

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY LESSON PLAN

Semester >>2 nd		Year >> 2015	Contact Hours per week >>4
ENGINEERING		Branch >>	Total Credit >>4
MECHANICS		Information Technology	
			Monday, Tuesday,Wednesday,Saturday
TEACHER		Ms.Janaki Dehury	
Period		Jan 2015-April 2015	
Recommended		Text book:	
books >>			
		1. Engineering mechanics: S Timoshenko & Young; 4 th Edition (international	
		edition) MC Graw Hill.	
		Reference books:	
		1. Fundamental of Engineering mechanics (2 nd Edition): S Rajesekharan& G	
		ShankaraSubramanium; Vikas Pub.House Pvt Ltd.	
		2. Engineering mechanics: K.L. Kumar; Tata MC Graw Hill.	
Sl.	Lecture No.	Topics to be covered	
No.			
MODULE -I			
1	Lecture-01	Introduction of Engineering Mechanics	s, Types of forces
2	Lecture-02	System of forces: Concurrent & Coplanar forces,	
3	Lecture-03	Composition of forces: Parallelogram l	aw, Triangle law & Polygon law
4	Lecture-04	Resolution of forces, law of transmissi	bility, law of Superposition, Free Body Diagram
5	Lecture-05	Equilibrium of concurrent coplanar forces, Lami's theorem	
6	Lecture-06	Method of projection	
7	Lecture-07	Problem solving	
8	Lecture-08	Method of moment, basic theory and numericals	
9	Lecture-09	Friction:Types, Basic theory	
10	Lecture-10	Related numericals of Friction	
11	Lecture-11	Parallel forces on a plane, General case of parallel forces	
12	Lecture-12	Center of parallel forces and center of gravity: Pappus theorem	
13	Lecture-13	Centroid of composite plane figure and curves& related problems	

MODULE -II				
14	Lecture-14	Composition and equilibrium of forces in a plane		
15	Lecture-15	Plane trusses: Basic theory		
16	Lecture-16	Problems using Method of joints		
17	Lecture-17	Problems using Method of sections		
18	Lecture-18	Principle of virtual work: Basic theory		
19	Lecture-19	Numericals related to Virtual Work		
20	Lecture-20	Moment of inertia: Plane figure with respect to an axis in its plane and perpendicular to the plane		
21	Lecture-21	Perpendicular axis theorem& related problems		
22	Lecture-22	Parallel axis theorem& related problems		
23	Lecture-23	Doubt clearing class		
MODULE-III				
24	Lecture-24	Rectilinear Translation: Kinematics, Principle of dynamics		
25	Lecture-25	D Alembert's PrincipleBasic theory and numericals		
26	Lecture-26	Impulse and Momentum:Basic theory and numericals		
27	Lecture 27	Work and energy, Conservation of Energy, Basic theory and problems		
28	Lecture 28	Impact: types, coefficient of restitution		
29	Lecture 29	Basic theory and numerical related to impact		
MODULE-IV				
30	Lecture 30	Curvilinear translation: Kinematics, Equation of motion		
31	Lecture 31	Moment & Momentum		
32	Lecture 32	Projectile motionBasic theory		
33	Lecture 33	Numerical related to projectile		
34	Lecture-34	D Alembert's principle of curvilinear motion		
35	Lecture-35	Kinematics of rotation of rigid body		
36	Lecture-36	Numerical problem related torotation of rigid body		
37	Lecture-37	Class-Test		
38	Lecture -38	Brief Review & discussion		
39	Lecture -39	Revision & Clarification of Doubts		
40	Lecture -40			

Signature of Teacher