

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY LESSON PLAN

Semester 6 th		Year 2015	Contact Hours per week 4	
Heat Transfer		Branch MECHANICAL ENGINEERING	Total Credit 4	
TEACHER		Prof. P.K Jena		
Period		Jan 2015-April 2015		
Recommended books		Text Book:		
Sl. No.	Lecture No.	Topics to be covered		
MODULE -I				
1	Lecture-01	Introduction: Difference between heat transfer and Thermodynamics. Modes of heat transfer, Basic laws of heat transfer.		
2	Lecture-02	Combined heat transfer mechanism, Analogy between flow of heat and electricity, Unit and dimension.		
3	Lecture-03	Conduction :- Derivation of three dimensional Fourier conduction equation in Cartesian coordinates.		
4	Lecture-04	Transformation of Fourier equation into polar coordinates.		
5	Lecture-05	One dimensional steady state heat conduction through slab, cylinder, sphere		
6	Lecture-06	Composite medium, Critical insulation thickness, effect of variable thermal conductivity		
7	Lecture-07	Heat transfer through rectangular and pin fins, solu boundary conditions(one boundary condition will b	tions of fin equation for different be solved)	
8	Lecture-08	Solutions of fin equation for different boundary conditions.(Two boundary conditions)		
9	Lecture-09	Solutions of fin equation for different boundary con Fin effectiveness, Fin efficiency	nditions.(one boundary conditions),	
10	Lecture-10	Solution of fin problems using numerical techniques		
11	Lecture-11	Introduction to two dimensional steady state heat consolving two dimensional heat conduction problems	onduction, Analytical method for	
12	Lecture-12	Problem Solving		
13	Lecture-13	Problem Solving		
14	Lecture-14	Problem Solving		
MODULE -II				
15	Lecture-15	Convection :- Mechanism of convection and its cla	assifications, convection heat transfer	

		coefficient		
16	Lecture-16	Convection of boundary layer, Energy equation for the laminar boundary layer.		
17	Lecture-17	Boundary layer similarities, Integral solution of boundary layer equation for laminar flow		
17		over a flat plate.		
18	Lecture-18	18 Heat transfer for laminar flow in tubes		
	Lasture 10 Machanism of hast transfer in turbulant flow. Desmalds analogy			
19	9 Lecture-19 Mechanism of near transfer in turbulent now, Reynolds analogy			
20	Lecture-20	Natural convection over a vertical plate and Approximate solution		
21	Lecture-21	Dimensional analysis applied to forced convection		
22	Lecture-22	Problem Solving		
23	Lecture-23	Problem Solving		
24	Lecture-24	Problem Solving		
MODULE - III				
25	Lecture-25	Correlation for external laminar flow		
23				
26	Lecture-26	Correlation for external turbulent flow		
27	Lecture-27	Correlation for heat transfer to liquid metals		
28	Lecture-28	Correlation for free convection heat transfer		
29	Lecture-29	Mechanism of film and drop wise condensation, Nusselt's theory of laminar film		
		condensation		
30	Lecture-30	Pool boiling regimes, nucleate boiling, film boiling		
31	Lecture-31	Peak heat flux, Rohsenow correlation for nucleate boiling		
32	Lecture-32	Problem solving		
33	Lecture-33	Problem solving		
MODULE - IV				
34	Lecture-34	Basic concept of radiant heat transfer. Black body and monochromatic radiation, total		
51		emissive power, Stephen Boltzmann law, grey body		
35	Lecture-35	Kirchhoff's law, Wien's displacement law, Relation between two black bodies		
36	Lecture-36	Shape factors for simple geometries, radiation between two grey bodies		
37	Lecture -37	Electrical network method for solving radiation problems, radiation shield.		
38	Lecture -38	Use of heat exchanger and its type, Overall heat transfer coefficient, Fouling factor		
39	Lecture -39	LMTD, Effectiveness, NTU		
40	Lecture -40	Heat exchanger design		
41	Lecture -41	Problem Solving		
41				
42	Lecture -42	Problem Solving		
	I			
43	Lecture -43	Problem Solving		

Signature of Teacher