

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY LESSON PLAN

Semester >>6 th		Year >> 2015	Contact Hours per week >> 4	
Fluid Dynamics and Hydraulic Machines (BME 315)		Branch >> MECHANICAL ENGINEERING	Total Credit >> 4	
Course Instructor		A Mohanty		
Period		Jan 2015-April 2015		
Recommended books >>		<i>Text Book</i> :1.Introduction to Fluid Mechanics and Fluid Machines by S K Som and G Biswas, TMH		
		<i>Reference Book</i> :1.Introduction to Fluid	d Mechanics by Fox and McDonald;Willey	
		2.Fluid Mechanics by FM White,McGrawhill		
SI.	Lecture No.	Topics to be covered		
No.		MODULE I		
MODULE -I				
1	Lecture-01	Motivation Nature of Dimensional and	sung: alveig Principle of Dimensional Homogeneity	
1		Choice of variables and scaling parame	eters.	
2	Lecture-02	Raleigh's Method and Buckingham Pi theorem, Problem Solving		
2	Lecture-03	Important Dimensionless groups in flu	id mechanics, Similarity	
3		Laws:Geometric,Kinematic and Dynar	nic similarity	
4	Lecture-04	Incomplete similarity, Examples and p	roblem solving	
5	Lecture-05	Boundary Layers:		
	Lastura OG	Displacement thickness. Introduction	Reynolds no and Geometry effects	
6	Lecture-06	using Integral estimates.	of Momentum unckness and Energy unckness	
7	Lecture-07	Boundary layer assumptions, Derivation with scale analysis	on for Two Dimensional Boundary layer flow	
8	Lecture-08	Laminar and turbulent flow over flat r	blate	
9	Lecture-09	Pressure gradients in boundary layer fl	ow, flow separation and its control	
10	Lecture-10	Problem solving		
MODULE -II				
11	Lecture-11	Drag and Lift : Motivation, Defining Drag and Lift of	Immersed bodies, Friction and Pressure Drag	
12	Lecture-12	Introduction to potential flow, Element	tary plane flows and its superposition	
13	Lecture-13	Drag and lift on a cylinder for irrotatio uniform flow and a doublet); Compari experiment)	nal flow without circulation(superposition of a ison with viscous flow (obtained from	

14	Lecture-14	Drag and Lift on a cylinder for irrotational flow with circulation(superposition of a		
		uniform flow, a doublet and a clockwise free vortex), Magnus effect		
15	Lecture-15	Problem solving		
16	Lecture-16	Drag over flat plate, Local and Average Drag coefficients		
17	Lecture-17	Drag Characteristics of Sphere Lift on Aerofoil Stalling of Aerofoil		
18	Lecture-18	Problem solving		
10	MODULE-III			
19	Lecture-19	Hydraulic Turbines: Motivation. Classifications of fluid Machines. Basic Equation of		
		Energy Transfer in Rotodynamic Machines		
20	Lecture-20	Principle of Similarity and Dimensional Analysis in Rotodynamic Machines, Specific		
		speed as a design input parameter.		
21	Lecture-21	Schematic of Pelton Turbine, Analysis of force on the bucket and power generation,		
		Blade efficiency, Mechanical and overall Efficency		
22	Lecture-22	Specific speed and wheel geometry, Governing of Pelton turbine		
23	Lecture-23	Problem solving		
24	Lecture-24	Schematic of a Reaction turbine, Net Head across a reaction turbine and purpose of		
	1	providing a draft tube, Different types of Draft Tubes		
25	Lecture-25	Runner of Francis turbine, Blade efficiency, power developed for a Francis Turbine		
26	Lecture-26	Problem Solving		
	Leeture 20	1 roben borving		
27	Lecture-27	Schematic of Axial flow reaction turbines(Kaplan and Propeller), Runner of Axial		
		Turbines, Cavitation in Reaction Turbines		
28	Lecture-28	Performance characteristics of Reaction Turbines, Governing of Reaction Turbines		
29	Lecture-29	Problem Solving		
MODULE-IV				
30	Lecture-30	Centrifugal Pump: General Pumping system, Different parts of a centrifugal Pump,		
		Net head developed by a Pump		
31	Lecture-31	Velocity Triangle, Work done on the Fluid, Manometric efficiency, Mechanical and		
	Lastura 22	Overall Efficency Slip and velocity Distribution on the Impellar Plade of a contributed Pump Lasses in		
32	Lecture-52	sup and velocity Distribution on the imperier blade of a centrifugal Pump, Losses in a centrifugal Pump, Characteristics of a centrifugal Pump		
33	Lecture -33	Effect of Blade outlet angle. Flow through Volute Chambers. Vanned Diffuser		
	Lecture -55	Cavitation in a Centrifugal Pump		
34	Lecture -34	Problem Solving		
	Lecture -35	Reciprocating Pump: Schematic of Reciprocating Pump, Pressure Displacement		
25		Diagram. Analytical expression for accelerating Heads during Suction and Delivery		
35		strokes		
		SUCKES		
26	Lecture -36	Rate of Delivery in single acting and Double acting Systems, Work Done, Use of Air		
36		Vessel, Flow Separation		
37	Lecture -37	Problem Solving		
38	Lecture -38	Miscellaneous Machines: Schematic and Working Principles of Hydraulic Intensifier		
		and Ram, Ram efficiency		
39	Lecture - 39	Schematic and Working Principles of Hydraulic Coupling and Press.		
40	Lecture - 40	Schematic and Working Principles of Accumulator and Air Injection Pump		
41	Lecture - 41	Problem Solving		