

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA Department of Metallurgy& Materials Engineering LESSON PLAN-Composite Materials

Subject Name	:	Composite materials
Credits	:	3-1-0
Department	:	Metallurgy & Materials Engineering
Session	:	2016-17 (Even Semester)
Level	:	Undergraduate (VIII-Semester)
Course Instructor	:	Renu Prava Dalai
Category	:	Compulsory course for all B.Tech VIII Semester students of MME Department.

Class Schedule						
Monday – B321	Tuesday – B321	Thursday – B321	Friday – B321			
8:50-9:40 AM	8:50-9:40 AM	4:10-5:00 PM	3:20-4:10 PM			

Marks Distribution					
End Term	Mid Term	Assignments + Class Test			
70	20	10			
Total -100 Marks					

Required Text book

- 1. Cost-free, PowerPoint visuals & extended notes are furnished to students by Instructor
- 2. Composite materials science and engineering by Krishna K chawla

COURSE CONTENTS

Sl. No	TOPIC	HOURS
	Module-I	
1.	Introduction to Composites and Matrices	1
2.	Reinforcements	1
3.	Classifications of Composites, its applications and advantages	1
4.	Fundamental concept of reinforcement	1
5.	Review of current developments; design & fabrication and economic considerations	1
6.	Basic mechanics of reinforcement	1
7.	Stiffness of parallel arrays of fibres in a matrix	1
8.	Discontinuous and particulate reinforcement	
	Module–II	
9.	Fibres and resin materials	1
10.	Rule of Mixtures	1
11.	Critical Fiber Length	1
12.	Short and Continuous Fibers	1
13.	Fiber Orientation Matrix and Reinforcement Materials	1
14.	Polymeric Matrices, Metallic Matrices, Ceramic Matrices	1
15.	Particulates, Flakes, Whiskers	1
16.	Fibers: C, B, Glass, Aramid, Al2O3, SiC,	1
17.	Nature and manufacture of glass, carbon and aramid fibres	1
18.	Review of the principal thermosetting and thermoplastic polymer matrix systems for composites	1
19.	Polymer Matrix Composites (PMCs), Metal Matrix Composites (MMCs)	1
20.	Ceramic Matrix Composites (CMCs), CFRP & Carbon/Carbon Composites (CCCs)	1
	Class Test-I	
	Module –III	
21		1
21. 22.	Types of Manufacturing, Processing methods	1
22.	Interfaces, Properties, Applications Toughening Mechanisms	1
23.	Fiber Forms, Prepregs, Molding Compounds-Processes	1
24.	Lay-Ups	1
23.	Filament Winding	1
20.	Pultrusion, Recycling	1
27.	Matrix– Reinforcement Interface, Wettability	1
	Interactions at Interface, Interfacial Bonding Types, Interfacial Strength	
29.	Tests, The role of the interface	1
30.	The nature of fiber surfaces, wetting and adhesion	
	Module –IV	
31.	Strength, Stiffness, Fracture Toughness of Composites	1

32.	Toughening mechanisms of composites	1
33.	Strengths of unidirectional composites	1
34.	Multiple fracture in laminates	1
35.	Macroscopic fracture and energy dissipating processes	1
36.	Application of fracture mechanics to composite materials	1
37.	Fracture Mechanics and Fracture Toughness in Composites	1
38.	Linear Elastic fracture mechanics, Toughness, Fiber matrix de-bonding	1
39.	FiberPullout Buckling and Post-Buckling. Failure criteria, Fatigue and Creep in composites	1
40.	Environmental effects in Composites, Green composites. Synthesis and Properties of Nanocomposites	1
	Class Test-II	
	Total	40