ι	Optical isomerism in biphenyls	
4	Ι	Allenes,	
5	I	Concept of Prostereoisomerism	
6	Ι	Assymetric synthesis	
7	I	Assymetric synthesis (enzymatic)	
8	I	catalytic nexus	
9	I	Conformation of a few acyclic molecules (5memb)	
10	I	Conformation of a few acyclic molecules (6memb)	
11	II	Conformation of a few acyclic molecules (hetero)	
12	II	Conformation of cyclic systems having one sp2 carbon atoms	
13	II	two sp2 carbon atoms	
14	II	Dynamic stereochemistry	
15	II	Conformation and reactivity, Selection of substrates	
16	II	Quantitative correlation between conformation and reactivity	
17	II	Weinstein-Eliel equations and Curtin-Hammett principles	
18	II	Conformational effects on stability and reactivity in acyclic compounds	
19	II	Ionic elimination	
20	II	Intramolecular rearrangements	
21	II	Neighbouring group participation	
22	II	cyclic systems	
23	II	Nucleophilic substitution reaction at ring carbon	
24	II	Formation and Cleavage of epoxide rings	
25	II	Addition reactions to double bonds	
26	II	Elimination reactions	
27	III	Molecular dissymmetry	
28	III	chiroptical properties	
29	III	linearly and circularly polarised lights	
30	III	circular birefringence and circular dicroism	
31	IV	ORD, Plane curves, Cotton effect	
32	IV	Rotatory Dispersion of ketones	
33	IV	the Axial Haloketone rule	
34	IV	the Octane rule	

35	IV	Helicity rule	
36	IV	Lowe's rule	
37	IV	Emperical rule	
38	IV	Benzene chromophore.	
39	IV	Problems	
40	IV	Overall view	

Signature of Faculty:

Date:

Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 2nd & 8th S Session: Even 2016–2017 T Branch/Course: M.Sc. (IC) and Int. M.Sc. (Chemistry)

Subject: **Spectroscopy-I** (CH-423) **Theory**/Sessional

Name of the Faculty Member: **Dr. Aruna Kumar Barick**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Atomic Spectroscopy: Introduction	
2	Ι	Electromagnetic Spectrum	
3	Ι	General Discussion on Various Molecular Excitation Processes	
4	Ι	Spectra of Hydrogen and Hydrogen Like Atoms	
5	Ι	Alkali Metals Spectra	
6	Ι	L-S Coupling, Term Symbols,	
7	Ι	Space Quantization	
8	Ι	Zeeman Effect and Stark Effect	
9	Ι	Paschen-Bach Effect	
10	Ι	Problem Solve	
11	II	Rotational and Vibrational Spectroscopy: Introduction	
12	II	Rotation of Molecules and Classification of Molecules	
13	II	Molecular Spectra of Diatomic Gases	
14	II	Rotational Spectra of Diatomic Molecules	

15	Π	Rotational Spectra of Polyatomic Molecules
16	II	Vibrational Spectra of Diatomic Molecules
17	II	Intensity of Spectral Lines
18	П	Vibrational-Rotational Spectra
19	II	P, Q, and R Branches
20	II	Problem Solve
21	III	Raman Spectroscopy: Introduction
22	III	Quantum Theory of Raman Effect
23	III	Classical Theory of Raman Effect
24	III	Pure Rotational Raman Spectra
25	III	Vibrational Raman Spectra
26	III	Polarization of Light and the Raman Effect
27	III	Rotational-Vibrational Raman Spectra
28	III	Comparison with IR spectra
29	III	Structure Determination from Raman and IR Spectra
30	III	Problem Solve
31	IV	Photoelectron Spectroscopy: Basic Principles
32	IV	Photoelectric effect, Ionization Process, Koopman's Theorem
33	IV	Photoelectron Spectra of Simple Molecules
34	IV	ESCA, Chemical Information from ESCA
35	IV	Auger Electron Spectroscopy – Basic Idea
36	IV	Mössbauer Spectroscopy: Introduction
37	IV	Principles of Mossbauer Spectroscopy
38	IV	Experimental Methods, Theoretical Aspects
39	IV	Quadrupole Splitting, Magnetic Hyperfine Interaction
40	IV	Problem Solve
Signatur Date:	e of Faculty	7 Member: Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 2nd & 8th Session: Even 2016–2017

Subject: Organic Reaction Mechanism (CH-424) Theory/Sessional

Session: Even 2016–2017 T Branch/Course: M.Sc. (IC) and Int. M.Sc. (Chemistry)

Name of the Faculty Member: **Dr. Sukalyan Dash**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	S_E^{1} , S_E^{2} and S_E^{i} Mechanisms	
2	Ι	Effect of Substrate, Leaving Group and Solvent	
3	Ι	Reactions Hydrogen Exchange, Migration of Double Bonds, Keto-Enol Tautomerism	
4	Ι	Halogenation, Aliphatic Diazonium Coupling, Stork- Enamine Reaction	
5	Ι	Structure Reactivity, Relationship in Mono- substituted Benzene	
6	Ι	Orientation in Benzene Ring with More than One Substituent, Vilsmeier-Haack Reaction, Pechmann Reaction	
7	Ι	Introduction, Mechanisms of Aromatic Nucleophilic Substitutions (S _N Ar, S _N ¹ , Aryne)	
8	Ι	Effect of Substrates, Leaving Groups, and Nucleophile	
9	Ι	Reactions: Nucleophilic Displacement in Areno- diazonium Salts by Different Nucleophiles, Chichibabin Reaction	
10	Ι	Reactions: Nucleophilic Displacement in Areno- diazonium Salts by Different Nucleophiles, Chichibabin Reaction	
11	II	Electrophilic Addition	
12	II	Nucleophilic Addition	
13	II	Free Radical Addition	
14	II	Orientation and Reactivity, Addition to Cyclopropanes	
15	II	Hydroboration, Michael Reaction, Sharpless Asymmetric Epoxidation	
16	II	Mechanism and Reactivity	
17	II	Mannich Reaction, LiAlH ₄ Reduction of Carbonyl	

		Compounds, Acids, Esters, Nitriles	
18	II	Addition of Grignard Reagents, Reformatsky Reaction, Aldol Condensation	
19	II	Knoevenagel Condensation, Perkin Reaction, Tollens	
		Reaction	
20	II	Wittig Reaction, Prins Reaction, Benzoin	
		Condensation	
21	III	E^2 Mechanism	
22	III	E ¹ Mechanism	
23	III	E ¹ _{CB} Mechanism	
24	III	Orientation, Effect of Substrate	
25	III	Effect of Base, Leaving Group	
26	III	Effect of Medium, Orientation of Double Bond	
27	III	Saytzeff and Hoffman Rules, Pyrolytic Elimination	
		Reaction	
28	III	Oxidative Elimination (Oxidation of Alcohol by	
		Chromium, Moffatt Oxidation)	
29	ш	Cleavage of Quaternary Ammonium Hydroxides	
30	III	Chugaev Reaction, Shapiro Reaction	
31	IV	Nature of Migration	
32	IV	Migratory Aptitude	
33	IV	Memory Effects	
34	IV	Wagner-Meerwein Rearrangement	
35	IV	Favorskii Rearrangement	
36	IV	Arndt-Eistert Synthesis	
37	IV	Neber Rearrangement	
38	IV	Hofmann Rearrangement	
39	IV	Baeyer-Villiger Rearrangement	
40	IV	Sommelet-Hauser Rearrangement	
Signature of Faculty Member:			

Date:

Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

LESSON PLAN

Subject: SCNC

Semester: 2nd and 8th Session: Even 2016–2017

Branch/Course: M.Sc. (IC)

Theory/Sessional Name of the Faculty Member: **Dr. Monalisa Mohapatra**

and Int. M.Sc. (Chemistry)				
Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member	
1	Ι	Derivation of phase rule, Brief concept on one and		
		two component system		
2	Ι	Water, Sulphur system		
3	I	Application of phase rule to three component systems of solids		
4	Ι	Application of phase rule to three component systems of liquids		
5	Ι	Kinetics of Catalytic Reactions		
6	Ι	Acid-base Catalysis, Enzyme Catalysis		
7	Ι	Heterogeneous Catalysis		
8	II	Surface tension		
9	II	Capillary action		
10	II	Adsorption, types of adsorption		
11	II	Gibbs adsorption isotherm		
12	II	Freundlich's adsorption isother		
13	II	Langmuir's adsorption isotherm and its limitations		
14	II	BET adsorption isotherm and its applications		
15	II	Heat of adsorption		
16	II	Estimation of surface areas of solids from solution adsorption studies		
17	II	Brief concepts on micelle		
18	II	Reversed micelle		
19	II	Microemulsions		
20	III	Polymer-definition, Types of polymer		
21	III	Number average and weight average macromolecules		
22	III	Determination of molecular weights of		
		macromolecules		
23		Osmometry		
24		Viscometry		
25		Diffusion and Light scattering method		
26		Kinetics of polymerization		
27	111	Donnan Effect		

28	III	Stereochemistry of polymerization	
29	IV	Classification of nuclides, nuclear stability, binding	
		energy	
30	IV	Nuclear models, Characteristics of radioactive decay	
31	IV	Decay kinetics, parent-daughter decay growth	
		relationships	
32	IV	Detection and measurement of radioactivity,	
		advances in the solid and liquid scintillation counting	
		techniques	
33	IV	Methods for the determination of half life period	
		of single and mixed radionuclides	
34	IV	Nuclear fission, nuclear fuels and nuclear reactors,	
		nuclear fuel reprocessing	
35	IV	Fast breeder reactors, radiological safety aspects and	
		radioactive waste managements	
36	IV	Interaction of radiation with matter, effect of	
		ionizing/	
		non-ionizing radiations on water	
37	IV	Aqueous solutions and on organic compounds,	
		radiation dosimetry	
38	IV	Preparation and separation of radioactive isotopes	
39	IV	Application of radioisotopes and radiations in various	
		fields	
40	IV	Isotopic dilution techniques, neutron activation	
		analysis and its applications	
Signature of Faculty Member:			
D			
Date:		Counter Signature of H.O.D.	

	VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA				
Semester	: 3rd and 9th	LESSON PLAN Subject: ENVIRON	MENTAL Chemistry		
Branch/C	Branch/Course: M. Sc. And Name of the Faculty Memb				
Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member		
1-2	Ι	Air Pollutants, Air Quality Standards, Production, Fate, Effects and Control of Gaseous Pollutants	¥		
3-4	Ι	Oxides of Carbon, Nitrogen and Sulphur, Organic Air Pollutants, Photochemical Reaction			
5-6	Ι	Photochemical Smog, Greenhouse Effect, Climate Change, Global warming, Acid Rain and Ozone Depletion.			
7-8	I	Water World, Source of Water, Water Quality, Water Pollutants (Inorganic and Organic), Sources, Fate, Effects and Controlling Measures, Chemical Speciation, Pollution by Radionuclides			
9-10	Ι	Biochemical Oxygen Demand, Chemical Oxygen Demand, Eutrophication, Biodegradation of Pollutants			
11-12	II	Treatment of Water for Drinking, Electro-dialysis, Ion Exchange, Reverse Osmosis			
13-14	II	Desalination Processes, Removal of Iron, Manganese, Phosphorous, Calcium and Nitrogen and Treatment of Water for Industrial Purposes			
15-16	II	Sedimentation, Coagulation, Flocculation, Filtration, Adsorption, Disinfection of Water			
17-18	II	Sewage Treatment (Physical and Chemical Methods), Health Effects of Drinking Water Treatment Technologies			
19-20	II	Impact of Detergents, Pesticides and Other Additives on Sewage Treatment			
21-22	III	Sources of Oil Pollution, Chemistry and Fate of Hydrocarbons Oil in Run Off and Ground Water			
23-24	III	Biodegradation, Effect on Aquatic Organisms and Communities			
25-26	III	Treatment and Disposal Technology			
27-28	III	Soil Pollutants (Inorganic, Organic, Pesticides, Radionuclides)			
29-30	III	Sources and Effects on Nature and Properties of Soil, Crops, Plants and Terrestrial Animals.			
31-32	IV	Nature and Sources of Hazardous Wastes, Classification, Characteristics and Constituents,			
33-34	IV	ansport and Effects, Treatment by Physical and Chemical Methods, Thermal Treatment Methods			

35-36	IV	Biodegradation of Wastes, Disposal of HazardousWastes. Waste Management and Industrial byProducts, Natural Hazards and Management
37-38	IV	Control of Subsurface Migration of Hazardous Waste, Biomedical Waste Management
39-40	IV	Environmental Management and Sustainable Development
Signatur Date:	e of Faculty	7 Member: Counter Signature of H.O.D.

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA LESSON PLAN

Semester: 4^{th and} 10th Session: Even 2016–2017 Branch/Course: M.Sc. (IC) and Int MSc

Subject: Chemistry of Materials Theory/Sessional

Name of the Faculty Member: **Dr. Sukalyan Dash**

Period	Module/ Number	Topics to be Covered	Remarks/Sign. of Faculty Member
1	Ι	Glassy State, Glass Formers	
2	Ι	Glass Modifiers, Applications	
3	Ι	Ceramic Structures	
4	Ι	Mechanical Properties	
5	Ι	Clay Products. Refractories	
6	Ι	Characterizations, Properties and Applications	
7	Ι	Macroscopic Composites, Dispersion-Strengthened and Particle-Reinforced, Fibre-Reinforced Composites	
8	Ι	Nanocrystalline Phase, Preparation	
9	Ι	Procedures, Special Properties	
10	Ι	Applications	

11	п	Types of Ionic Conductors	
12	II	Mechanism of Ionic Conduction	
13	п		
14	п	Interstitial Jumps (Frenkel), Vacancy Mechanism	
15	П	Diffusion Superionic Conductors	
16	II	Phase Transition and Mechanism of Conduction in	
		Superionic Conductors	
17	II	Phase Transition and Mechanism of Conduction in	
		Superionic Conductors	
18	п	Phase Transition and Mechanism of Conduction in	
		Superionic Conductors	
19	п	Examples and Applications of Ionic Conductors	
20	II	Examples and Applications of Ionic Conductors	
21	III	Conducting Organics, Organic Superconductors	
22	III	Magnetism in Organic Materials	
23	III	Fullerenes-Doped, Fullerenes as Superconductors	
24	III	Molecular Rectifiers	
25	III	Molecular Transistors	
26	III	Artificial Photosynthetic Devices	
27	III	Optical Storage Memory and Switches-Sensors	
28	III	Nonlinear Optical Effects, Second and Third Order,	
		Molecular Hyperpolarisability	
29	III	Second Order Electric Susceptibility	
30	III	Materials for Second and Third Harmonic Generation	
31	IV	Introduction to Thin Films and Langmuir-Blodgett	
		Films	
32	IV	Preparation Techniques: Evaporation/Sputtering	
33	IV	Chemical Processes, Sol-Gel Method	
34	IV	Growth Techniques of Langmuir-Blodgett (LB) Film	
35	IV	Photolithography	

36	IV	Properties and Application of Thin and LB Films		
37	IV	Molecular Shape, Structure and Configuration of		
		Polymeric materials		
38	IV	Crystallinity, Stress-Strain Behaviour		
39	IV	Polymer Types and Their Applications		
40	IV	Conducting and Ferroelectric Polymers		
Signature of Faculty Member: Date: Counter Signature of H.O.D.				