
 

 

 

 

 

 

Lecture Notes On Analogue Communication 
Techniques(Module 1 & 2) 

Topics Covered: 

1. Spectral Analysis of Signals 
2. Amplitude Modulation Techniques 
3. Angle Modulation  
4. Mathematical Representation of Noise 
5. Noise in AM System 
6. Noise in FM system 

  



Module-I (12 Hours) 

Spectral Analysis: Fourier Series: The Sampling Function, The Response of a linear System, 
Normalized Power in a Fourier expansion, Impulse Response, Power Spectral Density, Effect of 
Transfer Function on Power Spectral Density, The Fourier Transform, Physical Appreciation of the 
Fourier Transform, Transform of some useful functions, Scaling, Time-shifting and Frequency shifting 
properties, Convolution, Parseval's Theorem, Correlation between waveforms, Auto-and cross 
correlation, Expansion in Orthogonal Functions, Correspondence between signals and Vectors, 
Distinguishability of Signals. 

Module-II (14 Hours) 

Amplitude Modulation Systems: A Method of frequency translation, Recovery of base band Signal, 
Amplitude Modulation, Spectrum of AM Signal, The Balanced Modulator, The Square law 
Demodulator, DSB-SC, SSB-SC and VSB, Their Methods of Generation and Demodulation, Carrier 
Acquisition, Phase-locked Loop (PLL),Frequency Division Multiplexing. Frequency Modulation 
Systems: Concept of Instantaneous Frequency, Generalized concept of Angle Modulation, Frequency 
modulation, Frequency Deviation, Spectrum of FM Signal with Sinusoidal Modulation, Bandwidth of 
FM Signal Narrowband and wideband FM, Bandwidth required for a Gaussian Modulated WBFM 
Signal, Generation of FM Signal, FM Demodulator, PLL, Pre-emphasis and De-emphasis Filters. 

Module-III (12 Hours) 

Mathematical Representation of Noise: Sources and Types of Noise, Frequency Domain Representation 
of Noise, Power Spectral Density, Spectral Components of Noise, Response of a Narrow band filter to 
noise, Effect of a Filter on the Power spectral density of noise, Superposition of Noise, Mixing 
involving noise, Linear Filtering, Noise Bandwidth, and Quadrature Components of noise. Noise in AM 
Systems: The AM Receiver, Super heterodyne Principle, Calculation of Signal Power and Noise Power 
in SSB-SC, DSB-SC and DSB, Figure of Merit ,Square law Demodulation, The Envelope 
Demodulation, Threshold 

Module-IV (8 Hours) 

Noise in FM System: Mathematical Representation of the operation of the limiter, Discriminator, 
Calculation of output SNR, comparison of FM and AM, SNR improvement using pre-emphasis, 
Multiplexing, Threshold infrequency modulation, The Phase locked Loop. 

Text Books: 

1. Principles of Communication Systems by Taub & Schilling, 2nd Edition. Tata Mc Graw Hill. 
Selected portion from Chapter1, 3, 4, 8, 9 & 10 

2. Communication Systems by Siman Haykin,4th Edition, John Wiley and Sons Inc. 

References Books: 

1. Modern digital and analog communication system, by B. P. Lathi, 3rd Edition, Oxford University 
Press. 

2. Digital and analog communication systems, by L.W.Couch, 6th Edition, Pearson Education, Pvt. Ltd. 

  



Spectral Analysis of Signals  

A signal under study in a communication system is generally expressed as a function of time or as a 
function of frequency. When the signal is expressed as a function of time, it gives us an idea of how that 
instantaneous amplitude of the signal is varying with respect to time.  Whereas when the same signal is 
expressed as function of frequency, it gives us an insight of what are the contributions of different 
frequencies that compose up that particular signal. Basically a signal can be expressed both in time 
domain and the frequency domain. There are various mathematical tools that aid us to get the frequency 
domain expression of a signal from the time domain expression and vice-versa. FourierSeries is used 
when the signal in study is a periodic one, whereas Fourier Transform may be used for both periodic as 
well as non-periodic signals.  

Fourier Series 

Let the signal x(t) be a periodic signal with period T0.  The Fourier series of a signal can be obtained, if 
the following conditions known as the Dirichlet conditions are satisfied: 

1. x(t) must be a single valued function of  ‘t’. 

2. x(t) is absolutely integrable over its domain, i.e. 

  
(t) 0x dt

∞

−∞

=∫
 

3. The number of maxima and minima of x(t) must be finite in its domain. 

4. The number of discontinuities of x(t) must be finite in its domain. 

A periodic function of time, say x(t) having a fundamental period T0 can be represented as an infinite 
sum of sinusoidal waveforms, the summation being called as the Fourier series expansion of the signal.  
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Alternate form of  Fourier  Series is 

 

 

 

 

 

 

The Fourier series hence expresses a periodic signal as an infinite summation of harmonics of 

fundamental frequency 0
0

1f
T

= . The coefficients nC are called spectral amplitudes i.e. nC is the 

amplitude of the spectral component 
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 at frequency nf0. This form gives one sided 

spectral representation of a signal as shown in1st plot of Figure 1. 

 

Exponential Form of Fourier Series 

This form of Fourier series expansion can be expressed as : 
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The spectral coefficients Vnand V-n have the property that they are complex conjugates of each other 
*

n nV V−= . This form gives two sided spectral representation of a signal as shown in 2nd plot of Figure-

1. The coefficients Vn can be related to Cn  as : 
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The Vn’s are the spectral amplitude of spectral components 02j ntf
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The Sampling Function 

The sampling function denoted as Sa(x) is defined as: 

( ) ( )Sin x
Sa x

x
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And a similar function Sinc(x) is defined as : 
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The Sa(x) is symmetrical about x=0, and is maximum at this point Sa(x)=1. It oscillates with an 
amplitude that decreases with increasing x. It crosses zero at equal intervals on x at every x nπ=± , 
where n is an non-zero integer. 

 

Figure 2 Plot of Sinc(f) 

Figure 1 One sided and corresponding two sided spectral amplitude plot 
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Fourier Transform 

The Fourier transform is the extension of the Fourier series to the general class of signals (periodic and 
nonperiodic). Here, as in Fourier series, the signals are expressed in terms of complex exponentials of 
various frequencies, but these frequencies are not discrete. Hence, in this case, the signal has a 
continuous spectrum as opposed to a discrete spectrum. Fourier Transform of a signal x(t) can be 
expressed as: 
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(t) X(f)x ⇔    represents a Fourier Transform pair 

The time-domain signal x(t) can be obtained from its frequency domain signal X(f) by Fourier 
inverse defined as: 
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When frequency is defined in terms of angular frequency ω  ,then Fourier transform relation 
can be expressed as: 
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Properties of Fourier Transform 

Let there be signals x(t) and y(t) ,with their Fourier transform pairs: 

(t) X(f)
y(t) Y(f) then,
x ⇔
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1. Linearity Property 
(t) by(t) aX(f) bY(f)ax + ⇔ +  , where a and b are the constants 

 
2. Duality Property 
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3. Time Shift Property 
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4. Time Scaling Property  
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5. Convolution Property: If convolution operation between two signals is defined as: 
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6. Modulation Property 
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7. Parseval’s Property 
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8. Autocorrelation Property: If the time autocorrelation of signal x(t) is expressed as: 
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9. Differentiation Property: 
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Response of a linear system 

The reason what makes Trigonometric Fourier Series expansion so important is the unique 
characteristic of the sinusoidal waveform that such a signal always represent a particular frequency. 
When any linear system is excited by a sinusoidal signal, the response also is a sinusoidal signal of 
same frequency. In other words, a sinusoidal waveform preserves its wave-shape throughout a linear 
system. Hence the response-excitation relationship for a linear system can be characterised by, how the 
response amplitude is related to the excitation amplitude (amplitude ratio) and how the response phase 
is related to the excitation phase (phase difference) for a particular frequency. Let the input to a linear 
system be : 
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Then the filter output is related to this input by the Transfer Function (characteristic of the Linear 

Filter): ( ) ( ) ( )nj
n nH H e θ ωω ω −= ,  such that the filter output is given as 
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Normalised Power 

While discussing communication systems, rather than the absolute power we are interested in another 
quantity called Normalised Mean Power. It is an average power normalised across a 1 ohm resistor, 
averaged over a single time-period for a periodic signal. In general irrespective of the fact, whether it is 
a periodic or non-periodic signal, average normalised power of a signal v(t) is expressed as : 
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Energy of signal 

For a continuous-time signal, the energy of the signal is expressed as: 
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A signal is called an Energy Signal if  

0
0
E

P
< < ∞
=

 

A signal is called Power Signal if 
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Normalised Power of a Fourier Expansion 

If a periodic signal can be expressed as a Fourier Series expansion as: 

( ) ( ) ( )0 1 0 2 0cos 2 cos 4 ...v t C C f t C f tπ π= + + +  

Then, its normalised average power is given by : 
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Integral of the cross-product terms become zero, since the integral of a product of orthogonal signals 
over period is zero. Hence the power expression becomes: 
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By generalisation, normalised average power expression for entire Fourier Series becomes: 
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In terms of trigonometric Fourier coefficients An‘s, Bn‘s, the power  expression can be written as: 
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In terms of complex exponential Fourier series coefficients Vn’s, the power  expressions becomes: 
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Energy Spectral Density(ESD) 

It can be proved that energy E of a signal x(t) is given by : 
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2(f) (f)Xψ = →Energy Spectral Density 

The above expression says that (f)ψ  integrated over all of the frequencies, gives the total energy of the 
signal. Hence Energy Spectral Density (ESD) quantifies the energy contribution from every frequency 
component in the signal, and is a function of frequency. 

Power Spectral Density(PSD) 

It can be proved that the average normalised power P of a signal x(t),such that (t)xτ  is a truncated and 

periodically repeated version of x(t) such that (t);
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The above expression says that S(f)integrated over all of the frequencies, gives the total normalised 
power of the signal. Hence Power Spectral Density (PSD) quantifies the power contribution from every 
frequency component in the signal, and is a function of frequency. 

 



Expansion in Orthogonal Functions 

Let there be a set of functions 1 2 3(x), g (x), g (x), ..., g (x)ng , defined over the interval 1 2x x x< <  and 

such that any two functions of the set have a special relation: 

2

1

(x) g (x) dx 0
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i j
x

g =∫  . 

The set of functions showing the above property are said to be an orthogonal set of functions in the 
interval  1 2x x x< < . We can then write a function (x)f  in the same interval 1 2x x x< < , as a linear 

sum of such g (x)n ’s as: 

1 1 2 2 3 3(x) (x) g (x) g (x) ... g (x)n nf C g C C C= + + + +  , where Cn’s are the numerical coefficients 

The numerical value of any coefficient Cn can be found out as: 
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In a special case when the functions g (x)n in the set are chosen such that 
2

1

2 (x) dx
x

n
x

g∫ =1, then such a 

set is called as a set of orthonormal functions, that is the functions are orthogonal to each other and each 
one is a normalised function too. 

  



Amplitude Modulation Systems 

In communication systems, we often need to design and analyse systems in which many independent 
message can be transmitted simultaneously through the same physical transmission channel. It is 
possible with a technique called frequency division multiplexing, in which each message is translated in 
frequency to occupy a different range of spectrum. This involves an auxiliary signal called carrier 
which determines the amount of frequency translation. It requires modulation, in which either the 
amplitude, frequency or phase of the carrier signal is varied as according to the instantaneous value of 
the message signal. The resulting signal then is called a modulated signal. When the amplitude of the 
carrier is changed as according to the instantaneous value of the message/baseband signal, it results in 
Amplitude Modulation. The systems implementing such modulation are called as Amplitude modulation 
systems. 

Frequency Translation 

Frequency translation involves translating the signal from one region in frequency to another region. A 
signal band-limited in frequency lying in the frequencies from f1 to f2, after frequency translation can be 
translated to a new range of frequencies from f1

’ to f2
’. The information in the original message signal at 

baseband frequencies can be recovered back even from the frequency-translated signal. The 
advantagesof frequency translation are as follows: 

1. Frequency Multiplexing: In a case when there are more than one sources which produce band-
limited signals that lie in the same frequency band. Such signals if transmitted as such 
simultaneously through a transmission channel, they will interfere with each other and cannot 
be recovered back at the intended receiver. But if each signal is translated in frequency such 
that they encompass different ranges of frequencies, not interfering with other signal spectrums, 
then each signal can be separated back at the receiver with the use of proper filters. The output 
of filters then can be suitably processed to get back the original message signal. 

2. Practicability of antenna: In a wireless medium, antennas are used to radiate and to receive the 
signals. The antenna operates effectively, only when the dimension of the antenna is of the 
order of magnitude of the wavelength of the signal concerned. At baseband low frequencies, 
wavelength is large and so is the dimension of antenna required is impracticable. By frequency 
translation, the signal can be shifted in frequency to higher range of frequencies. Hence the 
corresponding wavelength is small to the extent that the dimension of antenna required is quite 
small and practical. 

3. Narrow banding: For a band-limited signal, an antenna dimension suitable for use at one end of 
the frequency range may fall too short or too large for use at another end of the frequency 
range. This happens when the ratio of the highest to lowest frequency contained in the signal is 
large (wideband signal). This ratio can be reduced to close around one by translating the signal 
to a higher frequency range, the resulting signal being called as a narrow-banded signal. 
Narrowband signal works effectively well with the same antenna dimension for both the higher 
end frequency as well as lower end frequency of the band-limited signal. 

4. Common Processing: In order to process different signals occupying different spectral ranges 
but similar in general character, it may always be necessary to adjust the frequency range of 
operation of the apparatus. But this may be avoided, by keeping the frequency range of 
operation of the apparatus constant, and instead every time the signal of interest beingtranslated 
down to the operating frequency range of the apparatus. 
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On the basis of modulation index, AM signal can be from any of these cases: 

I. 1am >  : Here the maximum amplitude of baseband signal exceeds maximum carrier 

amplitude, max
(t)x A> . In this case, the baseband signal is not preserved in the AM envelope, 

hence baseband signal recovered from the envelope will be distorted. 
II. 1am ≤  : Here the maximum amplitude of baseband signal is less than carrier amplitude 

max
(t)x A≤ . The baseband signal is preserved in the AM envelope. 

 
Spectrum of Double-sideband with carrier (DSB+C) 

        Let x(t) be a bandlimited baseband signal with maximum frequency content fm. Let this signal 
modulate a carrier (t) AC os(2 f t)cc π= .Then the expression for AM wave in time-domain is given by: 
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Taking the Fourier transform of the two terms in the above expression will give us the spectrum of the 
DSB+C AM signal. 
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So, first transform pair points out two impulses at cf f= ±  , showing the presence of carrier signal in 

the modulated waveform. Along with that, the second transform pair shows that the AM signal 
spectrum contains the spectrum of original baseband signal shifted in frequency in both negative and 
positive direction by amount cf . The portion of AM spectrum lying from cf to c mf f+ in positive 

frequency and from cf− to c mf f− −  in negative frequency represent the Upper Sideband(USB). The 

portion of AM spectrum lying from c mf f− to cf in positive frequency and from c mf f− + to cf−  in 

negative frequency represent the Lower Sideband(LSB). Total AM signal spectrum spans a frequency 
from c mf f− to c mf f+ , hence has a bandwidth of 2 mf . 

Power Content in AM Wave 

By the general expression of AM wave: 

(t) ACos(2 f t) x(t)Cos(2 f t)c cs π π= +  

Hence, total average normalised power of an AM wave comprises of the carrier power corresponding to 
first term and sideband power corresponding to second term of the above expression. 
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In the case of single-tone modulating signal where (t) V (2 f t)m mx Cos π=  : 
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Where, ma is the modulation index given as m
a

Vm
A

= . 

Net Modulation Index for Multi-tone Modulation: If modulating signal is a multitone signal  
expressed in the form: 
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Generation of DSB+C AM by Square Law Modulation 

Square law diode modulation makes use of non-linear current-voltage characteristics of diode. 
This method is suited for low voltage levels as the current-voltage characteristic of diode is highly non-
linear in the low voltage region. So the diode is biased to operate in this non-linear region for this 
application. A DC battery Vc is connected across the diode to get such a operating point on the 
characteristic. When the carrier and modulating signal are applied at the input of diode, different 
frequency terms appear at the output of the diode. These when applied across a tuned circuit tuned to 
carrier frequency and a narrow bandwidth just to allow the two pass-bands, the output has the carrier 
and the sidebands only which is essentially the DSB+C AM signal. 
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Demodulation of DSB+C by Square Law Detector 

It can be used to detect modulated signals of small magnitude, so that the operating point may be 
chosen in the non-linear portion of the V-I characteristic of diode. A DC supply voltage is used  to get a 
fixed operating point in the non-linear region of diode characteristics. The output diode current is hence 

 

Figure 6 Square Law Detector 

given by the non-linear expression: 

2(t) b (t)FM FMi av v= +  

Where (t) [A (t)]Cos(2 f t)FM cv x π= +  

This current will have terms at baseband frequencies as well as spectral components at higher 
frequencies. The low pass filter comprised of the RC circuit is designed to have cut-off frequency as the 
highest modulating frequency of the band limited baseband signal. It will allow only the baseband 
frequency range, so the output of the filter will be the demodulated baseband signal. 

Linear Diode Detector or Envelope Detector 

This is essentially just a half-wave rectifier which charges a capacitor to a voltage to the peak voltage of 
the incoming AM waveform. When the input wave's amplitude increases, the capacitor voltage is 
increased via the rectifying diode quickly, due a very small RC time-constant (negligible R) of the 
charging path. When the input's amplitude falls, the capacitor voltage is reduced by being discharged by 
a ‘bleed’ resistor R which causes a considerable RC time constant in the discharge path making 
discharge process a slower one as compared to charging. The voltage across C does not fall appreciably 
during the small period of negative half-cycle, and by the time next positive half cycle appears. This 
cycle again charges the capacitor C to peak value of carrier voltage and thus this process repeats on. 
Hence the output voltage across capacitor C is a spiky envelope of the AM wave, which is same as the 
amplitude variation of the modulating signal. 
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Figure 9 Synchronous Detection of DSBSC 

Let the received DSB-SC signal is : 

r(t) x(t)Cos(2 f t)cπ=  

So after carrier multiplication, the resulting signal: 

[ ]

2

(t) x(t) Cos(2 f t).Cos(2 f t)

(t) x(t) Cos (2 f t)
1(t) x(t) 1 Cos(2 (2 f ) t)
2
1 1(t) x(t) x(t) Cos(2 (2 f ) t)
2 2

c c

c

c

c

e

e

e

e

π π

π

π

π

=

⇒ =

⇒ = +

⇒ = +

 

The low-pass filter having cut-off frequency fm will only allow the baseband term 1 x(t)
2

, which is in the 

pass-band of the filter and is the demodulated signal. 

Single Sideband Suppressed Carrier (SSB-SC) Modulation 

The lower and upper sidebands are uniquely related to each other by virtue of their symmetry about 
carrier frequency. If an amplitude and phase spectrum of either of the sidebands is known, the other 
sideband can be obtained from it. This means as far as the transmission of information is concerned, 
only one sideband is necessary. So bandwidth can be saved if only one of the sidebands is transmitted, 
and such a AM signal even without the carrier is called as Single Sideband Suppressed Carrier signal. It 
takes half as much bandwidth as DSB-SC or DSB+C modulation scheme. 

For the case of single-tone baseband signal, the DSB-SC signal will have two sidebands : 

The lower side-band: (2 (f f )t) (2 f t) (2 f t) (2 f t)Sin(2 f t)c m m c m cCos Cos Cos Sinπ π π π π− = +  

And the upper side-band: (2 (f f )t) (2 f t) (2 f t) (2 f t)Sin(2 f t)c m m c m cCos Cos Cos Sinπ π π π π+ = −  

 

 



If any one of these sidebands is transmitted, it will be a SSB-SC waveform: 

(t) (2 f t) (2 f t) (2 f t)Sin(2 f t)SSB m c m cs Cos Cos Sinπ π π π= ±  

Where (+) sign represents for the lower sideband, and (-) sign stands for the upper sideband. The 

modulating signal here is (t) (2 f t)mx Cos π=  , so let (t) Sin(2 f t)h mx π=  be the Hilbert Transform 

of (t)x  . The Hilbert Transform is obtained by simply giving  
2
π⎛ ⎞−⎜ ⎟

⎝ ⎠
 to a signal. So the expression 

for SSB-SC signal can be written as: 

(t) (t) (2 f t) (t)Sin(2 f t)SSB c h cs x Cos xπ π= ±  

Where (t)hx is a signal obtained by shifting the phase of every component present in (t)x  by 
2
π⎛ ⎞−⎜ ⎟

⎝ ⎠
. 

Generation of SSB-SC signal 

Frequency Discrimination Method: 

 

Figure 10 Frequency Discrimination Method of SSB‐SC Generation 

The filter method of SSB generation produces double sideband suppressed carrier signals (using a 
balanced modulator), one of which is then filtered to leave USB or LSB. It uses two filters that have 
different passband centre frequencies for USB and LSB respectively. The resultant SSB signal is then 
mixed (heterodyned) to shift its frequency higher. 

Limitations: 

I. This method can be used with practical filters only if the baseband signal is restricted at its 
lower edge due to which the upper and lower sidebands do not overlap with each other. Hence 
it is used for speech signal communication where lowest spectral component is 70 Hz and it 
may be taken as 300 Hz without affecting the intelligibility of the speech signal. 

II. The design of band-pass filter becomes quite difficult if the carrier frequency is quite higher 
than the bandwidth of the baseband signal. 

Phase-Shift Method:  
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When ed(t)is passed through a low-pass filter, the terms centre at cω±  are filtered out and the output 

of detector is only the baseband part i.e. 1 (t)
2

x  . 

Vestigial Sideband Modulation(VSB) 

SSB modulation is suited for transmission of voice signals due to the energy gap that exists in the 
frequency range from zero to few hundred hertz. But when signals like video signals which contain 
significant frequency components even at very low frequencies, the USB and LSB tend to meet at 
the carrier frequency. In such a case one of the sidebands is very difficult to be isolated with the help 
of practical filters. This problem is overcome by the Vestigial Sideband Modulation. In this 
modulation technique along with one of the sidebands, a gradual cut of the other sideband is also 
allowed which comes due to the use of practical filter. This cut of the other sideband is called as the 
vestige. Bandwidth of VSB signal is given by : 

( ) ( )c v c m m vBW f f f f f f= + − − = +  

Where mf → bandwidth of bandlimited message signal 

vf →width of the vestige in frequency 

 

 

 

  



Angle Modulation 

Angle modulation may be defined as the process in which the total phase angle of a carrier wave is 
varied in accordance with the instantaneous value of the modulating or message signal, while amplitude 
of the carrier remain unchanged. Let the carrier signal be expressed as: 

(t) ACos(2 f t )cc π θ= +  

Where 2 f tcφ π θ= + →  Total phase angle 

 θ →  phase offset 

cf →  carrier frequency 

So in-order to modulate the total phase angle according to the baseband signal, it can be done by either 
changing the instantaneous carrier frequency according to the modulating signal- the case of Frequency 
Modulation, or by changing the instantaneous phase offset angle according to the modulating signal- the 
case of Phase Modulation. An angle-modulated signal in general can be written as 

( ) ( ( ))u t ACos tφ=  

where, (t)φ is the total phase of the signal, and its instantaneous frequency (t)if is given by 

( ) ( )1
2i

df t t
dt
φ

π
=  

Since u(t) is a band-pass signal, it can be represented as 

( ) ( )( )  2    cu t ACos f t tπ θ= +  

and, therefore instantaneous frequency fi becomes : 

( ) ( )1
2i c

df t f t
dt
θ

π
= +  

For angle modulation, total phase angle can modulated either by making the instantaneous frequency or 
the phase offset to vary linearly with the modulating signal. 

Let m(t) be the message signal, then in a Phase Modulation system we implement to have 

( ) ( )  + pt k m tθθ = and with constant fc, we get �(t) linearly varying with message signal. 

and in an Frequency Modulation system letting phase offset θ be a constant, we implement to have 

( ) ( )c f +i ff t k m t= , to get �(t) linearly varying with message signal 

where kp and kfare phase and frequency sensitivity constants.  



The maximum phase deviation in a PM system is given by: 

( )max maxpk m tθΔ =  

And the maximum frequency deviation in FM is given by: 

( )
( )

max max

max max
2

f

f

f k m t

k m tω π

Δ =

Δ =
 

 

Single Tone Frequency Modulation 

The general expression for FM signal is ( ) ( )(t)dtfcs t ACos t k mω= + ∫  

So for the single tone case, wheremessage signal is ( ) ( )mm t VCos tω=  

Then ((t) )f
m

m
cs ACos t

k V
Sin tω

ω
ω
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

( )(t) ( )c f ms ACos t m Sin tω ω⇒ = +  

Here f
f

m m

k V
m ω

ω ω
Δ

= = →Modulation Index  

 

Types of Frequency Modulation 

High frequency deviation =>High Bandwidth=> High modulation index=>Wideband FM 

Small frequency deviation =>Small Bandwidth=> Small modulation index=>Narrowband FM 

 

Carson’s Rule 

It provides a rule of thumb to calculate the bandwidth of a single-tone FM signal. 

( ) ( )2 2 1m f mBandwidth f f m f= Δ + = +  

If baseband signal is any arbitrary signal having large number of frequency components, this rule can be 
modified by replacing fm by deviation ratio D. 
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Then the bandwidth of FM signal is given as: ( ) max2 1Bandwidth D f= +  

Spectrum of a Single-tone Narrowband FM signal 

A single-tone FM modulated signal is mathematically given as: 

( )(t)

(t) ( )Cos( ) Sin( )Sin(

( )

( )) ( )
c

c c

f m

f m f m

m Sin t

m S

s ACos t

s ACos t A tin t m Sin t

ω

ω ω

ω

ω ω

= +

⇒ = −
 

Since for narrowband FM modulation index mf<<1, sowe approximate as: 

Cos( 1( ))f mm Sin tω ≈  and ( )Sin( ) ( )f m f mm Sin t m Sin tω ω≈  

And the expression s(t) becomes: 
{ }

(t) ( ) Sin( )

(t)

(

( ) ( t ) t

)

) (
2

c c

c
f

mc

f m

cm

s ACos t A t

A
s ACos t Cos Cos

m Sin t

m

ω ω

ω ω ω

ω

ω ω

=

= + + −⇒

−

−
 

The above equation represents the NBFM signal. This representation is similar to an AM 
signal, except that the lower sideband frequency has a negative sign.  

 

Spectrum of a Single-tone Wideband FM signal 

A single-tone FM modulated signal is mathematically given as: 

( )(t)

(t) ( )Cos( ) Sin( )Sin(

( )

( )) ( )
c

c c

f m

f m f m

m Sin t

m S

s ACos t

s ACos t A tin t m Sin t

ω

ω ω

ω

ω ω

= +

⇒ = −
 

The FM signal can be expressed in the complex envelope form as: 

( )

( )

(t) Re

(t) Re *

(t) Re s(t)*

f m

f c

c

m

cj t j

j j t

m Sin t

m Sin t

j t

s Ae

s Ae e

s e

ω

ω

ω

ω

ω

+⎡ ⎤= ⎣ ⎦
⎡ ⎤⇒ = ⎣ ⎦
⎡ ⎤⇒ = ⎣ ⎦

 

Where ( )s(t) f mm tj SinAe ω= , which is a periodic function of period 
1

mf
 . 

The Fouries series expansion of this periodic function can be written as: 



2s(t) mj nf t
n

n
C e π

∞

=−∞

= ∑  

Where Cn spectral coefficients are given by 

1
2

2

1
2

1
2

2

1

(

2

)

(t) e

e f m

m

m

m

m
m

m

f
j nf t

n m

f

f
j j nf t

n m
Sin t

f

m

C f s dt

C Af dt

π

ω π

−

−

−

−

=

⎡ ⎤⇒ = ⎣ ⎦

∫

∫

 

Substituting 2 mx f tπ= , the above equation becomes, 

(x)e
2

fm Sinj jnx
n

AC dx
π

ππ
−

−

⎡ ⎤= ⎣ ⎦∫  

As  the above expression is in the form of  nth order Bessels function of first kind : 

(x)1(m ) e
2

fm Sj jnin x
n fJ dx

π

ππ
−

−

⎡ ⎤= ⎣ ⎦∫ ,  

therefore we can write (m )n n fC AJ=  

So, 2s(t) (m ) mj nf t
n f

n
AJ e π

∞

=−∞

= ∑  

Hence the FM signal in complex envelope form can be written as: 

( )2(t) *Re (m ) m cj nf t t
n f

n
s A J e π ω

∞
+

=−∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑  

(t) * (m )Cos(2 )n f m c
n

s A J nf t tπ ω
∞

=−∞

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑  

This is the Fourier series representation of Wideband Single-tone FM signal. Its Fourier Transform can 
be written as: 

{ }S(f) * (m ) (f f ) (f f )n f c m c m
n

A J nf nfδ δ
∞

=−∞

⎡ ⎤
= + + + − −⎢ ⎥

⎣ ⎦
∑  

The spectrum of Wideband Single-tone FM signal indicates the following: 

1. WBFM has infinite number of sidebands at frequencies (f )c mnf± . 
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Drawbacks of direct method of FM generation: 

1. Generation of carrier signal is directly affected by the modulating signal by directly controlling 
the tank circuit and thus a stable oscillator circuit cannot be used. So a high order stability in 
carrier frequency cannot be achieved. 

2. The non-linearity of the varactor diode produces a frequency variation due to harmonics of the 
modulating signal and therefore the FM signal is distorted. 

Indirect method or Armstrong method of FM generation 

A very high frequency stability can be achieved since in this case the crystal oscillator may be used as a 
carrier frequency generator. In this method, first of all a narrowband FMis generated and then frequency 
multiplication is used to cause required increased frequency deviation.The narrow band FM 
wave is then passed through a frequency multiplier to obtain the wide band FM wave. Frequency 
multiplication scales up the carrier frequency as well as the frequency deviation. The crystal controlled 
oscillator provides good frequency stability. But this scheme does not provide both the desired 
frequency deviation and carrier frequency at the same time. This problem can be solved by using 
multiple stages of frequency multipliers and a mixer stages. 

 

Figure 13 Narrow Band FM Generation 

 

 

 

 



FM Demodulators 

In order to be able to demodulate FM, a receiver must produce a signal whose amplitude varies as 
according to the frequency variations of the incoming signals and it should be insensitive to any 
amplitude variations in FM signal. Insensitivity to amplitude variations is achieved by having a high 
gain IF amplifier. Here the signals are amplified to such a degree that the amplifier runs into limiting. In 
this way any amplitude variations are removed. Generally a FM demodulator is composed of two parts: 
Discriminator and Envelope Detector.Discriminator is a frequency selective network which converts 
the frequency variations in an input signal in to proportional amplitude variations. Hence when it is 
input with an FM signal, it can produce an amplitude modulated signal. But it does not generally alter 
the frequency variations which were there in the input signal. So the output of a discriminator is a both 
frequency and amplitude modulated signal. This signal can be fed to the Envelope Detectorpart of FM 
demodulator to get back the baseband signal 

 

Figure 14  Slope detector 

 

Figure 15 Frequency response of slope detector 

 

Slope detector: A very simplest form of FM demodulation is known as slope detection or 
demodulation. It consists of a tuned circuit that is tuned to a frequency slightly offset from the carrier of 



the signal.As the frequency of the signals varies up and down in frequency according to its modulation, 
so the signal moves up and down the slope of the tuned circuit. This causes the amplitude of the signal 
to vary in line with the frequency variations. In fact, at this point the signal has both frequency and 
amplitude variations.It can be seen from the diagram that changes in the slope of the filter, reflect into 
the linearity of the demodulation process.The linearity is very dependent not only on the filter slope as it 
falls away, but also the tuning of the receiver - it is necessary to tune the receiver frequency to a 
point where the filter characteristic is relatively linear. The final stage in the process is to demodulate 
the amplitude modulation and this can be achieved using a simple diode circuit. One of the most 
obvious disadvantages of this simple approach is the fact that both amplitude and frequency variations 
in the incoming signal appear at the output. However, the amplitude variations can be removed by 
placing a limiter before the detector.  The input signal is a frequency modulated signal. It is applied to 
the tuned transformer (T1, C1, C2 combination) which is offset from the centre carrier frequency. This 
converts the incoming signal from just FM to one that has amplitude modulation superimposed upon the 
signal. This amplitude signal is applied to a simple diode detector circuit, D1. Here the diode provides 
the rectification, while C3 removes any unwanted high frequency components, and R1 provides a load. 

 

PLL FM demodulator / detector:When used as an FM demodulator, the basic phase locked loop can 
be used without any changes. With no modulation applied and the carrier in the centre position of the 
pass-band the voltage on the tune line to the VCO is set to the mid position. However, if the carrier 
deviates in frequency, the loop will try to keep the loop in lock. For this to happen the VCO frequency 
must follow the incoming signal, and in turn for this to occur the tune line voltage must vary. 
Monitoring the tune line shows that the variations in voltage correspond to the modulation applied to 
the signal. By amplifying the variations in voltage on the tune line it is possible to generate the 
demodulated signal.The PLL FM demodulator is one of the more widely used forms of FM 
demodulator or detector these days. Its suitability for being combined into an integrated circuit, and the 
small number of external components makes PLL FM demodulation ICs an ideal candidate for many 
circuits these days. 

 
Figure 16 PLL FM Demodulator 

 

 

 

 
 
 
 
 



Module‐III  
Sources and types of Noise 
Type of noises are 

• Thermal Noise  
• Shot Noise  
• Additive Noise  
• Multiplicative Noise (fading)  
• Gaussian Noise 
• Spike Noise or Impulse Noise 

 
Source  of  thermal  noise  are  resistive  elements  in  electrical  and  electronic  circuits.  Current 
flowing  in  conductors  can  also  be  an  example.  Constant  agitation  at molecular  level  in  all 
material, which prevails all over the universe,  is another example.  In brief any source which 
provides the current is the cause of the thermal energy. Source of shot noise is the solid state 
semiconductor devices  like diode,  triode,  tetrode, and pentode  tubes. The noise which are 
additive  in nature are known as additive noise. This corrupts message signal. Fading occurs 
because of signal or noise available at destination from multiple paths. White noise is basically 
approximated by Gaussian noise as its probability density function is Gaussian. Spike noise is 
observed in FM receivers because of low input SNR.  
 
Frequency Domain Representation Noise 

 
Figure 3.1: (a) A sample noise waveform. (b) A periodic waveform is generated by repeating 
the interval in (a) from –T/2 to T/2 

n (t) is a non periodic complete noise where as n(s)(t) is a sample of it and ்݊
ሺ௦ሻሺݐሻ is a periodic 

noise as shown in above figure 3.1(b). 

 
 
 

(3.1) 

(3.2)



Power Spectrum of Noise 
 

 
Figure 3.2: The power spectrum of the waveform ்݊

ሺ௦ሻ 

Power spectral density of noise ்݊
ሺ௦ሻat kΔf or ‐ kΔf frequency interval can be written as 

 
Mean Power spectral density  
 
Total power in the interval:  
 

Representation of Noise 
Actual noise n (t) which is a non‐periodic signal can be represented as 

 

,  
Where,  

 
Now we can write 

 

Total power PT is  

Spectral Component of Noise 

Spectral component of noise at kth instant and within an interval of Δf can be represented as 
݊ሺݐሻ as given below. 

 

(3.3)

(3.4) 

(3.5) 

(3.6)

(3.7)

(3.8) 

(3.9) 

(3.10)

(3.11) 

(3.12a) 
(3.12b) 



Corresponding power can be written as 

 

Taking a time t = t1, such that cos 2πkΔf = 1, we have Pk = ܽ
ଶതതത, similarly 

Taking a time t = t2, such that cos 2πkΔf = 0, we have Pk = ܾ
ଶതതത, Hence 

 
 

It is observed that 

 

Let us take two spectral components of noise as given by 

 
Considering similar analysis as above, we have  

 

This above explanation indicates noise n (t) is random, Gaussian, and stationary process, 
whereܽ, ܾ, ܽ, ܾ, are uncorrelated random Gaussian random variables. The probability 

density function (pdf) of ck and θk can be given as  

݂ሺܿሻ ൌ ೖ
ೖ

݁ೖ
మ/ଶೖ    ck ≥ 0 

 
The pdf ݂ሺܿሻ describes a Reyliegh distribution, where as pdf ݂ሺߠሻ describes a Uniform 
distribution. 
 
Narrowband Filter Response to Noise 
In the following figure 3.3, the filter used is a narrow band filter with transfer function H (f) 
and pass band is B Hz. The noise at the input of the filter is n (t).  

 
Figure 3.3: Filter response to narrowband noise 

(3.13)

(3.14) 

(3.15)

(3.16) 

(3.17a) 

(3.17b) 

(3.18) 

(3.19)

(3.20) 



The noise n (t) to the filter H (f) is a wideband noise, whereas the noise at the output of the 
same filter is a narrowband noise Δn (t). The amplitude variation of this Δn (t) is small as it 
contains very few harmonics. If we reduce the pass-band B of the filter to a very small value 
then the variation in amplitude of Δn (t) will be small and may be a approximated sinusoidal 
signal.     

Effect of Filter to Noise PSD 

The noise sample at the output of the filter can be designated as ݊బሺݐሻ. 

 

 

 

 

 
 

 

 

 

Mixing Noise with Sinusoid 

Noise nk(t) mixed with a sinusoidal signal at fo can be written as 

 

           

It is already understood that 

 

In case of actual noise Δf tends to zero, kΔf becomes f and therefore, we can write 

 

Let us single out two spectral components of noise n (t)  

(3.21) 

(3.22) 

(3.23)

(3.24) 

(3.25)

(3.26) 

(3.27) 

(3.28) 

(3.29)



݊ሺݐሻ ൌ ܽܿݏሺ2ݐ݂∆݇ߨሻ  ܾ݊݅ݏሺ2ݐ݂∆݇ߨሻ and            (3.30a) 

݊ሺݐሻ ൌ ܽܿݏሺ2ݐ݂∆݈ߨሻ   ܾ݊݅ݏሺ2ݐ݂∆݈ߨሻ            (3.30b) 

kΔf and lΔf is chosen in such a manner that fo = [(k + l)/2]Δf ; this means fo is in the middle of 
kΔf and lΔf. Let say lΔf > kΔf. Now we can define two difference frequency components as 
given below. 

pΔf = fo – kΔf = lΔf – fo. These difference frequency components are also uncorrelated as 
follows. 

 ݊ሺݐሻ. ߨ2ݏܿ ݂ݐ ൌ 
ଶ

݂∆ሺ݈ߨ2ݏܿ   ݂ሻݐ   
ଶ

݂∆ሺ݈ߨ2݊݅ݏ  ݂ሻݐ   
ଶ

݂∆ሺ݈ߨ2ݏܿ െ  ݂ሻݐ 

                                          
ଶ

݂∆ሺ݈ߨ2݊݅ݏ െ  ݂ሻݐ 

We find the difference frequency components as 

 

 

np1(t) is the difference component due to the mixing of frequencies fo and kΔf, while np2(t) is 
the difference component due to the mixing of frequencies fo and lΔf. Now we are interested to 
find the expected values of the product of np1(t) and np2(t). 

Similar to the last explanation, we have 

 

So power at difference frequencies 

 

Thus mixing noise with a sinusoid signal results in a frequency shifting of the original noise by 
fo. The variance of this shifted noise is found by adding the variance of each new noise 
component. This is also applicable to two shifted power spectral density plots.  

Mixing Noise with Noise 

 

     

 

(3.31a) 

(3.31b) 

(3.32) 

(3.33) 

(3.34) 

(3.35)



 

 

Linear Filtering of Noise 

Thermal noise and Shot noise have similar power spectral density which can be approximated 
as the power spectral density (PSD) of the White noise. This PSD is as shown in figure 3.4.  

 

 

 

                   Figure 3.4: Power spectral density of noise 

 

Figure 3.5: A filter is placed before a demodulator to limit the noise power input to the 
demodulator 
 
In order to minimize the noise power that is presented to the demodulator of a receiving 
system, a filter is introduced before the demodulator as shown in figure 3.5. The bandwidth B 
of the filter is made as narrow as possible so as to avoid transmitting any unnecessary noise to 
the demodulator. For example, in an AM system in which the baseband extends to a frequency 
of fM, the bandwidth B = 2fM. In a wideband FM system the bandwidth is proportional to twice 
the frequency deviation.   
 
Noise and Low Pass Filter 
One of the filter most frequently used is the simple RC low-pas filter (LPF). The same RC LPF 
with a 3 dB cutoff frequency fc has the transfer function 
 
T.F. of RC Low Pass Filter:  
 
If PSD of input noise ܩሺ݂ሻ. The PSD of output noise is 
 

 
 

(3.36)

(3.37) 

(3.38) 



Noise power at the filter output, No can be expressed as 

 

 

 

Ideal Low Pass Filter:       

 

 

 

Noise and Band Pass Filter 
 

 
Figure 3.6:  A rectangular band‐pass filter 

 

Noise and Differentiator 
Transfer function of a differentiator is:   

is applied at the input 

 

If the differentiator is followed by a rectangular low pass filter having a bandwidth B.   

Noise power at the output of the LPF is   

 
 

 
 

(3.39) 

(3.40) 

(3.41) 

(3.42)

(3.43) 

(3.44)

(3.45)



Noise and Integrator 
Transfer function of an integrator is:  

 

 

 

 
Noise Bandwidth 
The noise bandwidth (BN) is defined as the bandwidth of an idealized (rectangular) filter which 
passes the same noise power as does the real filter. As per the definition we can find BN = 
(π/2)fo, where fo is the frequency at which the transfer function of the actual filter is centered. 
 
Quadrature components of Noise 
It is sometimes more advantageous to represent Narrowband noise centred around f0 as  

 

These nc(t) and ns(t) are known as quadrature component of noise.  

 

Figure 3.7:  Quadrature components of noise 

Now as per the initial notation 

 

 

Where, K.Δf = f0, Hence 

 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52)



 

 

A. M. Receiver 

This receiver as shown in figure 3.8 is capable of processing an amplitude modulated carrier 
and recovering the baseband signal. The modulated RF carrier + noise is received by the 
receiving antenna and submitted to Radio frequency (RF) amplifier. After a number of 
operations as indicated in the same figure 3.8, finally baseband signal with some small noise is 
obtained at the output of the receiver.  

 

Figure 3.8:  A receiving system for amplitude modulated signal 

Superheterodyne principle 

In early days TRF receivers were used to detect the baseband signal from modulated RF signal. 
The performance of such receiver varies as the incoming RF frequency varies. This is because 
it uses single conversion technique. Later double conversion technique (frequency of incoming 
RF signal changes two times) is used by some receiver as shown in figure 3.8. These are 
known as superheterodyne receiver. The main idea behind the design of such receiver is that: 
whatever may be the frequency of the incoming RF signal, the output after first conversion 

(3.53) 

(3.54) 



always produces a fixed frequency known as intermediate frequency. Due to this the 
performance of receiver remains same for all type of incoming RF signal.    

 
Calculation of Signal power and noise power in SSB‐SC 
 
SSB‐SC: Signal Power 
 

 
Figure 3.9:  
 
 
 

 
Output of multiplier is 

 
Output of baseband filter can be written as 

 
The input signal power is 

 
The output signal power is 
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Noise Power 
 

 
Figure 3.10:  
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Calculation of Signal power and noise power in DSB‐SC 

When a baseband signal of frequency fM is transmitted over a DSB-SC system, the bandwidth 
of the carrier filter must be 2 fM rather than fM. Thus, along with signal the input noise in the 
frequency range fc – fM to  fc + fM will contribute to the output noise, rather than only in the 
range of fc to fc + fM as in SSB case. 

DSB‐SC: Signal Power: 
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DSB‐SC: Noise Power 

 

Figure 3.11:  
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DSB‐SC: Arbitrary Modulated Signal: 
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Calculation of Signal power and noise power in DSB‐C 
DSB‐C: Arbitrary Modulated Signal: 
Let us consider the case, where a carrier accompanies the double sideband signal. 
Demodulation is achieved synchronously as in SSB-SC and DSB-SC. We note that the carrier 
increases the total input signal power but makes no contribution to the output signal power. We 
know that 

 
Suppose that the received signal is  

 
The carrier power, Pc = A2/2; The sidebands are contained in the term Am(t) cos 2πfct. The 
power associated with the term is (A2/2)݉ଶሺݐሻതതതതതതതത, where ݉ଶሺݐሻതതതതതതതത  is the time average of the square 
of the modulating waveform. 
We now have the total input power Si as given by 

ܵ ൌ ܲ  ܵ
ሺௌሻ ൌ మ

ଶ
 మ

ଶ
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ଶ
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Figure of Merit: 
 

  

 
 

The Square Law Demodulator and Threshold: 
DSB-SC as well as DSB-C can be demodulated using square law demodulator. This avoids 
requirement of synchronous carrier as in case of synchronous detector, which is costlier. But in 
case of synchronous detector there is no threshold i.e. as Si/NM decreases by a factor of α, the 
So/No is also decreases by a factor of α. Therefore, figure of merit γ is independent of Si/NM. In 
case of nonlinear demodulator as Si/NM decreases, there is a point, a threshold at which the 
So/No decreases more rapidly than does the Si/NM. This threshold often makes the limits to the 
usefulness of the demodulator. 
 

 
 
Figure 3.12: The square‐law AM demodulator 
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Figure 3.13:  
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Above threshold, when Pc/NM is very large,  

 

 

 

 
 
Figure 3.14:  
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Figure 3.15: Performance of a square‐law demodulator illustrating the phenomena of 

threshold 
 

The solid line in figure 3.15 is applicable to the equation as in (3.111). The dashed line 
which passes through the center of the axis is applicable to the equation as in (3.112). The third 
line in the left and dashed is applicable to the equation as in (3.113). 

From the figure 3.15, it is clear that as Pc/NM decreases, the demodulator performance 
curve fall progressively further away from the straight line plot corresponding to Pc/NM very 
large (i.e. applicable to synchronous detector). 

Let’s say we choose the performance curve of square law demodulator falls away by 1 
dB from performance curve of synchronous demodulator. This is achieved at Pc/NM = 4.6 dB 
i.e. Pc = 2.884 NM. 

If Pc/NM is taken more than 2.9 then the difference in ordinate value will be less than 1 
dB and it is still better. When ݉ଶሺݐሻതതതതതതതത ا 1, then ܵ ؆ ܲ. So, we can say  ܵ  2.9 ܰெ. 

 
 The Envelop Demodulator and Threshold: 
This envelope demodulator can be used when |݉ሺݐሻ| ൏ 1. Let us take quadrature component 
expression of noise. 

 
If the noise n(t) has a PSD of η/2 in the range of |݂ െ ݂|  ெ݂  and is zero elsewhere. Then nc(t) and 
ns(t) have the PSD of η in the frequency range of –fM to fM.  At the demodulator i/p, the i/p signal and 
noise is 

 
The output signal plus noise just prior to base‐band filtering is the envelope (phasor sum) 

(3.114) 

(3.115) 



 
 

 

 

 
The γ here is same as the γ obtained using synchronous demodulator. To make a 

comparison with the square law demodulator, we assume 
݉ଶሺݐሻതതതതതതതത ا 1. In this case as before ܵ ؆ ܲ and equation (3.120) reduces equation (3.112). 

A threshold can be considered by understanding that the synchronous demodulator, the 
square law demodulator, and the envelop demodulator all performs equally well provided       
݉ଶሺݐሻതതതതതതതത ا 1. Like square law demodulator, the envelop demodulator exhibits a threshold. As 
the input SNR decreases a point is reached where the SNR at the output decreases more rapidly 
than the input. The calculation of SNR is quite complex, we can simply state the result that for 

ܵ/ܰெ ا 1, ܽ݊݀ ݉ଶሺݐሻതതതതതതതത ا 1   
  

 

 

 

 
Comparison:  
(i) Square law demodulator has lower threshold  
(ii)It also performs better below threshold 
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Module – IV  
Noise in Frequency Modulation System:  
An FM Receiving System 

 
Figure 4.1:  A limiter-discriminator used to demodulate an FM signal 
 
Limiter and Discriminator: 
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Figure 4.2:  a) A limiter input-output characteristics. b) A cycle of the input carrier. c) The output 
waveform. 
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Limiter is to suppress amplitude variation noise. Discriminator gives at output an 
amplitude variation according to instantaneous frequency of input. This is as shown in figures 
4.1 1nd 4.2. 
       The baseband signal is recovered by passing the amplitude modulated waveform 
through an envelope detector.  

 

 

 

 
 

 
Here AL is the limited amplitude of the carrier so that AL is fixed and independent of the input 
amplitude, and ωct + φ(t) is the instantaneous phase. 

 
 

 

 
SNR Calculation:  
Signal Power: 
Consider that the input signal to the IF carrier filter of figure 4.1 is  

 
Bandwidth B = 2Δf + 2fM 
The signal is s2 (t) [corresponding to v2 (t)] given by 

 

 
We find foe the output of the discriminator 

 
Baseband filter rejects the DC component and passes the signal component 

 

 
Noise Power: 
The carrier and noise at the limiter input are 
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Figure 4.3: A Phasor diagram of the terms in above equation (4.13) 
 

 

 
We ignore the time-varying envelope R(t), since all time variations are removed by the limiter. 
Output of the limiter-band-pass filter, ν2(t) =AL cos[ωct +θ (t)] , where AL is a constant. Assume 
that we are operating under the condition of high-input SNR such that │nc(t)│≤ A and  
│ns(t)│≤ A 
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Output‐noise power 
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Let us consider that the modulating signal m(t) is sinusoidal and produces a frequency 

deviation Δf. then the input signal si(t) 

 

 

 

 

 
Comparison: FM and AM 
Let us compare the result for sinusoidal 100% modulation  

 
FM is better if  ߚ ؆ √2/3 ؆ 0.5 or more. But this comes at the cost of higher bandwidth as 

 
ForߚM ൎ ߚ2 ெ݂  and bandwidth of AM system is  ߚM ൌ 2 ெ݂, 

 
Several authors to make the comparison not on the basis of equal power but rather on the basis 
of equal signal power measured when the modulation m(t) = 0. In this case, as it can be easily 
verified, we find that the above equation (4.33) can be replaced by 
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 SNR Improvement: Pre‐emphasis and de‐emphasis 

 
Figure 4.5: Pre‐emphasis and de‐emphasis in an FM system 

 

 

 

 

 

Figure 4.6: (a) Deemphasis network and (b) Preemphasis network 

 

 

 

Hp(f).Hd(f) = r/R = constant 

The improvement in signal-to-noise ratio which results from pre-emphasis depends on the 
frequency dependence of the PSD of the baseband signal. Let us assume that the PDF of a 
typical audio signal, say music, may reasonably be represented as having a frequency 
dependence given by 

(4.35) 

(4.36) 

(4.37) 

(4.38)

(4.39) 

(4.40)

(4.41) 

(4.42)



 

 

 

Figure 4.7: Normalized logarithmic plots of the frequency characteristics of  
      a) the de-emphasis network and b) the pre-emphasis network 

 

 

Integrating and solving for K2 

 

 

When  ெ݂ ଵ݂⁄ ب 1  

  

In commercial FM broadcasting f1 = 2.1 kHz, while fM may reasonably taken as = 15 kHz 
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Multiplexing: 

 

 

 

 

 

 

 

 

 

Figure 4.8: A system of frequency division multiplexing 

 

 

Figure 4.9: Comparison of an FM system in (a) with a phase modulation system in (b)   



 

Figure 4.10: To illustrate that in the multiplex system of figure 4.8 using FM, channels 
associated with high carrier frequencies are noisier than those associated with lower 
frequencies.   

ሻݐሺߠ ൌ ݊௦ሺݐሻ/ܣ is the phase-modulation noise. Since ߠሺݐሻ and ݊௦ሺݐሻ are directly related, the 
form of the power spectral density of is identical. 

The quadratic nature of noise power in FM makes it inferior to PM for higher carrier 
frequencies. In PM, noise power in each channel is same.  

Assuming that both channels (a) and (b), are constrained to use the same bandwidth. The 
frequency range of the topmost channel of the composite signal M(t) extends from (N-1)fM to 
NfM is the frequency range of an individual in the absence of de-emphasis, the noise output of 
the top channel 

 

 

 

The condition of equal bandwidth requires that 
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Effect of Transmitter Noise 

 

Figure 4.11:  

 

A network similar to the pre-emphasis circuit of figure 4.6(b) is suitable. In practice the 4.8 dB 
advantage quoted above for PM over FM is not realized. The advantage is more nearly 3 to 4 
dB. 

Threshold in Frequency Modulation: 

 

Experimentally it is determined that the FM system exhibits a threshold.  

(4.55) 



 

Figure 4.12: Plots of output SNR against input SNR for linear modulation and demodulation 
and also for an FM system illustrating the phenomenon of threshold in FM. 

The threshold value of Si/NM is arbitrarily taken to be the value at which So/No falls 1 dB below 
the dashed extension.  

For larger β the threshold is also higher.  

 

Figure 4.13: Thermal noise at discriminator output 



 

Figure 4.14:  A spike superimposed on a background of smooth (thermal) noise  

The onset of threshold may be observed by examining the noise output of an FM discriminator 
on a CRO. A spike or impulse noise appears (with clicking sound) in the background thermal-
type noise, usually referred to as smooth noise.  

 

Figure 4.15 

 

Phase Lock Loop (PLL) 

The PLL is an important circuit which helps to detect the original signal from a 
frequency modulated signal corrupted by noise. The operation of this device has been properly 
explained in Module II.  

In fact PLL is very popular because of their low cost and superior performance, 
especially when SNR is low.  FM demodulation using PLL is the most widely used method 
today. We know PLL tracks the incoming signal angle and instantaneous frequency. 



 

a)  
 

 
 

b)  

Figure 4.16  a) Phase Lock Loop (PLL) b) Equivalent circuit of PLL 

The free running frequency of VCO is set at the carrier frequency ωc.  The 
instantaneous frequency of the VCO can be given by 

ωVCO = ωc  + C.eo(t)        (4.56) 

If the VCO output is B.cos{ωct + θo(t)}, then the instantaneous frequency can be 

represented as  ωCO ൌ  ωୡ  θሶ ୭ሺtሻ       (4.57) 

This means,  θሶ ୭ሺtሻ ൌ Ce୭ሺtሻ       (4.58) 

In the above equations C and B are constants of PLL. 

The multiplier output in figure 4.16 a) is AB.sin (ωct + θi) cos (ωct + θo) = (AB/2)[sin 

(θi – θo) + sin(2ωct + θi + θo)]. The term (AB/2).sin(2ωct + θi + θo) is suppressed by the loop 

filter (LPF). Hence the effective input to the is (AB/2).sin {θi(t) – θo(t)}. If h(t) is the unit 

impulse response of the loop filter, then     

          e୭ሺtሻ ൌ hሺtሻ څ ଵ
ଶ

ABsinሼθ୧ሺtሻ െ θ୭ሺtሻሽ ൌ ଵ
ଶ

AB  hሺt െ xሻ sinሼθ୧ሺxሻ െ θ୭ሺxሻሽdx
   

           (4.59) 

          But, θሶ ୭ሺtሻ ൌ Ce୭ሺtሻ, therefore θሶ ୭ሺtሻ ൌ AK  hሺt െ xሻ sin θୣሺxሻ dx୲
    (4.60) 

∑ Sin (  ) 

න ሺ ሻ݀ݐ
௧


 

θi (t) 

θo(t) 

+ 

– 

A.K.H (S) 
θe(t) Sin θe θሶ ୭ ൌ Ce୭ሺtሻ 

Loop Filter
H (S) 

VCO

A.sin{ωct + θi (t)} 

B.cos{ωct + θo(t)}



Where, K = (CB/2) and θe(t) is the phase error and defined by θe(t) = θi(t) - θo(t) i.e. θo(t) = 
θi(t) - θe(t).  

 FM carrier is A.sin{ωct + θi (t)} 

 Where, θ୧ሺtሻ ൌ K  mሺαሻdα୲
ିஶ       (4.61) 

 Hence, θ୭ሺtሻ ൌ K  mሺαሻdα୲
ିஶ െ θୣሺtሻ     (4.62) 

 When θe is very small, then e୭ሺtሻ ൌ ଵ
C

θሶ ୭ሺtሻ  K
C

mሺtሻ   (4.63) 

 Thus PLL works as a FM demodulator. If the incoming signal is phase modulated 
wave, then, θo (t) = θi(t) = Kpm(t) and e୭ሺtሻ ൌ K୮mሶ ሺtሻ/C . In this case we need to integrate eo 
(t) to obtain the desired signal.  

 

 

 

 

 

 

 


