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Disclaimer 

This document does not claim any originality and cannot be 

used as a substitute for prescribed textbooks. The information 

presented here is merely a collection by Prof. P.C.Swain with 

the inputs of Post Graduate students for their respective 

teaching assignments as an additional tool for the teaching-

learning process. Various sources as mentioned at the 

reference of the document as well as freely available materials 

from internet were consulted for preparing this document. 

Further, this document is not intended to be used for 

commercial purpose and the authors are not accountable for 

any issues, legal or otherwise, arising out of use of this 

document. The authors make no representations or warranties 

with respect to the accuracy or completeness of the contents of 

this document and specifically disclaim any implied warranties 

of merchantability or fitness for a particular purpose. 
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Course Content 
 

Module II 
 

Methods of Systems Analysis: Linear Programming Models, Simplex 

Method, Sensitivity Analysis, Dual Programming, Dynamic Programming 

Models, Classical Optimisation Techniques, Non-linear Programming, 

Gradient Techniques, Genetic Algorithm, Stochastic Programming, 

Simulation, Search Techniques, Multi Objective Optimisation. 
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Lecture note 1 

 

Methods of system analysis 

1.1 Introduction 

 

1. Identification of objectives 

 very important- If the correct objectives are not identified, the correct problem will not be 

solved 

 consult others 

 use multi-disciplinary team 

 may have multiple objectives 

 determine your client - usually person paying the bill 

 establish the needs of the client - sometimes difficult to establish 

 identify the clients single most important objective 

 choose a measure of effectiveness 

 discuss the project objective with the client 

 insure that the client clearly understands and agrees with the project objective 

 

2. Quantification of objectives 

 Identify and write objective function - this is a quantitative expression of the goals or 

objectives of the project 

 objective function might take on the form F=G(X1, X2, X3, ..., Xn) where Xi's are 

independent variables and represent values of parameters under the control of the systems 

analyst 

 constraint set should be identified; The constraint set consists of equations that define the 

domain of feasible solutions. For example, in determining the optimum mix of corn and 

soybeans to plant on a 450 hectare farm, a constraint on the amount of land that can be used 

might be written as: Corn Hectares + Soybean Hectares <= 450. 

3. Development of a system model 
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 most often this is the responsibility of the systems analyst or engineer 

 keep in mind that the model is an abstraction of the system 

 a two stage process is sometimes used: 

o model decoupling - simplifying step where system components are modeled and 

analyzed as subsystems. This can be helpful in better understanding the system. 

o model integration - entire system is modeled (e.g., the subsystem components are 

integrated) 

 delicate balance exists between model detail and the ability to effectively and efficiently 

analyze the mode. Modeling detail may offer better reality at increased computational 

expense. Under certain circumstances, a simple model may prove more valuable than a more 

complex model. The project objectives should dictate the level of detail required. 

 many types of models are available for use 

 the type of model chosen depends on system, the objectives, perspective (time scale) of 

models 

 one should select the most "appropriate model" - by the end of the semester you should have a 

better feel for this 

 why model? 

4. Evaluation of alternatives 

 goal is to find an optimum solution 

 identify alternative solutions 

 gather as much information about alternative solutions as possible - may require searching the 

literature, obtaining technical and cost data on equipment, operation, maintenance, and other 

pertinent information 

 perform sensitivity analysis to determine response to change in model parameters 

 verification - computer code reproduces model chosen 

 validation - model of system faithfully reproduces the actual system 

5. Detailed design and development 

 complete the design and necessary actions 

 

Optimum solution - the combination of resources that best meets the stated objective(s) and satisfies 

all constraints. 

https://engineering.purdue.edu/~engelb/abe565/sysanal.htm#types%20of%20models
https://engineering.purdue.edu/~engelb/abe565/models.htm
https://engineering.purdue.edu/~engelb/abe565/sysanal.htm#Optimum
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1.2 Types of models 

 iconic - physical models that are images of the real world; dimensions are usually scaled up or 

down; for example, models of cars might be constructed and tested in a wind tunnel 

 analog - model that substitutes one set of properties for another; may be iconic or 

mathematical; electric resistance often used as an analog of the friction of a fluid flowing in a 

pipe; this approach is not as widely used as at one time - digital computers have allowed the 

development of other modeling techniques that have replaced analog models 

 stochastic - probabilistic model that uses randomness to account for unmeasurable factors 

(e.g., weather) 

 deterministic - model that does not use randomness but uses explicit expressions for 

relationships that may or may not involve time rates of change 

 discrete - model where state variables change in steps as opposed to continuously with time 

(e.g., number of cattle in a barn); may be deterministic or stochastic 

 continuous - model whose state variables change continuously with time (e.g., biomass in a 

field); usually sets of differential equations used; initial conditions required (can be difficult 

to obtain for some systems!) 

 combined - model where some state variables change continuously and others change in steps 

at event times; for example, a field of hay might be modeled using a combined approach with 

the biomass modeled continuously during growth and then as a discrete event when harvested 

 mathematical - abstract model usually written in equation form 

 object-oriented - use objects that are abstractions of real world objects and develop 

relationships and actions between objects; comes from field of artificial intelligence 

 heuristic - heuristics (rules) are used to model the system; comes from field of artificial 

intelligence 

1.3 Linear programming model 

Linear programming (LP, also called linear optimization) is a method to achieve the best outcome 

(such as maximum profit or lowest cost) in a mathematical model whose requirements are represented 

by linear relationships. Linear programming is a special case of mathematical programming 

(mathematical optimization).  

More formally, linear programming is a technique for the optimization of a linear objective function, 

subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, 

which is a set defined as the intersection of finitely many half spaces, each of which is defined by a 

linear inequality. Its objective function is a real-valued affine (linear) function defined on this 
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polyhedron. A linear programming algorithm finds a point in the polyhedron where this function has 

the smallest (or largest) value if such a point exists. 

Linear Programming (LP) is the most useful optimization technique used for the solution of 

engineering problems. The term “linear” implies that the objective function and constraints are 

“linear” functions of “nonnegative” decision variables. Thus, the conditions of LP problems (LPP) are 

1. Objective function must be a linear function of decision variables 

2. Constraints should be linear function of decision variables 

3. All the decision variables must be nonnegative 

 

 

Canonical Form of Lpp 

Canonical form of standard LPP is a set of equations consisting of the “objective function” and all the 

“equality constraints” (standard form of LPP) expressed in canonical form. Understanding the 

canonical form of LPP is necessary for studying simplex method, the most popular method of solving 

LPP. 

1.4 Simplex method 

 

The Simplex method is a method that proceeds from one BFS or extreme point of the feasible region 

of an LP problem expressed in tableau form to another BFS, in such a way as to continually increase 

(or decrease) the value of the objective function until optimality is reached. The simplex method 

moves from one extreme point to one of its neighbouring extreme point. 
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The Simplex method is an approach to solving linear programming models by hand using slack 

variables, tableaus, and pivot variables as a means to finding the optimal solution of an optimization 

problem.  A linear program is a method of achieving the best outcome given a maximum or minimum 

equation with linear constraints.  Most linear programs can be solved using an online solver such as 

Matlab, but the Simplex method is a technique for solving linear programs by hand.  To solve a linear 

programming model using the Simplex method the following steps are necessary: 

 

● Standard form 

● Introducing slack variables 

● Creating the tableau 

● Pivot variables 

● Creating a new tableau 

● Checking for optimality 

● Identify optimal values 

 

Here it breaks down the Simplex method into the above steps and follows the example linear 

programing model shown below throughout the entire document to find the optimal solution. 

 

 

 

 

 

Step 1: Standard Form 
 

 

Standard form is the baseline format for all linear programs before solving for the optimal solution 

and has three requirements: (1) must be a maximization problem, (2) all linear constraints must be in a 

less-than-or-equal-to inequality, (3) all variables are non-negative.  These requirements can always be 

satisfied by transforming any given linear program using basic algebra and substitution.  Standard 

form is necessary because it creates an ideal starting point for solving the Simplex method as 

efficiently as possible as well as other methods of solving optimization problems. 
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To transform a minimization linear program model into a maximization linear program model, simply 

multiply both the left and the right sides of the objective function by -1. 

 

 

Transforming linear constraints from a greater-than-or-equal-to inequality to a less-than-or-equal-to 

inequality can be done similarly as what was done to the objective function.  By multiplying by -1 on 

both sides, the inequality can be changed to less-than-or-equal-to. 

 

Once the model is in standard form, the slack variables can be added as shown in Step 2 of the 

Simplex method. 

 

Step 2: Determine Slack Variables 

 

Slack variables are additional variables that are introduced into the linear constraints of a linear 

program to transform them from inequality constraints to equality constraints.  If the model is in 

standard form, the slack variables will always have a +1 coefficient.  Slack variables are needed in the 

constraints to transform them into solvable equalities with one definite answer. 

 

 

 

 

 

 

After the slack variables are introduced, the tableau can be set up to check for optimality as described 

in Step 3. 

 

 

 

 

Step 3: Setting up the Tableau 
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A Simplex tableau is used to perform row operations on the linear programming model as well as to 

check a solution for optimality. The tableau consists of the coefficient corresponding to the linear 

constraint variables and the coefficients of the objective function.  

In the tableau below, the bolded top row of the tableau states what each column represents. The 

following two rows represent the linear constraint variable coefficients from the linear programming 

model, and the last row represents the objective function variable coefficients. 

 

Once the tableau has been completed, the model can be checked for an optimal solution as shown in 

Step 4. 

 
Step 4: Check Optimality 

 

The optimal solution of a maximization of linear programming model is the values assigned to the 

variables in the objective function to give the largest zeta value.  The optimal solution would exist on 

the corner points of the graph of the entire model.  To check optimality using the tableau, all values in 

the last row must contain values greater than or equal to zero. If a value is less than zero, it means that 

variable has not reached its optimal value.  As seen in the previous tableau, three negative values exist 

in the bottom row indicating that this solution is not optimal.  If a tableau is not optimal, the next step 

is to identify the pivot variable to base a new tableau on, as described in Step 5. 

 

Step 5: Identify Pivot Variable 

 

The pivot variable is used in row operations to identify which variable will become the unit value and 

is a key factor in the conversion of the unit value.  The pivot variable can be identified by looking at 

the bottom row of the tableau and the indicator. Assuming that the solution is not optimal, pick the 

smallest negative value in the bottom row.  One of the values lying in the column of this value will be 

the pivot variable.  To find the indicator, divide the beta values of the linear constraints by their 

corresponding values from the column containing the possible pivot variable.  The intersection of the 
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row with the smallest non-negative indicator and the smallest negative value in the bottom row will 

become the pivot variable. 

 

In the example shown below, -10 is the smallest negative in the last row. This will designate the x2 

column to contain the pivot variable.  Solving for the indicator gives us a value of 
10

3
for the first 

constraint, and a value of 
8

5
for the second constraint.  Due to 

8

5
 being the smallest non-negative 

indicator, the pivot value will be in the second row and have a value of 5. 

 

 

 

 

Now that the new pivot variable has been identified, the new tableau can be created in Step 6 to 

optimize the variable and find the new possible optimal solution. 

 

 

Step 6: Create the New Tableau 

 

 

The new tableau will be used to identify a new possible optimal solution.  Now that the pivot variable 

has been identified in Step 5, row operations can be performed to optimize the pivot variable while 

keeping the rest of the tableau equivalent. 

 

I. To optimize the pivot variable, it will need to be transformed into a unit value (value of 1).  

To transform the value, multiply the row containing the pivot variable by the reciprocal of the 

pivot value.  In the example below, the pivot variable is originally 5, so multiply the entire 

row by 
1

5
. 
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II. After the unit value has been determined, the other values in the column containing the unit 

value will become zero.  This is because the x2 in the second constraint is being optimized, 

which requires x2 in the other equations to be zero.   

 

 

III. In order to keep the tableau equivalent, the other variables not contained in the pivot column 

or pivot row must be calculated by using the new pivot values.  For each new value, multiply 

the negative of the value in the old pivot column by the value in the new pivot row that 

corresponds to the value being calculated.  Then add this to the old value from the old tableau 

to produce the new value for the new tableau.  This step can be condensed into the equation 

on the next page: 

 

New tableau value = (Negative value in old tableau pivot column) x (value in new tableau pivot row) 

+ (Old tableau value)  

 

Old Tableau: 

 

 

 

 

 

 

 

 

New  

Tableau:  

 

Numerical examples are provided below to help explain this concept a little better. 

 

Numerical examples: 
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I. To find the s2 value in row 1: 

New tableau value = (Negative value in old tableau pivot column) * (value in new tableau 

pivot row) + (Old tableau value) 

 

New tableau value = (-3) * (
1

5
) + 0 = -

3

5
 

 

 

II. To find the x1 variable in row 3: 

New tableau value = (Negative value in old tableau pivot column) * (value in new tableau 

pivot row) + (Old tableau value) 

 

New value = (10) * (
1

5
) + -8 = -6 

 

Once the new tableau has been completed, the model can be checked for an optimal solution.  

 

Step 7: Check Optimality 

 

As explained in Step 4, the optimal solution of maximization linear programming model are the 

values assigned to the variables in the objective function to give the largest zeta value.  Optimality 

will need to be checked after each new tableau to see if a new pivot variable needs to be identified.  A 

solution is considered optimal if all values in the bottom row are greater than or equal to zero.  If all 

values are greater than or equal to zero, the solution is considered optimal and Steps 8 through 11 can 

be ignored.  If negative values exist, the solution is still not optimal and a new pivot point will need to 

be determined which is demonstrated in Step 8. 

 

 

Step 8: Identify New Pivot Variable 

 

 

If the solution has been identified as not optimal, a new pivot variable will need to be determined.  

The pivot variable was introduced in Step 5 and is used in row operations to identify which variable 

will become the unit value and is a key factor in the conversion of the unit value.  The pivot variable 

can be identified by the intersection of the row with the smallest non-negative indicator and the 

smallest negative value in the bottom row. 
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With the new pivot variable identified, the new tableau can be created in Step 9. 

Step 9: Create New Tableau 

 

After the new pivot variable has been identified, a new tableau will need to be created. Introduced in 

Step 6, the tableau is used to optimize the pivot variable while keeping the rest of the tableau 

equivalent. 

 

I. Make the pivot variable 1 by multiplying the row containing the pivot variable by the 

reciprocal of the pivot value.  In the tableau below, the pivot value was 
1

5
, so everything is 

multiplied by 5. 

 
II. Next, make the other values in the column of the pivot variable zero. This is done by 

taking the negative of the old value in the pivot column and multiplying it by the new value in 

the pivot row. That value is then added to the old value that is being replaced. 

 

 
 

 

Step 10: Check Optimality 

Using the new tableau, check for optimality.  Explained in Step 4, an optimal solution appears when 

all values in the bottom row are greater than or equal to zero.  If all values are greater than or equal to 
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zero, skip to Step 12 because optimality has been reached.  If negative values still exist, repeat steps 8 

and 9 until an optimal solution is obtained. 

 

Step 11: Identify Optimal Values 

 

 

Once the tableau is proven optimal the optimal values can be identified. These can be found by 

distinguishing the basic and non-basic variables. A basic variable can be classified to have a single 1 

value in its column and the rest be all zeros.  If a variable does not meet these criteria, it is considered 

non-basic.  If a variable is non-basic it means the optimal solution of that variable is zero. If a variable 

is basic, the row that contains the 1 value will correspond to the beta value.  The beta value will 

represent the optimal solution for the given variable.  

 

  
Basic variables: x1, s1, z 

Non-basic variables: x2, x3, s2 

 

For the variable x1, the 1 is found in the second row.  This shows that the optimal x1 value is found in 

the second row of the beta values, which is 8. 

 

Variable s1 has a 1 value in the first row, showing the optimal value to be 2 from the beta column.  

Due to s1 being a slack variable, it is not actually included in the optimal solution since the variable is 

not contained in the objective function. 

 

The zeta variable has a 1 in the last row. This shows that the maximum objective value will be 64 

from the beta column. 

 

The final solution shows each of the variables having values of: 

 

x1 = 8 s1 = 2 

x2 = 0 s2 = 0 

x3 = 0 z = 64 

 

The maximum optimal value is 64 and found at (8, 0, 0) of the objective function.  
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The Simplex method is an approach for determining the optimal value of a linear program by hand.  

The method produces an optimal solution to satisfy the given constraints and produce a maximum 

zeta value.  To use the Simplex method, a given linear programming model needs to be in standard 

form, where slack variables can then be introduced.  Using the tableau and pivot variables, an optimal 

solution can be reached.  From the example worked throughout this document, it can be determined 

that the optimal objective value is 64 and can be found when x1=8, x2=0, and x3=0. 

1.5 Sensitivity analysis 

 

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or 

system (numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs. A 

related practice is uncertainty analysis, which has a greater focus on uncertainty quantification and 

propagation of uncertainty; ideally, uncertainty and sensitivity analysis should be run in tandem. 

 

The process of recalculating outcomes under alternative assumptions to determine the impact of a 

variable under sensitivity analysis can be useful for a range of purposes, including: 

 Testing the robustness of the result of a model or system in the presence of uncertainty. 

 Increased understanding of the relationships between input and output variables in a system or 

model. 

 Uncertainty reduction, through the identification of model inputs that cause significant 

uncertainty in the output and should therefore be the focus of attention in order to increase 

robustness (perhaps by further research). 

 Searching for errors in the model (by encountering unexpected relationships between inputs 

and outputs). 

 Model simplification – fixing model inputs that have no effect on the output, or identifying 

and removing redundant parts of the model structure. 

 Enhancing communication from modelers to decision makers (e.g. by making 

recommendations more credible, understandable, compelling or persuasive). 

 Finding regions in the space of input factors for which the model output is either maximum or 

minimum or meets some optimum criterion (see optimization and Monte Carlo filtering). 



Water resource systems Planning and Management 2016 

 

Prof P. C. Swain Page 14 
 

 In case of calibrating models with large number of parameters, a primary sensitivity test can 

ease the calibration stage by focusing on the sensitive parameters. Not knowing the sensitivity 

of parameters can result in time being uselessly spent on non-sensitive ones. 

 To seek to identify important connections between observations, model inputs, and 

predictions or forecasts, leading to the development of better models 
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Lecture note 2 

2.1 Genetic algorithm 

 

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic 

inspired by the process of natural selection that belongs to the larger class of evolutionary 

algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to 

optimization and search problems by relying on bio-inspired operators such as mutation, 

crossover and selection. 

A genetic algorithm makes uses of techniques inspired from evolutionary biology such as 

selection, mutation, inheritance and recombination to solve a problem. The most commonly 

employed method in genetic algorithms is to create a group of individuals randomly from a 

given population. The individuals thus formed are evaluated with the help of the evaluation 

function provided by the programmer. Individuals are then provided with a score which 

indirectly highlights the fitness to the given situation. The best two individuals are then used 

to create one or more offspring, after which random mutations are done on the offspring. 

Depending on the needs of the application, the procedure continues until an acceptable 

solution is derived or until a certain number of generations have passed. 

 

A genetic algorithm differs from a classical, derivative-based, optimization algorithm in two 

ways: 

A genetic algorithm generates a population of points in each iteration, whereas a classical 

algorithm generates a single point at each iteration. 

A genetic algorithm selects the next population by computation using random number 

generators, whereas a classical algorithm selects the next point by deterministic computation. 

Compared to traditional artificial intelligence, a genetic algorithm provides many advantages. 

It is more robust and is susceptible to breakdowns due to slight changes in inputs or due to 

the presence of noise. With respect to other optimization methods like praxis, linear 

programming, heuristic, first or breadth-first, a genetic algorithm can provide better and more 
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significant results while searching large multi-modal state spaces, large state spaces or n-

dimensional surfaces. 

 

Genetic algorithms are widely used in many fields such as robotics, automotive design, 

optimized telecommunications routing, engineering design and computer-aided molecular 

design. 

2.2 Methodology in Optimization problems 

 

In a genetic algorithm, a population of candidate solutions (called individuals, creatures, 

or phenotypes) to an optimization problem is evolved toward better solutions. Each candidate 

solution has a set of properties (its chromosomes or genotype) which can be mutated and 

altered; traditionally, solutions are represented in binary as strings of 0s and 1s, but other 

encodings are also possible.  

The evolution usually starts from a population of randomly generated individuals, and is 

an iterative process, with the population in each iteration called a generation. In each 

generation, the fitness of every individual in the population is evaluated; the fitness is usually 

the value of the objective function in the optimization problem being solved. The more fit 

individuals are stochastically selected from the current population, and each individual's 

genome is modified (recombined and possibly randomly mutated) to form a new generation. 

The new generation of candidate solutions is then used in the next iteration of the algorithm. 

Commonly, the algorithm terminates when either a maximum number of generations has 

been produced, or a satisfactory fitness level has been reached for the population. 

A typical genetic algorithm requires: 

1. a genetic representation of the solution domain, 

2. a fitness function to evaluate the solution domain. 

A standard representation of each candidate solution is as an array of bits. Arrays of other 

types and structures can be used in essentially the same way. The main property that makes 

these genetic representations convenient is that their parts are easily aligned due to their fixed 

size, which facilitates simple crossover operations. Variable length representations may also 

be used, but crossover implementation is more complex in this case. Tree-like representations 

https://en.wikipedia.org/wiki/Population
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Phenotype
https://en.wikipedia.org/wiki/Chromosome
https://en.wikipedia.org/wiki/Genotype
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Objective_function
https://en.wikipedia.org/wiki/Stochastics
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Genetic_representation
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
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are explored in genetic programming and graph-form representations are explored 

in evolutionary programming; a mix of both linear chromosomes and trees is explored 

in gene expression programming. 

Once the genetic representation and the fitness function are defined, a GA proceeds to 

initialize a population of solutions and then to improve it through repetitive application of the 

mutation, crossover, inversion and selection operators. 

Initialization 

The population size depends on the nature of the problem, but typically contains several 

hundreds or thousands of possible solutions. Often, the initial population is generated 

randomly, allowing the entire range of possible solutions (the search space). Occasionally, 

the solutions may be "seeded" in areas where optimal solutions are likely to be found. 

Selection 

During each successive generation, a portion of the existing population is selected to breed a 

new generation. Individual solutions are selected through a fitness-based process, 

where fitter solutions (as measured by a fitness function) are typically more likely to be 

selected. Certain selection methods rate the fitness of each solution and preferentially select 

the best solutions. Other methods rate only a random sample of the population, as the former 

process may be very time-consuming. 

 

 

The fitness function is defined over the genetic representation and measures the quality of the 

represented solution. The fitness function is always problem dependent. For instance, in 

the knapsack problem one wants to maximize the total value of objects that can be put in a 

knapsack of some fixed capacity. A representation of a solution might be an array of bits, 

where each bit represents a different object, and the value of the bit (0 or 1) represents 

whether or not the object is in the knapsack. Not every such representation is valid, as the 

size of objects may exceed the capacity of the knapsack. The fitness of the solution is the sum 

of values of all objects in the knapsack if the representation is valid, or 0 otherwise. 

In some problems, it is hard or even impossible to define the fitness expression; in these 

cases, a simulation may be used to determine the fitness function value of 

https://en.wikipedia.org/wiki/Genetic_programming
https://en.wikipedia.org/wiki/Evolutionary_programming
https://en.wikipedia.org/wiki/Gene_expression_programming
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Computer_simulation
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a phenotype (e.g. computational fluid dynamics is used to determine the air resistance of a 

vehicle whose shape is encoded as the phenotype), or even interactive genetic algorithms are 

used. 

Genetic operators 

The next step is to generate a second generation population of solutions from those selected 

through a combination of genetic operators: crossover (also called recombination), 

and mutation. 

For each new solution to be produced, a pair of "parent" solutions is selected for breeding 

from the pool selected previously. By producing a "child" solution using the above methods 

of crossover and mutation, a new solution is created which typically shares many of the 

characteristics of its "parents". New parents are selected for each new child, and the process 

continues until a new population of solutions of appropriate size is generated. Although 

reproduction methods that are based on the use of two parents are more "biology inspired", 

some research suggests that more than two "parents" generate higher quality chromosomes. 

These processes ultimately result in the next generation population of chromosomes that is 

different from the initial generation. Generally the average fitness will have increased by this 

procedure for the population, since only the best organisms from the first generation are 

selected for breeding, along with a small proportion of less fit solutions. These less fit 

solutions ensure genetic diversity within the genetic pool of the parents and therefore ensure 

the genetic diversity of the subsequent generation of children. 

Opinion is divided over the importance of crossover versus mutation. There are many 

references in Fogel (2006) that support the importance of mutation-based search. 

 

Although crossover and mutation are known as the main genetic operators, it is possible to 

use other operators such as regrouping, colonization-extinction, or migration in genetic 

algorithms.  

 

It is worth tuning parameters such as the mutation probability, crossover probability and 

population size to find reasonable settings for the problem class being worked on. A very 

small mutation rate may lead to genetic drift (which is non-ergodic in nature). A 

https://en.wikipedia.org/wiki/Phenotype
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Interactive_evolutionary_computation
https://en.wikipedia.org/wiki/Genetic_operator
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/David_B._Fogel
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Genetic_drift
https://en.wikipedia.org/wiki/Ergodicity


Water resource systems Planning and Management 2016 

 

Prof P. C. Swain Page 5 
 

recombination rate that is too high may lead to premature convergence of the genetic 

algorithm. A mutation rate that is too high may lead to loss of good solutions, unless elitist 

selection is employed. 

Heuristics 

In addition to the main operators above, other heuristics may be employed to make the 

calculation faster or more robust. The speciation heuristic penalizes crossover between 

candidate solutions that are too similar; this encourages population diversity and helps 

prevent premature convergence to a less optimal solution.  

Termination 

This generational process is repeated until a termination condition has been reached. 

Common terminating conditions are: 

 A solution is found that satisfies minimum criteria 

 Fixed number of generations reached 

 Allocated budget (computation time/money) reached 

 The highest ranking solution's fitness is reaching or has reached a plateau such that 

successive iterations no longer produce better results 

 Manual inspection 

 Combinations of the above 

2.2.1 The building block hypothesis 

Genetic algorithms are simple to implement, but their behaviour is difficult to understand. In 

particular it is difficult to understand why these algorithms frequently succeed at generating 

solutions of high fitness when applied to practical problems. The building block hypothesis 

(BBH) consists of: 

 

A description of a heuristic that performs adaptation by identifying and recombining 

"building blocks", i.e. low order, low defining-length schemata with above average fitness. 

https://en.wikipedia.org/wiki/Genetic_algorithm#Elitism
https://en.wikipedia.org/wiki/Genetic_algorithm#Elitism
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A hypothesis that a genetic algorithm performs adaptation by implicitly and efficiently 

implementing this heuristics. Goldberg describes the heuristic as follows: 

 

"Short, low order, and highly fit schemata are sampled, recombined [crossed over], and 

resampled to form strings of potentially higher fitness. In a way, by working with these 

particular schemata [the building blocks], we have reduced the complexity of our problem; 

instead of building high-performance strings by trying every conceivable combination, we 

construct better and better strings from the best partial solutions of past samplings. 

 

"Because highly fit schemata of low defining length and low order play such an important 

role in the action of genetic algorithms, we have already given them a special name: building 

blocks. Just as a child creates magnificent fortresses through the arrangement of simple 

blocks of wood, so does a genetic algorithm seek near optimal performance through the 

juxtaposition of short, low-order, high-performance schemata, or building blocks." 

 

Despite the lack of consensus regarding the validity of the building-block hypothesis, it has 

been consistently evaluated and used as reference throughout the years. Many estimation of 

distribution algorithms, for example, have been proposed in an attempt to provide an 

environment in which the hypothesis would hold. Although good results have been reported 

for some classes of problems, skepticism concerning the generality and/or practicality of the 

building-block hypothesis as an explanation for GAs efficiency still remains. Indeed, there is 

a reasonable amount of work that attempts to understand its limitations from the perspective 

of estimation of distribution algorithms. 

2.3 Limitations of genetic algorithm 

There are limitations of the use of a genetic algorithm compared to alternative optimization 

algorithms: 
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Repeated fitness function evaluation for complex problem is often the most prohibitive and 

limiting segment of artificial evolutionary algorithms. Finding the optimal solution to 

complex high-dimensional, multimodal problems often requires very expensive fitness 

function evaluations. In real world problems such as structural optimization problems, a 

single function evaluation may require several hours to several days of complete simulation. 

Typical optimization methods can not deal with such types of problem. In this case, it may be 

necessary to forgo an exact evaluation and use an approximated fitness that is 

computationally efficient. It is apparent that amalgamation of approximate models may be 

one of the most promising approaches to convincingly use GA to solve complex real life 

problems. 

Genetic algorithms do not scale well with complexity. That is, where the number of elements 

which are exposed to mutation is large there is often an exponential increase in search space 

size. This makes it extremely difficult to use the technique on problems such as designing an 

engine, a house or plane. In order to make such problems tractable to evolutionary search, 

they must be broken down into the simplest representation possible. Hence we typically see 

evolutionary algorithms encoding designs for fan blades instead of engines, building shapes 

instead of detailed construction plans, and airfoils instead of whole aircraft designs. The 

second problem of complexity is the issue of how to protect parts that have evolved to 

represent good solutions from further destructive mutation, particularly when their fitness 

assessment requires them to combine well with other parts. 

The "better" solution is only in comparison to other solutions. As a result, the stop criterion is 

not clear in every problem. 

In many problems, GAs have a tendency to converge towards local optima or even arbitrary 

points rather than the global optimum of the problem. This means that it does not "know 

how" to sacrifice short-term fitness to gain longer-term fitness. The likelihood of this 

occurring depends on the shape of the fitness landscape: certain problems may provide an 

easy ascent towards a global optimum, others may make it easier for the function to find the 

local optima. This problem may be alleviated by using a different fitness function, increasing 

the rate of mutation, or by using selection techniques that maintain a diverse population of 

solutions, although the No Free Lunch theorem proves that there is no general solution to this 

problem. A common technique to maintain diversity is to impose a "niche penalty", wherein, 

any group of individuals of sufficient similarity (niche radius) have a penalty added, which 
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will reduce the representation of that group in subsequent generations, permitting other (less 

similar) individuals to be maintained in the population. This trick, however, may not be 

effective, depending on the landscape of the problem. Another possible technique would be 

to simply replace part of the population with randomly generated individuals, when most of 

the population is too similar to each other. Diversity is important in genetic algorithms (and 

genetic programming) because crossing over a homogeneous population does not yield new 

solutions. In evolution strategies and evolutionary programming, diversity is not essential 

because of a greater reliance on mutation. 

Operating on dynamic data sets is difficult, as genomes begin to converge early on towards 

solutions which may no longer be valid for later data. Several methods have been proposed to 

remedy this by increasing genetic diversity somehow and preventing early convergence, 

either by increasing the probability of mutation when the solution quality drops (called 

triggered hypermutation), or by occasionally introducing entirely new, randomly generated 

elements into the gene pool (called random immigrants). Again, evolution strategies and 

evolutionary programming can be implemented with a so-called "comma strategy" in which 

parents are not maintained and new parents are selected only from offspring. This can be 

more effective on dynamic problems. 

GAs cannot effectively solve problems in which the only fitness measure is a single 

right/wrong measure (like decision problems), as there is no way to converge on the solution 

(no hill to climb). In these cases, a random search may find a solution as quickly as a GA. 

However, if the situation allows the success/failure trial to be repeated giving (possibly) 

different results, then the ratio of successes to failures provides a suitable fitness measure. 

 

For specific optimization problems and problem instances, other optimization algorithms may 

be more efficient than genetic algorithms in terms of speed of convergence. Alternative and 

complementary algorithms include evolution strategies, evolutionary programming, 

simulated annealing, Gaussian adaptation, hill climbing, and swarm intelligence (e.g.: ant 

colony optimization, particle swarm optimization) and methods based on integer linear 

programming. The suitability of genetic algorithms is dependent on the amount of knowledge 

of the problem; well known problems often have better, more specialized approaches. 
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2.4 Multi-objective optimization 

 

Multi-objective optimization (also known as multi-objective programming, vector 

optimization, multicriteria optimization, multiattribute optimization or Pareto optimization) is 

an area of multiple criteria decision making, that is concerned with mathematical 

optimization problems involving more than one objective function to be optimized 

simultaneously. Multi-objective optimization has been applied in many fields of science, 

including engineering, economics and logistics where optimal decisions need to be taken in 

the presence of trade-offs between two or more conflicting objectives. Minimizing cost while 

maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel 

consumption and emission of pollutants of a vehicle are examples of multi-objective 

optimization problems involving two and three objectives, respectively. In practical 

problems, there can be more than three objectives. 

 

 

For a nontrivial multi-objective optimization problem, no single solution exists that 

simultaneously optimizes each objective. In that case, the objective functions are said to be 

conflicting, and there exists a (possibly infinite) number of Pareto optimal solutions. A 

solution is called nondominated, Pareto optimal, Pareto efficient or noninferior, if none of the 

objective functions can be improved in value without degrading some of the other objective 

values. Without additional subjective preference information, all Pareto optimal solutions are 

considered equally good (as vectors cannot be ordered completely). Researchers study multi-

objective optimization problems from different viewpoints and, thus, there exist different 

solution philosophies and goals when setting and solving them. The goal may be to find a 

representative set of Pareto optimal solutions, and/or quantify the trade-offs in satisfying the 

different objectives, and/or finding a single solution that satisfies the subjective preferences 

of a human decision maker (DM) 
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A multi-objective optimization problem is an optimization problem that involves multiple 

objective functions. In mathematical terms, a multi-objective optimization problem can be 

formulated as 

Min ( 𝑓1(𝑥1), 𝑓2(𝑥2), 𝑓3(𝑥3), … . 𝑓𝑘 (𝑥)) 

 

Subject to x ∈ 𝑋, 

 

Where the integer k ≥ 2  is the number of objectives and the set  is the feasible set of decision 

vectors. The feasible set is typically defined by some constraint functions. 

2.5 Applications of multi-objective optimization 

2.5.1 Economics 
 

In economics, many problems involve multiple objectives along with constraints on what 

combinations of those objectives are attainable. For example, consumer's demand for various 

goods is determined by the process of maximization of the utilities derived from those goods, 

subject to a constraint based on how much income is available to spend on those goods and 

on the prices of those goods. This constraint allows more of one good to be purchased only at 

the sacrifice of consuming less of another good; therefore, the various objectives (more 

consumption of each good is preferred) are in conflict with each other. A common method for 

analyzing such a problem is to use a graph of indifference curves, representing preferences, 

and a budget constraint, representing the trade-offs that the consumer is faced with. 

 

Another example involves the production possibilities frontier, which specifies what 

combinations of various types of goods can be produced by a society with certain amounts of 

various resources. The frontier specifies the trade-offs that the society is faced with — if the 

society is fully utilizing its resources, more of one good can be produced only at the expense 

of producing less of another good. A society must then use some process to choose among 

the possibilities on the frontier. 

 

Macroeconomic policy-making is a context requiring multi-objective optimization. Typically 

a central bank must choose a stance for monetary policy that balances competing objectives 

— low inflation, low unemployment, low balance of trade deficit, etc. To do this, the central 

https://en.wikipedia.org/wiki/Feasible_set
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bank uses a model of the economy that quantitatively describes the various causal linkages in 

the economy; it simulates the model repeatedly under various possible stances of monetary 

policy, in order to obtain a menu of possible predicted outcomes for the various variables of 

interest. Then in principle it can use an aggregate objective function to rate the alternative 

sets of predicted outcomes, although in practice central banks use a non-quantitative, 

judgement-based, process for ranking the alternatives and making the policy choice. 

 

2.5.1 Finance 
 

In finance, a common problem is to choose a portfolio when there are two conflicting 

objectives — the desire to have the expected value of portfolio returns be as high as possible, 

and the desire to have risk, often measured by the standard deviation of portfolio returns, be 

as low as possible. This problem is often represented by a graph in which the efficient 

frontier shows the best combinations of risk and expected return that are available, and in 

which indifference curves show the investor's preferences for various risk-expected return 

combinations. The problem of optimizing a function of the expected value (first moment) and 

the standard deviation (square root of the second central moment) of portfolio return is called 

a two-moment decision model. 

2.5.2 Optimal control 
 

In engineering and economics, many problems involve multiple objectives which are not 

describable as the-more-the-better or the-less-the-better; instead, there is an ideal target value 

for each objective, and the desire is to get as close as possible to the desired value of each 

objective. For example, energy systems typically have a trade-off between performance and 

cost or one might want to adjust a rocket's fuel usage and orientation so that it arrives both at 

a specified place and at a specified time; or one might want to conduct open market 

operations so that both the inflation rate and the unemployment rate are as close as possible to 

their desired values. 

 

Often such problems are subject to linear equality constraints that prevent all objectives from 

being simultaneously perfectly met, especially when the number of controllable variables is 

less than the number of objectives and when the presence of random shocks generates 

uncertainty. Commonly a multi-objective quadratic objective function is used, with the cost 

associated with an objective rising quadratically with the distance of the objective from its 

ideal value. Since these problems typically involve adjusting the controlled variables at 
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various points in time and/or evaluating the objectives at various points in time, intertemporal 

optimization techniques are employed. 

 

2.5.3 Optimal design 
 

Product and process design can be largely improved using modern modeling, simulation and 

optimization techniques.[citation needed] The key question in optimal design is the measure 

of what is good or desirable about a design. Before looking for optimal designs it is important 

to identify characteristics which contribute the most to the overall value of the design. A good 

design typically involves multiple criteria/objectives such as capital cost/investment, 

operating cost, profit, quality and/or recovery of the product, efficiency, process safety, 

operation time etc. Therefore, in practical applications, the performance of process and 

product design is often measured with respect to multiple objectives. These objectives 

typically are conflicting, i.e. achieving the optimal value for one objective requires some 

compromise on one or more of other objectives. 

 

For example, when designing a paper mill, one can seek to decrease the amount of capital 

invested in a paper mill and enhance the quality of paper simultaneously. If the design of a 

paper mill is defined by large storage volumes and paper quality is defined by quality 

parameters, then the problem of optimal design of a paper mill can include objectives such as: 

i) minimization of expected variation of those quality parameter from their nominal values, ii) 

minimization of expected time of breaks and iii) minimization of investment cost of storage 

volumes. Here, maximum volume of towers are design variables. This example of optimal 

design of a paper mill is a simplification of the model used in. Multi-objective design 

optimization have also been implemented in engineering systems - e.g. design of nano-

CMOS semiconductors, design of solar-powered irrigation systems, optimization of sand 

mould systems, engine design, optimal sensor deployment  and optimal controller design. 

 

2.5.4 Process optimization 
 

Multi-objective optimization has been increasingly employed in chemical engineering. In 

2009, Fiandaca and Fraga used the multi-objective genetic algorithm (MOGA) to optimize 

the pressure swing adsorption process (cyclic separation process). The design problem 

involved the dual maximization of nitrogen recovery and nitrogen purity. The results 

provided a good approximation of the Pareto frontier with acceptable trade-offs between the 

objectives. 



Water resource systems Planning and Management 2016 

 

Prof P. C. Swain Page 13 
 

 

In 2010, Sendín et al. solved a multi-objective problem for the thermal processing of food. 

They tackled two case studies (bi-objective and triple objective problems) with nonlinear 

dynamic models and used a hybrid approach consisting of the weighted Tchebycheff and the 

Normal Boundary Intersection approach. The novel hybrid approach was able to construct a 

Pareto optimal set for the thermal processing of foods. 

 

In 2013, Ganesan et al. carried out the multi-objective optimization of the combined carbon 

dioxide reforming and partial-oxidation of methane. The objective functions were methane 

conversion, carbon monoxide selectivity and hydrogen to carbon monoxide ratio. Ganesan 

used the Normal Boundary Intersection (NBI) method in conjunction with two swarm-based 

techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) 

to tackle the problem. Applications involving chemical extraction and bioethanol production 

processes have posed similar multi-objective problems and were solved. 

 

In 2013 Abakarov et al proposed an alternative technique to solve multi-objective 

optimization problems arising in food engineering. The Aggregating Functions Approach, the 

Adaptive Random Search Algorithm, and the Penalty Functions Approach were used to 

compute the initial set of the non-dominated or Pareto-optimal solutions. The Analytic 

Hierarchy Process and Tabular Method were used simultaneously for choosing the best 

alternative among the computed subset of non-dominated solutions for osmotic dehydration 

processes. 

 

2.5.5 Radio resource management 
 

The purpose of radio resource management is to satisfy the data rates that are requested by 

the users of a cellular network. The main resources are time intervals, frequency blocks, and 

transmit powers. Each user has its own objective function that, for example, can represent 

some combination of the data rate, latency, and energy efficiency. These objectives are 

conflicting since the frequency resources are very scarce, thus there is a need for tight spatial 

frequency reuse which causes immense inter-user interference if not properly controlled. 

Multi-user MIMO techniques are nowadays used to reduce the interference by adaptive 

precoding. The network operator would like to both bring great coverage and high data rates, 

thus the operator would like to find a Pareto optimal solution that balance the total network 

data throughput and the user fairness in an appropriate subjective manner. 

 



Water resource systems Planning and Management 2016 

 

Prof P. C. Swain Page 14 
 

Radio resource management is often solved by scalarization; that is, selection of a network 

utility function that tries to balance throughput and user fairness. The choice of utility 

function has a large impact on the computational complexity of the resulting single-objective 

optimization problem.[25For example, the common utility of weighted sum rate gives an NP-

hard problem with a complexity that scales exponentially with the number of users, while the 

weighted max-min fairness utility results in a quasi-convex optimization problem with only a 

polynomial scaling with the number of users. 

2.5.6 Electric power systems 
 

Reconfiguration, by exchanging the functional links between the elements of the system, 

represents one of the most important measures which can improve the operational 

performance of a distribution system. The problem of optimization through the 

reconfiguration of a power distribution system, in terms of its definition, is a historical single 

objective problem with constraints. Since 1975, when Merlin and Back  introduced the idea 

of distribution system reconfiguration for active power loss reduction, until nowadays, a lot 

of researchers have proposed diverse methods and algorithms to solve the reconfiguration 

problem as a single objective problem. Some authors have proposed Pareto optimality based 

approaches (including active power losses and reliability indices as objectives). For this 

purpose, different artificial intelligence based methods have been used: microgenetic, branch 

exchange, particle swarm optimization and non-dominated sorting genetic algorithm 
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