

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA

Department of Metallurgy& Materials Engineering

Lecture Plan- Transport phenomena

Subject Name : Transport phenomena

Credits : 3-1-0-4

Prerequisite : Basic Engineering Mathematics

Department : Metallurgy & Materials Engineering

Session : 2016-17 (Even Semester)

Level : Undergraduate (IV-Semester)

Course Instructor : Nilakantha Sahu

Category : Compulsory course for all B. Tech IV Semester students

of MME Department.

Class Schedule					
Monday – B321	Wednesday - B321	Thursday- B321	Friday – B321		
8:50-9.00 AM	8:00-8:50 AM	12:10-01:00 AM	11:20-12:10 AM		

Marks Distribution				
End Term	Mid Term	Assignments + Class Test		
70	20	10		
Total -100 Marks				

Required Text book

- 1. F.P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer, Wiley.
- 2. H.S. Ray, Kinetics of Metallurgical Reactions.
- 3. F.M. White, Fluid Mechanics

COURSE CONTENTS

SI. No	TOPIC	HOURS
1.	Fluid Flow: Classification of fluids	1
2.	Energy balance	2
3.	Laminar and Turbulent flows	1
4.	Flow through pipes and ducts	2
5.	Flow measurement	1
6.	Application of dimensional analysis of fluid flow	2
7.	Concept of boundary layer	1
8.	molecular of Knudsen flow, etc. as in problems and exercises	1
9.	CLASS TEST-1	1
10.	Heat Transfer I: Steady state and Transient conduction in solids	1
11.	One dimensional steady state problems of heat flow through composite walls Cylinder and Spheres	2
12.	Unsteady conduction in one dimensional system.	1
13.	Use of Heisler charts and applications	1
14.	Convective heat transfer	1
15.	equation of energy	1
16.	free and forced convections	1
17.	CLASS TEST-2	1
18.	Radiation, Nature of thermal radiation	1
19.	Black and Grey bodies	1
20.	Stefan and Boltzmann law, Kirchhoff's laws	2
21.	Intensity of radiation, lamberts law	1
22.	View factor	1
23.	Heat transfer between two black walls in an enclosure.	1

	Combined effect of convection, conduction and radiation	1
24.	Overall heat transfer coefficient. Example problems and exercises on systems of steady heat flow important in Metallurgy	1
25.	CLASS TEST-3	1
26.	Mass Transfer and Kinetics: Importance in Heterogeneous metallurgical systems of reactions	1
27.	Steady state one dimensional mass diffusion of component through stationary media	1
28.	Convective mass transfer in fluids, concept of concentration boundary layer	1
29.	Mass transfer coefficient. Heterogeneous reactions of metallurgical importance,	1
30.	their rate controlling steps	1
31.	Discussion of the following examples from metallurgical systems: Nucleation and growth and bubble formation phenomenon	1
32.	Interfacial reaction	1
33.	Carbon gasification by CO ₂ , slag-metal reaction at the interface	1
34.	Topo-chemical model of gas-solid reaction	1
35.	CLASS TEST -4	1

Note for students:

- 1. This is the syllabus; I planned for the "Transport phenomena" course of Session 2016-17 (Even semester). If you have any query/suggestions mail me on nilakantha.iitr@gmail.com
- 2. Our course includes tutorials (from every chapter) and Class test.
- 3. By end of this course student must have 75% attendance, to eligible for the end semester examination.