
Lecture Notes 

Sub: Error Control Coding and Cryptography                        Faculty: S Agrawal 

1st Semester M.Tech, ETC (CSE) 

Module-I:                                                                                                (10 Hours) 
Reed Solomon Codes – Reed-Solomon Error Probability, Why R-S codes perform well 

against burst noise, R-S performance as a function of size, redundancy and code rate. 

Interleaving and Concatenated Codes- Block interleaving, Convolutional Interleaving, 

Concatenated Codes, Coding and Interleaving Applied to the Compact Disc, Digital Audio 

Systems- CIRC encoding, CIRC decoding, Interpolation and muting. Turbo Codes- Turbo code 

Concepts, log-likelihood Algebra 
Module-II:                                                                                               (10 Hours) 

 Modulation & Coding Trade Offs: Goals of the Communications System Designer, 

Error Probability Plane, Nyquist Minimum Bandwidth, Shannon-Hartley Capacity Theorem, 

Bandwidth Efficiency Plane, Modulation and Coding Trade-Offs, Defining, Designing, and 

Evaluating Digital Communication Systems, Bandwidth Efficient modulation, Modulation and 

Coding for Bandlimited Channels, Trellis-Coded Modulation. 
Module-III:  (Selected portions from Text Book 3)                    (10 Hours)                                                                    

Introduction to Security and Cryptographic Techniques: Introduction, Security Goals, 

Services and Mechanisms, Techniques (1.1-1.4), Traditional Symmetric Key Ciphers (3.1-3.4), 

Modern Symmetric Key Ciphers (5.1-5.2). 

Brief idea about Data Encryption Standard (DES) (6.1-6.5), International Data 

Encryption Algorithm (DEA) and Advanced Encryption Standard (AES) (7.1-7.2), 

Encipherment using Modern Symmetric Key Ciphers (8.1-8.3), Asymmetric Key 

Cryptography (10.1-10.4). 
Module-IV:                                                                                               (10 Hours) 

Message Integrity(11.1), Message Authentication(11.3), Hash 

Function(12.1,12.2,12.4), Digital Signature(13.1-13.4), Entity Authentication(14.1-14.3,14.5), 

Key Management(15.1-15.5), Security in Email, PGP, S/MIME(16.1-16.3), Brief idea on 

Transport layer (17.1-17.2) and Network layer security(18.1-18.2), System security(19.4-19.8). 

 

Text Books: 

1. Digital Communication-Fundamental Application by Bernard Sklar, 2nd 

Edition of Pearson education Publication for Module-I and II. 

2. B.Vucentic & J.Yuan, Turbo codes, Kluwer, 2000 for Module-I and II. 

3. Cryptography and Network Security, B.A. Forouzan & D. Mukhopadhyay, 

(2/e), McGraw-Hill Publication, 2012. (Module III and IV). 

4. S.Lin & D.J.Costello, Error Control Coding (2/e), Pearson, 2005. 

 

Reference Books: 

1. C.B.Schlegel & L.C.Perez, Trellis and Turbo Coding Wiley, 2004. 

2. S. Gravano, Introduction to Error Control Codes, Oxford Pubs, 2001. 

3. Information Theory, Coding and Cryptography by Ranjan Bose, TMH 

Publication. 

4. Cryptography and Network Security” by A. Kahate, TMH Publication 

 

 

 

 

 



 

THE COPYRIGHT IS NOT RESERVED BY THE WRITER. 

 

 

THE WRITER IS NOT RESPONSIBLE FOR ANY LEGAL ISSUES ARISING OUT OF 

ANY COPYRIGHT DEMANDS AND/OR REPRINT ISSUES CONTAINED IN THIS 

MATERIAL.  

THIS IS NOT MEANT FOR ANY COMMERCIAL PURPOSE. THIS IS SOLELY MEANT 

FOR PERSONAL REFERENCE OF STUDENTS FOLLOWING THE SYLLABUS 

PRESCRIBED BY THE UNIVERSITY.  

READERS ARE REQUESTED TO SEND ANY TYPING ERRORS CONTAINED, 

HEREIN. 

 

 

ACKNOWLEDGMENT 

Different sources used in the preparation of this material are: 

1. Digital Communications - Fundamentals and Applications - Bernard Sklar, 2nd Edition, 

    Person Education Publication. 

2. Information Theory, Coding & Cryptography - Ranjan Bose, TMH Publication. 

3. Digital Communications – Simon Haykin, Wiley Edition. 

4. Digital Communications - J.G.Proakis, 3rd Edition, McGrawHill Publications. 



 

MODULE I: Reed Solomon Codes 
 

INTRODUCTION 
 
In 1960, Irving Reed and Gus Solomon published a paper in the Journal of the Society for 

Industrial and Applied Mathematics. The paper described a new class of error-correcting codes 

that are now called Reed-Solomon (R-S) codes. These codes have great power and utility, and 

are today found in many applications from compact disc players to deep-space applications.  
 
Reed-Solomon codes are nonbinary cyclic codes with symbols made up of m-bit sequences, where 

m is any positive integer having a value greater than 2. R-S (n, k) codes on m-bit symbols exist for 

all n and k for which 
 

0 < k < n < 2
m 

+ 2                                                  (1) 
 
where k is the number of data symbols being encoded, and n is the total number of code symbols 

in the encoded block. For the most conventional R-S (n, k) code, 
 

(n, k) = (2
m 

- 1, 2
m 

- 1 - 2t)                                            (2) 

 
where t is the symbol-error correcting capability of the code, and n - k = 2t is the number of 

parity symbols. An extended R-S code can be made up with n = 2
m 

or n = 2
m 

+ 1, but not any 
further. 
Reed-Solomon codes achieve the largest possible code minimum distance for any linear code 

with the same encoder input and output block lengths. For nonbinary codes, the distance between 

two code words is defined (analogous to Hamming distance) as the number of symbols in which 

the sequences differ. For Reed- Solomon codes, the code minimum distance is given by  
 

dmin = n - k + 1                                                     (3) 

The code is capable of correcting any combination of t or fewer errors, where t can be expressed 

as  

min 1

2 2

d n k
t

    
    

  
                                                                                         (4) 

where x    means the largest integer not to exceed x. Equation (4) illustrates that for the case of 

R-S codes, correcting t symbol errors requires no more than 2t parity symbols. Equation (4) lends 

itself to the following intuitive reasoning. One can say that the decoder has n - k redundant symbols to 

“spend,” which is twice the amount of correctable errors. For each error, one redundant symbol is used 

to locate the error, and another redundant symbol is used to find its correct value. 

The erasure-correcting capability, ρ, of the code is 

ρ = dmin - 1 = n - k                                               (5)  

Simultaneous error-correction and erasure-correction capability can be expressed as follows: 
 

2α + γ < dmin < n - k                                                 (6) 

 



 

where α is the number of symbol-error patterns that can be corrected and γ is the number of 
symbol erasure patterns that can be corrected. An advantage of nonbinary codes such as a Reed-
Solomon code can be seen by the following comparison. Consider a binary (n, k) = (7, 3) code. 

The entire n-tuple space contains 2
n 

= 2
7 

= 128 n-tuples, of which 2
k 

= 2
3 

= 8 (or 1/16 of the 
n-tuples) are codewords. Next, consider a nonbinary (n, k) = (7, 3) code where each symbol is 

composed of m = 3 bits. The n-tuple space amounts to 2
nm 

= 2
21 

= 2,097,152 n-tuples, of which 

2
km 

= 2
9 

= 512 (or 1/4096 of the n-tuples) are codewords. When dealing with nonbinary 

symbols, each made up of m bits, only a small fraction (i.e., 2
km 

of the large number 2
nm

) of 
possible n-tuples are codewords. This fraction decreases with increasing values of m. The 
important point here is that when a small fraction of the n-tuple space is used for codewords, a 
large dmin can be created. 

 
Any linear code is capable of correcting n - k symbol erasure patterns if the n - k erased symbols 

all happen to lie on the parity symbols. However, R-S codes have the remarkable property that 

they are able to correct any set of n - k symbol erasures within the block. R-S codes can be 

designed to have any redundancy. However, the complexity of a high-speed implementation 

increases with redundancy. Thus, the most attractive R-S codes have high code rates (low 

redundancy). 
 
 
REED-SOLOMON ERROR PROBABILITY 

 
The Reed-Solomon (R-S) codes are particularly useful for burst-error correction; that is, they are 

effective for channels that have memory. Also, they can be used efficiently on channels where the 

set of input symbols is large. An interesting feature of the R-S code is that as many as two 

information symbols can be added to an R-S code of length n without reducing its minimum 

distance. This extended R-S code has length n + 2 and the same number of parity check symbols as 

the original code. The R-S decoded symbol-error probability, PE, in terms of the channel 

symbol-error probability, p, can be written as follows: 

 
(7) 

where t is the symbol-error correcting capability of the code, and the symbols are made up of m 

bits each. 

The bit-error probability can be upper bounded by the symbol-error probability for specific 

modulation types. For MFSK modulation with M = 2
m

, the relationship between PB and PE is as 

follows: 

 
(8) 

 

Figure 1 shows PB versus the channel symbol-error probability p, plotted from Equations (7) 

and (8) for various (t-error-correcting 32-ary orthogonal Reed- Solomon codes with n = 31 

(thirty-one 5-bit symbols per code block). 
 
Figure 2 shows PB versus Eb/N0 for such a coded system using 32-ary MFSK modulation and 

noncoherent demodulation over an AWGN channel. For R-S codes, error probability is an 

exponentially decreasing function of block length, n, and decoding complexity is proportional to 



 

a small power of the block length. The R-S codes are sometimes used in a concatenated 

arrangement. In such a system, an inner convolutional decoder first provides some error control 

by operating on soft-decision demodulator outputs; the convolutional decoder then presents hard-

decision data to the outer Reed-Solomon decoder, which further reduces the probability of error.   

 
 

Figure 1 
 
PB versus p for 32-ary orthogonal signaling and n = 31, t-error correcting Reed-Solomon 
coding.



 

  
Figure 2 

 
Bit-error probability versus Eb/N0 performance of several n = 31, t-error correcting Reed- 
Solomon coding systems with 32-ary MPSK modulation over an AWGN channel. 

 
WHY R-S CODES PERFORM WELL AGAINST BURST NOISE 

 
Consider an (n, k) = (255, 247) R-S code, where each symbol is made up of m = 8 bits (such 

symbols are typically referred to as bytes). Since n - k = 8, Equation (4) indicates that this code 

can correct any four symbol errors in a block of 255. Imagine the presence of a noise burst, lasting 

for 25-bit durations and disturbing one block of data during transmission, as illustrated in Figure 

3. 
 
 

 
 
Figure 3 

 
Data block disturbed by 25-bit noise burst. 

 
 

In this example, notice that a burst of noise that lasts for a duration of 25 contiguous bits must disturb 

exactly four symbols. The R-S decoder for the (255, 247) code will correct any four-symbol errors 

without regard to the type of damage suffered by the symbol. In other words, when a decoder corrects 

a byte, it replaces the incorrect byte with the correct one, whether the error was caused by one bit 

being corrupted or all eight bits being corrupted. Thus if a symbol is wrong, it might as well be wrong 

in all of its bit positions. This gives an R-S code a tremendous burst-noise advantage over binary 

codes, even allowing for the interleaving of binary codes. In this example, if the 25-bit noise 

disturbance had occurred in a random fashion rather than as a contiguous burst, it should be clear 

that many more than four symbols would be affected (as many as 25 symbols might be disturbed). 

Of course, that would be beyond the capability of the (255, 247) code. 
 



 

R-S PERFORMANCE AS A FUNCTION OF SIZE, REDUNDANCY, AND CODE RATE 
 

For a code to successfully combat the effects of noise, the noise duration has to represent a relatively 

small percentage of the codeword. To ensure that this happens most of the time, the received noise 

should be averaged over a long period of time, reducing the effect of a freak streak of bad luck. 

Hence, error-correcting   codes become more efficient (error performance improves) as the code 

block size increases, making R-S codes an attractive choice whenever long block lengths are desired. 

This is seen by the family of curves in Figure 4, where the rate of the code is held at a constant 7/8, 

while its block size increases from n = 32 symbols (with m = 5 bits per symbol) to n = 256 symbols 

(with m = 8 bits per symbol). Thus, the block size increases from 160 bits to 2048 bits. 

 

 
Figure 4 
Reed-Solomon rate 7/8 decoder performance as a function of symbol size. 
 
As the redundancy of an R-S code increases (lower code rate), its implementation grows in 

complexity (especially for high-speed devices). Also, the bandwidth expansion must grow for any 

real-time communications application. However, the benefit of increased redundancy, just like the 

benefit of increased symbol size, is the improvement in bit-error performance, as can be seen in 

Figure 5, where the code length n is held at a constant 64, while the number of data symbols decreases 

from k = 60 to k = 4 (redundancy increases from 4 symbols to 60 symbols). 



 

 
 
Figure 5 
Reed-Solomon (64, k) decoder performance as a function of redundancy. 

 

Figure 5 represents transfer functions (output bit-error probability versus input channel symbol-error 

probability) of hypothetical decoders. Because there is no system or channel in mind (only an 

output-versus-input of a decoder), you might get the idea that the improved error performance versus 

increased redundancy is a monotonic function that will continually provide system improvement 

even as the code rate approaches zero. However, this is not the case for codes operating in a real-

time communication system. As the rate of a code varies from minimum to maximum (0 to 1), it is 

interesting to observe the effects shown in Figure 6.  

 

 
Figure 6 
BPSK plus Reed-Solomon (31, k) decoder performance as a function of code rate. 

 

 



 

Here, the performance curves are plotted for BPSK modulation and an R-S (31, k) code for various 

channel types. Figure 6 reflects a real-time communication system, where the price paid for error-

correction coding is bandwidth expansion by a factor equal to the inverse of the code rate. The curves 

plotted show clear optimum code rates that minimize the required Eb/N0. The optimum code rate is 

about 0.6 to 0.7 for a Gaussian channel, 0.5 for a Rician-fading channel (with the ratio of direct to 

reflected received signal power, K = 7 dB), and 0.3 for a Rayleigh-fading channel. Why is there an 

Eb/N0 degradation for very large rates (small redundancy) and very low rates (large redundancy)? It 

is easy to explain the degradation at high rates compared to the optimum rate. Any code generally 

provides a coding-gain benefit; thus, as the code rate approaches unity (no coding), the system will 

suffer worse error performance. The degradation at low code rates is more subtle because in a real-time 

communication system using both modulation and coding, there are two mechanisms at work. One 

mechanism works to improve error performance, and the other works to degrade it. The improving 

mechanism is the coding; the greater the redundancy, the greater will be the error-correcting capability 

of the code. The degrading mechanism is the energy reduction per channel symbol (compared to the 

data symbol) that stems from the increased redundancy (and faster signaling in a real-time 

communication system). The reduced symbol energy causes the demodulator to make more errors. 

Eventually, the second mechanism wins out, and thus at very low code rates the system experiences 

error-performance degradation. 
 
Let’s see if we can corroborate the error performance versus code rate in Figure 6 with the curves 

in Figure 2. The figures are really not directly comparable because the modulation is BPSK in 

Figure 6 and 32-ary MFSK in Figure 2. However, perhaps we can verify that R-S error 

performance versus code rate exhibits the same general curvature with MFSK modulation as it 

does with BPSK. In Figure 2, the error performance over an AWGN channel improves as the 

symbol error- correcting capability, t, increases from t = 1 to t = 4; the t = 1 and t = 4 cases 

correspond to R-S (31, 29) and R-S (31, 23) with code rates of 0.94 and 0.74 respectively. 

However, at t = 8, which corresponds to R-S (31, 15) with code rate = 0.48, the error performance 

at PB = 10
-5 

degrades by about 0.5 dB of Eb/N0 compared to the t = 4 case. From Figure 2, we can 

conclude that if we were to plot error performance versus code rate, the curve would have the same 

general “shape” as it does in Figure 6. Note that this manifestation cannot be gleaned from Figure 1, 

since that figure represents a decoder transfer function, which provides no information about the 

channel and the demodulation. Therefore, of the two mechanisms at work in the channel, the Figure 

1 transfer function only presents the output-versus-input benefits of the decoder, and displays nothing 

about the loss of energy as a function of lower code rate. 

 

FINITE FIELDS 
 
In order to understand the encoding and decoding principles of nonbinary codes, such as Reed-
Solomon (R-S) codes, it is necessary to venture into the area of finite fields known as Galois Fields 
(GF). For any prime number, p, there exists a finite field denoted GF( p) that contains p elements. 

It is possible to extend GF( p) to a field of p
m 

elements, called an extension field of GF( p), and 

denoted by GF( p
m

), where m is a nonzero positive integer. Note that GF( p
m

) contains as a subset 

the elements of GF( p). Symbols from the extension field GF(2
m

) are used in the construction of 
Reed-Solomon (R-S) codes. 

The binary field GF(2) is a subfield of the extension field GF(2
m

), in much the same way as 

the real number field is a subfield of the complex number field. 



 

Besides the numbers 0 and 1, there are additional unique elements in the extension field that will 

be represented with a new symbol α. Each nonzero element in GF(2
m

) can be represented by a 
power of α. An infinite set of elements, F, is formed by starting with the elements {0, 1, α}, and 
generating additional elements by progressively multiplying the last entry by α, which yields the 
following: 

F = {0, 1, α, α
2
, …, α 

j
, …} = {0, α

0
, α

1
, α

2
, …, α 

j
, …}                      (9)  

To obtain the finite set of elements of GF(2
m

) from F, a condition must be imposed on F so that it 

may contain only 2
m 

elements and is closed under multiplication. The condition that closes the set 

of field elements under multiplication is characterized by the irreducible polynomial shown below: 
 

α(2m−1) + 1 = 0  or  α(2m−1) = 1 = α0 (10) 

Using this polynomial constraint, any field element that has a power equal to or greater than 2
m 

- 1 

can be reduced to an element with a power less than 2
m 

- 1, as follows: 

 (11) 

Thus, Equation (10) can be used to form the finite sequence F* from the infinite sequence F as 

follows: 
 

 

(12) 

Therefore, it can be seen from Equation (12) that the elements of the finite field, GF(2
m

), are 

as follows: 
 

 
(13) 

 
 

 



 

Addition in the Extension Field GF(2
m

) 
 

Each of the 2
m 

elements of the finite field, GF(2
m

), can be represented as a distinct polynomial 
of degree m - 1 or less. The degree of a polynomial is the value of its highest-order exponent. We 

denote each of the nonzero elements of GF(2
m

) as a polynomial, ai (X ), where at least one of the 

m coefficients of ai (X ) is nonzero. For i = 0,1,2,…,2
m 

- 2, 

α
i 

= ai (X ) = ai, 0 + ai, 1 X + ai, 2 X 
2 

+ … + ai, m - 1 X 
m - 1                                 

(14) 

Consider the case of m = 3, where the finite field is denoted GF(2
3
). Figure 7 

shows the mapping of the seven elements {α
i
} and the zero element, in terms of the basis 

elements {X 
0
, X 

1
, X 

2
} described by Equation (14). Since Equation (10) indicates that α

0 
= α

7
, 

there are seven nonzero elements or a total of eight elements in this field. Each row in the Figure 

7 mapping comprises a sequence of binary values representing the coefficients ai, 0, ai, 1, and ai, 2 

in Equation (14). One of the benefits of using extension field elements {α
i
} in place of binary 

elements is the compact notation that facilitates the mathematical representation of nonbinary 

encoding and decoding processes. Addition of two elements of the finite field is then defined as 

the modulo-2 sum of each of the polynomial coefficients of like powers, 
 

α
i 

+ α
j 

= (ai, 0 + aj, 0) + (ai, 1 + aj, 1) X + … + (ai, m - 1 + aj, m - 1) X 
m - 1                   

(15) 
 
 
 

 
 

Figure 7 

Mapping field elements in terms of basis elements for GF(8) with f(x) = 1 + x + x
3
. 

A Primitive Polynomial Is Used to Define the Finite Field 
 
A class of polynomials called primitive polynomials is of interest because such functions define 

the finite fields GF(2
m

) that in turn are needed to define R-S codes. The following condition is 
necessary and sufficient to guarantee that a polynomial is primitive. An irreducible polynomial 



 

f(X ) of degree m is said to be primitive if the smallest positive integer n for which f(X ) divides 

X 
n 

+ 1 is n = 2
m 

- 1. Note that the statement A divides B means that A divided into B yields a 
nonzero quotient and a zero remainder. Polynomials will usually be shown low order to high 
order. Sometimes, it is convenient to follow the reverse format (for example, when performing 
polynomial division). 

 
 
Example 1: Recognizing a Primitive Polynomial 

 
Based on the definition of a primitive polynomial given above, determine whether the following 

irreducible polynomials are primitive. 

a.         1 + X + X 
4

 

b.         1 + X + X 
2 

+ X 
3 

+ X 
4
 

Solution 
 

a.         We can verify whether this degree m = 4 polynomial is primitive by determining whether 

it divides X
n +1=X(2m-1)+1=X15+1, but does not divide X 

n 
+ 1, for values of n in the range of 1 ≤ 

n < 15. It is easy to verify that 1 + X + X 
4 

divides X 
15 

+ 1, and after repeated computations it can 

be verified that 1 + X + X 
4 

will not divide X 
n 

+ 1 for any n in the range of 1 ≤ n < 15. Therefore, 

1 + X + X 
4 

is a primitive polynomial. 
 

b. It is simple to verify that the polynomial 1 + X + X 
2 

+ X 
3 

+ X 
4 

divides X 
15 

+ 1. 

Testing to see whether it will divide X 
n 

+ 1 for some n that is less than 15 yields the 

fact that it also divides X 
5 

+ 1. Thus, although 1 + X + X 
2 

+ X 
3 

+ X 
4 

is irreducible, 

it is not primitive. 

Table 1 
 

Some Primitive Polynomials 
 

m    m  

3 1 + X + X 
3

 
  14 1 + X + X 

6 
+ X 

10 
+ X 

14
 

4 1 + X + X 
4

 
  15 1 + X + X 

15
 

5 1 + X 
2 

+ X 
5
 

  16 1 + X + X 
3 + 

X 
12 

+ X 
16

 

6 1 + X + X 
6

 
  17 1 + X 

3 
+ X 

17
 

7 1 + X 
3 

+ X 
7
 

  18 1 + X 
7 

+ X 
18

 

8 1 + X 
2 

+ X 
3 

+ X 
4 

+ X 
8
 

  19 1 + X + X 
2 + 

X 
5 

+ X 
19

 

9 1 + X 
4 

+ X 
9
 

  20 1 + X 
3 

+ X 
20

 

10 1 + X 
3 

+ X 
10

 
  21 1 + X 

2 
+ X 

21
 

11 1 + X 
2 

+ X 
11

 
  22 1 + X + X 

22
 

12 1 + X + X 
4 

+ X 
6 

+ X 
12

 
  23 1 + X 

5 
+ X 

23
 

13 1 + X + X 
3 

+ X 
4 

+ X 
13

 
  24 1 + X + X 

2 + 
X 

7 
+ X 

24
 

 

Two arithmetic operations, addition and multiplication, can be defined for the GF(2
3

) finite field. 
Addition is shown in Table 2, and multiplication is shown in Table 3 for the nonzero elements only.  



 

 

The multiplication rules in Table 3 follow the usual procedure, in which the product of the field 

elements is obtained by adding their exponents modulo-(2
m 

- 1), or for this case, modulo-7. 
 

Table 2                                                         Table 3 

Addition Table                                         Multiplication Table 
 

 
  
 

 

 

 

 

 

 

 
 
 

  
  

A Simple Test to Determine Whether a Polynomial Is Primitive 
 

There is another way of defining a primitive polynomial that makes its verification relatively 

easy. For an irreducible polynomial to be a primitive polynomial, at least one of its roots must be 

a primitive element. A primitive element is one that when raised to higher-order exponents will 

yield all the nonzero elements in the field. Since the field is a finite field, the number of such 

elements is finite. 
 
 

Example 2: A Primitive Polynomial Must Have at Least One Primitive Element 

Find the m = 3 roots of f(X ) = 1 + X + X 
3
, and verify that the polynomial is primitive by checking 

that at least one of the roots is a primitive element. What are the roots? Which ones are primitive? 

Solution 

The roots will be found by enumeration. Clearly, α
0 

= 1 is not a root because f(α
0

) = 1. Now, use 

Table 2 to check whether α
1 

is a root. Since 
 

f(α) = 1 + α + α
3 

= 1 + α
0 

= 0 
 
α is therefore a root. 

 

Now check whether α
2 

is a root: 
 

f(α
2
) = 1 + α

2 
+ α

6 
= 1 + α

0 
= 0 

 

Hence, α
2 

is a root. 
 

Now check whether α
3 

is a root. 
 

 
α

0 
α

1 
α

2 
α

3 
α

4 
α

5 
α

6 

α
0 0 α

3 
α

6 
α

1 
α

5 
α

4 
α

2 

α
1 

α
3 0 α

4 
α

0 
α

2 
α

6 
α

5 

α
2 

α
6 

α
4 0 α

5 
α

1 
α

3 
α

0 

α
3 

α
1 

α
0 

α
5 0 α

6 
α

2 
α

4 

α
4 

α
5 

α
2 

α
1 

α
6 0 α

0 
α

3 

α
5 

α
4 

α
6 

α
3 

α
2 

α
0 0 α

1 

α
6 

α
2 

α
5 

α
0 

α
4 

α
3 

α
1 0 

 
α

0 
α

1 
α

2 
α

3 
α

4 
α

5 
α

6 

α
0 

α
0 

α
1 

α
2 

α
3 

α
4 

α
5 

α
6 

α
1 

α
1 

α
2 

α
3 

α
4 

α
5 

α
6 

α
0 

α
2 

α
2 

α
3 

α
4 

α
5 

α
6 

α
0 

α
1 

α
3 

α
3 

α
4 

α
5 

α
6 

α
0 

α
1 

α
2 

α
4 

α
4 

α
5 

α
6 

α
0 

α
1 

α
2 

α
3 

α
5 

α
5 

α
6 

α
0 

α
1 

α
2 

α
3 

α
4 

α
6 

α
6 

α
0 

α
1 

α
2 

α
3 

α
4 

α
5 



 

f(α
3
) = 1 + α

3 
+ α

9 
= 1 + α

3 
+ α

2 
= 1 + α

5 
= α

4 
≠ 0 

 

Hence, α
3 

is not a root. Is α
4 

a root? 

f(α
4
) = α

12 
+ α

4 
+ 1 = α

5 
+ α

4 
+ 1 = 1 + α

0 
= 0 

 

Yes, it is a root. Hence, the roots of f(X ) = 1 + X + X 
3 

are α, α
2
, and α

4
. It is not difficult to verify 

that starting with any of these roots and generating higher-order exponents yields all of the seven 

nonzero elements in the field. Hence, each of the roots is a primitive element. Since our verification 

requires that at least one root be a primitive element, the polynomial is primitive. 

Reed-Solomon Encoding 
 
Equation (2), repeated below as Equation (16), expresses the most conventional form of Reed-

Solomon (R-S) codes in terms of the parameters n, k, t, and any positive integer m > 2. 
 

(n, k) = (2
m 

- 1, 2
m 

- 1 - 2t)                                          (16) 
 

where n - k = 2t is the number of parity symbols, and t is the symbol-error correcting capability of 

the code. The generating polynomial for an R-S code takes the following form: 

g(X ) = g0 + g1 X + g2 X 
2 

+ … + g2t - 1 X 
2t - 1 

+ X 
2t                                     

(17) 

The degree of the generator polynomial is equal to the number of parity symbols. R-S codes are a 

subset of the Bose, Chaudhuri, and Hocquenghem (BCH) codes; hence, it should be no surprise that 

this relationship between the degree of the generator polynomial and the number of parity symbols 

holds, just as for BCH codes. Since the generator polynomial is of degree 2t, there must be precisely 

2t successive powers of α that are roots of the polynomial. We designate the roots of g(X ) as α, α
2
, 

…, α
2t

. It is not necessary to start with the root α; starting with any power of α is possible. Consider 

as an example the (7, 3) double-symbol-error correcting R-S code. We describe the generator 

polynomial in terms of its 2t = n - k = 4 roots, as follows: 
 

 

Following the low order to high order format, and changing negative signs to positive, since in the 
binary field +1 = –1, g(X ) can be expressed as follows: 
 

g(X ) = α
3 

+ α
1 

X + α
0 

X 
2 

+ α
3 

X 
3 

+ X 
4                                                   

(18) 

 

Reed-Solomon Decoding 
 
Assume that during transmission the codeword becomes corrupted so that two symbols are received 

in error. (This number of errors corresponds to the maximum error-correcting capability of the 



 

code.) For this seven-symbol codeword example, the error pattern, e(X ), can be described in 

polynomial form as follows: 
 

 
(19) 

 

For this example, let the double-symbol error be such that 
 

 

(20) 

In other words, one parity symbol has been corrupted with a 1-bit error (seen as α
2

), and one data 

symbol has been corrupted with a 3-bit error (seen as α
5
). The received corrupted-codeword 

polynomial, r(X ), is then represented by the sum of the transmitted-codeword polynomial and the 
error-pattern polynomial as follows: 

r(X)=U(X)+e(X) (21) 
 

Following Equation (21), we add U(X ) from to e(X ) to yield r(X ), as follows: 
 

 (22) 

 



 

 
 
 
 

In this example, there are four unknowns—two error locations and two error values. Notice an 

important difference between the nonbinary decoding of r(X ) that we are faced with in Equation 

(22) and binary decoding; in binary decoding, the decoder only needs to find the error locations 

. Knowledge that there is an error at a particular location dictates that the bit must be “flipped” 

from 1 to 0 or vice versa. But here, the nonbinary symbols require that we not only learn the 

error locations, but also determine the correct symbol values at those locations. Since there are 

four unknowns in this example, four equations are required for their solution. 

 

INTERLEAVING AND CONCATENATED CODES 

 

A channel that has memory is one that exhibits mutually dependent signal transmission 

impairments. A channel that exhibits multipath fading, where signals arrive at the receiver over 

two or more paths of different lengths, is an example of a channel with memory. The effect is 

that the signals can arrive out of phase with each other, and the cumulative received signal is 

distorted. Wireless mobile communication channels, as well as ionospheric and tropospheric 

propagation channels, suffer from such phenomena. Also, some channels suffer from switching 

noise and other burst noise (e.g., telephone channels or channels disturbed by pulse jamming). 

All of these time-correlated impairments result in statistical dependence among successive 

symbol transmissions. That is, the disturbances tend to cause errors that occur in bursts, instead 

of as isolated events. 

 

Under the assumption that the channel has memory, the errors no longer can be characterized 

as single randomly distributed bit errors whose occurrence is independent from bit to bit. Most 

block or convolutional codes are designed to combat random independent errors. The result of 

a channel having memory on such coded signals is to cause degradation in error performance. 

Coding techniques for channels with memory have been proposed, but the greatest problem 

with such coding is the difficulty in obtaining accurate models of the often time-varying 

statistics of such channels. One technique, which only requires a knowledge of the duration or 

span of the channel memory, not its exact statistical characterization, is the use of time diversity 

or interleaving. 

The interleaver shuffles the code symbols over a span of several block lengths (for block codes) 

or several constraint lengths (for convolutional codes). The span required is determined by the 

burst duration. A simple example is shown below. 

 

 
 

 



 

 
 

 

 

BLOCK INTERLEAVING 

 

 

A block interleaver accepts the coded symbols in blocks from the encoder, permutes the 

symbols, and then feeds the rearranged symbols to the modulator. The usual permutation of the 

block is accomplished by filling the columns of an M-row-by N-column (M x N) array with the 

encoded sequence. After the array is completely filled, the symbols are then fed to the modulator 

one row at a time and transmitted over the channel. Figure below illustrates an example of an 

interleaver with M = 4 rows and N = 6 columns. 

The most important characteristics of such a block interleaver are as follows: 

Any burst of less than N contiguous channel symbol errors results in isolated errors at the 

deinterlever output that are separated from each other by at least M symbols. Any bN burst of 

errors, where b > 1, results in output bursts from the deinterleaver of no more than I b l symbol 

errors. Each output burst is separated from the other bursts by no less than M – LbJ symbols. 

The notation lx l means the smallest integer no less than x, and LxJ means the largest integer 

no greater than x. 

A periodic sequence of single errors spaced N symbols apart results in a single burst of errors 

of length Mat the deinterleaver output. 

The interleaver/deinterleaver end-to-end delay is approximately 2MN symbol times. To be 

precise, only M (N- 1) + 1 memory cells need to be filled before transmission can begin (as 

soon as the first symbol of the last column of the M x N array is filled). A corresponding number 

needs to be filled at the receiver before decoding begins. Thus the minimum end-to-end 

delay is (2M N- 2M+ 2) symbol times, not including any channel propagation delay. 

The memory requirement is MN symbols for each location (interleaver and deinterleaver). 

However, since the M x N array needs to be (mostly) filled before it can be read out, a memory 

of 2MN symbols is generally implemented at each location to allow the emptying of one M x 

N array while the other is being filled, and vice versa. 

 



 

 
 

 
 

 
 

 

 
 

CONVOLUTIONAL INTERLEAVING: 

 

Convolutional interleavers have been proposed by Ramsey and Forney. The structure  

proposed by Forney appears in fig. below. 



 

 

 
Fig.  Shift register implementation of a convolutional interleaver/deinterleaver. 

 

The code symbols are sequentially shifted into the bank of N registers; each successive register 

provides J symbols more storage than did the preceding one. The zeroth register provides no 

storage (the symbol is transmitted immediately). With each new code symbol the commutator 

switches to a new register, and the new code symbol is shifted in while the oldest code symbol 

in that register is shifted out to the modulator/transmitter. After the (N - 1 )th register, the 

commutator returns to the zeroth register and starts again. The deinterleaver performs the inverse 

operation, and the input and output commutators for both interleaving and de interleaving must 

be synchronized. 

 

CONCATENATED CODES: 

A concatenated code is one that uses two levels of coding, an inner code and an outer code, to 

achieve the desired error performance. Figure below illustrates the order of encoding and 

decoding. 

 



 

 
 

Fig.  Block diagram of a concatenated coding system. 

 

The inner code, the one that interfaces with the modulator/demodulator and channel, is usually 

configured to correct most of the channel errors.  

The outer code, usually a higher-rate (lower-redundancy) code then reduces the probability of  

error to the specified level. 

The primary reason for using a concatenated code is to achieve a low error rate with an overall 

implementation complexity which is less than that which would be required by a single coding 

operation.  

The interleaver required to spread any error bursts that may appear at the output of the inner 

coding operation.  

One of the most popular concatenated coding systems uses a Viterbi-decoded convolutional  

inner code and a Reed-Solomon (R-S) outer code. with interleaving between the two coding  

steps. 

 

CODING AND INTERLEAVING APPLIED TO THE COMPACT DISC DIGITAL AUDIO 

SYSTEM: 

 

Philips & Sony Corp. defined a standard for digital storage & reproduction of audio signals  

called compact disc(CD) digital audio system. World standard 120 mm diameter CD.  

• Stores digitized audio waveform.  

• Sampled at 44.1 ksamples per second for 20 KHz BW to 2 levels (16 bits per sample).  

• Dynamic range 96 dB, harmonic distortion = 0.005%.  

• Stores about 1010 bits. 

Scratches & other damage to CD causes burst like errors.  

Approximately 4000 bits (2.5 mm) burst errors can be corrected. Prob. of bit error,  

PB =10-4 

Hierarchy of errors control in CIRC system—  

(i) Decode first attempts for error correction.  



 

If error correction capability is exceeded, decoder goes for reassure correction. If the erasure 

correction capability is exceeded the decoder attempts to conceal unreliable data samples by 

interpolation between reliable neighbouring samples.  

If the interpolation capability is exceeded, the decoder simply mutes the system for the duration 

of unreliable samples.  

 

CIRC ENCODING: 

 

 

Fig.  Block Diagram of CIRC Encoder & Decoder  

The steps are as follows:- 

L1 interleave. Even-numbered samples are separated from odd-numbered samples by two frame 

times in order to scramble uncorrectable but detectable byte errors. This facilitates the interpolation 

process.  

C2 encode. Four Reed-Solomon (R-S) parity bytes are added to the 11-interleaved 24-byte frame, 

resulting in a total of n = 28 bytes. This (28, 24) code is called the outer code.  

D* interleave. Here each byte is delayed a different length, thereby spreading errors over several 

codewords. C2 encoding together with D* interleaving have the function of providing for the 

correction of burst errors and error patterns that the C1 decoder cannot correct. 



 

 

 

 

Fig.  Compact disc encoder. (a)~ interleave. 

  

Fig.  Compact disc encoder. (a)~ interleave. (b) C2 encode. (c) D* interleave. (d) C1 encode. (e) D 

interleave. 

C1 encode. Four R-S parity bytes are added to the k = 28 bytes of the D*-interleaved frame, resulting 

in a total of n = 32 bytes. This (32, 28) code is called the inner code.  

D interleave. The purpose is to cross-interleave the even bytes of a frame with the odd bytes of the 

next frame. By this procedure, two consecutive bytes on the disc will always end up in two different 

codewords. Upon decoding, this interleaving, together with the C1 decoding, results in the 

correction of most random single errors and the detection of longer burst errors. 

CIRC DECODING: 

The benefits of CIRC are best seen at the decoder, where the processing steps, shown in Figure are 

in the reverse order of the encoder steps. The decoder steps are as follows:  

D deinterleave. This function is performed by the alternating delay lines marked D. The 32 bytes 

(Bi1,…, Bi32) of an encoded frame are applied in parallel to the 32  inputs of the D deinterleaver. 

Each delay is equal to the duration of 1 byte, so that the information of the even bytes of a frame is 

cross-deinterleaved with that of the odd bytes of the next frame.  

C1 decode. The D deinterleaver and the C1 decoder are designed to correct a single byte error in 

the block of 32 bytes and to detect larger burst errors. If multiple errors occur, the C1 encoder passes 

them on unchanged, attaching to all 28 remaining bytes an erasure flag, sent via the dashed lines 

(the four parity bytes used in the C1 decoder are no longer retained). 



 

 

 

Fig. Compact Disc Decoder. 

D* deinterleave. Due to the different lengths of the deinterleaving delay lines D*(1, …, 27) errors 

that occur in one word at the output of the C1 decoder are spread over a number of words at the 

input of the C2 decoder. This results in reducing the number of errors per input word of the C2 

decoder, enabling the C2 decoder to correct these errors C2 decode. The C2 decoder is intended for 

the correction of burst errors that the C1 decoder could not correct. If the C2 decoder cannot correct 

these errors, the 24-byte codeword is passed on unchanged to the ~ deinterleaver and the associated 

positions are given an erasure flag via the dashed output lines, Bob,…, Bo24·  

Δ deinterleave. The final operation deinterleaves uncorrectable but detected byte errors in such a 

way that interpolation can be used between reliable neighbouring samples. 

 

TURBO CODES 

Powerful codes uses concatenation. Turbo codes finds its origin in the will to compensate for the 

dissymmetry of the concatenated decoder. In this concept of feedback is used. 

 

 

 



 

 

 

 

 

Fig.  Effect of interleaving. (Rightmost event is at the earliest time). 

A refinement of the concatenated encoding structure plus an iterative algorithm for the decoding 

the associated code sequence. Introduced in 1993 by Berrou, Glavieus & Thitimashime. Achieved 

a BER of 10-5 with rate ½ over AWGN channel & BPSK modulation at Eb/N0=0.7 dB. Uses soft 

decisions information between the two decoders and iterates it several times to produce more 

reliable decisions. 

 

TURBO CODE CONCEPTS 

The mathematical foundations of hypothesis testing rests on Bayes' theorem. For communications 

engineering, where applications involving an AWGN channel are of great interest, the most useful 

form of Bayes' theorem expresses the a posteriori probability (APP) of a decision in terms of a  

continuous-valued random variable x as 

 

where P (d = i/x) is the APP, and d = i represents data d belonging to the ith signal class from a set 

of M classes. Further, p(x ld = i) represents the probability density function (pdf) of a received 

continuous-valued data-plus-noise signal x, conditioned on the signal class d = i.  

Also, p(d = i), called the a priori probability, is the probability of occurrence of the ith signal class. 

Typically, x is an "observable" random variable or a test statistic that is obtained at the output of a 

demodulator or some other signal processor. Therefore, p(x) is the pdf of the received signal x, 



 

yielding the test statistic over the entire space of signal classes. In the above equation, for a 

particular observation, p(x) is a scaling factor since it is obtained by averaging over all the classes 

in the space. Lower case p is used to designate the pdf of a continuous-valued random variable, 

and upper case P is used to designate probability (a priori and APP). 



Module-II: MODULATION & CODING TRADE OFFS 

GOALS OF THE COMMUNICATIONS SYSTEM DESIGNER 

 

System trade-offs are fundamental to all digital communication designs. The goals of the 

designer may include any of the following (1) to maximize transmission bit rate R; (2) to 

minimize probability of bit error PB; (3) to minimize required power, or equivalently, to 

minimize required bit energy to noise power spectral density Eb/N0; (4) to minimize required 

system bandwidth W; (5) to maximize system utilization, that is, to provide reliable service for 

a maximum number of users with minimum delay and with maximum resistance to 

interference; and (6) to minimize system complexity, computational load, and system cost. A 

system designer may seek to achieve all these goals simultaneously. However, goals 1 and 2 

are clearly in conflict with goals 3 and 4; they call for simultaneously maximizing R, while 

minimizing PB, Eb/N0, and W. There are several constraints and theoretical limitations that 

necessitate the trading off of any one system requirement with each of the others: 

 

The Nyquist theoretical minimum bandwidth requirement 

 

The Shannon-Hartley capacity theorem (and the Shannon limit) 

 

Government regulations (e.g., frequency allocations) 

 

Technological limitations (e.g., state-of-the-art components) 

 

Other system requirements (e.g., satellite orbits) 

 

Some of the realizable modulation and coding trade-offs can best be viewed as a change in 

operating point on one of two performance planes. These planes will be referred to as the error 

probability plane and the bandwidth efficiency plane, and they are described in the following 

sections. 

 

ERROR PROBABILITY PLANE 

 

Figure illustrates the family of PB versus Eb/NO curves for the coherent detection of orthogonal 

signaling (Fig. a) and multiple phase signaling (Fig b). The modulator uses one of its M = 2k 

waveforms to represent each k-bit sequence, where M is the size of the symbol set. Figure a 

illustrates the potential bit error improvement with orthogonal signaling as k (or M) is 

increased. For orthogonal signal sets, such as orthogonal frequency shift keying (FSK) 

modulation, increasing the size of the symbol set can provide an improvement in PB, or a reduc 

tion in the Eb/No) required, at the cost of increased bandwidth. Figure b illustrates potential bit 

error degradation with nonorthogonal signaling as k (or M) increases. For nonorthogonal signal 

sets, such as multiple phase shift keying (MPSK) modulation, increasing the size of the symbol 

set can reduce the bandwidth requirement, but at the cost of a degraded PB’ or an increased 

Eh/No requirement. We shall refer to these families of curves (Figure a or b) as error probability 

performance curves, and to the plane on which they are plotted as an error probability plane. 

Such a plane describes the locus of operating points available for a particular type of 

modulation and coding. For a given system information rate, each curve in the plane can be 



associated with a different fixed minimum required bandwidth; therefore, the set of curves can 

be termed equibandwidth curves.  

As the curves move in the direction of the ordinate, the required transmission bandwidth 

increases; as the curves move in the opposite direction, the required bandwidth decreases. Once 

a modulation and coding scheme and an available Eb/No are determined, system operation is 

characterized by a particular point in the error probability plane. Possible trade-offs can be 

viewed as changes in the operating point on one of the curves or as changes in the operating 

point from one curve to another curve of the family. These trade-offs are seen in Figure a and 

b as changes in the system operating point in the direction shown by the arrows. 

Movement of the operating point along line 1, between points a and b, can be viewed as trading 

off between PB and Eb/No performance (with W fixed). Similarly, movement along line 2, 

between points c and d, is seen as trading PB versus W (with Eb/No fixed). Finally, movement 

along line 3, between points e and f, illustrates trading W versus Eb/No (with B fixed). 

Movement along line 1 is effected by increasing or decreasing the available Eh/No. This can 

be achieved, for example, by increasing transmitter power, which means that the trade-off 

might be accomplished simply by “turning a knob,” even after the system is configured. 

However, the other trade-offs (movement along line 2 or line 3) involve some changes in the 

system modulation or coding scheme, and therefore need to be accomplished during the system 

design phase. The advent of software radios will even allow changes to a system’s modulation 

and coding by programmable means. 

 

 

 

 



 
 

 

 

 

 

 



 

 

NYQUIST MINIMUM BANDWIDTH 

 

Every realizable system having some nonideal filtering will suffer from intersymbol 

interference (lSl)—the tail of one pulse spilling over into adjacent symbol intervals 

so as to interfere with correct detection. Nyquist showed that the theoretical 

minimum bandwidth (Nyquist bandwidth) needed for the baseband transmission of 

R symbols per second without 1ST is Rs/2 hertz. This is a basic theoretical con 

straint, limiting the designer’s goal to expend as little bandwidth as possible. In practice, the 

Nyquist minimum bandwidth is expanded by about 

10% to 40%, because of the constraints of real filters. Thus, typical baseband digi 

tal communication throughput is reduced from the ideal 2 symbols/s/Hz to the 

range of about 1.8 to 1.4 symbols/s/Hz. From its set of M symbols, the modulation 

or coding system assigns to each symbol a k-bit meaning, where M = 2k Thus, the 

number of bits per symbol can be expressed as k = log2 M, and the data rate or bit 

rate R must be k times faster than the symbol rate R, as expressed by the basic 

relationship 

 

 

For signaling at a fixed symbol rate, Equation shows that, as k is increased, the 

data rate R is increased. In the case of MPSK, increasing k, thereby results in an in 

creased bandwidth efficiency R/W measured in bits/s/Hz. For example, movement 

along line 3, from point e to point fin Figure b, represents trading Eb/No for a re 

duced bandwidth requirement. In other words, with the same system bandwidth, one 

can transmit MPSK signals at an increased date rate and hence at an increased R/W. 

 

SHANNON-HARTLEY CAPACITY THEOREM 

 

Shannon showed that the system capacity C of a channel perturbed by additive 

white Gaussian noise (AWGN) is a function of the average received signal power 

S, the average noise power N, and the bandwidth W. The capacity relationship 

(Shannon—Hartley theorem) can he stated as 

 

 

When W is in hertz and the logarithm is taken to the base 2. as shown. the capacity 

is given in bits/s. It is theoretically possible to transmit information over such a 

channel at any rate R. where R ≤ C, with an arbitrarily small error probability by 

using a sufficiently complicated coding scheme. For an information rate R> C. it is 

not possible to find a code that can achieve an arbitrarily small error probability. 



Shannon’s work showed that the values of S, N, and W set a limit on transmission. 

rate, not on error probability. Shannon used the above equation to graphically ex 

hibit a hound for the achievable performance of practical systems. This plot, shown 

in Figure, gives the normalized channel capacity C/W in bits/s/Hz as a function 

of the channel signal-to-noise ratio (SNR). A related plot, shown in Figure in 

dicates the normalized channel bandwidth W/C in Hz/bits/s as a function of SNR in 

the channel. Figure is sometimes used to illustrate the power-bandwidth trade 

off inherent in the ideal channel. However, it is not a pure trade-off because the 

detected noise power is proportional to bandwidth: 

N=N0W 

Substituting and rearranging the new equation becomes: 

 

 

Fig. Normalized channel capacity vs channel SNR. 

 



 

Fig. Normalized channel bandwidth vs channel SNR. 

For the case where channel capacity is equal to transmission bit rate, R=C, we can write 

  

Hence the original equation can be modified as 

 

 

 



 

Fig. Normalized channel bandwidth vs channel Eb/N0. 

 

SHANNON LIMIT 

 

 

This value of Eb/N0 is called the Shannon limit. On Figure the Shannon limit is the PB, versus 

Eb/N0 curve corresponding to k  ∞. The curve is discontinuous going from a value of PB =1/2 

to PB=0 at Eb/N0=—l.6 dB. It is not possible in practice to reach the Shannon limit, because as 



k increases without bound, the bandwidth requirement and the implementation complexity 

increases without bound. Shannon’s work provided a theoretical proof for the existence of 

codes that could improve the PB performance or reduce the Eb/N0 required, from the levels of 

the uncoded binary modulation schemes to levels approaching the limiting curve. For a bit error 

probability of 10-5 binary phase-shift-keying (13l’SK) modulation requires 

an Eb/N0 of 9.6 dB (the optimum uncoded binary modulation). Therefore for this 

case, Shannon’s work promised the existence of a theoretical performance improvement of 

11.2 dB over the performance of optimum uncoded binary modulation, through the use of 

coding techniques. Today, most of that promised improvement (as much as 10 dB) is realizable 

with turbo codes. Optimum system design can best he described as a ‘‘arch for rational 

compromises or trade-offs among the various constraints and conflicting goals. The modulation 

and coding trade-off, that is, the selection of modulation and coding techniques to 

make the best use of transmitter power and channel bandwidth, is important, since 

there are strong incentives to reduce the cost of generating power and to conserve 

the radio spectrum. 

BANDWIDTH-EFFICIENCY PLANE 

Using Equation above, we can plot normalized channel bandwidth W/C in Hz/bits/s 

versus EB/N0 as shown in Figure above. Here, with the abscissa taken as EB/N0, We 

see the true power-bandwidth trade-off at work. It can be shown that well- 

designed systems tend to operate near the “knee” of this power-bandwidth trade 

off curve for the ideal (R = C) channel. Actual systems are frequently within 10 dB 

or less of the performance of the ideal. The existence of the knee means that systems seeking 

to reduce the channel bandwidth they occupy or to reduce the signal 

power they require must make an increasingly unfavorable exchange in the other 

parameter. For example, from Figure, an ideal system operating at an EB/N0 of 

1.8 dB and using a normalized bandwidth of 0.5 Hz/bits/s would have to increase 

EB/N0 to 20 dB to reduce the bandwidth occupancy to 0.1 Hz/bits/s. Trade-offs in 

the other direction are similarly inequitable. 

Using Equation above we can also plot C/W versus Eb/No. This relationship is 

shown plotted on the R/W versus Eb/No plane in Figure. We shall denote this 

plane as the bandwidth-efficiency plane. The ordinate R/W is a measure of how 

much data can he communicated in a specified bandwidth within a given time: it 

therefore reflects how efficiently the bandwidth resource is utilized. The abscissa is 

Eb/No, in units of decibels. For the case in which R = C in Figure, the curve represents a 

boundary that separates a region characterizing practical communication 

systems from a region where such communication systems are not theoretically 

possible. Like Figure, the bandwidth-efficiency plane in Figure sets the limiting performance 

that can be achieved by practical systems. Since the abscissa in 

Figure is Eb/No rather than SNR. Figure is more useful for comparing digital 

communication modulation and coding trade-offs than is Figure. Note that Fig. 

illustrates bandwidth efficiency versus Eb/No for single-carrier systems. For 

multiple-carrier systems, bandwìdth efficiency is also a function of carrier spacing  

(which depends on the modulation type). The trade-off becomes how closely the carriers can 

be spaced without suffering an unacceptable amount of adjacent channel interference (ACI). 



 

Fig. Bandwidth-efficiency Plane. 

MODULATION AND CODING TRADE-OFFS 

 

Figure below is useful in pointing out analogies between the two performance planes. 

The error-probability plane of earlier Figure and the bandwidth-efficiency plane of Figure. 

Figure a and b represent the same planes respectively. They have been redrawn as symmetrical 

by choosing appropriate scales. In each case the arrows and their labels describe the general 

effect of moving an operating point in the direction of the arrow by means of appropriate 

modulation and coding techniques. The notations G, C, and F stand for the trade-off 

considerations “Gained or achieved,” “Cost or expended” and “Fixed or unchanged” 

respectively. The parameters being traded are PB, W, R/W, and P (power or S/N). Just as 

the movement of an operating point toward the Shannon limit in Figure can 

 



 

Fig. Modulation/Coding trade-off. a) Error probability plane, b) Bandwidth efficiency plane. 

achieve improved PB or reduced required transmitter power at the cost of 

bandwidth, so too movement toward the capacity boundary in Figure can improve bandwidth 

efficiency at the cost of increased required power or degraded PB . Most often these trade-offs 

are examined with a fixed PB, in mind. Therefore, the most interesting arrows are those 

having bit error probability (marked F: PB). There are tour such arrows on Figure,  

two on the error probability plane and two on the bandwidth-effieiencs plane. Arrows marked 

with the same pattern indicate correspondence between the two 

planes. System operation can he characterized by either of these two planes. 

The planes represent two ways of looking at some of the key system parameters:  

each plane highlights slightly different aspects of the overall design problem. The 

error probability plane tends to be most useful with power–limited systems whereas 

when we move from curve to curve, the bandwidth requirements are only inferred. 

while the bit error probability is clearly displayed. The bandwidth-efficiency plane 

is generally more useful for examining bandwidth-limited systems, here, as we move 

from curve to curve, the bit-error probability is only inferred, but the bandwidth 

requirements are explicit. The two system trade-oft planes, error probability and bandwidth 

efficiency. 

 

DEFINING, DESIGNING, AND EVALUATING DIGITAL COMMUNICATION 

SYSTEMS 

 

The criteria for choosing modulation and coding schemes, based on whether a system is 

bandwidth limited or power limited are reviewed for several system examples.  

The design of any digital communication system begins with a description of 

the channel (received power, available bandwidth, noise statistics and other impairments, such 

as fading), and a definition of the system requirements (data rate and 

error performance). Given the channel description, we need to determine design 

choices that best match the channel and meet the performance requirements. An 



orderly set of transformations and computations has evolved to aid in characterizing a system’s 

performance. Once this approach is understood, it can serve as the 

format for evaluating most communication systems. In this section, we deal with 

real-time communication systems, where the term coded (or uncoded) refers to the 

presence (or absence) of error-correction coding schemes involving the use of 

redundant bits and expanded bandwidth. 

The details on examples used in this context can be referred from the textbook. 

Two primary communications resources are the received power and the available transmission 

bandwidth. In many communication systems, one of these resources may be more precious 

than the other, and hence most systems can be classified as either bandwidth limited or power 

limited. In bandwidth-limited systems, spectrally efficient modulation techniques can be used 

to save bandwidth at the expense of power whereas in power-limited systems, power-efficient 

modulation techniques can be used to save power at the expense of bandwidth. In both 

bandwidth-and power-limited systems. error- correction coding (often called 

channel coding) can be used to save power or to improve error performance at the 

expense of bandwidth. Trellis-coded modulation (TCM) schemes have been used 

to improve the error performance of bandwidth-limited channels without any 

increase in bandwidth. 

BANDWIDTH-EFFICIENT MODULATION 

 

The primary objective of spectrally efficient modulation techniques is to maximize 

bandwidth efficiency. The increasing demand for digital transmission channels has 

led to the investigation of spectrally efficient modulation techniques to 

maximize bandwidth efficiency and thus help ameliorate the spectral congestion 

problem. 

Some systems have additional modulation requirements besides spectral efficiency. For 

example, satellite systems with highly nonlinear transponders require a constant envelope 

modulation. This is because the nonlinear transponder produces 

extraneous sidebands when passing a signal with amplitude fluctuations (due to a 

mechanism called AM-to-PM conversion). These sidebands deprive the information signals of 

sonic of their portion of transponder power, and also can interfere 

with nearby channels (adjacent channel interference) or with other communication 

systems (co-channel interference). Offset QPSK (OOPSK) and Minimum shift keying (MSK) 

are two examples of constant envelope modulation schemes that are attractive for systems using 

nonlinear transponders. 

Details on QPSK and OQPSK can be referred from the textbook. 

 

 

 

 



MODULATION AND CODING FOR BANDLIMITED CHANNELS 

 

Recently, however, there has been considerable interest in techniques that can provide coding 

gain for bandlimited channels. The motivation is to enable the reliable transmission of higher 

data rates over voice-grade channels. The potential gain is about 3 bits/symbol (for a given 

signal-to-noise ratio) or, alternatively, a given error performance could be achieved with a 

power savings of 9 dB. 

The greatest interest is in the following three separate coding research areas:  

 

1. Optimum signal constellation boundaries (choosing a closely packed signal subset from any 

    regular array or lattice of candidate points) 

 

2. Higher-density lattice structures (adding improvement to the signal subset choice by starting  

   with the densest possible lattice for the space) 

 

3. Trellis-coded modulation (combined modulation and coding techniques for obtaining coding  

   gain for bandlimited channels)  

The first two areas are not ‘true” error control coding schemes. By true error control coding” 

we refer to those techniques that employ some structured redundancy to improve the error 

performance. Only the third technique, trellis-coded modulation, invokes redundancy. An 

example on commercial telephone modems is given in the text book. 

 

TRELLIS-CODED MODULATION 

 

The error-correction codes when used in real-time communication systems, provide 

improvements in error performance at the cost of bandwidth expansion. For both block codes 

and convolutional codes, transforming each input data k-tuple into a larger output codeword n-

tuple requires additional transmission bandwidth. Therefore, in the past coding generally was 

not popular for bandlimited channels such as telephone channels, where signal bandwidth 

expansion is not practical. Since about 1984, however, there has been active interest in 

combined modulation and coding schemes, called trellis-coded modulation (TCM), that 

achieve error-performance improvements without expansion of signal 

bandwidth. TCM schemes use redundant nonbinary modulation in combination 

with a finite—state machine (the encoder). What is a finite-state machine, and what is 

meant by its state? Finite-state machine is the general name given to a device that 

has a memory of past signals; the adjective finite refers to the fact that there are 

only a finite number of unique states that the machine can encounter. What is 

meant by the state of a finite—state machine? In the most general sense, the state 

consists of the smallest amount of information that together with a current input to 

the machine, can predict the output of the machine. The state provides some 



knowledge of the past signaling events and the restricted set of possible outputs in 

the future. A future state is restricted by the past state.  

For each symbol interval, a TCM finite-state encoder selects one of a set of 

waveforms, thereby generating a sequence of coded waveforms to be transmitted. 

The noisy received signals are detected and decoded by a soft-decision maximum- 

likelihood detector/decoder. In conventional systems involving modulation and 

coding, it is common to separately describe and implement the detector and the decoder. With 

TCM systems, however, these functions must be treated jointly. Coding gain can he achieved 

without sacrificing data rate or without increasing either 

bandwidth or power. At first, it may seem that this statement violates sonic 

basic principle of power-bandwidth, error-probability trade-off. However, there is 

still a trade-off involved, since TCM achieves coding gain at the expense of decoder 

complexity. 

TCM combines a multilevel/phase modulation signaling set with a trellis coding scheme. The 

term “trellis-coding scheme” refers to any code system that has memory (a finite stale 

machine), such as a convolutional code. Multilevel/phase signals have constellations involving 

multiple amplitudes, multiple phases, or combinations of multiple amp1itudes and multiple 

phases. In other words, a TCM signal is best represented by any signal set (greater than binary) 

whose vector representations can he depicted on a plane. A trellis-coding scheme is one that 

can be characterized with a state-transition (trellis) diagram, similar to the trellis diagrams 

describing convolutional codes. Coding gains can he realized 

with block codes or trellis codes, but only trellis codes will he considered because 

the availability of the Viterbi decoding algorithm makes trellis decoding simple and 

efficient. Ungerboeck showed that in the presence of AWGN, TCM schemes can 

yield net coding gains of about 3-dB relative to uncoded systems with relative ease, 

while gains of about 6-dB can he achieved with greater complexity. More on TCM can be 

referred from the text book. 

 



 

 

MODULE III: Introduction to Security 

 INTRODUCTION: 

(i) What is to be protected? 

(ii) What are the likely pitfalls? 

(iii) What can happen if we don’t set up the right security policies, framework and technology 

implementations? 

 NEED FOR SECURITY/ SECURITY GOALS: 

(i) Digitization: Information storage is nowadays electronic, hence, it becomes crucial. 

(ii) Confidentiality: information hidden from unauthorized access. 

(iii) Integrity: information protected from unauthorized change. 

(iv) Availability: information available to an authorized entity when needed. 

 SECURITY APPROACHES: 

Trusted system: A computer system that can be trusted to a specified extent to enforce a 

specified security policy. 

(a) Earlier they were the primary interest of the military. 

(b) Banking 

(c) Finance 

 SECURITY MODELS: 

(i) No security: Simplest case to implement no security at all. 

(ii) Security through Obscurity: System is aloof or hidden from the world. 

(iii) Host security: Security for each host is enforced individually. 

(iv) Network Security: Control of network access to various hosts and their services rather than 

individual host. 

 ASPECTS OF GOOD SECURITY POLICY OR SECURITY MANAGEMENT 

PRACTICES: 

(i) Affordability: cost effectiveness. 

(ii) Functionality: mechanism of providing security. 

(iii) Cultural Issues: policy holding people’s expectations, working style and beliefs. 

(iv) Legality: policy holding legal requirements. 

 POINTS TO BE ENSURED AFTER SECURITY POLICY IS IMPLEMENTED: 

(i) Explanation of the policy to all concerned. 



 

(ii) Outline everybody’s responsibilities. 

(iii) Use simple language in all communications. 

(iv) Accountability should be established. 

(v) Provide for exceptions and periodic reviews. 

 PRINCIPLES OF SECURITY: 

(i) Confidentiality: Only the sender and the intended recipient(s) should be able to access the 

contents of the message. 

(ii) Authentication: It helps in establishing proof of identities. It ensures that the origin of the 

message is correctly identified. 

(iii) Integrity: Content of the message is to be protected. 

(iv) Non repudiation: Denial of sent message is to be restricted. 

(v) Access Control: Who should be able to access what? 

(vi) Availability: Resources should be available to authorized parties at all times. 

(vii) Ethical and Legal issues: individual’s right to privacy versus the greater good of a larger 

entity (e.g. company, society etc.). 

 ETHICAL ISSUES:  

(a) Privacy:  right of individual to control personal information. 

(b) Accuracy: responsibility for authenticity, fidelity and accuracy of information. 

(c) Property: Find out the owner of the information and control access. 

(d) Accessibility: deals with the issue of what information does an organization have the right 

to collect and the measures to safeguard against any unforeseen eventualities. 

 LEGAL ISSUES: 

(a) International: International Cybercrime treaty 

(b) Federal: FERPA, HIPAA, DMCA 

(c) State: UCITA, SB 1386 

(d) Organization: computer use policy 

TYPES OF ATTACKS: 

PRINCIPLES ATTACKS ON SECURITY 

Confidentiality Interception 

Integrity Modification 

Authenticity Fabrication 

Non repudiation ---- 

Availability Interruption 

Access Control ---- 



 

 

ANOTHER ASPECT OF ATTACKS: 

(i) Application Level Attack 

(ii) Network Level Attack 

MECHANISM FOR ABOVE ATTACKS: 

(i) Virus 

(ii) Worm 

(iii) Trojan Horse 

(iv) Applets & Active X controls 

(v) Cookies 

(vi) JavaScript 

 

 CRYPTOGRAPHIC TECHNIQUES 

CRYPTOGRAPHY: 

It is the art of achieving security by encoding messages to make them non-readable. 

CRYPTANALYSIS: 

It is the technique of decoding messages from a non-readable format back to readable format 

without knowing how they were initially converted from readable format to non-readable 

format. 

CRYPTOLOGY: 

It is a combination of cryptography and cryptanalysis. 

 PLAIN TEXT AND CIPHER TEXT: 

      Plain Text Cipher Text 

    OR 

Attacks On 
security

Active 

Modification

Replay 
attacks

Alterations

Interruption Fabrication

Passive

Release of 
message 
contents

Traffic 
Analysis

CRYPTOGRAPHY 



 

      Clear Text 

Plain Text: Message readable by anyone that has access. 

Cipher Text: Message readable by only authorized person. 

 

SUBSTITUTION: Changing one character with another without change in position. 

TRANSPOSITION: Order or position of characters changes. 

PRODUCT CIPHER: When both substitution and transposition are applied together it’s called 

product cipher. 

 SUBSTITUTION TECHNIQUES: 

(i) Caesar Cipher: Replace each alphabet with an alphabet that is 3 places down from it. 

(ii) Modified Caesar Cipher: Replace each alphabet with any alphabet and follow the same rule 

for other alphabets. 

(iii) Monoalphabetic cipher: Replace each alphabet with a random alphabet. 

(iv) Homophonic cipher: Replace each alphabet with another random alphabet chosen from a 

set of alphabets. 

(v) Polygram cipher: Replace block of alphabets with another block. 

(vi) Polyalphabetic cipher: Replace alphabets with keys. 

 TRANSPOSITION TECHNIQUES: 

(i) Rail fence:  

1. Write down the plain text message as a sequence of diagonals.  

2. Read the plain text written in step-1 as a sequence of rows. 

(ii) Columnar:  

CRYPTOGRAPHY

SUBSTITUTION

CAESAR

MODIFIED CAESAR

MONOALPHABETIC

HOMOPHONIC

POLYGRAM

POLYALPHABETIC

TRANSPOSITION

RAIL FENCE TECHNIQUE

COLUMNAR

COLUMNAR WITH MULTIPLE 
ROUNDS

VERNAM/ONE-TIME PAD

BOOK/RUNNING KEY



 

1. Write the plain text message row by row in a rectangle of a predefined size. 

 2. Read the message column by column in random order. 

(iii) Columnar with multiple rounds :  

1. Write the plain text message row by row in a rectangle of a predefined size. 

2. Read the message column by column in random order. 

3. Message obtained for CT of round -1. 

4. Repeat steps 1-3 multiple times. 

(iv) One time pad or Vernam cipher:  

1. Treat each PT alphabet as a number in an increasing sequence (A=0, B=1...Z=25). 

2. Do the same for each character of the input CT. 

3. Add each number corresponding the PT alphabet to the corresponding input cipher text 

alphabet number. 

4. If the sum thus produced is greater than 26, subtract 26 from it. 

5. Translate each no. of the sum back to the corresponding alphabet. This gives the output CT. 

(v) Book cipher or running key cipher:  

1. Some portion of text from book is used, that serves the purpose of one-time pad. 

2. Add the one-time pad to the PT to generate CT as in Vernam cipher. 

 

 

 

ENCRYPTION & DECRYPTION: 

 

 

    

Plain Text                          Encrypt                     Cipher Text 

 

  

   

Cipher Text                        Decrypt                      Plain Text   

Encryption transforms a plain-text message into cipher text, whereas decryption transforms a 

cipher text message back into plain text. 

Hello John Ifmmp Kpio 

Ifmmp Kpio 

 

Hello John 



 

        Sender                                                                                                   Receiver 

 

   

     Plain Text                                                                                                 Plain Text 

     

  

 

 

 

      

 

    Cipher Text Cipher Text 

  

 

 

Every encryption and decryption process has two aspects: the algorithm and the key used for 

encryption and decryption i.e. 

 

 

 

                                      INPUTS TO ENCRYPTION & DECRYPTION 

 

Algorithm                                                                                                                          Key 

Example: 

 

   

 

In general, the algorithm used for encryption and decryption processes is usually known to 

everybody. However, it is the key used for encryption and decryption that makes the process 

of cryptography secure. 

SYMMETRIC & ASYMMETRIC KEY CRYPTOGRAPHY 

8 7 1

Hello John Hello John 

Ifmmp Kpio Ifmmp Kpio 

 

INTERNET 

LOCK 

KEY 

ALGORITHM 

 



 

INPUTS TO ENCRYPTION & DECRYPTION 

 

Symmetric Key Cryptography                                                           Asymmetric Key Cryptography 

Symmetric key cryptography involves the use of same key for encryption and decryption 

whereas Asymmetric key cryptography involves the use of one key for encryption and another 

different key for decryption. 

 PROBLEM OF KEY DISTRIBUTION: 

(i) For n persons, the number of lock & key pairs is [n*(n-1)]/2 – very large. 

(ii) Record of lock-and-key pair to be maintained by a trustworthy party; duplicate key to be 

issued in case of missing key which is a time consuming process. 

 DIFFIE-HELLMAN KEY-EXCHANGE/AGREEMENT ALGORITHM: 

Steps: 

1. P & Q agree on two large prime numbers n & g. These need not be kept secret i.e. P & Q 

can use an insecure channel to agree on them. 

2. P chooses another large random number x and calculates A such that: 

    A = gX mod n. 

3. P sends the number A to Q. 

4. Q independently chooses another large random integer y and calculates B such that: 

     B = gy mod n. 

5. Q sends the number B to P. 

6. P now computes the secret key K1 as follows: 

    K1 = Bx mod n. 

7. Q now computes the secret key K2 as follows: 

    K2 = Ay mod n. 

 

 

 

 

 

 

 

 

P Q 

A = gx mod n B = gy mod n 

A  

 

B  

K1 = Bx mod n K2 = Ay mod n 

P & Q agree on two prime numbers, n & g 

1 

2 4

5 3 

6 7 



 

 

 

 

  

 

 

 

 PROBLEMS WITH DIFFIE-HELLMAN ALGORITHM: 

(i) The algorithm suffers from man-in-the-middle attack/ bucket-brigade attack. 

(ii) The name bucket-brigade comes from the way firefighters of yesteryears formed a line 

between the fire & water source, and passed full buckets towards the fire & the empty buckets 

back. 

(iii) P wants to communicate with Q securely& sends n, g to Q. 

(iv) Attacker T listens to the conversation between P & Q; picks up n, g and forwards n, g as 

they were to Q. 

(v) P, T and Q all select random numbers x & y. 

(vi) Based on these values all calculate A & B. 

(vii) T intercepts A sent by P and sends his own A to Q instead. 

(viii) T intercepts B sent by Q and sends his own B to P instead. 

(ix) P calculates K1, Q calculates K2 and T calculates both K1 and K2. 

(x) Thus T communicates with P securely using shared symmetric key & on the other hand he 

communicates with Q securely using a different shared symmetric key. Only then he receives 

messages from P, views/manipulates them & forwards them to Q and vice-versa. P & Q will 

think that they are communicating with each other but T would be the man-in-the-middle. 

 PREVENTION OF MAN-IN-THE-MIDDLE ATTACK: 

--- This attack can be prevented if P & Q authenticate each other before beginning to exchange 

information which proves to P that Q is indeed Q & not someone else (e.g. T) posing as Q. 

Similarly Q can also get convinced that P is genuine as well. 

 ASYMMETRIC KEY OPERATION: 

(i) A & B do not jointly approach T for lock & key pair. Instead, B alone approaches T, obtains 

a lock and a key(K1) that can seal the lock, and sends the lock and key K1 to A. B tells A that 

A can use that lock and key to seal the box before sending the sealed box to B. 

(ii) B possesses a different but related key (K2) which is obtained by B from T along with the 

lock and key K1, only which can open the lock. 

As it turns out K1=K2=K thus becomes 

the shared symmetric key between P & Q 



 

(iii) It is guaranteed that no other key can open the lock. Since one key (K1) is used for locking 

& another for unlocking we call this scheme as Asymmetric Key operation. 

(iv) T is highly trustworthy & efficient agency by the government.   

(v) As K1is meant for locking & is available to the general public, it is called as public key. 

The other key K2 is strictly held by A as secret/private, thus it is called private key. 

(vi) Thus, for n number of users only n public keys & n private keys are required or in total 2n 

keys are required. 

 STEGANOGRAPHY: 

Steganography is a technique that facilitates hiding of a message that is to be kept secret inside 

other messages. This results in the concealment of the secret message itself. 

KEY RANGE & KEY SIZE: 

Key Size: (i) It is the measure of strength of a cryptographic key. 

                 (ii) It is measured in terms of bits & represented in binary number system. 

POSSIBLE TYPE OF ATTACKS 

 

 

 

 

 

 

 

 

 

 

1. Cipher-Text Only Attack: Here, the attacker doesn’t have any clue about the plain text. She 

has some or all of the cipher text. The attacker analyses the text at leisure to try & find out the 

original plain text. Based on the frequency of letters, the attacker makes an attempt to guess 

the plain text. The more text available to the attacker, the more are the chances of a successful 

attack. 

2. Known Plain-Text Attack: In this case, the attacker knows some pairs of plain text & 

corresponding cipher text for those pairs. Using this information, the attacker tries to find other 

pairs & therefore know more & more of the plain text. 

3. Chosen Plain-Text Attack: Here, the attacker selects a plain-text block  and tries to look 

for encryption of the same in the cipher text. The attacker is able to choose the messages to 

TYPES OF ATTACKS 

Cipher Text 

Only 

Known Plain 

Text 

Chosen Plain 

Text 

Chosen Cipher Text 

 

Chosen Text 

 



 

encrypt. Based on this, the attacker intentionally picks patterns of cipher text that results in 

obtaining more information about the key. 

4. Chosen Cipher-Text Attack: Here, the attacker knows the cipher text to be decrypted, the 

encryption algorithm that was used to produce this cipher text, and the corresponding plain text 

block. The attacker’s job is to discover the key used for encryption. 

5. Chosen-Text Attack: It is a combination of chosen plain-text attack and chosen cipher-text 

attack. 

 CASE STUDY:  DENIAL OF SERVICE (DOS) ATTACKS  

(i) Purpose of DOS: To flood/overhaul a network so as to deny the authentic users services of 

the network. 

(ii) Mechanism: A typical mechanism is with the help of SYN requests. On the internet, a client 

& server communicate using TCP/IP protocol. This involves the creation of a TCP connection 

between the client & the server, before they can exchange any data. 

(a) The client sends a SYN request to the server. A SYN request indicates to the server that the 

client is requesting for a TCP connection with it. 

(b) The server responds back to the client with an acknowledgement, which is technically called 

as SYN ACK. 

(c) The client is then expected to acknowledge the server’s SYN ACK. 

--- Attacker performs step (a), server performs step (b) but the attacker doesn’t perform 

step(c).The client sends many such SYN requests to the same server & doesn’t perform step(c) 

in any of the requests. Thus a lot of incomplete SYN requests could bring the server to a halt. 

--- In step (a) the attacker forges the source address i.e. the attacker puts the source address as 

the address of a non-existing client. Therefore, when the server executes step (b), the SYN 

ACK never reaches any client at all, fooling the server. 

--- The attacker launches a Distributed DOS attack. Here the attacker sends many SYN requests 

to the server from many physically different client computers. Thus, even if the server detects 

DOS attack, it cannot do much by blocking SYN requests coming from a particular IP address-

there are many such requests from a variety of forged clients. 

(iii) Prevention: 

(a) Investigate the incoming packets and look for a particular pattern. If such a pattern emerges, 

then try blocking incoming packets from the concerned IP addresses. 

(b) Configure the services offered by a particular application so that it never accepts more than 

a particular number of requests in a specified time interval. 

(c) Blocking a particular IP address, port number or a combination of such factors can also 

prevent DOS. 



 

(d) As a precaution, have a backup of the firewall and the servers ready. If the main machine 

is compromised, it should be quickly brought down & the backup can take its place until a 

proper clean-up is performed. 

Computer-based symmetric key cryptographic key algorithm include DES (and its variations), 

IDEA, RC5 and Blowfish. 

 ALGORITHM TYPES & MODES 

Algorithm Type: The size of plain text to be encrypted in each step of the algorithm. 

Algorithm Mode: It defines the details of the cryptographic algorithm, once the type is defined. 

ALGORITHM TYPES 

Cipher text from plain text can be done in two basic ways as: 

 

 

 

 

 

(i) Stream Ciphers: The plain text is encrypted one bit at a time and decrypted one bit at a 

time. It relies only on confusion. 

(ii) Block Ciphers: The plain text is encrypted one block of text at a time and decrypted a 

block at a time. It uses both confusion and diffusion. 

(iii) Grouping: It means how many times the plain text is scrambled in various ways to 

generate the cipher text. 

(iv) Confusion: It is a technique of ensuring that a cipher text gives no clue about the original 

plain text. It is achieved by substitution techniques. 

(v) Diffusion: It increases the redundancy of the plain text by spreading it across rows and 

columns. It is achieved by transposition/permutation techniques. 

 ALGORITHM MODES 

An algorithm mode is combination of series of basic algorithm steps on block cipher, and 

some kind of feedback from the previous step. 

 

 

 

 

 

 

ALGORITHM TYPES 

STREAM CIPHERS BLOCK CIPHERS 



 

 

  

 

 

 

 

           

                                                                     

                         

 

      These two modes work on block ciphers   These work on block 

                                                                                                           ciphers as stream ciphers 

 

(i) Electronic Code Book (ECB) Mode:  

(a) It is the simplest mode of operation. 

(b) Plain text message is divided into blocks of 64 bits each. 

(c) Each such block is then encrypted independently of the other blocks. 

(d) For all blocks in a message, the same key is used for encryption. 

 

          Plain-text block 1                         Plain-text block 2                         Plain-text block n 

 

Key                                           Key                                    ...            Key 

 

 Cipher-text block 1               Cipher-text block 2             Cipher-text block n

  

 

 

 

 

 

 

  

ALGORITHM MODES 

ELECTRONIC 

CODE BOOK 

(ECB) 

CIPHER BLOCK 

CHAINING 

(CBC) 

CIPHER 

FEEDBACK 

(CFB) 

OUTPUT 

FEEDBACK 

(OFB) 

Encrypt Encrypt Encrypt 

STEP 1 STEP 2 STEP n 



 

               Cipher-text block 1            Cipher-text block 2                   Cipher-text block n 

 

Key                                                Key                                       ..           Key 

 

 Plain-text block 1                           Plain-text block 2           Plain-text block n 

 

 

 

(ii) Cipher Block Chaining (CBC) Mode: 

          Plain-text block 1                 Plain-text block 2                                  Plain-text block n 

              XOR  XOR   ...          XOR 

Key                                           Key                                                    Key 

 

 Cipher-text block 1          Cipher-text block 2             Cipher-text block n  

 

  

 

       Cipher-text block 1                   Cipher-text block 2                        Cipher-text block n 

 ... 

Key                                           Key                                                   Key 

         IV 

  

      

         

            Plain-text block 1                     Plain-text block 2               Plain-text block n

  

 

 

 

 

 

Decrypt Decrypt Decrypt 

STEP 1 STEP 2 STEP n 

Encrypt Encrypt Encrypt 

STEP 1 STEP 2 STEP n 

IV 

Encrypt Encrypt Encrypt 

STEP 1 STEP 2 STEP n 

XOR XOR XOR 



 

(iii) Cipher Feedback (CFB) Mode: 

 

                             

 ... 

Key                                            Key                                                  Key 

         

  

      

         

 

 

             Plain-text j bits                           Plain-text j bits                Plain-text j bits 

 

  

 

 

(iv) Output Feedback(OFB) Mode: 

 

 

                             

 ... 

Key                                            Key                                                  Key 

         

  

      

         

 

 

             Plain-text j bits                      Plain-text j bits                         Plain-text j bits  

 

  

Encrypt Encrypt Encrypt 

STEP 1 STEP 2 STEP n 

XOR XOR XOR 

IV 

(Shift Register) 

IV 

(Shift Register) 

IV 

(Shift Register) 

Take just 

leftmost 8 bits 

Take just 

leftmost 8 bits 

Take just 

leftmost 8 bits 

Cipher-text 

 j bits 

Cipher-text 

j bits 

Cipher-text 

j bits 

Encrypt Encrypt Encrypt 

STEP 1 STEP 2 STEP n 

XOR XOR XOR 

IV 

(Shift Register) 

IV 

(Shift Register) 

IV 

(Shift Register) 

Take just 

leftmost 8 bits 

Take just 

leftmost 8 bits 

Take just 

leftmost 8 bits 

Cipher-text 

 j bits 

Cipher-text 

j bits 

Cipher-text 

j bits 



 

(v) Counter (CTR) Mode: 

 

                 Counter                                   Counter + 1                                        Counter + n-1 

 ... 

Key                                            Key                                                  Key 

         

  

 

 

             

 

          Cipher-text block 1                      Cipher-text block 2                             Cipher-text block n  

 

 

                       Counter                             Counter + 1                                         Counter + n-1 

 ... 

Key                                            Key                                                   Key 

         

  

 

 

             

 

          Plain-text block 1                        Plain-text block 2                                Plain-text block n  

 

  

 

 

 

 

 

Encrypt Encrypt Encrypt 

STEP 1 STEP 2 STEP n 

XOR XOR XOR 

Plain-text 

 (P1) 

Plain-text  

(P2) 

Plain-text  

(Pn) 

Encrypt Encrypt Encrypt 

STEP 1 STEP 2 STEP n 

XOR XOR XOR 

Cipher-text 

 (C1) 

Cipher-text  

(C2) 

Cipher-text  

(Cn) 



 

ALGORITHM MODE DETAILS USAGE 

ELECTRONIC CODE 

BOOK (ECB) 

The same key independently 

encrypts blocks of text, 64 

bits at a time. 

Transmitting a single value 

in a secure fashion (e.g. 

password or key used for 

encryption). 

CIPHER BLOCK 

CHAINING (CBC) 

64 bits of cipher text from 

the previous step and 64 bits 

of plain text of the next step 

are XORed together 

Encrypting blocks of text 

Authentication. 

CIPHER FEEDBACK 

(CFB) 

K bits of randomized cipher 

text from the previous step 

and K bits of plain text of 

the next step are XORed 

together. 

Transmitting encrypted 

stream of data 

Authentication. 

OUTPUT FEEDBACK 

(OFB) 

Similar to CFB, except that 

the input to the encryption 

step is the preceding DES 

output. 

Transmitting encrypted 

stream of data. 

COUNTER (CTR) A counter and plain-text 

block are encrypted 

together, after which the 

counter is incremented. 

Block-oriented 

transmissions Applications 

needing high speed. 

 

FEATURE ECB CBC CFB OFB/Counter 

Security-related 

problems 

Plain text patterns 

are not hidden. 

Input to the block 

cipher is the same 

as the plain text, 

and is not 

randomized. 

Plain text is easy 

to manipulate, 

blocks of text can 

be removed, 

repeated, or 

exchanged. 

Plain-text 

blocks can be 

removed from 

the beginning 

and end of the 

message, and 

bits of the 1st 

block can be 

altered. 

Plain-text 

blocks can be 

removed from 

the beginning 

and end of the 

message, and 

bits of the 1st 

block can be 

altered. 

Plain text is easy 

to manipulate. 

Altering cipher 

text alters plain 

text directly. 

Security-related 

advantages 

The same key can 

be used for 

encrypting 

multiple 

messages. 

XOR of plain 

text with 

previous cipher-

text block hides 

the plain text. 

The same key 

can be used for 

encrypting 

multiple 

messages. 

Plain-text 

patterns are 

hidden. 

The same key 

can be used 

for encrypting 

multiple 

messages, by 

using 

different IV. 

Input to the 

block cipher 

is 

randomized. 

Plain-text 

patterns are 

hidden. 

The same key 

can be used for 

encrypting 

multiple 

messages, by 

using different 

IV. 

Input to the 

block cipher is 

randomized. 



 

Problems 

related to 

effectiveness 

Size of cipher text 

is more than the 

plain text size by 

one padding 

block. 

Pre-processing is 

not possible. 

Size of cipher 

text is more 

than the plain 

text size by one 

block. 

Pre-processing 

is not possible. 

Parallelism 

cannot be 

introduced in 

encryption. 

Size of cipher 

text is same 

as that of the 

plain text 

size. 

Parallelism 

cannot be 

introduced in 

encryption. 

Size of cipher 

text is same as 

that of the plain 

text size. 

Parallelism 

cannot be 

introduced 

(OFB only). 

 

 OVERVIEW OF SYMMETRIC KEY CRYPTOGRAPHY 

Symmetric key cryptography is referred to as Secret key cryptography or private key 

cryptography. Here only one key is used & the same key is used for both encryption & 

decryption of messages. 

DATA ENCRYPTION STANDARD (DES) 

 

 

DES WORKING MECHANISM: 

STEP-1: BASIC PRINCIPLES 

(i) DES is a block cipher. 

(ii) It encrypts data in blocks of 64 bits each i.e. 64 bits of plain text goes as input to DES which 

produces 64 bits of cipher text. 

(iii) The same algorithm & key are used for encryption & decryption with minor differences. 

CIPHER TEXT (64 BITS)

FINAL PERMUTATION (FP)

16 ROUNDS 16 ROUNDS 

LPT RPT

INITIAL PERMUTATION 
(IP)

PLAIN TEXT (64 BITS)
KEY 

TRANSFORMATION 

EXPANSION 

PERMUTATION 

S-BOX 

SUBSTITUTION 

P-BOX 

PERMUTATION 

XOR & SWAP 



 

(iv) The key length is 56 bits. 

(v) The initial key consists of 64 bits; however, before the DES process even starts, every 8th 

bit of the key is discarded to produce a 56-bit key i.e. bit positions 8,16,24,32,48,56 and 64 are 

discarded (before discarding, these bits can be used for parity checking to ensure that the key 

doesn’t contain any errors). 

STEP-2: INITIAL PERMUTATION (IP): 

(i) It happens only once & it happens before the 1st round. 

(ii) IP replaces the 1st bit of the original plain-text block with the 58th bit of the original plain-

text block, the 2nd bit with the 50th bit & so on as shown below: 

Bit position in the plain-text block To be overwritten with the contents of 

this bit position 

1 58 

2 50 

3 42 

... ... 

64 7 

(iii) After IP, the resultant 64 –bit permuted text block is divided into two half blocks. Each 

half block consists of 32 bits. The left block is called LPT & the right block is called RPT. 

(iv) 16 rounds are performed on these two blocks. 

STEP-3: ROUNDS: 

I. KEY TRANSFORMATION: 

(i) From the 56-bit key a 48-bit sub key is generated using a process called key transformation. 

(ii) For this, the 56-bit key is divided into two halves, each of 28-bits. 

(iii) These halves are circularly shifted left by one or two positions, depending on the round. 

(iv) For rounds 1,2,9 or 16 the shift is done by only one position whereas for other rounds the 

circular shift is done by two positions as shown below : 

 

Round 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 

 

16 

No. of 

key 

bits 

shifted 

 

1 

 

1 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

1 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

1 

After an appropriate shift, 48 of the 56 bits are selected. For selecting 48 of the 56 bits, the 

following table is used. 

14 17 11 24 1 5 3 28 15 6 21 10 

23 19 12 4 26 8 16 7 27 20 13 2 

41 52 31 37 47 55 30 40 51 45 33 48 

44 49 39 56 34 53 46 42 50 36 29 32 

 



 

For instance, after the shift, bit no. 14 moves into the 1st position, bit no. 17 moves into 2nd 

position & so on. Bit no. 18 is discarded like 7 others to reduce the 56-bit key to the 48-bit key. 

Since the key-transformation process involves permutation as well as selection of a 48-bit 

subset of the original 56-bit key, it is called compression permutation. 

Note: Because of the compression permutation technique, a different subset of key bits is used 

in each round. That makes DES more difficult to crack. 

II. EXPANSION PERMUTATION: 

(i) During expansion permutation, the RPT is expanded from 32 bits to 48 bits. Besides 

increasing the bit size from 32 to 48, the bits are permuted as well, hence the name expansion 

permutation which is done as follows: 

(a) The 32-bit RPT is divided into 8 blocks, with each block consisting of 4 bits. 

 

 

 

 

 

(b) Next each 4-bit block of the above step is then expanded to a corresponding 6-bit block, 

i.e. per 4-bit block, 2 more bits are added. These 2 bits are the repeated 1st & 4th bits of the 4-

bit block. The 2nd & 3rd bits are written down as they were in the input as shown in the figure 

below. 

  

 

 

 

 

 

(c) Then the expansion permutation process expands the 32-bit RPT to 48 bits. Now, the 48-

bit key is XORed with the 48-bit RPT and the resulting output is given to the next step. 

 

 

 

 

 

 

ORIGINAL RPT OF 32 BITS 

Block 1 (4 Bits) Block 2 (4 Bits) Block 8 (4 Bits) 

... 

1        2       3        4 

1     2       3      4       5      6 7      8       9       10     11   12 43  44    45      46     47     48 

29        30     31   32 5        6       7        8 

Input Block 1 (4 Bits) Input Block 2 (4 Bits) Input Block 8 (4 Bits) 

Ouput Block 1 (6 Bits) Ouput Block 2 (6 Bits) Ouput Block 8 (6 Bits) 

Key Transformation (Compress 

key from 56 bits to 48 bits) 

48-bit key XOR 48-bit RPT 

S-box Substitution 

Expansion Permutation (Expand 

RPT from 32 bits to 48 bits) 



 

 

III. S-BOX SUBSTITUTION:  

(i) It is the process that accepts 48-bit input from the XOR operation involving the compressed 

key and expanded RPT, and produces a 32-bit output using the substitution technique. The 

substitution is performed by 8 substitution boxes (also called S-boxes). 

(ii) Each 8 S-boxes has a 6-bit input and a 4-bit output. 

(iii) The 48-bit input block is divided into 8 sub-blocks (each containing 6 bits), and each sub-

block is given to an S-box. 

(iv) The S-box transforms the 6–bit input into a 4-bit output as shown in the figure below. 

 

 

 

 ..... 

 

 

 

 

 

 

 

 

IV. P-BOX PERMUTATION: 

(i) The output of S-box consists of 32 bits. 

(ii) These 32-bits are permuted using a P-box. This straightforward permutation mechanism 

involves simple permutation (i.e. replacement of each bit with another bit, as specified in the 

P-box table, without any expansion or compression). This is called P-box permutation. 

V. XOR AND SWAP: 

(i) The left half portion i.e. LPT is XORed with the output produced by P-box permutation. 

The result of this XOR operation becomes the new RPT. The old RPT becomes the new left 

half, in a process of swapping. 

STEP 4: FINAL PERMUTATION: 

(i) At the end of 16 rounds the final permutation is performed (only once). 

(ii) It is simple transposition & the output is the 64-bit encrypted block. 

48-bit input block 

6-bit sub-block 6-bit sub-block 6-bit sub-block 

S-box 1 S-box 2 S-box 8 

4-bit output 4-bit output 4-bit output 

32-bit output block 



 

DES Decryption: 

Its decryption is similar to encryption where the key positions are reversed for all the rounds. 

 VARIATIONS OF DES: 

I. DOUBLE DES: 

ENCRYPTION: 

 

 

 

 

(i) Double DES does what DES normally does only once. 

(ii) Double DES has two keys say K1 & K2. 

(iii) It 1st performs DES on the original plain text using K1 to get the encrypted text. It then 

again performs DES on the encrypted text but with the other key K2. The final output is the 

encryption of encrypted text (i.e. the original plain text encrypted twice with 2 different keys). 

DECRYPTION: 

 

 

 

 

 

(i) The decryption process follows the reverse order; the doubly encrypted cipher-text block is 

1st decrypted using the key K2 to produce the singly encrypted cipher text. This cipher-text 

block is then decrypted using the key K1 to obtain the original plain-text block. 

DRAWBACK: 

--- It suffers from meet-in-the-middle attack. 

Meet-in-the-middle attack:  

(i) In the 1st step, the cryptanalyst calculates the value of T or EK1(P) i.e. 1st encryption operation 

on plain-text block P. 

(ii) In the 2nd step, the cryptanalyst finds the value of T from the right-hand side DK2(C). 

(iii) The cryptanalyst creates a table of EK1(P) for all possible values of K1 and then performs 

DK2(C) for all possible values of K2; if he gets the same T for both encrypt with K1 and decrypt 

with K2 operations, he knows P,C,K1and K2. 

(iv) This attack is possible but requires a lot of memory. 

Original Plain 

Text 
Encrypt Cipher Text Encrypt Cipher Text 

K1 K2 

Cipher Text Decrypt Cipher Text Decrypt Original 

Plain Text 

K2 K1 



 

II. TRIPLE DES: 

It has two variations: 

(i) Triple DES with 2 keys 

 

 

 

 

 

 

(ii) Triple DES with 3 keys: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original 

Plain Text 
Encrypt 

Cipher Text 

1 

Cipher Text 

2 
Encrypt Encrypt 

Final Cipher 

Text  

K1 

K2 K3 

Original 

Plain Text 
Encrypt 

Cipher Text 

1 

Cipher Text 

2 
Decrypt Encrypt 

Final Cipher 

Text  

K1 

K2 K1 



 

 

IDEA : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT TRANSFORMATION

ROUND 8

ROUND 1

INPUT PLAIN TEXT(64 BITS)

OUTPUT CIPHER TEXT (64 BITS)

P1 (16 bits) P2 (16 bits) P3 (16 bits) P4 (16 bits) 

.... 

C1 (16 bits) C2 (16 bits) C3 (16 bits) C4 (16 bits) 

K1 

K6 

K7 

K12 

K43 

K48 

K49 

K52 

STEP 1: Multiply P1 & K1 

STEP 2: Add P2 & K2 

STEP 3: Add P3 & K3 

STEP 4: Multiply P4 & K4 

STEP 5: XOR STEP-1 & 

STEP-3  

STEP 6: XOR STEP-2 & 

STEP-4 K1 

STEP 7: Multiply STEP-5 

WITH K5 

STEP 8: ADD STEP-6 & 

STEP-7 

STEP 9: Multiply STEP-8 

WITH K6 

STEP 10: ADD STEP-7 

&STEP-9 

STEP 11: XOR STEP-1 & 

STEP-9 

STEP 12: XOR STEP-3 & 

STEP-9 

STEP 13: XOR STEP-2 & 

STEP-10 

STEP 14: XOR STEP-4 

&STEP-10 



 

IDEA WORKING MECHANISM: 

STEP-1: BASIC PRINCIPLES: 

(i) IDEA is a block cipher. 

(ii) Like DES it also works on 64-bit plain text blocks. 

(iii) The key is however longer & consists of 128 bits. 

(iv) IDEA is reversible like DES i.e. same algorithm can be used for encryption & decryption. 

(v) IDEA uses both diffusion & confusion for encryption. 

(vi) The 64-bit input plain text block is divided into 4 portions of plain text each of size 16-bits 

i.e. P1 to P4. 

(vii) P1 to P4 are the inputs to the 1st round of the algorithm. There are 8 such rounds. 

(viii) In each round 6 sub-keys are generated from the original key, each sub-key of 16-bits. 

STEP-2: ROUNDS: 

(i) There are 8 rounds in IDEA. 

(ii) Each round involves a series of operations on 4 data blocks using 6 keys. 

(iii) Operations involve modulo 216 Multiplication, modulo 216+1 Addition & XOR. 

STEP-3: SUBKEY GENERATION FOR A ROUND: 

(i) Each of the 8 rounds makes use of 6 subkeys (8x6=48 subkeys are required for the rounds) 

and the final output transformation uses 4 subkeys (making a total of 48+4=52 subkeys overall). 

SUBKEY Generation: 

(a) 1st Round:  

 Initial key consists of 128 bits from which subkeys K1 to K6 are generated for the 1st round. 

Since K1 to K6 consists of 16 bits each, out of the original 128 bits, the 1st 96 bits are used 

for the 1st round. 

At the end of 1st round, bits 97 to 128 of the original key are unused. 

 

 

 

 

 

(b) 2nd Round: 

 For 2nd round, we can utilize 32 unused key bits at positions 97 to 128 which gives 2 subkeys 

each of 16 bits. 

ORIGINAL KEY (128 BITS) 

K1(Bits 1-16) K2(Bits 17-32) 

 

K6(Bits 81-96) 

 

Unused (Bits 97-128) 

 

... 



 

The remaining 64 bits for the 2nd round are found by key shifting. The original key is shifted 

left circularly by 25 bits, i.e. the 26th bit of the original key moves to the 1st position & becomes 

the 1st bit after the shift, & the 25th bit of the original key moves to the last position & becomes 

the 128th bit after the shift. 

STEP-4: OUTPUT TRANSFORMATION: 

(i) It is a on-time operation. 

(ii) It takes place at the end of the 8th round. 

(iii) The input to the output transformation is the output of the 8th round i.e. a 64 bit value 

divided into 4 sub-blocks each of 16 bits and 4 subkeys are supplied. 

STEP-5: SUBKEY GENERATION FOR OUTPUT TRANSFORMATION: 

(i) At the end of 8th & the final round, the key is exhausted & shifted. Therefore, in this 

round, the 64 bits makeup subkeys K1 to K4, which are used as the 4 subkeys for this round. 

DECRYPTION: The decryption process is similar to that of encryption process. 

STRENGTH OF IDEA: 

IDEA uses 128-bit key which is double than the key size of DES. Thus to break into IDEA, 

2128 encryption operations would be required. 

RC4 : 

(i) RC4 was designed by Ron Rivest of RSA Security in 1987. The official name for this 

algorithm was “Rivest Cipher 4”. However because of its ease of reference, the acronym RC4 

has stuck. 

(ii) RC4 is a stream cipher. This means that the encryption happens byte-by-byte. However, 

this can be changed to bit-by-bit encryption. 

RC4 WORKING MECHANISM: 

(i) RC4 generates a pseudorandom stream of bits called keystream. This is combined with the 

plain text using XOR for encryption. 

(ii) There is a variable length key consisting of 1 to 256 bytes. This key is used to initialize a 

256-byte state vector with elements identified as S [0], S [1]...S [255].  

(iii) To perform an encryption or decryption operation, one of these 256 bytes of S is selected 

and processed, output as k. 

(iv) After this, the entries in S are permuted once again. 

(v) There are overall 2 processes involved: 

(a) Initialization of S 

(b) Stream Generation 

(a) Initialization Of S: 

a.1 Choose a key (K) of length between 1 to 256 bytes. 



 

a.2 Set the values in the state vector S equal to the values from 0 to 255 in an ascending order. 

In other words, we should have S[0]=0,S[1]=1,...,S[255]=255. 

a.3 Create another temporary array T. If length of the key K (keylen) is 256 bytes, copy K into 

T as is. Otherwise, after copying K to T, whatever are the remaining positions in T are filled 

with the values of K again. At the end, T should be completely filled. 

(b) Stream generation: 

b.1 The initial key array K is discarded. 

b.2 For again looping for i=0 to 255, we swap S[i] with another byte in S as per the mechanism 

decided by the implementation of S. Once we exhaust the 255 positions, we need to start at 

S[0].. 

b.3 For encryption, k is XORed with the next byte of the plain text. For decryption, k is XORed 

with the next byte of the cipher text. 

RC5: 

(i) RC5 is a symmetric-key block encryption algorithm developed by Ron Rivest. 

(ii) It is quite fast as it uses only the primitive computer operations (such as addition, XOR, 

shift etc.). 

(iii) It allows for a variable number of rounds, and a variable bit-size key to add to the 

flexibility. 

(iv) It requires less memory for execution, and is therefore, suitable not only for desktop 

computers but also for smart cards and other devices that have a small memory capacity. 

RC5 WORKING MECHANISM: 

(i) Here, the word size (i.e. input plain-text block size), the number of rounds and number of 

8-bit bytes of the key, all can be of variable length. 

Parameter Allowed Values 

Word size in bits(RC5 encrypts 2-word 

blocks at a time) 

16,32,64 

Number of rounds 0-255 

Number of 8-bit bytes(octets) in the key 0-255 

 

(ii) The output resulting from RC5 is the cipher text, which has the same size as the input plain 

text. Since RC5 allows for variable values in the 3 parameters, a particular instance of RC5 

algorithm is denoted as RC5-w/r/b where w=word size in bits, r=number of rounds, b= number 

of 8-bit bytes in the key. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLOWFISH: 

(i) Blowfish was developed by Bruce Schneier. 

(ii) Blowfish was designed with the following objectives: 

(a) Fast: Encryption rate on 32-bit microprocessor is 26 clock cycles per byte. 

(b) Compact: Blowfish can execute in less than 5KB memory. 

First, divide the original plain-text into 2 blocks of equal sizes. Call them as A & B 

Add A & S[0] to produce C. 

Add B and S[1] to produce D. 

Start with a counter i=1. 

1. XOR C & D to produce E 4. XOR D and F to produce G. 

2. Circular-left shift E by D bits 5. Circular-left shift G by F bits 

3. Add E and S[2i] to produce F 6. Add E and S[2i+1] to produce H. 

Increment i by 1 

Chec

k Is 

i>r? 

Stop 

Call F as C 

(i.e. C=F) 

Call H as D 

(i.e. D=H) 

No 

Yes 



 

(c) Simple: Blowfish uses only primitive operations, such as addition, XOR and table look-up, 

making its design and implementation simple. 

(d) Secure: Blowfish has a variable key length up to maximum of 448 bits long, making it both 

flexible and secure. 

BLOFISH WORKING MECHANISM: 

Blowfish encrypts 64-bit blocks with a variable length key. It contains 2 parts as follows: 

(a) Subkey Generation: This process converts the key upto 448 bits long to subkeys totalling 

4168 bits. 

(b) Data Encryption: This process involves the iteration of a simple function 16 times. Each 

round contains a key-dependent permutation and key-and data-dependent substitution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 AES: 

(i) In 1990s the US government wanted to standardize a cryptographic algorithm, which was 

to be used universally by them. It was called Advanced Encryption Standard (AES). 

Main features of AES: 

(i) Symmetric & parallel structure: This gives implementers of the algorithm a lot of flexibility 

and stands up cryptanalysis attacks. 

(ii) Adapted to modern processors: It works well with modern processors like Pentium, RISC, 

Parallel. 

Plain Text X (64 Bits) 

Cipher Text X (64 Bits) 

XOR F XOR 

F XOR XOR 

F XOR XOR 

XOR XOR 

13 more rounds 

P1 (32 bits) 

P2 (32 bits) 

P16 (32 bits) 

P18 (32 bits) P17 (32 bits) 

XL (32 bits) XR (32 bits) 



 

(iii) Suited to Smart Cards: The algorithm works well with smart cards. 

AES WORKING MECHANISM: 

i. One time initialization processes: 

(a) Expand the 16-byte key to get the actual key block to be used. 

(b) Do one time initialization of the 16-byte plain text block (called state). 

(c) XOR the state with the key block. 

ii. For each round, do the following: 

(a) Apply S-box to each of the plain-text bytes. 

(b) Rotate row k of the plain-text block (i.e. state) by k bytes. 

(c) Perform a mix columns operation. 

(d) XOR the state with the key block. 

 ASYMMETRIC KEY CRYPTOGRAPHIC ALGORITHMS 

INTRODUCTION: 

Asymmetric key cryptography is a class of cryptographic algorithms which requires two 

separate keys, one of which is secret (or private) and one of which is public, for encryption and 

decryption. The term "asymmetric" comes from the use of different keys to perform these 

opposite operations, each the inverse of the other, as contrasted with conventional symmetric 

cryptography which relies on the same key to perform both. 

The conceptual difference between symmetric and asymmetric cryptography systems are based 

on how these systems keep a secret. 

Asymmetric cryptography is based on personal secrecy i.e. the secret is unshared. Each person 

creates and keeps his own secret. For n number of people an asymmetric cryptography system 

requires n personal keys against 
𝑛(𝑛−1)

2
 shared keys for a symmetric cryptography system. 

There are other aspects of security that require asymmetric key cryptography, such as 

authentication and digital signature. 

In symmetric key cryptography, symbols are permuted or substituted, whereas in asymmetric 

key cryptography numbers are manipulated by applying mathematical functions to them. 

HISTORY OF ASYMMETRICKEY CYPTOGRAPHY 

 Whitfield Diffie and Martin Hellman come up with the concept of asymmetric key 

cryptography in the mid-1970s. 

 Rivest, Shamir and Adleman develop first major asymmetric key cryptosystem based 

on Diffie-Hellman framework in 1977 and published in 1978. 

 In 1973 the British Communication Electronics Security Group (CSEG) came up with 

another asymmetric key cryptosystem, but it was not made publicly available until 

1998. 



 

KEYS 

Asymmetric key cryptography uses two separate keys; one private and one public. Together 

they are called a key pair. Although different, the two parts of this key pair are mathematically 

linked. The public key is used to encrypt plain text, whereas the private key is used to decrypt 

cipher text. 

OVERVIEW OF ASYMMETRIC KEY CRYPTOGRAPHY 

 

The figure above shows the general idea of asymmetric key cryptography system. The key 

generation procedure creates a private key and a public key. The public key is distributed over 

a key distribution channel. Though secrecy of such a channel is not necessary, it must provide 

authentication and integrity. The plain text is encrypted using the public key of the recipient 

and sent over an unsecure channel. The recipient is able to decrypt the cipher text using his 

own private key. 

It can be noted that the recipient can receive and decrypt cipher text from multiple senders 

using the same pair of keys; however the sender needs n public keys to send an encrypted text 

to n recipients. 

 THE RSA ALGORITHM 

The most common asymmetric key cryptosystem is the RSA cryptography algorithm named 

after its inventors Rivest, Shamir and Adleman. 

The RSA algorithm is based on the mathematical fact that it is easy to find and multiply large 

prime numbers together but it is extremely difficult to factor their product. The prime numbers 

used in RSA algorithm are very large (made up of 100 or more digits). 

Steps of RSA Algorithm 

1. Choose two large prime numbers P and Q. 

2. Calculate N = P x Q 

3. Select the public key E such that it is not a factor of (P-1) and (Q-1). 

4. Select the private key such that (D x E) mod (P-1) x (Q-1) = 1 

5. The cipher text is generated as CT = PTE mod N 

6. The plain text is generated as PT = CTD mod N 



 

Security of RSA 

The main possible attacks on RSA are, 

 Plain Text Attacks 

o Short message attack 

o Cycling attack 

o Unconcealed message attack 

 Chosen Cipher Text Attack 

 Factorization Attack 

 Attacks on Encryption key 

 Attacks on Decryption key 

o Revealed decryption exponent attack 

o Low decryption exponent attack 

Symmetric Key Vs Asymmetric Key Cryptography 

Symmetric Key Cryptography Asymmetric Key Cryptography 

 Based on sharing secrecy 

 Same key is used both for encryption 

and decryption 

 Faster execution 

 Key agreement is a problem 

 Number of keys required among 

multiple users is large 

 Size of cipher text is same as the plain 

text 

 Used for encryption and decryption 

only. 

 Based on personal secrecy 

 Different keys are used for 

encryption and decryption 

 Slower execution 

 No key agreement problem 

 Number of keys required is same as 

the participants 

 Size of cipher text is larger than the 

plain text 

 Used for encryption, decryption as 

well as digital signature 

 

ASYMMETRIC & SYMMETRIC KEY CRYPTOGRAPHY TOGETHER 

In practice, symmetric key cryptography and asymmetric key cryptography are combined 

together to have a very efficient security solution. 

The sender encrypts the plain text with a symmetric key cryptography algorithm using a key 

called one time symmetric key. This one time symmetric key is again encrypted using the 

public key of the recipient. This process is called key wrapping of the symmetric key. 

Now the sender puts the cipher text and the encrypted key in a digital envelope and sends it to 

the recipient. The recipient can obtain the key used for encrypting the plain text by decrypting 

the received key by his own private key. 

 

 

 

 

 



 

MODULE IV: DIGITAL SIGNATURES 

The concept of digital signature is based upon message authentication and integrity. A scheme, 

in which the sender encrypts the message with his private key, forms the basis of digital 

signature. 

The sender encrypts the plain text using his private key and sends it to the recipient. The 

recipient can decrypt the cipher text using the sender’s public key, which verifies that the 

received message was indeed sent from the rightful person and prevents non repudiation. Any 

middle person who can intercept the message can decrypt the message as the public key of the 

sender is known to everyone; however the middle person can’t modify the contents of the 

message as it would require the private key of the sender to encrypt it again. 

 MESSAGE DIGEST 

While all the encryption algorithms ensure that a message can’t be accessed by an unauthorised 

person, they don’t ensure the integrity of the message itself i.e. if the message contents have 

been tampered during transit. To ensure integrity, message digest of a message is calculated 

and sent along with the original message. 

A message digest is the summary or fingerprint of the message. A message digest must have 

the following properties. 

 Given a message, it should be easy to find its message digest but given a message digest, 

it should be very difficult to find the original message. 

 A message should always produce the same message digest. 

 Message digest for two different messages must always be different. If two different 

messages have the same message digest, then a collision is said to have occurred. 

A receiver can calculate the message digest of the received message and compare it to the 

received message digest to know if the message has been altered. Message digest is also called 

hash of a message. Some of the popular message digest algorithms are MD5, SHA, and HMAC. 

 MD5 

MD5 algorithm was developed by Ronald Rivest in 1991. MD5 is a modified version of MD4. 

MD5 algorithm produces a message digest of length 128 bits. It consists of 4 rounds with 16 

operations in each round. 

The original message is padded such that its length is 64 bits less than any multiple of 512. The 

padding is done by adding a single 1 followed by required number of 0s. A 64 bits long string 

representing the length of the original message is then appended to the padded message making 

the total size of the message a multiple of 512. 

The message digest calculation process can be described as follows. 



 

 

Here A, B, C and D are four chaining variables which are initialised before the start of the 

algorithm. Each variable contains a 32 bits hexadecimal number which are updated in each 

round. The chaining variables are initialised as follows. 

 A: (01 23 45 67)H 

 B: (89 AB CD EF)H 

 C: (FE DC BA 98)H 

 D: (76 54 32 10)H 

F is a non-linear function defined by the chaining variables. F is different for each round. The 

non-linear function F for different rounds is defined as follows. 

 𝐹(𝐵, 𝐶, 𝐷) = (𝐵⋀𝐶)⋁(∽ 𝐵⋀𝐷) 

 𝐹(𝐵, 𝐶, 𝐷) = (𝐵⋀𝐷)⋁(𝐶⋀ ∽ 𝐷) 

 𝐹(𝐵, 𝐶, 𝐷) = (𝐵 ⊕ 𝐶 ⊕ 𝐷) 

 𝐹(𝐵, 𝐶, 𝐷) =  𝐶 ⊕ (𝐵⋁ ∽ 𝐷) 

Where ⋀, ⋁,⊕, ∽ denote logical AND, OR, XOR and NOT operations respectively. 

Mi is the 32 bits block of the message input and Ki is 32 bits constant different for each round. 

The diagram above depicts only one round. There are four such rounds. At the end of all 

operations each chaining variable contains 32 bits hexadecimal number which are added 

together to form 128 bits message digest. 

 SECURE HASH ALGORITHM (SHA) 

SHA is a message digest algorithm designed by the United States National Security Agency as 

a federal information processing standard in 1993. It uses similar principles as that of MD4 and 

MD5. 

SHA-1 produces a message digest of length 160 bits. It operates on 5 chaining variables and 

has 80 rounds of operations. The padding of the message is same as MD5. The fifth chaining 

variable E is initialised as, 

 E: ( 0F 1E 2D 3C )H 



 

The process can be described as follows. 

 

F is a non-linear function operating on three chaining variables as input and changes with the 

rounds. The chaining variables are constantly updated and shifted in each round. Wt is the 

expanded message input block and Kt is a constant. Similar to the MD5 algorithm, the chaining 

variables contain 32 bits hexadecimal number at the end of all rounds which are appended 

together to produce the 160 bits message digest or hash. 

 MESSAGE AUTHENTICATION CODE (MAC) 

The concept of MAC is quite similar to that of a message digest. The difference between a 

message digest and MAC is that, message digest doesn’t involve any cryptographic process 

whereas MAC requires the sender and the receiver to share a symmetric key which is used to 

generate the MAC and hence involves a cryptographic process. 

It may be used to simultaneously verify both the data integrity and the authentication of a 

message. 

HASH BASED MAC (HMAC) 

HMAC is a mandatory security implementation for internet protocol (IP) security and secure 

socket layer (SSL) protocol. The fundamental idea behind HMAC is to reuse existing message 

digest algorithms such as MD5 and SHA-1. Additionally it uses the shared symmetric key to 

encrypt the message digest to produce the output MAC. 



 

 

The diagram above outlines the process of HMAC. The message is divided into blocks of b 

bits. The length of the shared key K is made equal to the number of bits per message block (i.e. 

b). If b is larger than K then the key is padded and if b is smaller than K then key is truncated. 

This is called the transformed key. 

The input pad and output pad are two binary strings of size equal to that of the transformed 

key. MDA denotes message digest algorithm and it can be either MD5 or SHA-1. 

 KNAPSACK ALGORITHM 

 Ralph Merkle and Martin Hellman developed the 1st algorithm for public-key encryption 

i.e. the Knapsack algorithm. 

 This is a simple problem; given a pile of objects each with different weights, is it possible 

to put some of them in a bag (i.e. knapsack) in such a way that the knapsack has a certain 

weight? 

 If M1, M2,.....,Mn are the given values and S is the sum, find out bi such that: 

S=b1M1+b2M2+.....+bnMn 

Each bi can be 0 or 1. 

 A block of plain text equal in length to the number of items in the pile would select the 

items in the knapsack. The cipher text is the resulting sum. 

Plain Text 0 1 1  0   1   1 1 1 1  0   0   0 0 1 0 1    1   0 

Knapsack 1 7 8 12 14 20 1 7 8 12 14 20 1 7 8 12 14 20 

Cipher Text 7+8+14+20=49 1+7+8=16 7+12+14=33 

 

ELGAMAL DIGITAL SIGNATURE: 

The ElGamal digital-signature scheme uses the same keys, but a different algorithm.  



 

 The algorithm creates two digital signatures. In the verification step, these two signatures 

are tallied.  

 PUBLIC KEY INFRASTRUCTURE  

INTRODUCTION: 

Public Key Infrastructure (PKI) technology is the central focus in Internet security. 

Digital Certificates are termed passports on the Web. 

-- Certification Authorities (CA) 

-- Registration Authorities (RA) 

-- Relation between one CA with another 

-- Root CA 

-- Self-Signed Certificates 

-- Cross Certification 

-- Validating digital certificates; protocols: CRL, OCSP & SCVP 

-- Maintaining & achieving user keys. 

-- Roaming certificates 

-- PKIX & PKCS standards for digital certificates 

-- XML Security 

DIGITAL CERTIFICATES: 

I. To tackle the problem of key exchange or key agreement digital certificates were 

introduced.    

II. A digital certificate is a small computer file. 

III. A digital certificate establishes the relation between a user and his/her public key. 

IV. A digital certificate contains the user name & the user’s public key. This will prove that 

a particular public key belongs to a particular user. 

V. Similarity between Passport & corresponding Digital Certificate entry : 

Passport Entry Corresponding Digital Certificate Entry 

Full Name Subject Name 

Passport Number Serial Number 

Valid From Same 

Valid to Same 

Issued By Issuer Name 

Photograph and Signature Public Key 

 

 

 

 



 

CERTIFICATION AUTHORITY (CA): 

-- A Certification Authority (CA) is a trusted agency that can issue digital certificates. 

-- The authority of acting as a CA has to be with someone who everybody trusts. Consequently, 

the governments in various countries decide who can & who cannot be a CA. 

-- Usually, a CA is a reputed organization such as a: 

(a) Post Office 

(b) Financial Institution 

(c) Software Company 

-- Most popular CA in the world are: 

(a) VeriSign 

(b) Entrust Safescrypt Limited 

(c) Subsidiary of Satyam Infoway Limited – 1st Indian CA in Feb. 2002. 

-- Thus, CA has the authority to issue digital certificates to individuals and organizations, who 

want to use those certificates in asymmetric-key cryptographic applications. 

TECHNICAL DETAILS OF DIGITAL CERTIFICATE: 

-- Standard X.509 defines the structure of digital certificate which was introduced by ITU 

(International Telecommunication Union) in 1988; at that time it was part of X.500. 

-- X.509 was revised twice, hence current version is X.509V3 

-- The IETF (Internet Engineering Task Force) published the RFC2459 for the X.509 standard 

in 1999. The structure of X.509V3 digital certificate is as follows: 

Version 

Certificate Serial Number 

Signature Algorithm Identifier 

Issuer Name 

Validity(Not Before/ Not After) 

Subject Name 

Subject Public Key Information 

Issuer Unique Identifier 

Subject Unique Identifier 

Extensions 

Certificate authority’s digital signature 

 

-- The additional fields are called extensions or extended attributes 

 

 

 

Version 1 Version 2 

ALL VERSIONS 

Version 3 



 

Version 1 of X.509 digital certificate: 

FIELD DESCRIPTION 

Version Identifies a particular version of X.509 protocol, 

which is used for this digital certificate. Currently, 

this field can contain 1, 2 or 3. 

Certificate Serial Number Contains unique integer number generated by CA. 

Signature Algorithm Identifier Identifies the algorithm used by the CA to sign this 

certificate. 

Issuer Name Identifies the Distinguished Name (DN) of the CA 

that created & signed this certificate. 

Validity (Not Before/ Not After) Contains two date-time values (Not Before & Not 

After), which specify the time frame within which 

the certificate should be considered valid. These 

values generally specify the date & time up to 

seconds or milliseconds. 

Subject Name Identifies the DN of the end entity (i.e. the user or 

organization) to whom this certificate refers. This 

field must contain an entry unless an alternative 

name is defined in Version 3 extensions. 

Subject Public Key Information Contains the subject’s public key & algorithms 

related to that key. This field can never be blank. 

 

Version 2 of the X.509 digital certificate: 

FIELD DESCRIPTION 

Issuer Unique Identifier Helps identify a CA uniquely if two or more 

CAs have used the same Issuer Name over 

time. 

Subject Unique Identifier Helps identify a subject uniquely if two or 

more subjects have used the same Subject 

Name over time. 

 

Version 2 of the X.509 digital certificate: 

FIELD DESCRIPTION 

Authority Key Identifier A CA may have multiple private-public key 

pairs. This field defines which of these key 

pairs is used to sign ( and hence, which 

corresponding key should be used to verify) 

this certificate 

Subject Key Identifier A subject may have multiple private-public 

key pairs. This field defines which of those 

key pairs is used to sign (and the 

corresponding key used to verify). 

Key Usage Defines the scope of operations of the public 

key of this particular certificate. 

Extended Key Usage Can be used in addition to or in the place of 

Key Usage Field. Specifies which protocols 

this certificate can interoperate with. 



 

Private key Usage Period Allows defining different usage period limits 

for the private & public keys corresponding 

to this certificate. 

Certificate policies Defines the policies & optional qualifier 

information that the CA associates with a 

given certificate. 

Policy Mappings Used only the subject of a given certificate is 

also a CA.  

Subject Alternative Name Optionally defines one or more alternative 

names for the subject of a given certificate. 

Issuer Alternative Name Optionally defines one or more alternative 

names for the issuer of a given certificate. 

Subject Directory Attributes Can be used to provide additional 

information about the subject. 

Basic Constraints Indicates whether the subject in this 

certificate may act as a CA. 

Name Constraints Specifies the name space. 

Policy Constraints Used only for CA certificates. 

 

DIGITAL CERTIFICATE CREATION: 

I. Parties Involved : 

(a) Issuer CA (Certification Authority) 

(b) Subject (End User) 

(c) Third Party RA (Registration Authority) 

 

 

 

 

 

 

 

 

II. Certificate Creation Steps : 

 

 

 

 

 

 

 

 

 

 

 

 

End User 

End User 

 

End User 

 

Registration 

Authority (RA) 

Certification 

Authority (CA) 

KEY GENERATION 

REGISTRATION 

VERIFICATION 

CERTIFICATE CREATION 



 

(a) Key generation: The initiation begins with the subject (i.e. user/ organization) who 

wants to obtain a certificate. There are 2 different approaches: 

(i) Subject-end: The subject can generate a private key & public key pair using some 

software. This software is usually part of a Web browser or server. The subject keeps 

the private key, thus generated, safe. The subject then sends the public key along with 

other information & evidences about herself to the RA. 

(ii) RA-end: RA generates a key pair on the subject’s (user’s) behalf.  

 

                                                                       
 

 

Keep this secret                                    This would be sent to RA 

 Private Key                  Public Key 

 

                  Subject generating its own key pair 

 

 

                                                                     
 

 

                                          
 Private Key for User X                         Public Key for User X 

                 RA generating a key pair on behalf of the subject 

 

(b) Registration: This step is only required when user generates the key pair in the 1st 

step. If RA generates the key pair on user’s behalf, this step will also be a part of the 1st 

step itself. 

-- Assuming that the user has generated the key pair, the user now sends the public key 

& the associated registration information (e.g. subject name, as it is desired to appear 

on the digital certificate) & all the evidence about herself to the RA. 

-- For this, the S/W provides a wizard in which the user enters the data & when all data 

is correct, submits it. 

-- The data then travels across the network/Internet to the RA. 

-- The format for the requests has been standardized & is called Certificate Signing 

Request (CSR). This is one of the Public Key Cryptography Standards (PKCS). 

KEY GENERATION 

For User X 

REGISTRATION 

AUTHORITY 

(RA) 



 

 

                                                          

                                                                      

 

 

III. VERIFICATION: After the registration process is complete, the RA has to verify the 

user’s credentials. This verification is in two respects, as follows : 

(a) Firstly, the user needs to verify the user’s credentials such as the evidences provided 

are correct, & that they are acceptable. If the user were actually an organization, then 

the RA would perhaps like the business records, historical documents and credibility 

proofs. If it is an individual user then simpler checks are in call, such as verifying the 

postal address, e-mail id, phone no, passport or driving-license details can be sufficient.  

(b) The 2nd check is to ensure that the user who is requesting for the certificate does 

indeed process the private key corresponding to the public key that is sent as a part of 

the certificate request to the RA. This is called checking the Proof of Possession (POP) 

of the private key. 

Approaches by RA to perform POP: 

-- The RA can demand that the user must digitally sign his/her Certificate Signing 

Request (CSR) using his/her private key. If the RA can verify the signature correctly 

using the public key of the user, the RA can believe that the user indeed possesses the 

private key. 

-- Alternatively, at this stage, the RA can create a random number challenge, encrypt it 

with the user’s public key & send the encrypted challenge to the user. If the user can 

successfully decrypt the challenge using his/her private key, the RA can assume that 

the user possesses the right private key. 

-- Thirdly, the RA can actually generate a dummy certificate for the user, encrypt it 

with user’s public key & send it to the user. The user can decrypt it only if he/she can 

decrypt the encrypted certificate, and obtain the plain-text certificate. 

 

IV. CERTIFICATE CREATION: Assuming all the steps so far have been successful, the 

RA passes on all the details of the user to the CA. 

-- The CA does its own verification & creates a digital certificate for the user. 

-- The CA sends the certificate to the user & retains a copy with itself. 

-- CA’s copy is maintained in a certificate directory. 

-- Clients can access information from the central repository using a directory access 

protocol like Lightweight Directory Access Protocol (LDAP). LDAP allows users & 

applications to access X.500 directories, depending on their privileges. 

 

Public Key 

Private Key 

Subject 

Registration 

Authority (RA) 

Other Registration 

Information and 

evidences 



 

TRUST ON DIGITAL CERTIFICATES: 

(A) INTRODUCTION: 

(i) It contains information (public key) about an user. 

(ii) It is in a predetermined format & is stamped & signed by the authority. 

 

(B) HOW CA SIGNS A CERTIFICATE? 

-- 1st we would verify the CA’s signature, for which we would use the CA’s public key 

& check if it can de-sign the certificate correctly. If the designing works correctly, we 

can consider the certificate to be valid one. 

 (i) As shown in the figure below, before issuing a digital certificate to a user, the CA 1st 

calculates a message digest over all the fields of the certificate (using a standard message 

digest algorithm such as MD5 or SHA-1) & then encrypts the message digest with its 

private key (using an algorithm such as RSA0 to form the CA’s digital signature. 

(ii) The CA then inserts its digital signature thus calculated, as the last field in the digital 

certificate of the user. 

 

Version 

Certificate Serial Number 

Signature Algorithm Identifier 

Issuer Name 

Validity(Not Before/ Not After) 

Subject Name 

Subject Public Key Information 

Issuer Unique Identifier 

Subject Unique Identifier 

Extensions 

Certificate authority’s digital signature 

                                                          Certificate  

                                   Authority’s private key 

 

 

 

 

(C) HOW A DIGITAL CERTIFICATE CAN BE VERIFIED: 

The verification consists of the following steps: 

(i) User passes all fields except the last one of the received digital certificate to a 

message-digest algorithm. This algorithm should be the same as the one used by the CA 

A message digest (hash) of all but 

the last fields of the digital 

certificate is created 

Message Digest 

Algorithm 

Message Digest 

Digital Signature 

Algorithm 

Digital Signature 

This digital certificate of the CA 

is stored as the last field of the 

digital certificate 



 

while signing the certificate. The CA mentions the algorithm used for signing along with 

the signature in the certificate, so the user here knows which algorithm is to be used. 

(ii) The MD algorithm calculates a MD (hash) of all fields of the certificate except for 

the last one (say MD1). 

(iii) The user now extracts the digital signature of the CA from the certificate. 

(iv) The user de-signs the CA’s signature. 

(v) This produces another MD say MD2. 

(vi) Now the user compares MD1 with that of MD2. If the two match, the user is 

convinced that the digital certificate was indeed signed by the CA with its private key. 

If the comparison fails, the user doesn’t trust the certificate & hence rejects it. 

Version 

Certificate Serial Number 

Signature Algorithm Identifier 

Issuer Name 

Validity(Not Before/ Not After) 

Subject Name 

Subject Public Key Information 

Issuer Unique Identifier 

Subject Unique Identifier 

Extensions 

Certificate authority’s digital signature 

 

                                           

 

v 

    

  Yes              No 

 

 

 

 

 

 

 

 

Message Digest 

Algorithm 

Message Digest 

(MD1) 

Is 

MD1=MD

2? 

                                                                  

Certificate is 

Valid. Accept it 

                                                                  

Certificate is 

Invalid. Reject it 

Digital Signature 

De-signing 

Algorithm 

(Decryption) 

Message Digest 

(MD2) 

Certificate Authority’s public key 

A message digest (hash) of all but the 

last fields of the digital certificate is 

created 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 



 

CERTIFICATE HIERARCHIES & SELF-SIGNED DIGITAL CERTIFICATES: 

 

 

 

 

 

 

 

 

 

 Self-signed Certificate: The certificate of the root CA is a self-signed certificate i.e. the 

root CA signs its own certificate. 

Cross-Certification: 

 Cross-certified   

 

 

 

 

 

 

 

 

 

 

 

 

 

 CERTIFICATE REVOCATION: 

Need for Revocation: 

(i) The holder of the digital certificate reports that the private key corresponding to the public 

key specified in the digital certificate is compromised. 

(ii) The CA realizes that it had made some mistake while issuing a certificate. 

ROOT CA 

Second-level CA Second-level CA 

 

Second-level CA 

 

Third-level CA 

 

Third-level CA 

 

Third-level CA 

 

Third-level CA ... 

 

Root CA of 

Japan 

Second-Level 

CA (A1) 

Third-Level 

CA (Q2) 

 

 

Third-Level 

CA (B1) 

Root CA of 

US 

 

Second-Level 

CA (P1) 

 

Alice 
Bob 

Third-Level 

CA (B2) 

 

Third-Level 

CA (Q1) 

 

 

... ... 



 

(iii) The certificate holder leaves a job, and the certificate was issued specifically while the 

person was employed in that job. 

CERTIFICATE REVOCATION STATUS MECHANISMS: 

 

 

(i) Offline Certificate Revocation Status Checks: 

(a) CRL: The Certificate Revocation List (CRL) is the primary means of checking the status of 

a digital certificate offline. 

-- CRL is a list of certificates published regularly by each CA identifying all the certificates 

that have been revoked through the life of the CA. 

-- This list doesn’t involve certificates whose validity period is over. 

-- Each CA issues its own CRL. The respective CA signs each CRL, so the CRL can be easily 

verified. 

-- A CRL is simply a sequential file that grows over time to include all the certificates that have 

not been expired, but have been revoked. 

(a) Certificate Expiry Check: Compare the current date with the validity period of the certificate 

to ensure that the certificate has not expired.\ 

(b) Signature Check: Check that user’s certificate can be verified in terms of the signature of 

his CA. 

(c) Certificate Revocation Check: Consult the latest CRL issued by user’s CA to ensure that 

user’s certificate is not listed there as a revoked certificate. 

Base CRL: A one-time up-to-date CRL sent to the user from the CA who want to use the CRL 

services. 

Digital Certificate Revocation Checks

Offline Revocation 
Status Checks

Certificate 
Revocation List 

(CRL)

Online Revocation 
Status Checks

Online Certificate 
Validation 

Protocol (OCSP)

Simple Certificate 
Validation 

Protocol (SCVP)



 

Delta CRL: The changes made to the base CRL at the time of next update. 

Delta CRL Indicator: The indicator that informs the user that this CRL file is not a complete, 

comprehensive CRL file, but instead it is a delta CRL. 

Delta Information: Indicator contained in base CRL which informs a user that delta CRLs are 

also available corresponding to this base CRL. 

Disadvantages: 

(a) Latency – certificate revocation check processing time 

(b) Large size 

(c) Likelihood of being stale 

(ii) Online Certificate Revocation Status Checks: 

(a) OCSP (Online Certificate Status Protocol): 

-- It can be used to check if a given digital certificate is valid at a particular moment. 

-- It allows the certificate validators to check for status of certificates in real time, thus 

providing for a quicker, simpler & more efficient mechanism for digital certificate validations. 

-- No downloading required. 

 The CA provides a server called OCSP responder. This server contains the latest certificate 

revocation information. The requestor (client) has to send a query (called OCSP request) about 

a particular certificate to check if it is revoked or not 

 The OCSP responder consults the server’s X.500 directory (in which the CA continuously 

feeds the certificate revocation information) to see if the particular certificate is valid or not. 

 Based on the result of the status check from the X.500 directory lookup, the OCSP responder 

sends back a digitally signed OCSP response for each of the certificates in the original request 

to the client. This response can take one of the 3 forms: 

(a) Good 

(b) Revoked 

(c) Unknown 

 

OCSP Request: 

                                   

X.500 

Directory 
OCSP 

Responder 

Digital 

Certificate 

OCSP request 

Is this certificate valid or 

not? 

Client 



 

OCSP Certificate revocation status check: 

                                      

 

 

 

OCSP Response: 

                                      

 

 

 

 

(b) SCVP (Simple Certificate Validation Protocol):  

-- It is in the draft stage. 

-- It is an online certificate status reporting protocol, designed to deal with the drawbacks of 

OCSP. 

Difference between OCSP & SCVP: 

Point OCSP SCVP 

Client Request The client sends just the 

certificate serial number to 

the server 

The client sends the entire 

certificate to the server. 

Consequently, the server can 

perform many more checks 

Chain of trust Only the given certificate is 

checked. 

The client can provide a 

collection of the 

intermediate certificates 

which the server can check 

OCSP 

Responder 

Digital 

Certificate 

OCSP request 

Is this certificate valid or 

not? 
Client 

X.500 

Directory 

The OCSP responder 

consults the CA’s X.500 

directory 

OCSP 

Responder 

Digital 

Certificate 

OCSP request 

Is this certificate valid or 

not? 
Client 

X.500 

Directory 

OCSP Response 

Good, Revoked or 

Unknown 

The OCSP responder 

consults the CA’s X.500 

directory 



 

Checks The only check is whether 

the certificate is revoked or 

not. 

The client can request for 

additional checks, type of 

revocation information to be 

considered etc. 

Returned information  Only the status of the 

certificate id returned by the 

server. 

The client can specify what 

additional information it is 

interested in. 

Additional Features None The client can request for a 

certificate to be checked for 

a background event. 

 

CERTIFICATE TYPES: 

(i) Email Certificates: It includes the user’s email id. This is used to verify that the signer of an 

email message has an email id that is the same as it appears in that user’s certificate. 

(ii) Server-side SSL Certificates: These certificates are useful for merchants who want to allow 

buyers to purchase goods or services from their online Web site. 

(iii) Client-side SSL Certificates: These certificates allow a merchant to verify a client. 

(iv) Code-signing Certificates: Many people do not like to download client-side code such as 

Java applets or ActiveX controls, because of the inherent risks associated with them. In order 

to alleviate these concerns, the code can be signed by the signer. 

 PRIVATE KEY MANAGEMENT: 

(i) Protecting Private Keys: 

Mechanism Description 

Password Protection This is most simplest & common 

mechanism. The private key is stored on the 

hard disk of the user’s computer as a disk 

file. This file can be accessed only with the 

help of a password or PIN. 

PCMCIA cards The Personal Computer Memory Card 

International Association (PCMCIA) are 

actually chip cards. The private key is stored 

on such a card. 

Tokens A token stores the private key in an 

encrypted format. To decrypt it, user has to 

provide OTP valid for only that particular 

access. 

Biometrics The private key is associated with a unique 

characteristic of an individual like 

fingerprint, retina scan or voice comparison 

etc. 

Smart Cards In a smart card, the private key of the user is 

stored in a tamperproof card. 

 



 

-- The export of private key from one location to another needs a cryptographic standard by the 

name PKCS#12. This allows a user to export his/her digital certificate & private key in the 

form of a computer file. The certificate and the private key must be protected as they are moved 

to another location. For this PKCS#12 standard ensures that they are encrypted using a 

symmetric key, which is derived from the user’s private-key protection password. 

(ii) Multiple Key Pairs: 

-- The PKI approach also recommends that in serious business applications, users should 

possess multiple digital certificates, which also means multiple key pairs. 

-- The need for this is that one certificate could be strictly used for signing & another for 

encryption. This ensures that the loss of one of the private keys doesn’t affect the complete 

operations of the user. 

Guidelines: 

(a) The private key that is used for digital signing (non-repudiation) must not be backed up or 

archived after it expires. It must be destroyed. This ensures that it is not used by someone else 

for signing on behalf of the person at a future date. 

(b) In contrast, the private key used for encryption/decryption must be backed up after its 

expiry, so that the encrypted information can be recovered even at a later date. 

(iii) Key Update: 

Expiry of a certificate can be dealt with in one of the following 2 ways: 

(a) The CA reissues a new certificate based on the original key pair. 

(b) A fresh key pair is generated, & the CA issues a new certificate based on that new key pair. 

The key update process itself can be handled in 2 ways: 

(a) The end user has to detect that the certificate is about to expire, a request the CA to issue 

another one. 

(b) The expiry date of the certificate is automatically checked every time it is used, and as soon 

as it is about to expire, its renewal request is sent to the CA. 

(iv) Key Archival: 

The CA must plan for & maintain the history of the certificates & the keys of its users to provide 

future assistance. 

THE PKIX MODEL: 

-- The X.509 standard defines digital-certificate structure, format & fields. It also specifies the 

procedure for distributing the public keys. In order to extend such standards & make them 

universal, the IETF formed the PKIX (Public Key Infrastructure X.509) working group. 

PKIX SERVICES: 

(a) Registration: End entity (subject) makes itself known to CA usually via RA. 



 

(b) Initialization: It deals with basic problems, such as methodology of verifying that the end-

entity is talking to the right CA. 

(c) Certification: CA creates a digital certificate for the end-entity & returns it to the end-entity, 

maintains a copy for its own records, & also copies it in public directories, if required. 

(d) Key-Pair Recovery: Keys used for encryption may be required to be recovered at a later 

date for decrypting some old documents. Key archival & recovery services can be provided by 

a CA or by an independent key-recovery system. 

(e) Key Generation: PKIX specifies that the end-entity should be able to generate private-and 

public-key pairs, or the CA/RA should be able to do this for the end-entity & then distribute 

these keys securely to the end-entity. 

(f) Key Update: This allows a smooth transition from one expiring key pair to a fresh one, by 

the automatic renewal request & response. 

(g) Cross-Certification: Helps in establishing trust models, so that end-entities that are certified 

y different CAs can cross verify each other. 

(h) Revocation: PKIX provides support for the checking of the certificate status in two modes: 

online (using OCSP) or offline (using CRL). 

PKIX ARCHITECTURAL MODEL: 

PKIX has developed comprehensive documents that describe 5 areas of its architectural model: 

(a)X.509 V3 Certificate & V2 Certificate Revocation List Profiles: PKIX has grouped all the 

options that are deemed fit for Internet users, as profile of Internet users. 

(b) Operational protocols: These define the underlying protocols that provide the transport 

mechanism for delivering certificates, CRLs & other management & status information to a 

PKI user. 

(c) Management protocols: These protocols enable exchange of information between the 

various PKI entities. 

(d) Policy Outlines: PKIX defines the outlines for Certificate Policies (CP) & Certificate 

Practice Statements (CPS) in RFC2527. These define policies for the creation of a document 

such as a CP, which determines what considerations are important when choosing a type of 

certificate for a particular application domain. 

(e) Timestamp & Data Certification Services: Timestamping  service is provided by a 

trusted 3rd party called Timestamp Authority. The purpose is to sign a message to guarantee 

that it existed prior to a specific date & time. 

PUBLIC KEY CRYPTOGRAPY STANDARDS (PKCS) : 

-- PKCS model was initially developed by RSA Laboratories. 

-- The main purpose is to standardize Public Key Infrastructure (PKI). The standardization in 

many respects, such as formatting, algorithms & APIs. This would help organizations develop 

and implement inter-operable PKI solutions, rather than everyone choosing their own standard. 



 

 

Standard Purpose Details 

PKCS#1 RSA Encryption Standard The RSA encryption 

standard. This standard 

defines mechanisms for 

encrypting and signing data 

using the RSA public key 

system. 

PKCS#2 RSA Encryption Standard 

for Message Digests 

This standard outlined the 

message-digest calculation. 

However this is now merged 

with PKCS#1 & doesn’t have 

an independent existence. 

PKCS#3 Diffie-Hellman Key 

Agreement Standard 
The Diffie-Hellman key-

agreement standard. This 

defines the Diffie-Hellman 

key agreement protocol. 
PKCS#4 NA Merged with PKCS#1 

PKCS#5 Password based Encryption 

(PBE) 

The password-based 

encryption standard (PBE). 

This describes a method to 

generate a Secret Key based 

on a password. 

PKCS#6 Extended Certificate Syntax 

Standard 

This is currently being 

phased out in favor of X509 

v3. 

PKCS#7 Cryptographic Message 

Syntax Standard 

The cryptographic message 

syntax standard. This defines 

a generic syntax for 

messages which have 

cryptography applied to it. 

PKCS#8 Private Key Information 

Standard 
The private-key 

information syntax 

standard. This defines a 

method to store Private 

Key Information. 
PKCS#9 Selected Attribute Types This defines selected 

attribute types for use in 

Other PKCS standards. 
PKCS#10 Certificate Request Syntax 

Standard 
The certification request 

syntax standard. This 

describes a syntax for 

certification requests. 
PKCS#11 Cryptographic Token 

Interface Standard 
The cryptographic token 

interface standard. This 

defines a technology 



 

independent 

programming 

interface for 

cryptographic devices 

such as smartcards. 
PKCS#12 Personal Information 

Exchange Syntax Standard 
The personal information 

exchange syntax standard. 

This describes a portable 

format for storage and 

transportation of user 

private keys, certificates 

etc. 
PKCS#13 Elliptic Curve Cryptography 

Standard 

The elliptic curve 

cryptography standard. This 

describes mechanisms to 

encrypt and sign data using 

Elliptic curve cryptography. 

PKCS#14 Pseudo-Random Number 

Generation Standard 
This covers pseudo 

random number 

generation (PRNG). This 

is currently under active 

development. 
PKCS#15 Cryptographic Token 

Information syntax standard 
The cryptographic token 

information format 

standard. This describes a 

standard for the format of 

cryptographic credentials 

stored on cryptographic 

tokens. 
 

 

XML, PKI & SECURITY: 

-- The technology of PKI is quite promising, but it lacks operability among vendor solutions. 

-- The EXtensile Markup Language (XML) is at the centerstage of the modern world of 

technology. XML forms the backbone of the upcoming technologies, such as Web services. 

XML & Security: 

 

 

 

 

XML Key Management Specification (XKMS) 

XML Encryption 
XML Digital Signature 



 

 

XML ENCRYPTION: 

-- The XML encryption can encrypt an entire document, or its selected portions. 

-- One or all the following portion of XML document can be encrypted: 

(a) Entire XML document. 

(b) An element & all its sub-elements 

(c) The content portion of XML document\ 

(d) A reference to a resource outside of an XML document. 

STEPS INVOLVED IN XML ENCRYPTION: 

(i) Select the XML to be encrypted. 

(ii) Convert the data to be encrypted in a canonical form (optional). 

(iii) Encrypt the result using public key encryption. 

(iv) Send the encrypted XML document to the intended recipient. 

XML DIGITAL SIGNATURE: 

Elements in XML digital signature process: 

Element Description 

SignedInfo Contains the signature itself. 

Canonicalization Method Specifies the algorithm used to canonicalize 

the SignedInfo element, before it is digested 

as a part of signature creation. 

Signature Method Specifies the algorithm used to transform the 

canonicalized SignedInfo element into the 

SignatureValue element. 

Reference Includes the mechanism used for calculating 

the message digest & the resulting digest 

value over the original data. 

KeyInfo Indicates the key that can be used to validate 

the digital signature. 

Transforms Specifies the operations performed before 

calculating the digest, such as compression, 

encoding etc. 

Digest Method Specifies the algorithm used to calculate the 

message digest. 

Digest Value Contains the message digest of the original 

message. 

 

STEPS: 

(i) Create a SignedInfo element with SignatureModel, Canonicalization Method, & References. 

(ii) Canonicalize the XML document. 



 

(iii) Calculate the Signaturevalue, depending on the algorithms specified in the SignedInfo 

element. 

(iv) Create the digital signature which also includes the SignedInfo, KeyInfo, and 

SignatureValue elements. 

CLASSIFICATION OF DIGITAL SIGNATURES: 

 

 

(a) Enveloped: The signature is inside the original document which is being digitally signed. 

(b) Enveloping: The original document is inside the signature. 

(c) Detached: It has no enveloping concept at all, it is separate from the original document. 

 INTERNET-SECURITY PROTOCOLS 

BASIC CONCEPTS: 

(i) STATIC WEB PAGES: 

-- In static web pages, browser sends an HTTP request, the server sends an HTTP response and 

the communication between them ends. 

-- A Web page written in HTML is created by an application developer & is stored on a Web 

server. Whenever any user requests for that page, the Web server sends back the page without 

performing any additional processing. All it does is to locate the page on its hard disk, add 

HTTP headers, and send back an HTTP response. 

-- Thus the contents of the Web page doesn’t change depending on the request- they are always 

same. Hence the name static has been assigned. 

STATIC WEB PAGE: 

                                                 

XML Digital Signature

Enveloped Enveloping Detached

Web 

Browser 

Web 

Server 

Step 1: HTTP Request 

Step 2: HTTP Response 



 

 

(ii) DYNAMIC WEB PAGES: 

-- The contents of the dynamic web page changes depending on the number of parameters. 

-- It involves server-side programming. 

-- When the user requests for a dynamic Web page, the server actually invokes a program that 

resides on its hard disk. The program in turn might access databases, perform transaction 

processing etc. However in any case, the program outputs HTML, which is used to construct 

an HTTP response by the Web server. The Web server sends the HTTP response thus formed, 

back to the Web browser. 

 

DYNAMIC WEB PAGE: 

                                                 

 

 

 

 

 

 

(iii) ACTIVE WEB PAGES: 

-- When a client sends an HTTP request for an active Web page, the Web server sends back an 

HTTP response that contains an HTML page as usual. In addition, the HTML page also 

contains a small program that executes on the client computer inside the Web browser. 

 

 

 

 

 

 

 

Web 

Browser 

Web 

Server 

Step 1: HTTP Request 

Step 4: HTTP Response 

Step 3: The 

program executes 

and produces 

HTML output 

Step 2: Invokes an 

application 

program in 

response to the 

HTTP request. 



 

ACTIVE WEB PAGE: 

 

                                                 

 

 

 

 

 

-- Client Pull: When the client keeps requesting information automatically from the server (i.e. 

the client pulls information) after a specified interval, this technology is called client pull. 

(iv) TCP/IP: This software is a translator that is a combination of many protocols that facilitate 

communication between computers over the Internet. It specifies how a browser should identify 

a server, how it should send an HTTP request to server, how should a server respond, what to 

do in case of an error etc. 

TCP/IP Layers 

 

  

Physical Layer

Data Link Layer

Internet Layer

Transport Layer

Application Layer

Web 

Browser 

Web 

Server 

Step 1: HTTP Request 

Step 2: HTTP Response 

Step 3: Browser 

interprets HTML 

page & also 

executes the 

program 

HTML Page 

...... 

...... 

Small Program 

Contain

s 



 

SECURE SOCKET LAYER (SSL): 

-- It is an Internet protocol for the secure exchange of information between a Web browser & 

a Web server. 

-- It provides 2 basic security services: 

(a) Authentication 

(b) Confidentiality 

-- It provides a secure pipe between Web browser & Web server. 

Position of SSL in TCP/IP: 

 

  

WORKING OF SSL: 

SSL has 3 sub-protocols: 

(1) Handshake Protocol 

(2) Record Protocol 

(3) Alert Protocol 

(1) The Handshake Protocol: 

-- It consists of a series of messages between client & server with following format: 

 

 

1 Byte             3 Bytes           1 or more bytes 

Physical Layer

Data Link Layer

Internet Layer

Transport Layer

SSL Layer

Application Layer

Type                                      Length                                          Content 



 

The handshake protocol is made up of 4 phases: 

(a) Establish security capabilities 

(b) Server authentication & key exchange 

(c) Client authentication & key exchange 

(d) Finish 

Phase 1: Establish Security Capabilities: 

This is used to initiate a logical connection & establish the security capabilities associated with 

that connection. 

This consists of 2 messages: 

(a) client hello 

(b) server hello 

Client hello parameters: 

(a) Version: This field identifies the highest version of SSL that the client can support. This 

can be 2,3 or 3.1 

(b) Random: This field is useful for the later, actual communication between the client & the 

server. It consists of 2 sub-fields: 

(i) A 32-bit date-time field that identifies the current system date & time on the client computer.  

(ii) A 28-byte random number generated by the random-number generator software built inside 

the client computer. 

(c) Session Id: This is a variable-length session identifier. If this field contains a non-zero value, 

it means that there is already a connection between the client & the server, and the client wishes 

to update the parameters of that connection. A zero value indicates that the client wants to 

create a new connection to the server. 

(d) Cipher suite: This list contains a list of the cryptographic algorithms supported by the client 

in the decreasing order of preference. 

(e) Compression Method: This field contains a list of compression algorithms supported by the 

client. 

Server hello parameters: 

(a) Version: This field identifies the lower versions suggested by the client & the highest 

supported by the server. 

(b) Random: This field has the same structure as the Random field of the client. However, the 

Random value generated by the server is completely independent of the client’s Random value. 

(c) Session Id: If the session id value sent by the client was non-zero, the server uses the same 

value. Otherwise, the server creates a new session id & puts it in this field. 



 

(d) Cipher Suite: Contains a single cipher suite, which the server selects from a list sent earlier 

by the client. 

(e) Compression Method: Contains a compression algorithm, which the server selects from a 

list sent earlier by the client. 

Phase 2: Server Authentication & Key exchange: 

The server initiates this second of the SSL handshake, and is the sole sender of all the messages 

in this phase. The client is the sole recipient of all these messages. This phase contains 4 steps: 

(a) Certificate: The server sends its digital certificate & the entire chain leading up to root CA 

to the client. This helps the client to authenticate the server using the server’s public key from 

the server’s certificate. 

(b) Server Key Exchange: It is optional. It is used only if the server doesn’t send its digital 

certificate to the client in the Step 1 above. 

(c) Certificate Request: The server can request for the client’s digital certificate. 

(d) Server hello done: It indicates to the client that its portion of the hello message is complete. 

This indicates to the client that the client can now verify the certificates sent by the server & 

ensure that all the parameters sent by the server are acceptable. 

Phase 3: Client Authentication & Key Exchange: 

The client initiates this 3rd phase of the SSL handshake, & is the sole sender of all the messages 

in this phase. The server is the sole recipient of all these messages. This phase contains 3 steps: 

(a) Certificate: It is optional. This is performed only if the server had requested for the client’s 

digital certificate. 

(b) Client Key Exchange: It allows the client to send information to the server, but in the 

opposite direction. This information is related to the symmetric key that both the parties will 

use in this session. 

(c) Certificate Verify: It is necessary if the server had demanded client authentication. 

Phase 4: Finish: The client initiates this 4th phase of the SSL handshake, which the server ends. 

It contains 4 steps: 

(a) Change Cipher specs 

(b) Finished 

(c) Change Cipher specs 

(d) Finished 

The 1st two messages are from the client. The server responds back with two identical 

messages. 

 

 



 

(2) The Record protocol: 

This comes into picture in SSL after a successful handshake is completed between the client & 

server. This protocol provides 2 services: 

(a) Confidentiality: This is achieved by using the secret key that is defined by the handshake 

protocol. 

(b) Integrity: The handshake protocol also defines a shared secret key (MAC) that is used for 

assuring the message integrity. 

Steps in Record Protocol: 

(a) Application data: The SSL record protocol takes an application message as input. 

(b) Fragmentation: It fragments the message into smaller blocks. 

(c) Compression: The fragmented blocks are compressed. 

(d) Addition of MAC: Using the shared secret key established previously in the handshake 

protocol, the Message Authentication Code (MAC) for each block is calculated. 

(e) Encryption: Using the symmetric key established previously in the handshake protocol, the 

output of the previous step is now encrypted. 

(f) Append Header: Finally a header is added to the encrypted block. 

(3) The Alert Protocol: 

 When either the client or the server detects an error, the detecting party sends an alert message 

to the other party.  

If the error is fatal, both the parties immediately close the SSL connection.  

Both the parties also destroy the session identifiers, secrets & keys associated with this 

connection before it is terminated. 

Closing & Resuming SSL Connections: Before ending their connection, the client & server 

must inform each other that their side of the connection is ending. Each party sends a Close 

notify to the other party. This ensures a graceful closure of the connection. 

 SECURE HYPERTEXT TRANSFER PROTOCOL (SHTTP):  

-- It is a set of security mechanisms defined for protecting the Internet traffic. 

-- This includes the data-entry forms & Internet-based transactions. 

-- It supports both authentication & encryption of HTTP traffic between the client & the server. 

-- The key difference between SSL & SHTTP is that SHTTP works at the level of individual 

messages. 

-- It can encrypt & sign individual messages. 

-- SSL can’t perform digital signatures. 

 



 

TIME STAMPING PROTOCOL (TSP): 

TSP provides proof that a certain piece of data existed at a particular time. This PKI service is 

provided by an authority called Time Stamping Authority (TSA). 

TSP is a simple request-response protocol similar to HTTP.  

Working of TSP: 

Step 1: Message Digest Calculation: 

Firstly, the client requiring a timestamp calculates a MD of the original massage, which needs 

a timestamp from the TSA. The client should use a standard message digest algorithm such as 

MD5 or SHA-1 for this purpose. 

 

                                                  

 

 

 

Step 2: Time Stamping Request: 

Now, the client sends the message digest calculated in step 1 to the Time Stamp Authority 

(TSA) for getting it time stamped. This is called Time Stamping Request. 

 

                                                  

 

Step 3: Time Stamping Response: 

In response to the client’s request, the TSA might decide to grant or reject the time stamp. If it 

decides to accept the request & process it, it signs the client’s request together with the 

timestamp by the TSA private key. Regardless, it returns a Time Stamping Response back to 

the client. 

Client TSA 

Client TSA 

Original 

Message... 

Message Digest 

Algorithm 

Message 

 Digest ... 

Message  

Digest ... 

Time Stamping Request 



 

 

                                                  

 

 

SECURE ELECTRONIC TRANSACTION (SET): 

-- SET is an open encryption & security specification that is designed for protecting credit-card 

transactions on the Internet. 

SET Services: 

(i) It provides a secure communication channel among all the parties involved in an e-

commerce transaction. 

(ii) It provides authentication by the use of digital certificates. 

(iii) It ensures confidentiality, because the information is only available to the parties involved 

in a transaction, and that too only when & where necessary. 

SET Participants: 

(a) Cardholder: Using the Internet, consumers & corporate purchasers interact with merchants 

for buying goods & services. A cardholder is an authorized holder of a payment card such as 

Master Card or Visa that has been issued by an issuer. 

(b) Merchant: A merchant is a person or organization that wants to sell goods or services to 

card holders. 

(c) Issuer: It is a financial institution that provides a payment card to a cardholder. 

(d) Acquirer: This is a financial institution that has a relationship with merchants for processing 

payment-card authorizations & payments. 

(e) Payment Gateway: This is a task that can be taken up by the acquirer or it can be taken up 

by an organization as a dedicated function. 

(f) Certification Authority: This is a authority that is trusted to provide public key certificates 

to cardholders, merchants & payment gateways. 

The SET PROCESS: 

(a) The Customer Opens an Account: The customer opens a credit-card account that supports 

electronic payment mechanisms & the SET protocol. 

Client TSA 

... 

... 

Time Stamping 

Response 



 

(b) The Customer Receives a Certificate: After the customer’s identity is verified, the customer 

receives a digital certificate from a CA. 

(c) The Merchant Receives a Certificate: A merchant that wants to accept a certain brand of 

credit cards must possess a digital certificate. 

(d) The Customer Places an Order: This is a typical shopping cart process wherein a customer 

browses the list of items available. 

(e) The merchant is verified: The merchant also sends its digital certificate to the customer. 

(f) The Order & Payment details are sent: The customer sends both order & payment details to 

the merchant along with the customer’s digital certificate. 

(g) The Merchant Requests Payment Authorization: The merchant forwards the payment 

details by the customer to the payment gateway via the acquirer & requests the payment 

gateway to authorize the payment. 

(h) The Payment Gateway Authorizes the Payment: Using the credit-card information received 

from the merchant, the payment gateway verifies the details of the customer’s credit card with 

the help of the issuer, and either authorizes or rejects the payment. 

(i) The Merchant Confirms the Order: Assuming that the payment gateway authorizes the 

payment, the merchant sends a confirmation of the order to the customer. 

(j) The Merchant Provides Goods or Services: The merchant now ships the goods or provides 

the services as per the customer’s orders. 

(k) The Merchant Requests Payment: The payment gateway receives a request from the 

merchant for making the payment. 

SSL Vs SET: 

Issue SSL SET 

Main Aim Exchange of data in an 

encrypted form 

E-commerce related 

payment mechanism 

Certification Two parties exchange 

certificates 

All the involved parties must 

be certified by a trusted 3rd 

party. 

Authentication Mechanisms not strong Strong mechanisms for 

authenticating all the parties 

involved. 

Risk Of Merchant Fraud Possible, since customer 

gives financial data to 

merchant. 

Unlikely, since customer 

gives financial data to 

payment gateway. 

Risk Of Customer Fraud Possible, no mechanism 

exists if a customer refuses to 

pay later. 

Customer has to digitally 

sign payment instructions. 

Action in case of customer 

fraud 

Merchant is liable Payment gateway is liable 

Practical Usage High Low at the moment, expected 

to grow 

 



 

3-D SECURE PROTOCOL: 

In spite of its advantages, SET has one limitation: it doesn’t prevent a user from providing 

someone else’s credit-card number. 

In 3-D secure protocol, the cardholder has to enrol on the issuer bank’s Enrolment Server. 

Protocol: 

Step-1: The user shops using the shopping cart on the merchant site & decides to pay the 

amount. 

Step-2: The user is redirected to the issuer bank’s site. The user is asked for a static password. 

The bank verifies this password & then sends the appropriate success/failure message to the 

merchant, based on which the merchant takes an appropriate decision & shows the 

corresponding screen to the user. 

The 3 Domains of 3-D Secure: 

 

TRANSACTION FLOWS: 

The Verified by Visa program includes two transaction flows for the cardholder: 

• Cardholder enrolment or activation in the Verified by Visa program as described as 

Cardholder Enrolment/Activation. 

• Cardholder authentication during an online purchase at a participating merchant described as 

Online Purchases. 

 

(A) Cardholder Enrolment/Activation: 

-- Issuers may provide one or more of several enrolment options to their cardholders. 

Cardholders may enter a password that is used for authentication when shopping at the website 

of a merchant that participates in the Verified by Visa program or be authenticated by entering 

the requested information to verify their identity. Cardholders can also select a Personal 



 

Assurance Message that assures them that the password prompt window is actually from their 

card issuer. 

 

(i) Enrolment: Activation During Shopping: 

The most popular form of cardholder enrolment in Verified by Visa is known as “Activation 

During Shopping.” This option facilitates a more targeted adoption rate and has helped enrol a 

critical mass of cardholders into Verified by Visa. With Activation during Shopping, 

cardholders who have not set up their Verified by Visa password receive a request to do so 

when shopping at a participating merchant. The cardholder is presented with a series of security 

questions to be answered to verify the cardholder’s identity. Once the identity is confirmed, the 

cardholder is asked to select a password. 

 

(ii) Enrolment: Cardholder Registration: 

The second common form of enrolment is to give cardholders the option to visit a Verified by 

Visa website provided by the financial institution that issued their Visa card. After cardholders 

enter their card number, they are presented with a series of security questions to be answered 

to verify the cardholder’s identity. Once the identity is confirmed, the cardholder is asked to 

select a password and a Personal Assurance Message. 

 

(iii) Enrolment: Registration Complete: 

After enrolment is complete, each time the cardholder makes an online purchase at a 

participating merchant’s website, a Verified by Visa authentication page will appear to verify 

the identity of the cardholder, as described in Online Purchases. 

 

(B) Online Purchases: 

After enrolling as described above, the cardholder is ready to use Verified by Visa at any 

participating merchant. Figure below illustrates the purchase transaction flow, which is 

described in the remainder of this section. Descriptions of each transaction step are in the 

sections that follow. 

 

Step 1: Cardholder Finalizes Purchase: 

The cardholder browses at a participating merchant’s website, adds items to the shopping cart, 

provides information required for checkout (by key entering data or by using an electronic 

wallet, a merchant one click service, or some other form-fill method), then clicks “Buy”. The 

merchant now has all necessary data, including Primary Account Number (PAN) of the card 

presented for the purchase. 

Steps 2-7 that follow are invisible to the cardholder. 

Step 2: Merchant Server Plug-in Initiates 3-D Secure Processing: 

When the cardholder clicks buy, the Merchant Server Plug-in (MPI) is activated. The MPI 

sends the PAN and other information to the Visa Directory Server to determine whether the 

card is in a participating range. 

 

 

 

 

 

 

 

 

 

 

 



 

Purchase Transaction Flow: 

 
 

Step 3: Visa Directory Server Processes Request 

If merchant authentication is successful, the Visa Directory Server forwards the merchant query 

to the appropriate Access Control Server (ACS) to determine whether authentication (or proof 

of authentication attempt) is available for the card PAN. If merchant authentication fails, the 

Directory Server returns an Error and the Verified by Visa transaction is terminated. If no 

appropriate ACS is available or the cardholder is not participating in Verified by Visa, the Visa 

Directory Server routes the request to the Visa Attempts Service which will process the 

authentication on behalf of the issuer. 

 

Step 4. ACS Responds to Visa Directory Server 

The issuer ACS, or Visa Attempts Service if an issuer ACS is not available, determines whether 

authentication is available for the card’s PAN, prepares a response, and sends it to the Visa 

Directory Server. 

 

Step 5: Visa Directory Server Returns Response 

The Visa Directory Server returns the ACS response (or its own) to the MPI. 

If authentication is available, the response includes the URL of the Visa Transaction Routing 

Service and the issuer ACS to which the merchant will send the Payer Authentication Request. 

 

Step 6: MPI Sends Payer Authentication Request 

If authentication (or proof of an attempted authentication) is not available, then the MPI advises 

the merchant commerce server that authentication is not available, and processing continues 

with Step 12. The MPI sends the Payer Authentication Request to the ACS via the Visa 

Transaction Routing Service via the cardholder’s device (PC browser or other device), using 

the URL received in Step 5. The Payer Authentication Request contains information about the 

purchase transaction. 

 

 

 



 

Step 7: ACS Receives Payer Authentication Request 

The Visa Transaction Routing Service receives the Payer Authentication Request and forwards 

it to the appropriate issuer ACS.  

 

Step 8: ACS Authenticates Cardholder 

The ACS formats an authentication request for the cardholder. The authentication request is 

returned via the Visa Transaction Routing Service to the cardholder’s browser. The cardholder 

may be authenticated using processes applicable to the PAN (password, Activation During 

Shopping, etc.).  

 

Step 9: ACS Returns Authentication Results 

The ACS returns the signed Payer Authentication Response to the Visa Transaction Routing 

Service which forwards the response to the MPI via the cardholder’s device. 

• Step 9A: Whether or not authentication was successful, the ACS sends a copy of the Payer 

Authentication Response, including related data, to the Authentication History Server. 

• Step 9B: The Authentication History Server provides an acknowledgment response that the 

Payer Authentication Response transaction data was received. 

The Authentication History Server serves as the database of record for dispute resolution. 

 

Step 10: MPI Receives Payer Authentication Response 

The cardholder’s device forwards the signed Payer Authentication Response to the MPI. 

 

Step 11: MPI Processes Response 

The MPI validates the signature on the Payer Authentication Response along with other data 

in the response. The MPI, then, passes the results of the authentication attempt to the merchant 

commerce server. 

 

Step 12: Authorization Processing 

Based on the data received from the MPI, the merchant commerce server determines whether 

to proceed with authorization. If the merchant commerce server advises the MPI that 

authentication failed, the merchant should request another form of payment from the shopper. 

 

If authorization is appropriate: 

• The merchant commerce server sends an authorization request to the merchant’s acquirer or 

merchant payment processor. The authorization request includes the Electronic Commerce 

Indicator (ECI) appropriate to the authentication status and the CAVV, when required. 

• The acquirer sends the authorization request, including Verified by Visa authentication 

information, to the issuer via VisaNet. 

• The issuer receives and processes the authorization request. When the CAVV is passed in 

BASE I, either the issuer or Visa on the issuer’s behalf, will perform CAVV verification. The 

issuer returns an authorization response. The issuer may choose to approve or to decline the 

authorization request for reasons unrelated to the Verified by Visa authentication (e.g., 

insufficient funds, closed account, etc.). 

• If the issuer authorizes the transaction, the merchant displays an order confirmation as usual, 

providing the cardholder with details about the order, delivery, and the merchant’s customer 

service. 

 

ELECTRONIC MONEY: 

Electronic Money also called electronic cash or digital cash is one more way of making 

payments on the Internet. It is the money represented by computer files. 



 

Security Mechanisms in Electronic Money: 

Step 1: The bank sends the electronic money to the customer as shown in the figure below: 

 

 

 

 

Original Message                  Encrypt With             Encrypt With                   Twice Encrypted 

                                       Bank’s private key      Customer’s public key               data 

 

Step 2: The customer receives the money & decrypts it as shown in the figure: 

 

 

 

 

     Received                         Decrypt with               Decrypt with                 Original Message 

      Message                           customer’s                    bank’s  

             private key                 public key 

 

TYPES OF ELECTRONIC MONEY: 

Classification based on Tracking of the money: 

(a) Identified Electronic Money: It works more or less like a credit card. The progress of the 

identified electronic money from the very 1st time it is issued by the bank to one of its 

customers, up to its final return to the bank can be easily tracked by the bank. 

STEPS INVOLVED IN IDENTIFIED ELECTRONIC MONEY: 

 

BANK
$100

SR100
CUSTOMER

CUSTOMER
$100

SR100
MERCHANT

MERCHANT
$100

SR 100
BANK

BANK 

$100 %^^A 

CUSTOMER 

%^^A $100 

 

CUSTOMER 



 

(i) The Bank generates the serial number & sends it along with the electronic money to the 

customer. 

(ii) The customer spends the money so the merchant has it now. 

(iii) The merchant now wants to encash the electronic money from the bank. The money still 

has the same serial number. 

(b) Anonymous Electronic Money: It is also called blinded money, works as real hard cash. 

There is no trace of how the money was spent. Products like DigiCash provide this kind of 

electronic money to Internet users to spend by tying up with banks. 

In identified electronic money, the bank creates the serial number whereas in anonymous 

electronic money the customer generates the serial number. 

STEPS INVOLVED IN ANONYMOUS ELECTRONIC MONEY: 

         Original Number   Blinded Number 

 

(i) The customer generates a random number, & from it, creates another number called as 

blinded number. 

(ii) The customer sends the blinded number to the bank. 

(iii) The bank sends the electronic money along with the blinded number to the customer. 

(iv) During the actual transaction, the customer doesn’t use the blinded number, instead he uses 

the original number. 

(v) The merchant & the bank now have the original number-they can’t trace the money as they 

don’t know the relationship between the original number & the blinded number. 

 

 

CUSTOMER PQP1 8A8C

CUSTOMER 8A8C BANK

BANK
$100

8A8C
CUSTOMER

CUSTOMER
$100

PQP1
MERCHANT

MERCHANT
$100

PQp1
BANK



 

Classification based on the involvement of the bank in the transaction: 

(a) Online Electronic Money: In this type, the bank must actively participate in the transaction 

between the customer & the merchant. 

(b) Offline Electronic Money: In this type, the bank doesn’t participate in the transaction 

between the customer & the merchant. 

DOUBLE SPENDING PROBLEM: 

If we combine the two ways of classifying electronic money, there are 4 possibilities: 

(i) Identified Online Electronic Money 

(ii) Identified Offline Electronic Money 

(iii) Anonymous Online Electronic Money 

(iv) Anonymous Offline Electronic Money 

Of the four, the last one can create double spending problem. A customer could arrange for 

anonymous electronic money by using the blinded money concept. Later on, he could spend it 

offline more than once in quick succession with two different merchants. Since the bank is not 

involved in any of the two transactions, the fact that the same money is being spent twice cannot 

be prevented. 

WIRELESS APPLICATION PROTOCOL (WAP) SECURITY: 

WAP Stack: 

 

Security layer: The security layer in WAP stack is also called Wireless Transport Layer 

Security (WTLS) protocol. It provides: 

(a) Privacy: Ensures that the messages passing between the client & the server are not 

accessible to anybody else. 

Physical Layer (Wireless)

Transport Layer (WDP)

Security Layer (WTLS)

Transaction Layer (WTP)

Session Layer (WSP)

Application Layer (WAE)



 

(b) Server Authentication: It gives the client a confidence that the server is indeed what it is 

depicting as, and not someone who is posing as the server, with or without malicious intentions. 

(c) Client Authentication: It gives the server a confidence that the client is indeed what it is 

depicting as. 

(d) Data Integrity: It ensures that no one can tamper with the messages going between the client 

& the server, by modifying the contents in any manner. 

GSM SECURITY: 

There are 3 aspects in GSM Security: 

(i) Subscriber Identity Authentication 

(ii) Signalling Data Confidentiality 

(iii) User data Confidentiality 

Achieving Security in GSM: 

(a) Authentication: The process begins with a challenge-response mechanism. The network 

sends a 128-bit random number to the subscriber when authentication begins. After this, 32-bit 

signed response using the authentication algorithm (A3) & the subscriber authentication key 

(Ki) is prepared by the handset, and sent back to the network. The network retrieves its value 

of Ki from its database, performs the same operation using the A3 algorithm on the original 

128-bit random number, and compares this result with the one received from the handset. If 

the two match, the user is considered as successfully authenticated. 

(b) Signalling & Data Confidentiality: The SIM contains the ciphering key generation 

algorithm(A8). This is used to produce the 64-bit ciphering key (Kc).  

(c) Voice & Data Security: The A5 algorithm is used to encrypt the voice & data traffic between 

the user’s handset & the GSM network. 

USER AUTHENTICATION MECHANISMS 

INTRODUCTION: 

One of the key aspects of cryptography & network/Internet security is authentication. 

Authentication ensures that the claimant is really what he/she claims to be. 

AUTHENTICATION BASICS: It is the way of determining an identity to the required level 

of assurance. 

TECHNIQUES FOR AUTHENTICATION: 

PASSWORDS: These are the most common form of authentication. 

Def: A password is a string of alphabets, numbers and special characters, which is supposed to 

be known only to the entity (usually a person) that is being authenticated. 

(a) Clear Text Passwords: Every user in the system is assigned a user id and an initial password. 

The user changes the password periodically for security reasons. The password is stored in 

clear text in the user database against the user id on the server. 



 

Mechanism: 

Step-1: Prompt for user id and password 

 

 

 

 

 

 

 

 

Step-2: User enters user id and password 

 

 

 

                                        Id = Atul 

                                      

 

    Id=user1 

                                            Password = april 

 

Step-3: User id and password validation 

 

 

 

 

 

Step-4: Authentication result 

 

 

 

            Success  

 

Step-5: Inform user accordingly 

Clien

t 

LOGIN SCREEN 

     User Id: 

     Password:  

OK CANCEL 

Client 

Login Request 

Server 

Server 
User Authenticator program  

Database 

Server 
 

Database 

User Authenticator program 



 

 

 

 

 

 

Problems with this approach: 

Problem-1: Database contains passwords in clear text. 

If an attacker succeeds in obtaining an access to the database, the whole list of user ids and 

passwords is available to the attacker. 

Problem-2: Password travels in clear text from the user’s computer to the server 

If the attacker breaks into the communication link between the user’s computer and the server, 

the attacker can easily obtain the clear text password. 

(ii) Something derived from passwords: 

Instead of storing the password as it is, or in encrypted format, it can be stored as an output of 

an algorithm implemented on it. When the user wants to get authenticated, he enters the 

password and his computer performs the same algorithm locally, and sends the derived 

password to the server, where it is verified. 

(a) Message Digests of passwords: 

Step-1: Storing message digests as derived passwords in the user database: The MDs are stored 

as derived passwords in the user DB. 

Step-2: User Authentication: when a user wants to b authenticated, he enters the user-id and 

password as usual. The user’s computer computes the message digest of the password & sends 

the user id & message digest of the password to the server for authentication. 

Step-3: Server-side validation: The user-id and the message digest of the password travel to the 

server over the communication link. The server passes these values to the user authenticator 

program which validates the user-id and the message digest of the password against the 

database and returns an appropriate response back to the server. The server uses the result of 

this operation to return an appropriate message back to the user. 

(b) Adding randomness: This method ensures that although the message digest of the password 

is always the same, the exchange of information between the user’s computer & the server is 

never the same. 

Step-1: Storing message digests as derived passwords in the user database: The message digests 

are stored as derived passwords in the user DB.  

Step-2: User sends a login request: the user sends the login request only with his user id. 

Step-3: Server creates a random challenge: When the server receives a user’s login request 

containing the user-id alone, it first checks to see if the user id is a valid one. If it is not, it sends 

Client 

Login Successful 

Server 



 

an appropriate error message back to the user. If the user is valid, the server now creates a 

random challenge & sends it back to the user. 

Step-4: User signs the random challenge with the message digest of the password: The 

application displays the password entry screen to the user. In response, the user enters the 

password. The application executes the appropriate message digest algorithm on the user’s 

computer to create a message digest of the password entered by the user. This message digest 

of the password is now used to encrypt the random challenge received from the server. 

Step-5: Server verifies the encrypted random challenge received from the user: The server 

receives the random challenge. In order to verify that the random challenge was indeed 

encrypted by the message digest by the user’s password, the server must perform an identical 

operation, which can be achieved in 2 ways: 

(i) The server can decrypt the encrypted random challenge received from the user with the 

message digest of the user’s password. 

(ii) The server can simply encrypt its own version of random challenge with the message digest 

of the user’s password. If this encryption produces an encrypted random challenge, which 

matches the random challenge received from the user, the server can be assured that the random 

challenge was indeed encrypted by the message digest of the user’s password. 

Step-6: Server returns an appropriate message back to the user: Finally the sever sends an 

appropriate message back to the user depending on the previous operations yielded success or 

failure. 

(c) Password encryption: 

This method defines the encryption of passwords & then sending it to the server for 

authentication. 

(i) Encrypt the password before it is stored in the user’s computer. 

(ii) Encrypt the password before it is sent to the server. 

AUTHENTICATION TOKENS: 

An authentication token is an extremely useful alternative to a password. An authentication 

token is a small device that generates a new random value every time it is used. 

Step-1: Creation of token: 

Whenever an authentication token is created, the corresponding random seed is generated for 

the token by the authentication server. This seed is stored or pre-programmed inside the token. 

Step-2: Use of token: 

An authentication token automatically generates pseudorandom numbers called as one time 

passwords (OTP). The user id and password travels to the server as part of the login request. 

The server obtains the seed corresponding to the user id from the user database using a seed 

retrieval program. It then calls another Password validation program to which the server gives 

the seed & the OTP. 

Step-3: Server returns an appropriate message back to the user: 



 

Finally the server sends an appropriate message back to the user, depending on whether the 

previous operations yielded success or failure. 

CERTIFICATE BASED AUTHENTICATION: 

It is based on the digital certificate of a user specified by FIPS-196 standard. It is stronger than 

password-based authentication as the user is expected to have certificate & not know password. 

WORKING 

Step-1: Creation, storage and distribution of digital certificates 

Here, the digital certificates are created by the CA for each user and the certificates are sent to 

the respective users. 

Step-2: Login Request 

During a login request, the user sends only her user id to the server. 

Step-3: Server creates a random challenge 

When the server receives the user’s login request containing the user id only, it 1st checks to 

see if the user id is a valid one. If it is not, it sends appropriate error message else it creates a 

random challenge & sends it back to the user. The random challenge can travel as PT from the 

server to the user’s computer. 

Step-4: User signs the random challenge 

The user has to now sign the random challenge with her private key. User enters the secret 

password to open up the private key file. After the user enters the correct password, the user’s 

private key file is opened by the application. It retrieves the private key from that file & uses it 

to encrypt the random challenge received from the server to create the user’s digital signature. 

The server now needs to verify the user’s signature. For this purpose, the server consults the 

user DB to obtain the user’s public key. It then uses this public key to decrypt the signed 

random challenge received from the user. After this, it compares this decrypted random 

challenge with its original random challenge. 

Step-5: Server returns an appropriate message back to the user 

Finally, the server sends an appropriate message back to the user, depending on whether the 

previous operations yielded success or failure. 

BIOMETRIC AUTHENTICATION: 

A biometric device works on the basis of some human characteristics such as fingerprint, voice 

or pattern of lines in the iris of the eye. The user DB contains a sample of user’s biometric 

characteristics. During authentication, the user is required to provide another sample of the 

user’s biometric characteristics. This is matched with the one in the DB & if the two samples 

are the same, the user is considered to be a valid one. 

 

 

 



 

KERBEROS: 

Many real-life systems use an authentication protocol called as Kerberos.  

Working: 

There are 4 parties involved in the Kerberos protocol: 

(a) Alice: The client workstation 

(b) Authentication Server (AS): Verifies the user during login. 

(c) Ticket Granting Server (TGS): Issues tickets to certify proof of identity. 

(d) Bob: The server offering services such as network printing, file sharing or an 

application program. 

Step-1: Login 

Alice, the user sits down at an arbitrary workstation & enters her name. The workstation 

sends her name in plain text to the AS. In response, the AS performs several actions. It first 

creates a package of the user name & a randomly generated session key (KS). It encrypts 

this package with the symmetric key the AS shares with the TGS. The output of this step 

is called as Ticket Granting Ticket (TGT). The AS then combines the TGT with KS & 

encrypts the two together using a symmetric key derived from the password of Alice (KA). 

After this message is received, Alice’s workstation asks her for the password. When Alice 

enters it, the workstation generates the symmetric key (KA) derived from the password & 

uses that key to extract the session key (KS) & the TGT. The workstation destroys the 

password of Alice from its memory immediately, to prevent an attacker from stealing it. 

Step-2: Obtaining a Service Granting Ticket (SGT) 

Now after a successful login, Alice wants to make use of Bob- the email server, for some 

e-mail communication. For this, Alice would inform her workstation that she needs to 

contact Bob. Therefore, Alice needs a ticket to communicate with Bob. At this juncture, 

Alice’s workstation creates a message intended for the Ticket Granting Server which 

contains the following items: 

(a) The TGT as in Step-1 

(b) The id of the server (Bob) whose services Alice is interested in 

(c) The current timestamp, encrypted with the same session key (KS). 

Once the TGS is satisfied of the credentials of Alice, the TGS creates a session key KAB, 

for Alice to have secure communication with Bob. TGS sends it twice to Alice: once 

combined with Bob’s id (Bob) and encrypted with the session key (KS), and a second time, 

combined with Alice’s id and encrypted with Bob’s secret key (KB). 

Step-3: User contacts Bob for accessing the server 

Alice can now send KAB to Bob in order to enter into a session with him. Since this 

exchange is also desired to be secure, Alice can simply forward KAB encrypted with Bob’s 

secret key to Bob. 

 



 

 

NETWORK SECURITY 

TCP/IP: 

Internet is based on the Transmission Control Protocol/ Internet Protocol (TCP/IP) protocol 

suite. TCP/IP contains 5 main layers: 

(a) Application 

(b) Transport 

(c) Network or Internet 

(d) Data Link 

(e) Physical 

TCP Segment: 

(a) Source port number: This 2-byte number signifies the port number of the source 

computer, corresponding to the application that is sending this TCP segment. 

(b) Destination port number: This 2-byte number signifies the port number of the 

destination computer, corresponding to the application that is expected to receive the 

TCP segment. 

(c) Sequence number: This 4-byte field determines the number assigned to the 1st byte of 

the data portion contained in the TCP segment. 

(d) Acknowledgement Number: If the destination host receives a segment with sequence 

number X correctly, it sends X+1 as the acknowledgement number back to the source. 

Thus, this 4-byte number defines the sequence number that the source is expecting from 

the destination as a receipt of the correct delivery. 

(e) Header Length: This 4-bit field specifies the number of 4-byte words in the TCP header. 

(f) Reserved: This 6-byte field is received for future use & is currently unused. 

(g) Flag: This 6-bit field defines 6 different control flags, each one of them occupying one 

bit. 

(h) Window size: This field determines the size of the sliding window that the other party 

must maintain. 

(i) Checksum: This 16-bit field contains the checksum for facilitating the error detection 

and correction. 

(j) Urgent pointer: This field is used in situations where data in a TCP segment is more 

important or urgent than the other data in the same TCP connection. 

FIREWALLS 

In computing, a firewall is a network security system that controls the incoming and outgoing 

network traffic based on an applied rule set. A firewall typically establishes a barrier between 

a trusted, secure internal network and another network (e.g., the Internet) that is assumed not 

to be secure and trusted.  



 

 

 

Types of Firewall 

There are different types of firewalls depending on where the communication is taking place, 

where the communication is intercepted and the state that is being traced. 

(a) Network layer or packet filters  

(i) Network layer firewalls, also called packet filters, operate at a relatively low 

level of the TCP/IP protocol stack, not allowing packets to pass through the 

firewall unless they match the established rule set. The firewall administrator 

may define the rules; or default rules may apply. The term "packet filter" 

originated in the context of BSD operating systems. 

(ii) Network layer firewalls generally fall into two sub-categories, stateful and 

stateless. Stateful firewalls maintain context about active sessions, and use that 

"state information" to speed packet processing. Any existing network 

connection can be described by several properties, including source and 

destination IP address, UDP or TCP ports, and the current stage of the 

connection's lifetime (including session initiation, handshaking, data transfer, 

or completion connection). If a packet does not match an existing connection, it 

will be evaluated according to the ruleset for new connections. If a packet 

matches an existing connection based on comparison with the firewall's state 

table, it will be allowed to pass without further processing. 

(iii) Stateless firewalls require less memory, and can be faster for simple filters that 

require less time to filter than to look up a session. They may also be necessary 

for filtering stateless network protocols that have no concept of a session. 

However, they cannot make more complex decisions based on what stage 

communications between hosts have reached. 

(iv) Newer firewalls can filter traffic based on many packet attributes like source IP 

address, source port, destination IP address or port, destination service like 

WWW or FTP. They can filter based on protocols, TTL values, net block of 

originator, of the source, and many other attributes. 

(v) Commonly used packet filters on various versions of Unix are IPFilter 

(various), ipfw (FreeBSD/Mac OS X), NPF (NetBSD), PF (OpenBSD, and 

some other BSDs), iptables/ipchains (Linux). 

(b) Application-layer 

(i) Application-layer firewalls work on the application level of the TCP/IP stack 

(i.e., all browser traffic, or all telnet or ftp traffic), and may intercept all packets 



 

traveling to or from an application. They block other packets (usually dropping 

them without acknowledgment to the sender). 

(ii) On inspecting all packets for improper content, firewalls can restrict or prevent 

outright the spread of networked computer worms and trojans. The additional 

inspection criteria can add extra latency to the forwarding of packets to their 

destination. 

(iii) Application firewalls function by determining whether a process should accept 

any given connection. Application firewalls accomplish their function by 

hooking into socket calls to filter the connections between the application layer 

and the lower layers of the OSI model. Application firewalls that hook into 

socket calls are also referred to as socket filters. Application firewalls work 

much like a packet filter but application filters apply filtering rules (allow/block) 

on a per process basis instead of filtering connections on a per port basis. 

Generally, prompts are used to define rules for processes that have not yet 

received a connection. It is rare to find application firewalls not combined or 

used in conjunction with a packet filter. 

(iv) Also, application firewalls further filter connections by examining the process 

ID of data packets against a ruleset for the local process involved in the data 

transmission. The extent of the filtering that occurs is defined by the provided 

ruleset. Given the variety of software that exists, application firewalls only have 

more complex rulesets for the standard services, such as sharing services. These 

per process rulesets have limited efficacy in filtering every possible association 

that may occur with other processes. Also, these per process rulesets cannot 

defend against modification of the process via exploitation, such as memory 

corruption exploits. Because of these limitations, application firewalls are 

beginning to be supplanted by a new generation of application firewalls that rely 

on mandatory access control (MAC), also referred to as sandboxing, to protect 

vulnerable services. 

Firewall Configurations 

(a) Screened Host Firewall, Single-homed bastion 

The screened host firewall is a more flexible firewall than the dual-homed gateway firewall, 

however the flexibility is achieved with some cost to security. The screened host firewall is 

often appropriate for sites that need more flexibility than that provided by the dual-homed 

gateway firewall.  

 



 

The screened host firewall combines a packet-filtering router with an application gateway 

located on the protected subnet side of the router. The application gateway needs only one 

network interface. The application gateway's proxy services would pass TELNET, FTP, and 

other services for which proxies exist, to site systems. The router filters or screens inherently 

dangerous protocols from reaching the application gateway and site systems. It rejects (or 

accepts) application traffic according to the following rules: 

  application traffic from Internet sites to the application gateway gets routed,  

 all other traffic from Internet sites gets rejected, and  

 the router rejects any application traffic originating from the inside unless it came from 

the application gateway.  

(b)  Screened Host Firewall, Dual-homed bastion 

The dual-homed gateway is a better alternative to packet filtering router firewalls. It 

consists of a host system with two network interfaces, and with the host's IP forwarding 

capability disabled (i.e., the default condition is that the host can no longer route packets 

between the two connected networks). In addition, a packet filtering router can be placed 

at the Internet connection to provide additional protection. This would create an inner, 

screened subnet that could be used for locating specialized systems such as information 

servers and modem pools. Unlike the packet filtering firewall, the dual-homed gateway 

is a complete block to IP traffic between the Internet and protected site. Services and 

access is provided by proxy servers on the gateway.  

 

This type of firewall implements the second design policy, i.e., deny all services unless 

they are specifically permitted, since no services pass except those for which proxies 

exist. The ability of the host to accept source-routed packets would be disabled, so that 

no other packets could be passed by the host to the protected subnet. It can be used to 

achieve a high degree of privacy since routes to the protected subnet need to be known 

only to the firewall and not to Internet systems (because Internet systems cannot route 

packets directly to the protected systems). The names and IP addresses of site systems 

would be hidden from Internet systems, because the firewall would not pass DNS 

information.  

A simple setup for a dual-homed gateway would be to provide proxy services for 

TELNET and FTP, and centralized e-mail service in which the firewall would accept 

all site mail and then forward it to site systems. Because it uses a host system, the 

firewall can house software to require users to use authentication tokens or other 



 

advanced authentication measures. The firewall can also log access and log attempts or 

probes to the system that might indicate intruder activity.  

The dual-homed gateway firewall, as well as the screened subnet firewall mentioned 

later in this chapter, provides the ability to segregate traffic concerned with an 

information server from other traffic to and from the site. An information server could 

be located on the subnet between the gateway and the router, as shown in figure. 

Assuming that the gateway provides the appropriate proxy services for the information 

server (e.g., ftp, gopher, or http), the router can prevent direct Internet access to the 

firewall and force access to go through the firewall. If direct access is permitted to the 

server (which is the less secure alternative), then the server's name and IP address can 

be advertised by DNS. Locating the information server there also adds to the security 

of the site, as any intruder penetration of the information server would still be prevented 

from reaching site systems by the dual-homed gateway.  

The inflexibility of the dual-homed gateway could be a disadvantage to some sites. 

Since all services are blocked except those for which proxies exist, access to other 

services cannot be opened up; systems that require the access would need to be placed 

on the Internet side of the gateway. However, a router could be used as shown in figure 

to create a subnet between the gateway and the router, and the systems that require extra 

services could be located there (this is discussed more in section with screened subnet 

firewalls).  

Another important consideration is that the security of the host system used for the 

firewall must be very secure, as the use of any vulnerable services or techniques on the 

host could lead to break-ins. If the firewall is compromised, an intruder could 

potentially subvert the firewall and perform some activity such as to re-enable IP 

routing.  

(c) Screened Subnet Firewall 

The screened subnet firewall is a variation of the dual-homed gateway and screened 

host firewalls. It can be used to locate each component of the firewall on a separate 

system, thereby achieving greater throughput and flexibility, although at some cost to 

simplicity. But, each component system of the firewall needs to implement only a 

specific task, making the systems less complex to configure.  

 



 

Here two routers are used to create an inner, screened subnet. This subnet (sometimes 

referred to in other literature as the ``DMZ'') houses the application gateway, however 

it could also house information servers, modem pools, and other systems that require 

carefully-controlled access. The router shown as the connection point to the Internet 

would route traffic according to the following rules:  

 application traffic from the application gateway to Internet systems gets routed,  

 e-mail traffic from the e-mail server to Internet sites gets routed,  

 application traffic from Internet sites to the application gateway gets routed,  

 e-mail traffic from Internet sites to the e-mail server gets routed,  

 ftp, gopher, etc., traffic from Internet sites to the information server gets routed, and  

 all other traffic gets rejected.  

The outer router restricts Internet access to specific systems on the screened subnet, and 

blocks all other traffic to the Internet originating from systems that should not be 

originating connections (such as the modem pool, the information server, and site 

systems). The router would be used as well to block packets such as NFS, NIS, or any 

other vulnerable protocols that do not need to pass to or from hosts on the screened 

subnet.  

The inner router passes traffic to and from systems on the screened subnet according to 

the following rules:  

 application traffic from the application gateway to site systems gets routed,  

 e-mail traffic from the e-mail server to site systems gets routed,  

 application traffic to the application gateway from site systems get routed,  

 e-mail traffic from site systems to the e-mail server gets routed,  

 ftp, gopher, etc., traffic from site systems to the information server gets routed,  

 all other traffic gets rejected.  

 Thus, no site system is directly reachable from the Internet and vice versa, as with the 

dual-homed gateway firewall. A big difference, though, is that the routers are used to 

direct traffic to specific systems, thereby eliminating the need for the application 

gateway to be dual-homed. Greater throughput can be achieved, then, if a router is used 

as the gateway to the protected subnet. Consequently, the screened subnet firewall may 

be more appropriate for sites with large amounts of traffic or sites that need very high-

speed traffic.  

 The two routers provide redundancy in that an attacker would have to subvert both 

routers to reach site systems directly. The application gateway, e-mail server, and 

information server could be set up such that they would be the only systems ``known'' 

from the Internet; no other system name need be known or used in a DNS database that 

would be accessible to outside systems. The application gateway can house advanced 

authentication software to authenticate all inbound connections. It is, obviously, more 

involved to configure, however the use of separate systems for application gateways 

and packet filters keeps the configuration more simple and manageable.  

 The screened subnet firewall, like the screened host firewall, can be made more flexible 

by permitting certain ``trusted'' services to pass between the Internet and the site 

systems. However, this flexibility may open the door to exceptions to the policy, thus 

weakening the effect of the firewall. In many ways, the dual-homed gateway firewall 

is more desirable because the policy cannot be weakened (because the dual-homed 

gateway cannot pass services for which there is no proxy). However, where throughput 

and flexibility are important, the screened subnet firewall may be more preferable.  



 

 As an alternative to passing services directly between the Internet and site systems, one 

could locate the systems that need these services directly on the screened subnet. For 

example, a site that does not permit X Windows or NFS traffic between Internet and 

site systems, but needs to anyway, could locate the systems that need the access on the 

screened subnet. The systems could still maintain access to site systems by connecting 

to the application gateway and reconfiguring the inner router as necessary. This is not 

a perfect solution, but an option for sites that require a high degree of security.  

 There are two disadvantages to the screened subnet firewall. First, the firewall can be 

made to pass ``trusted'' services around the application gateway(s), thereby subverting 

the policy. This is true also with the screened host firewall, however the screened subnet 

firewall provides a location to house systems that need direct access to those services. 

With the screened host firewall, the ``trusted'' services that get passed around the 

application gateway end up being in contact with site systems. The second disadvantage 

is that more emphasis is placed on the routers for providing security. As noted, packet 

filtering routers are sometimes quite complex to configure and mistakes could open the 

entire site to security holes.  

Firewall Limitations 

(a) Insider’s Intrusion: A firewall is designed to thwart outside attacks, hence it is 

ineffective to inside intrusions. 

(b) Direct Internet Traffic: If the firewall is one of the entry-exit points, a user can 

bypass the firewall. 

(c) Virus Attacks: A firewall can’t be expected to scan every incoming file or 

packet for viruses. 

IP SECURITY 

Internet Protocol Security (IPsec) is a protocol suite for securing Internet Protocol (IP) 

communications by authenticating and encrypting each IP packet of a communication session. 

IPsec includes protocols for establishing mutual authentication between agents at the beginning 

of the session and negotiation of cryptographic keys to be used during the session. IPsec can 

be used in protecting data flows between a pair of hosts (host-to-host), between a pair of 

security gateways (network-to-network), or between a security gateway and a host (network-

to-host). 

Internet Protocol security (IPsec) uses cryptographic security services to protect 

communications over Internet Protocol (IP) networks. IPsec supports network-level peer 

authentication, data origin authentication, data integrity, data confidentiality (encryption), and 

replay protection. 

IPsec is an end-to-end security scheme operating in the Internet Layer of the Internet Protocol 

Suite, while some other Internet security systems in widespread use, such as Transport Layer 

Security (TLS) and Secure Shell (SSH), operate in the upper layers at Application layer. Hence, 

only IPsec protects any application traffic over an IP network. Applications can be 

automatically secured by IPsec at the IP layer. 

Security Architecture 

The IPsec suite is an open standard. IPsec uses the following protocols to perform various 

functions. 



 

 Authentication Headers (AH) provide connectionless integrity and data origin 

authentication for IP datagrams and provides protection against replay attacks. 

 Encapsulating Security Payloads (ESP) provide confidentiality, data-origin 

authentication, connectionless integrity, an anti-replay service (a form of partial 

sequence integrity), and limited traffic-flow confidentiality. 

  Security Associations (SA) provide the bundle of algorithms and data that provide the 

parameters necessary for AH and/or ESP operations. The Internet Security Association 

and Key Management Protocol (ISAKMP) provides a framework for authentication and 

key exchange, with actual authenticated keying material provided either by manual 

configuration with pre-shared keys, Internet Key Exchange (IKE and IKEv2), 

Kerberized Internet Negotiation of Keys (KINK), or IPSECKEY DNS records. 

Authentication Header 

Authentication Header (AH) is a member of the IPsec protocol suite. AH guarantees 

connectionless integrity and data origin authentication of IP packets. Further, it can optionally 

protect against replay attacks by using the sliding window technique and discarding old 

packets. 

 In IPv4, the AH protects the IP payload and all header fields of an IP datagram except 

for mutable fields (i.e. those that might be altered in transit), and also IP options such 

as the IP Security Option (RFC-1108). Mutable (and therefore unauthenticated) IPv4 

header fields are DSCP/ToS, ECN, Flags, Fragment Offset, TTL and Header 

Checksum.  

 In IPv6, the AH protects most of the IPv6 base header, AH itself, non-mutable extension 

headers after the AH, and the IP payload. Protection for the IPv6 header excludes the 

mutable fields: DSCP, ECN, Flow Label, and Hop Limit.  

Encapsulating Security Payload 

Encapsulating Security Payload (ESP) is a member of the IPsec protocol suite. In IPsec it 

provides origin authenticity, integrity and confidentiality protection of packets. ESP also 

supports encryption-only and authentication-only configurations, but using encryption without 

authentication is strongly discouraged because it is insecure. Unlike Authentication Header 

(AH), ESP in transport mode does not provide integrity and authentication for the entire IP 

packet. However, in Tunnel Mode, where the entire original IP packet is encapsulated with a 

new packet header added, ESP protection is afforded to the whole inner IP packet (including 

the inner header) while the outer header (including any outer IPv4 options or IPv6 extension 

headers) remains unprotected. ESP operates directly on top of IP, using IP protocol number 50. 

Security association 

The IP security architecture uses the concept of a security association as the basis for building 

security functions into IP. A security association is simply the bundle of algorithms and 

parameters (such as keys) that is being used to encrypt and authenticate a particular flow in one 

direction. Therefore, in normal bi-directional traffic, the flows are secured by a pair of security 

associations. 

Security associations are established using the Internet Security Association and Key 

Management Protocol (ISAKMP). ISAKMP is implemented by manual configuration with pre-

shared secrets, Internet Key Exchange (IKE and IKEv2), Kerberized Internet Negotiation of 

https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Packet_%28information_technology%29
https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Sliding_window
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Differentiated_services_code_point
https://en.wikipedia.org/wiki/Type_of_service
https://en.wikipedia.org/wiki/Explicit_Congestion_Notification
https://en.wikipedia.org/wiki/IP_fragmentation
https://en.wikipedia.org/wiki/Offset_%28computer_science%29
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/IPv4_header_checksum
https://en.wikipedia.org/wiki/IPv4_header_checksum
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/Differentiated_services_code_point
https://en.wikipedia.org/wiki/Explicit_Congestion_Notification
https://en.wikipedia.org/wiki/Information_security#Authenticity
https://en.wikipedia.org/wiki/Integrity
https://en.wikipedia.org/wiki/Confidentiality
https://en.wikipedia.org/wiki/Packet_%28information_technology%29
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Authentication_Header
https://en.wikipedia.org/wiki/Authentication_Header
https://en.wikipedia.org/wiki/Packet_%28information_technology%29#Example:_IP_packets
https://en.wikipedia.org/wiki/Packet_%28information_technology%29#Example:_IP_packets
https://en.wikipedia.org/wiki/Tunneling_protocol
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Security_association
https://en.wikipedia.org/wiki/Internet_Security_Association_and_Key_Management_Protocol
https://en.wikipedia.org/wiki/Internet_Security_Association_and_Key_Management_Protocol
https://en.wikipedia.org/wiki/Internet_Key_Exchange
https://en.wikipedia.org/wiki/Kerberized_Internet_Negotiation_of_Keys


 

Keys (KINK), and the use of IPSECKEY DNS records. RFC 5386 defines Better-Than-

Nothing Security (BTNS) as an unauthenticated mode of IPsec using an extended IKE protocol. 

In order to decide what protection is to be provided for an outgoing packet, IPsec uses the 

Security Parameter Index (SPI), an index to the security association database (SADB), along 

with the destination address in a packet header, which together uniquely identify a security 

association for that packet. A similar procedure is performed for an incoming packet, where 

IPsec gathers decryption and verification keys from the security association database. 

For multicast, a security association is provided for the group, and is duplicated across all 

authorized receivers of the group. There may be more than one security association for a group, 

using different SPIs, thereby allowing multiple levels and sets of security within a group. 

Indeed, each sender can have multiple security associations, allowing authentication, since a 

receiver can only know that someone knowing the keys sent the data. Note that the relevant 

standard does not describe how the association is chosen and duplicated across the group; it is 

assumed that a responsible party will have made the choice. 

Modes of Operation: 

IPsec can be implemented in a host-to-host transport mode, as well as in a network tunnelling 

mode. 

(a) Transport Mode: In transport mode, only the payload of the IP packet is usually 

encrypted and/or authenticated. The routing is intact, since the IP header is 

neither modified nor encrypted; however, when the authentication header is 

used, the IP addresses cannot be translated, as this always will invalidate the 

hash value. The transport and application layers are always secured by hash, so 

they cannot be modified in any way (for example by translating the port 

numbers). A means to encapsulate IPsec messages for NAT traversal has been 

defined by RFC documents describing the NAT-T mechanism. 

(b) Tunnel Mode : In tunnel mode, the entire IP packet is encrypted and/or 

authenticated. It is then encapsulated into a new IP packet with a new IP header. 

Tunnel mode is used to create virtual private networks for network-to-network 

communications (e.g. between routers to link sites), host-to-network 

communications (e.g. remote user access) and host-to-host communications 

(e.g. private chat). Tunnel mode supports NAT traversal. 

VIRTUAL PRIVATE NETWORKS: 

A virtual private network (VPN) extends a private network across a public network, such as 

the Internet. It enables a computer or network-enabled device to send and receive data across 

shared or public networks as if it were directly connected to the private network, while 

benefiting from the functionality, security and management policies of the private network.[1] 

A VPN is created by establishing a virtual point-to-point connection through the use of 

dedicated connections, virtual tunnelling protocols, or traffic encryption. Major 

implementations of VPNs include OpenVPN and IPsec. 

A VPN connection across the Internet is similar to a wide area network (WAN) link between 

websites. From a user perspective, the extended network resources are accessed in the same 

way as resources available within the private network.[2] One major limitation of traditional 

VPNs is that they are point-to-point, and do not tend to support or connect broadcast domains. 

Therefore communication, software, and networking, which are based on layer 2 and broadcast 

https://en.wikipedia.org/wiki/Kerberized_Internet_Negotiation_of_Keys
https://en.wikipedia.org/wiki/List_of_DNS_record_types
https://tools.ietf.org/html/rfc5386
https://en.wikipedia.org/wiki/Security_Parameter_Index
https://en.wikipedia.org/wiki/Virtual_private_network
https://en.wikipedia.org/wiki/Private_network
https://en.wikipedia.org/wiki/Public
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Virtual_private_network#cite_note-1
https://en.wikipedia.org/wiki/Point-to-point_%28network_topology%29
https://en.wikipedia.org/wiki/Tunneling_protocols
https://en.wikipedia.org/wiki/OpenVPN
https://en.wikipedia.org/wiki/IPsec
https://en.wikipedia.org/wiki/Wide_area_network
https://en.wikipedia.org/wiki/Virtual_private_network#cite_note-2
https://en.wikipedia.org/wiki/Broadcast_domain
https://en.wikipedia.org/wiki/OSI_layer


 

packets, such as NetBIOS used in Windows networking, may not be fully supported or work 

exactly as they would on a real LAN. Variants on VPN, such as Virtual Private LAN Service 

(VPLS), and layer 2 tunnelling protocols, are designed to overcome this limitation. 

VPNs allow employees to securely access their company's intranet while traveling outside the 

office. Similarly, VPNs securely connect geographically separated offices of an organization, 

creating one cohesive network. VPN technology is also used by individual Internet users to 

secure their wireless transactions, to circumvent geo restrictions and censorship, and to connect 

to proxy servers for the purpose of protecting personal identity and location. 

 

Types of VPN 

Early data networks allowed VPN-style remote connectivity through dial-up modems or 

through leased line connections utilizing Frame Relay and Asynchronous Transfer Mode 

(ATM) virtual circuits, provisioned through a network owned and operated by 

telecommunication carriers. These networks are not considered true VPNs because they 

passively secure the data being transmitted by the creation of logical data streams. They have 

been replaced by VPNs based on IP and IP/Multiprotocol Label Switching (MPLS) Networks, 

due to significant cost-reductions and increased bandwidth provided by new technologies such 

as Digital Subscriber Line (DSL) and fibre-optic networks. 

VPNs can be either remote-access (connecting a computer to a network) or site-to-site 

(connecting two networks). In a corporate setting, remote-access VPNs allow employees to 

access their company's intranet from home or while traveling outside the office, and site-to-site 

VPNs allow employees in geographically disparate offices to share one cohesive virtual 

network. A VPN can also be used to interconnect two similar networks over a dissimilar middle 

network; for example, two IPv6 networks over an IPv4 network.[ 

VPN systems may be classified by: 

 The protocols used to tunnel the traffic 

 The tunnel's termination point location, e.g., on the customer edge or network-provider 

edge 

 Whether they offer site-to-site or network-to-network connectivity 

 The levels of security provided 

https://en.wikipedia.org/wiki/Packets
https://en.wikipedia.org/wiki/NetBIOS
https://en.wikipedia.org/w/index.php?title=Windows_networking&action=edit&redlink=1
https://en.wikipedia.org/wiki/Virtual_Private_LAN_Service
https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Asynchronous_Transfer_Mode
https://en.wikipedia.org/wiki/Telephone_company
https://en.wikipedia.org/wiki/Multiprotocol_Label_Switching
https://en.wikipedia.org/wiki/Intranet
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Virtual_private_network#cite_note-6
https://en.wikipedia.org/wiki/Tunneling_protocol
https://en.wikipedia.org/wiki/IP_tunnel
https://en.wikipedia.org/wiki/Edge_device


 

 The OSI layer they present to the connecting network, such as Layer 2 circuits or Layer 

3 network connectivity 

Security Mechanisms 

VPNs cannot make online connections completely anonymous, but they can usually increase 

privacy and security. To prevent disclosure of private information, VPNs typically allow only 

authenticated remote access and make use of encryption techniques. 

VPNs provide security by the use of tunnelling protocols and often through procedures such as 

encryption. The VPN security model provides: 

 Confidentiality such that even if the network traffic is sniffed at the packet level (see 

network sniffer and Deep packet inspection), an attacker would only see encrypted data 

 Sender authentication to prevent unauthorized users from accessing the VPN 

 Message integrity to detect any instances of tampering with transmitted messages 

Secure VPN protocols: 

 Internet Protocol Security (IPsec) as initially developed by the Internet Engineering 

Task Force (IETF) for IPv6, which was required in all standards-compliant 

implementations of IPv6 before RFC 6434 made it only a recommendation. This 

standards-based security protocol is also widely used with IPv4 and the Layer 2 

Tunnelling Protocol. Its design meets most security goals: authentication, integrity, and 

confidentiality. IPsec uses encryption, encapsulating an IP packet inside an IPsec 

packet. De-encapsulation happens at the end of the tunnel, where the original IP packet 

is decrypted and forwarded to its intended destination. 

 Transport Layer Security (SSL/TLS) can tunnel an entire network's traffic (as it does 

in the OpenVPN project and SoftEther VPN project) or secure an individual connection. 

A number of vendors provide remote-access VPN capabilities through SSL. An SSL 

VPN can connect from locations where IPsec runs into trouble with Network Address 

Translation and firewall rules. 

 Datagram Transport Layer Security (DTLS) - used in Cisco AnyConnect VPN and in 

OpenConnect VPN to solve the issues SSL/TLS has with tunnelling over UDP. 

 Microsoft Point-to-Point Encryption (MPPE) works with the Point-to-Point Tunnelling 

Protocol and in several compatible implementations on other platforms. 

 Microsoft Secure Socket Tunnelling Protocol (SSTP) tunnels Point-to-Point Protocol 

(PPP) or Layer 2 Tunnelling Protocol traffic through an SSL 3.0 channel. (SSTP was 

introduced in Windows Server 2008 and in Windows Vista Service Pack 1.) 

 Multi Path Virtual Private Network (MPVPN). Ragula Systems Development 

Company owns the registered trademark "MPVPN". 

 Secure Shell (SSH) VPN - OpenSSH offers VPN tunnelling (distinct from port 

forwarding) to secure remote connections to a network or to inter-network links. 

OpenSSH server provides a limited number of concurrent tunnels. The VPN feature 

itself does not support personal authentication. 

  

 

  

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Tunneling_protocols
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Information_security#Confidentiality
https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Deep_packet_inspection
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Integrity#Cryptography
https://en.wikipedia.org/wiki/Internet_Protocol_Security
https://en.wikipedia.org/wiki/Internet_Protocol_Security
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/IPv6
https://tools.ietf.org/html/rfc6434
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Layer_2_Tunneling_Protocol
https://en.wikipedia.org/wiki/Layer_2_Tunneling_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Tunneling_protocol
https://en.wikipedia.org/wiki/OpenVPN
https://en.wikipedia.org/wiki/SoftEther_VPN
https://en.wikipedia.org/wiki/Network_Address_Translation
https://en.wikipedia.org/wiki/Network_Address_Translation
https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
https://en.wikipedia.org/wiki/Cisco_Systems#Cisco_AnyConnect_VPN_Client
https://en.wikipedia.org/wiki/OpenConnect
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Microsoft_Point-to-Point_Encryption
https://en.wikipedia.org/wiki/Microsoft_Point-to-Point_Encryption
https://en.wikipedia.org/wiki/Point-to-Point_Tunneling_Protocol
https://en.wikipedia.org/wiki/Point-to-Point_Tunneling_Protocol
https://en.wikipedia.org/wiki/Secure_Socket_Tunneling_Protocol
https://en.wikipedia.org/wiki/Secure_Socket_Tunneling_Protocol
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://en.wikipedia.org/wiki/Layer_2_Tunneling_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Windows_Server_2008
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Trademark
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/OpenSSH
https://en.wikipedia.org/wiki/Port_forwarding
https://en.wikipedia.org/wiki/Port_forwarding

	Lecture Notes-ECCC.pdf (p.1-2)
	ECCC-mod-1.pdf (p.3-25)
	eccc-mod-2.pdf (p.26-38)
	eccc-mod-3-4.pdf (p.39-125)

