
        

  

B.Tech 4th Semester         MATHEMATICS-IV 

UNIT-1 

NUMERICAL METHOD 

We use  numerical method to find approximate solution of problems by numerical calculations with aid of 

calculator. For better accuracy we have to minimize the error. 

Error = Exact value – Approximate value 

Absolute error = modulus of error 

Relative error =  Absolute error / (Exact value) 

Percentage error = 100 X Relative error 

The error obtained due to rounding or chopping is called rounding error. 

For example π = 3.14159  is approximated as 3.141 for chopping (deleting all decimal) 

                                                                      or  3.142 for rounding up to 3 decimal places. 

Significant digit: 

It is defined as the digits to the left of the first non-zero digit to fix the position of decimal point. 

For example each of following numbers has 5 significant digits. 

0.00025610,  25.610,  25601,  25610 

Solution of Equations by Iteration: 

Intermediate value Theorem:   If a function f(x)  is continuous in closed interval [a,b] and satisfies f(a)f(b) <  0 

then there exists atleast one real root of the equation f(x)  = 0 in open interval (a,b). 

Algebraic equations are  equations containing  algebraic terms ( different powers of x). For example x2-7x+6=0 

Transcendental equations are  equations containing  non-algebraic terms like trigonometric, exponential, 

logarithmic terms. For example sin x – ex = 0  

A. Fixed point iteration method for solving equation f(x)  = 0 
Procedure 

Step-I   We rewrite the equation f(x)  = 0 of the form x = h(x), x=g(x), x = D(x) 

                We find the interval (a,b) containing the solution (called  root).   

Step-II  We choose that form say x = h(x) which satisfies I h΄(x) I   < 1 in interval (a,b) containing the 

solution (called  root).   

Step-III We take xn+1 = h(xn) as the successive formula to find approximate solution (root) of   the 

equation f(x)  = 0 

Step-III Let x=x0 be initial guess or initial approximation to the equation f(x)  = 0 



        

  

Then x1=h(x1) ,  x2=h(x2) ,  x3=h(x3)  and so on.We will continue this process till we get solution (root) of   

the equation f(x)  = 0 up to desired accuracy. 

Convergence condition for Fixed point iteration method 

If x=a is a root of the equation f(x)  = 0 and the root is in interval (a, b). The function h΄(x) and h(x) 

defined by x = h(x) Is continuous in (a,b)  .Then the approximations x1=h(x1) ,  x2=h(x2) ,  x3=h(x3)  ....... 

converges to the root x=a provided I h΄(x) I   < 1 in interval (a,b) containing the root for all values of x.   

Problems 

1. Solve x3 - sin x -1 =0 correct to two significant figures by fixed point iteration method correct up 

to 2 decimal places. 

Solution:  x3 - sin x -1 =0........   .........       ........     ........        ...(1) 

Let f(x) = x3-sin x -1                

f(0) = -1, f(1)= - 0.8415,  f(2)=6.0907 

As  f(1)f(2)< 0 by Intermediate value Theorem the root of real root of the equation f(x)  = 0 lies 

between 1 and 2 

Let us rewrite the equation f(x)  = 0 of the form x = h(x) 

x= (1 + Sin x)1/3   = h1(x)  and  x = Sin-1(x3    -  1)= h2(x) 

We see that  I h1΄(x) I   < 1 in interval (1,2) containing the root for all values of x.   

We use xn+1= (1 + Sin xn)1/3   as the successive formula to find approximate solution (root) of   the 

equation (1). 

Let  x0 =1.5  be initial guess to the equation (1).  

Then x1= (1 + Sin x0)1/3   = (1 + Sin 1.5)1/3    =  1.963154 

x2= (1 + Sin x1)1/3   = (1 + Sin 1.963154)1/3    =  1.460827 

x3= (1 + Sin x2)1/3   = (1 + Sin 1.460827)1/3    =  1.440751 

x4= (1 + Sin x3)1/3   = (1 + Sin 1.440751)1/3    =  1.441289 

which is the root of equation (1)  correct to two decimal places. 

Newton Raphson Method 

Procedure 

Step-I  We find the interval (a,b) containing the solution (called  root) of the equation f(x)  = 0 .      

Step-II  Let x=x0 be initial guess or initial approximation to the equation f(x)  = 0 

 



        

  

Step-III  We use xn+1 =xn  -   [f(xn) / f΄(xn)]  as the successive formula to find approximate solution (root) 

of   the equation f(x)  = 0 

Step-III Then x1 ,  x2 ,  x3   ............  and so on  are calculated and we will continue this process till we get 

root of   the equation f(x)  = 0 up to desired accuracy. 

2. Solve x - 2sin x  - 3  = 0 correct to two significant figures by Newton Raphson  method correct up 

to 5 significant  digits. 

Solution:  x - 2sin x  - 3  = 0........   .........       ........     ........        ...(2) 

Let f(x) = x-2sin x  -  3                

f(0) = -3, f(1)=  -2 - 2 Sin 1 ,  f(2)=  -1 - 2 Sin 2 ,f(3)= - 2 Sin 3, f(4)=  1- 2 Sin 4 

f(-2)=  -5 + 2 Sin 2      ,f(-1)= -4 + 2 sin 1 

As  f(3)f(4)< 0 by Intermediate value Theorem the root of real root of the equation f(x)  = 0 lies 

between 3 and 4 

Let Let  x0 =4  be the initial guess to the equation (2).  

Then x1=  x0
    -  [f(x0) / f΄(x0)]    =  2-   f(2)/ f΄(2) =  3.09900 

x2= x1
    -  [f(x1) / f΄(x1)]    = - 1.099-   f(- 1.099)/ f΄(- 1.099) =  3.10448 

x3=   x2
    -  [f(x2) / f΄(x2)]  =   3.10450 

x4=    x3
    -  [f(x3) / f΄(x3)]        =  3.10451 

which is the root of equation (2)  correct to five significant  digits. 

 

Secant  Method 

Procedure 

Step-I  We find the interval (a,b) containing the solution (called  root) of the equation f(x)  = 0 .      

Step-II  Let x=x0 be initial guess or initial approximation to the equation f(x)  = 0 

Step-III  We use xn+1 =  xn  -  [ (xn  - xn-1  )f(xn)] / [f(xn) - f(xn-1)]  as the successive formula to find 

approximate solution (root) of   the equation f(x)  = 0 

Step-III  Then x1 ,  x2 ,  x3   ............  and so on  are calculated and we will continue this process till we get 

root of   the equation f(x)  = 0 up to desired accuracy. 

3 . Solve  Cos x  =  x ex   correct to two significant figures by Secant method correct up to 2 decimal 

places. 

Solution:    Cos x  =  x ex   ........   .........       ........     ........        ...(3) 

Let f(x) = Cos x  –  x ex   



        

  

f(0) = 1,  f(1)= Cos 1 – e =  - 2 .178 

As  f(0)f(1)< 0 by Intermediate value Theorem the root of real root of the equation f(x)  = 0 lies 

between 0  and 1 

Let Let  x0 = 0 and x1 = 1   be two initial guesses  to the equation (3).  

Then 
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which is the root of equation (3)  correct to two decimal places. 

 

4.    Solve x4 - x  - 7  = 0 correct to two significant figures by Newton- Raphson  method correct up to 

6 significant  digits. 

Solution:  x4 - x  - 7  = 0........   .........       ........     ........        ...(4) 

Let f(x) = x4 - x  - 7   

f(0) =  -7,  f(1)=  -7 ,  f(2)=  5 

As  f(1)f(2)< 0 by Intermediate value Theorem the root of real root of the equation f(x)  = 0 lies 

between 1 and  2 

Let Let  x0 =  1.5   be the initial guess to the equation (2).  

Then x1=  x0
    -  [f(x0) / f΄(x0)]    =  1.5  -   f(1.5)/ f΄(1.5) =    1.78541 

x2= x1
    -  [f(x1) / f΄(x1)]    =   1.7854-   f1.7854)/ f΄(1.7854) =  1.85876 

x3=   x2
    -  [f(x2) / f΄(x2)]  =   1.85643 

x4=    x3
    -  [f(x3) / f΄(x3)]        =  1.85632 

which is the root of equation (2)  correct to 6S. 

 



        

  

INTERPOLATION 

Interpolation is the method of finding value of the dependent variable y at any point x using the 

following given data. 

x x0 x1 x2 x3 .. .. .. xn 

y y0 y1 y2 y3 .. .. .. yn 

 

This means that for the function y = f(x) the known values at x =  x0 , x1 ,  x2 ,........., xn are respectively 

y =  y0 ,y1 , y2 ,.........,yn     and  we want to find value of y at any point x.  

For this purpose we fit a polynomial to these datas called interpolating polynomial. After getting the 

polynomial p(x) which is an approximation to f(x), we can  find the value of y at any point x. 

Finite difference operators 

Let us take equispaced points  x0 , x1 ,  x2 ,........., xn 

i.e.   x1   =    x0    +  h,   x2   =    x1    +  h,   ......................,  xn   =    xn - 1   +  h 

     Forward  difference operator    Δ yn  = yn + 1    -   yn   

Backward  difference operator    yn  = yn    -   yn - 1   

Central difference operator   δyi  =  yi + 1/2   -   yi – ½ 

Shift Operator  E yi  =  yi+1 

Newton’s  Forward  difference Interpolation formula 

Let us take the equi-spaced points  x0 ,  x1   =    x0    +  h,   x2   =    x1    +  h,   ......................,  xn   =    xn - 1   +  h 

Then  Δ yn  = yn + 1    -   yn  is called the first Forward  difference  

i.e.   Δ y0  = y 1    -   y0  , Δ y1  = y 2    -   y1   and so on. 

Δ2 yn  =  Δ yn + 1    -   Δ yn  is called the second  Forward  difference 

 i.e.   Δ2  y0  = Δ y 1    -  Δ y0  ,   Δ2 y1  = Δ y 2    -  Δ y1    and so on. 

Newton’s  Forward  difference Interpolation formula is  

Pn (x) =  y0   +   p Δ y0  +   [ p(p – 1)/2! ] Δ 2y0  +   [ p(p – 1) (p – 2)/3! ] Δ 3y0   

                          +  ......................  +  [ p(p – 1) (p – 2).......(p-n-1)/n! ] Δ ny0   

Where p = (x  - x0)/h 

 

 



        

  

Problems 

5. Using following data find the Newton’s interpolating polynomial and also find the value of y at x=5 

x 0 10 20 30 40 

y 7 18 32 48 85 

 

Solution  

Here  x0  = 0, x1   =    10,   x2   =    20,   x3  =    30,   x4   =    40,    

x1  -    x0=    10    =    x2   -  x1    =    x3   -  x2  =    x4   -  x3   

The given data is equispaced. 

As x=  5 lies between 0 and 10 and at the start of the table and data  is equispaced,  we have to use 

Newton’s  forward  difference Interpolation. 

Forward  difference table 

x y Δ y           Δ2 y            Δ3 y          Δ4 y 

0 

 

10 

 

20 

 

30 

 

40 

7 

 

18 

 

32 

 

51 

 

87 

 

11 

               03 

14                            02 

              05                                   10 

19                           12 

              17 

36 

 

Here  x0  = 0,  y0 = 7,  h= x1  -   x0  = 10-0 = 10 

                  Δ y0 = 11 ,  Δ2  y0  =3 ,   

                 Δ3  y0  = 2,    Δ4  y0  =10 

p = (x  - x0)/h    =  (x  - 0)/10   =  0.1x     

Pn (x) =  y0   +   p Δ y0  +   [ p(p – 1)/2! ] Δ 2y0  +   [ p(p – 1) (p – 2)/3! ] Δ 3y0   

                          +  [ p(p – 1) (p – 2)(p-3)/4! ] Δ 4y0   



        

  

         = 7 +  0.1x (11)  +  [0.1x(0.1x  - 1)/2! ] (3)   +  [0.1x(0.1x  - 1) (0.1x  - 2)/3! ] (2)    

  + [0.1x(0.1x  - 1) (0.1x  - 2) (0.1x  - 3)/4! ] (10)    

      =  7 +  1.1x   +  (0.01x2  - 0.1x)1.5   +  (0.001x3  - 0.03x2  +0. 2x)/3   

  + 0.416 (  0.0001x4  - 0.006x3  +0. 11x2  -0.6x)     

Pn (x) =     0.0000416 x4   -   0.0022 x3   +0.05x2  +   1.26 x +7 

Is  the Newton’s interpolating polynomial 

To find the approximate  value of y at x=5 we put x=5  in the interpolating polynomial to get 

y(5)=Pn (5) =    0.0000416 (5)4   -   0.0022 (5)3   +0.05(5)2  +   1.26 (5) +7  = 14.301 

 

6. Using following data find the Newton’s interpolating polynomial and also find the value of y at x=24 

x 20 35 50 65 80 

y 3 11 24 50 98 

 

Solution  

Here  x0  = 20, x1   =    35,   x2   =    50,   x3  =    65,   x4   =    80,    

x1  -    x0=    15    =    x2   -  x1    =    x3   -  x2  =    x4   -  x3   

The given data is equispaced. 

As x=  24 lies between 20 and 35 and at the start of the table and data  is equispaced,  we have to use 

Newton’s  forward  difference Interpolation. 

Here  x0  = 20,  y0 = 3,  h= x1  -   x0  = 35 -  20 = 15 

                      Δ y0 = 8 ,   Δ2  y0  =  5 ,   

                 Δ3  y0  =  8,     Δ4  y0  = 1 

p = (x  - x0)/h    =  (x  - 20)/15   =  0.0666 x   -  1.333333  

 

 

 

 

 

 



        

  

Forward  difference table 

x y Δ y           Δ2 y            Δ3 y          Δ4 y 

20 

 

35 

 

50 

 

65 

 

80 

3 

 

11 

 

24 

 

50 

 

98 

 

8 

               05 

13                           08 

              13                                   01 

26                           9 

              22 

48 

 

Pn (x) =  y0   +   p Δ y0  +   [ p(p – 1)/2! ] Δ 2y0  +   [ p(p – 1) (p – 2)/3! ] Δ 3y0   

                          +  [ p(p – 1) (p – 2)(p-3)/4! ] Δ 4y0   

 =   3 + 8 (0.0666 x  -  1.333333) +  5[(0.0666 x  -  1.333333) (0.0666 x  -  2.333333)/2! ]    

    +  8[  (0.0666 x  - 1.333333) (0.0666 x  - 2.333333) (0.0666 x  - 3.333333) /3! ]  

   + [ (0.0666 x  - 1.333333) (0.0666 x  - 2.333333) (0.0666 x  - 3.333333) (0.0666 x  -  4.333333) /4! ]  

    

=  3 +  0.53333333 x  -  10.666666 +    0.01111x2 -0.16666666 x   + 7.777777    

    +  [  (0.5333333 x  - 10.66666) (0.0666 x  - 2.333333) (0.011111 x  - 0.5555555) ]  

+ [ (0.0666 x  - 1.333333) (0.0666 x  - 2.333333) (0.011111 x  - 0.5555555) (0.01666 x  -  1.083333)]  

Is  the Newton’s interpolating polynomial 

To find the approximate  value of y at x = 24 we put x = 24  in the interpolating polynomial to get 

 

y(24) = Pn (24) =  3 +  (0.53333333)24  -  10.666666 +    0.01111(242) – (0.16666666)24 + 7.777777    

    +  [  (0.5333333(24)  - 10.66666) (0.0666 (24)  - 2.333333) (0.011111 (24)  - 0.5555555) ]  

+ [ (1.59999  - 1.333333)( 1.59999  - 2.333333) (0.266666  - 0.5555555) (0.399999  - 1.083333)]  

 



        

  

Newton’s  Backward  difference Interpolation formula 

Let us take the equi-spaced points  x0 ,  x1   =    x0    +  h,   x2   =    x1    +  h,   ......................,  xn   =    xn - 1   +  h 

Then    yn  = yn    -   yn - 1 is called the first backward  difference  

i.e.     y1  =  y 1    -   y0  ,   y2 =  y 2    -   y1   and so on. 

 2yn  =   yn    -    yn - 1 is called the second  backward  difference 

i.e.    2y1  =   y 1    -    y0  ,     2y2 =   y 2    -    y 1    and so on. 

Newton’s  backward  difference Interpolation formula is  

Pn (x) =  yn  +   p  yn   +   [ p(p + 1)/2! ]  2yn +   [ p(p + 1) (p + 2)/3! ]  3yn 

                          +  ......................  +  [ p(p + 1) (p+ 2).......(p +n -  1)/n! ]  nyn 

Where p = (x  - xn)/h 

 

7. Using following data to find  the value of y at x = 35 

x 0 10 20 30 40 

y 7 18 32 48 85 

 

Solution :   

Here  x0  = 0, x1   =    10,   x2   =    20,   x3  =    30,   x4   =    40,    

x1  -    x0=    10    =    x2   -  x1    =    x3   -  x2  =    x4   -  x3   

The given data is equispaced. 

 

 As x= 35 lies between  3 0 and  40 and  at the end of the table and given data is equispaced ,we have 

to use Newton’s  Backward  difference Interpolation. 

 

                Here  x = 35,  xn  = 40,  yn = 87,   h= x1  -   x0  = 10-0 = 10 

     yn=  36  ,     2yn =  17 ,   

                    3yn=  12,       4yn=10 

p = (x  - xn)/h    =  (35  - 40)/10   =  -0.5     

 



        

  

Backward  difference table 

x y Δ y           Δ2 y            Δ3 y          Δ4 y 

0 

 

10 

 

20 

 

30 

 

40 

7 

 

18 

 

32 

 

51 

 

87 

 

11 

               03 

14                            02 

              05                                   10 

19                           12 

              17 

36 

 

Pn (x) =  yn  +   p  yn   +   [ p(p + 1)/2! ]  2yn +   [ p(p + 1) (p + 2)/3! ]  3yn 

+  [ p(p + 1) (p+ 2)(p +3)/4! ]  4yn 

= 87 + (-0.5) (36) +  (-0.5) (-0.5+1) (17) /2!  +   (-0.5) (-0.5+1) (-0.5+2) (12) /3!   

   +   (-0.5) (-0.5+1) (-0.5+2) (-0.5+3) (10) /4!   

= 87 – 18 – 0.25(8.5)  - 0.25(18)/6 – 0.25(15)(2.5)/24 

=  65.734375 

This is  the approximate  value of y at x=35  

y(35)=Pn (35) =   65.734375 

 

Inverse Interpolation  

The process of finding the independent variable x for given values of f(x)  is called Inverse 

Interpolation . 

 

 

 

 



        

  

8.  Solve  ln x = 1.3 by  inverse Interpolation  using x= G(y) with G(1)=2.718  ,G(1.5)= 4.481 , G(2)= 

7.387 ,G(2.5)=  12.179 and find value of x 

 Forward  difference table 

y x Δ y                Δ2 y            Δ3 y           

1 

 

1.5 

 

2 

 

2.5 

 

 

2.718 

 

4.481 

 

7.387 

 

12.179 

 

1.763 

                     1.143 

2.906                            0.743 

                     1.886 

4.792 

 

Here  y0 = 1,  h=y1  -  y0  = 1.5  -  1 =  0.5 

                  x0  = 2.718,  Δ x0 = 1.763 ,  Δ2  x0  = 1.143 ,   

                 Δ3  x0  = 0.743 

p = (y  - y0)/h    =  (1.3  - 1)/0.5   =  0.6     

Newton’s  Forward  difference Interpolation formula is  

Pn (y) =  x0   +   p Δx0  +   [ p(p – 1)/2! ] Δ 2x0  +   [ p(p – 1) (p – 2)/3! ] Δ 3x0   

=  2.718 + 0.6 (1.763)+ 0.6(0.6-1)1.143/2   +  0.6(0.6-1) (0.6-2)0.743/6    

= 3.680248 

Lagrange Interpolation (data may not be equispaced) 

Lagrange Interpolation can be applied to arbitrary  spaced data. 

Linear interpolation is interpolation by the line through points (x1,y1) and (x0,y0) 

Linear interpolation is P1(x)=  l0 y0  +    l1 y1 

Where l0      =  (x-  x1) /( x0-  x1)    and        l1    =  (x-  x0) /( x1-  x0)     

 



        

  

Quadratic Lagrange Interpolation   is the Interpolation through three given points (x2,y2) , (x1,y1) and 

(x0,y0)    given by the formula 

P2(x)=  l0 y0  +    l1 y1   +    l2 y2 

Where 
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9. Using  quadratic Lagrange Interpolation    find the Lagrange interpolating polynomial P2(x) 

    and hence find value of y at x=2   Given y(0) = 15,  y(1) = 48,  y(5) = 85 

Solution :   

Here  x0  = 0, x1   =    1,   x2   = 5       and   y0  = 15,   y1   =    48,   y2   = 85      

x1  -    x0 =    1    ≠       x2   -  x1    =   4   

The given data is not equispaced. 
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Which  is the Lagrange interpolating polynomial P2(x) 

Hence at x=2   the value is P2(2) =  - 4.75(22)+37.75(2)+15  =  71.5 

 

General  Lagrange Interpolation   is the Interpolation through n given points  (x0,y0), (x1,y1) , 

(x2,y2).......................  ,   (xn,yn)   given by the formula 

Pn(x)=  l0 y0  +    l1 y1   +    l2 y2   +   ................ +  ln yn 

 

Where  
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10. Using  Lagrange Interpolation    find the  value of y at x=8    

            Given y(0) = 18,  y(1) = 42,   y(7) = 57   and y(9) = 90 

Solution :   

Here  x0  = 0, x1   =    1,   x2   = 7, x3   = 9       and   y0  = 26,   y1   =    40,   y2   = 75, y3   = 90      

x1  -    x0 =    1    ≠       x2   -  x1    =   6   

The given data is not equispaced. 
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Newton divided difference  Interpolation (data may not be equispaced) 

Newton divided difference Interpolation can be applied to arbitrary  spaced data. 

The first divided difference is  f [x0  , x1 ] = (y1  -  y0 )/ (x1  -  x0) 

    f [x1  , x2 ] = (y2   -  y1 )/ (x2   -  x1) 

 

The second  divided difference is   

 
13

2132

321

02

1021

210

x

] x,x[ f-] x,x[ f
]x, x,x[ f

x

] x,x[ f-] x,x[ f
] x, x,  x[ f

x

x







 

The  third divided difference is   
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The  nth  divided difference is   
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Newton divided difference Interpolation formula is  

Y = y0  +   (x-x0)  f [x0  , x1 ]  +  (x-x0) (x-x1)  f [x0  , x1 , x2]  +   ............ 

                 + (x-x0) (x-x1) .......... (x-xn-1)  f [x0  , x1 , x2.  ,............,x n ]   

 

 

Problems 

11. Using following data find the Newton’s  divided difference interpolating polynomial and also 

find the value of y at x= 15 

x 0 6 20 45 

y 30 48 88 238 

 

 

 



        

  

Newton’s  divided  difference table 

x y First     divided                      Second divided            Third  divided 

  difference                                 difference                        difference                               

0 

 

6 

 

11 

 

26 

 

 

30 

 

48 

 

88 

 

238 

 

(48-30)/6=3 

                                               (8-3)/11=0.45 

(88-48)/5=8                                                                 (0.1 -0.45)/26 = -0.0136 

                                                (10-8)/20=0.1 

 (238-88)/15=10 

                         

                  

 

 

            Y = y0  +   (x-x0)  f [x0  , x1 ]  +  (x-x0) (x-x1)  f [x0  , x1 , x2]  

                       + (x-x0) (x-x1)(x-x2)  f [x0  , x1 , x2.  ,x 3 ]   

  = 30 + 3x +  x(x-6) (0.45)  + x(x-6)(x-11)( -0.0136) 

The value of y at x= 15 

= 30 +3(15) +15(9)(0.45)+ 15(9)(4)(-0.0136)  = 128.406 

NUMERICAL DIFFERENTIATION 

When a function y = f(x)  is unknown but its values are given at some points like (x0  , y0 ),  (x1, y1  ), 

.......... (x n , yn  )  or in form of a table,  then we can differentiate using numerical differentiation. 

Sometimes it is difficult to differentiate a composite  or complicated function which can be done easily 

in less time and less number of steps by numerical differentiation. 

We use following  methods for numerical differentiation. 

(i) Method based on finite difference operators 

(ii) Method based on Interpolation 

 

 



        

  

(i) Method based on finite difference operators 

Newton’s  forward  difference Interpolation formula is  

Pn (x) =  y0   +   p Δy0  +   [ p(p – 1)/2! ] Δ 2y0  +   [ p(p – 1) (p – 2)/3! ] Δ 3y0  +  .................... 

where p = (x  - x0)/h 

 

Newton’s  backward  difference Interpolation formula is  

Pn (x) =  yn  +   p  yn   +   [ p(p + 1)/2! ]  2yn +   [ p(p + 1) (p + 2)/3! ]  3yn 

                          +  ......................  +  [ p(p + 1) (p+ 2).......(p +n -  1)/n! ]  nyn 

where p = (x  - xn)/h 

Using forward  difference the formula for numerical differentiation is 

y΄ (x0)  =  (1/h)  [  Δy0   -  Δ 2y0 /2  +   Δ 3y0 /3   +  .................... ] 

y΄΄ (x0) =  (1/h2)  [   Δ 2y0   -   Δ 3y0   +  (11/12) Δ 4y0   ..............  ] 

Using backward  difference the formula for numerical differentiation is 

       y΄ (x n)=    (1/h)  [   yn  +    2yn /2  +     3yn /3   +  .................... ] 

     y΄΄ (x n)=    (1/ h2)  [      2yn   +    3yn   +  (11/12)  4yn   ................ ] 

If we consider the first term only the formula becomes 

y΄ (x0)  =  (1/h)  [  Δy0  ] = (y1  -  y0 )/ h 

y΄΄ (x0) =  (1/h2)  [   Δ 2y0  ] = (Δ y1  -  Δ y0 )/  h2 

                                                    =  [ (y2  -  y1 )-(y1  -  y0 ) ]/  h2   =  [ y2  -  2y1   +  y0  ] / h2 

 

12. Using following data find the first and second derivative of y at  x=0 

x 0 10 20 30 40 

y 7 18 32 48 85 

 

Solution  

Here  x0  = 0, x1   =    10,   x2   =    20,   x3  =    30,   x4   =    40   

 

 



        

  

Forward  difference table 

x y Δ y           Δ2 y            Δ3 y          Δ4 y 

0 

 

10 

 

20 

 

30 

 

40 

7 

 

18 

 

32 

 

51 

 

87 

 

11 

               03 

14                            02 

              05                                   10 

19                           12 

              17 

36 

 

Here  x0  = 0,  y0 = 7,  h= x1  -   x0  = 10-0 = 10 

                  Δ y0 = 11 ,  Δ2  y0  =3 ,   

                 Δ3  y0  = 2,    Δ4  y0  =10 

p = (x  - x0)/h    =  (4  - 0)/10   =  0.4     

y΄ (x0)  =  (1/h)  [  Δy0   -  Δ 2y0 /2  +   Δ 3y0 /3   -  Δ 4y0 /4 +  .................... ] 

              =0.1 [ 11 – 3/2  + 2/3 – 10/4 ] =  0.7666 

y΄΄ (x0) =  (1/h2)  [   Δ 2y0   -   Δ 3y0   +  (11/12) Δ 4y0   ..............  ] 

             = (1/100) [ 3  - 2 + (11/12) 10 ]  =  0.10166 

 

(ii) Method based on Interpolation 

Linear Interpolation 
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Quadratic   Interpolation 

y΄ (x0)  =   ( -3y0 + 4 y1 – y2 ) /(2h)   

y΄ (x1)  =   (y2 - y0 ) /(2h)   



        

  

y΄ (x2)  =   ( y0   -  4 y1   +  3 y2 ) /(2h)   

The second derivative is constant i.e. same at all points because of quadratic   

interpolation and the interpolating polynomial is of degree two. Hence we must have 

y΄΄(x0)  =   ( y0  -2  y1 +  y2 ) /(2h)   

y΄΄ (x1)  =   ( y0  -2  y1 +  y2 ) /(2h)   

y΄΄ (x2)  =   ( y0  -2  y1 +  y2 ) /(2h)     

Problems 

13. Using following data find the  value of  first and second  derivatives  of y at x=30 

x 10 30 50 

y 42 64 88 

 

Solution  

Here  x0  = 10, x1   =    30,   x2   =    50,  h= x1  -   x0  =  30 - 10 =  20 

            y0  = 42, y1   =   64,   y2   =    88 

Linear Interpolation 

 
1.1

1030

4264

x

y

x

 )x(-)xy(
)x(

01

01

01

01

0 













x

y

x

y
y

 

Quadratic   Interpolation 

y΄ (x0)  =   ( -3y0 + 4 y1 – y2 ) /(2h)  = [ -3(42) + 4 (64) – 88 ] /40 = 1.05 

y΄ (x1)  =   (y2 - y0 ) /(2h)  = (88  - 42 ) / 40  = 1.15 

y΄ (x2)  =   ( y0   -  4 y1   +  3 y2 ) /(2h)  =   ( 42   - 256   +  264 ) / 40  = 1.25 

 

y΄΄(x0)  =   ( y0  -2  y1 +  y2 ) /(2h)   = ( 42 - 128   + 88 ) / 40 = 0.05 

 

14. Using following data find the  value of  first and second  derivatives  of y at x=12 

x 0 10 20 30 40 

y 7 18 32 48 85 

 



        

  

Solution  

Here  x0  = 0, x1   =    10,   x2   =    20,   x3  =    30,   x4   =    40,    

Forward  difference table 

x y Δ y           Δ2 y            Δ3 y          Δ4 y 

0 

 

10 

 

20 

 

30 

 

40 

7 

 

18 

 

32 

 

51 

 

87 

 

11 

               03 

14                            02 

              05                                   10 

19                           12 

              17 

36 

 

Here  x0  = 0,  y0 = 7,  h= x1  -   x0  = 10-0 = 10 

                  Δ y0 = 11 ,  Δ2  y0  =3 ,   

                 Δ3  y0  = 2,    Δ4  y0  =10 

p = (x  - x0)/h    =  (x  - 0)/10   =  0.1x     

Pn (x) =  y0   +   p Δ y0  +   [ p(p – 1)/2! ] Δ 2y0  +   [ p(p – 1) (p – 2)/3! ] Δ 3y0   

                          +  [ p(p – 1) (p – 2)(p-3)/4! ] Δ 4y0   

         = 7 +  0.1x (11)  +  [0.1x(0.1x  - 1)/2! ] (3)   +  [0.1x(0.1x  - 1) (0.1x  - 2)/3! ] (2)    

  + [0.1x(0.1x  - 1) (0.1x  - 2) (0.1x  - 3)/4! ] (10)    

      =  7 +  1.1x   +  (0.01x2  - 0.1x)1.5   +  (0.001x3  - 0.03x2  +0. 2x)/3   

  + 0.416 (  0.0001x4  - 0.006x3  +0. 11x2  -0.6x)     

y= Pn (x) =   0.0000416 x4   -   0.0022 x3   +0.05x2  +   1.26 x +7    ...........................(1) 

Differentiating (1) w.r. to x we get 

y΄=  0.0001664 x3   -   0.0066 x2   +0.1 x  +   1.26   ....................................  (2) 

y΄(12)   =     1.7971392   at x =12 



        

  

 

Differentiating (2) w.r. to x we get 

y΄΄=  0.0004992 x2   -   0.0132 x  +0.1   

  y΄΄(12)   =     0.0134848  at x =12 

NUMERICAL  INTEGRATION 

Consider  the integral  I = 
b

a

dxxf )(  

Where integrand f(x) is a given function and a, b are known which are end points of the interval  [a, b] 

Either f(x) is given or a table of values of f(x) are given. 

Let us divide the interval  [a, b] into n number of equal subintervals so that length of each subinterval 

  is  h = (b – a)/n 

The end points of  subintervals are  a=x0,  x1,  x2,  x3, .............  , xn = b 

Trapezoidal Rule of integration 

Let us approximate integrand f by a line segment in each subinterval. Then  coordinate of end points 

of  subintervals are  (x0,  y 0), ( x1,  y1 ) ,   (x2, y2),   .............  ,( xn  , yn  ).  Then from x=a  to x=b the area under 

curve of y = f(x) is approximately equal to sum of the  areas of n trapezoids of each n subintervals. 

So the integral  I = 
b

a

dxxf )( = (h/2)[  y 0 + y1 ]  +(h/2)[  y 1  + y2 ]  +(h/2)[  y 2  + y3 ]  

                                                          +  .................. +(h/2)[  y n-1  + yn ]          

=  (h/2)[  y 0 + y1 +  y 1  + y2  +  y 2  + y3  +  .................. +   y n-1  + yn ]     

        =  (h/2)[  y 0 + yn  +    2(y1 +  y2  + y3  +  .................. +   y n-1 ) ]     

Which is called trapezoidal rule. 

The error in trapezoidal rule is  )(
12

2 fh
ab




 where a < θ <b 

Simpsons rule of Numerical integration (Simpsons  1/3rd rule) 

Consider the integral  I = 
b

a

dxxf )(  

Where integrand f(x) is a given function and a, b are known which are end points of the interval  [a, b] 

Either f(x) is given or a table of values of f(x) are given. 



        

  

Let us approximate integrand f by a line segment in each subinterval. Then  coordinate of end points 

of  subintervals are  (x0,  y 0), ( x1,  y1 ) ,   (x2, y2),   .............  ,( xn  , yn  ).   

We are taking two strips at a time Instead of taking one strip as in trapezoidal rule. For this reason the 

number of intervals in Simpsons rule of Numerical integration must be even. 

The length of each subinterval   is  h = (b – a)/(2m) 

The formula is 

I = 
b

a

dxxf )( = (h/3) [ y 0 + y2m  + 4(y1 + y3  +  ............ +   y 2m-1 )   + 2(  y2  + y4  +  .......... +   y 2m-2)  ]     

The error in Simpson 1/3rd rule is  )(
180

4 vfh
ab




 where a < θ <b 

Simpsons rule of Numerical integration (Simpsons  3/8th rule) 

Consider the integral  I = 
b

a

dxxf )(  

Where integrand f(x) is a given function and a, b are known which are end points of the interval  [a, b] 

Either f(x) is given or a table of values of f(x) are given. 

We are taking three  strips at a time Instead of taking one strip as in trapezoidal rule. For this reason 

the number of intervals in Simpsons 3/8th  rule of Numerical integration must be multiple of 3. 

The length of each subinterval   is  h = (b – a)/(3m) 

The formula is 

I = 
b

a

dxxf )( = (3h/8) [ y 0 + y3m  + 3(y1 + y2  + y4 + y5  + ....... +   y 3m - 1 )   + 2(  y3  + y6  +  ....... +   y 3m – 3 )  ]     

The error in Simpson 1/3rd rule is  )(
80

4 vfh
ab




 where a < θ <b 

15. Using  Trapezoidal and Simpsons rule evaluate the  following integral with number of subintervals n =6 




6

0

)( 2

dxe x
 

Solution: 

Here integrand y = f(x) = exp(-x2) 

a=0, b=6,   h= (b-a)/n= (6-0)/6=1 

 



        

  

x 0 1 2 3 4 5 6 

Y= 

exp(-x2) 

1 e-1 e- 4 e- 9 e- 16 e- 25 e- 36 

 y0 y1    y2    y3   y4    Y5   y6  

 

(i) Using  Trapezoidal rule 

I =  (h/2)[  y 0 + yn  +    2(y1 +  y2  + y3  +  .................. +   y n-1 ) ]     

   =  (1/2)[  y 0 + y6 +    2(y1 +  y2  + y3  +y4+   y 5 ) ]    

 = 0.5 [ 1+ e- 36   +    2(e-1 + e- 4+ e- 9+ e- 16    + e- 25) ]    

 

(ii) Using  Simpsons  rule 

I =  (h/3) [ y 0 + y2m  + 4(y1 + y3  +  ............ +   y 2m-1 )   + 2(  y2  + y4  +  .......... +   

y 2m-2)  ]  

         = (h/3) [ y 0 + y6  + 4(y1 + y3  +  y5 )   + 2(  y2  + y4  )  ]     

= (1/3) [ 1+ e- 36   +   4 (e-1 + e- 9+  e- 25) + 2(e- 4 + e- 16    ) ]    

 

(iii) Using  Simpsons  3/8th  rule 

I =  (3h/8)  [ y 0 + y3m  + 3(y1 + y2  + y4 + y5  + ....... +   y 3m - 1 )   + 2(  y3  + y6  +  

....... +   y 3m – 3 )  ]           

   = (3h/8) [ y 0 + y6  + 3(y1 + y2  + y4  +  y5 )   + 2(  y3  )  ]     

= (3/8) [ 1+ e- 36   +   3 (e-1 + e- 4 + e- 16    +  e- 25) + 2(e- 9 ) ]    

 

16. Using  Trapezoidal and Simpsons rule evaluate the  following integral with number of subintervals n =8 

   and compare the result 

 

8.0

0

24 x

dx
 

Solution: 



        

  

Here integrand y = f(x) = ( 4 + x2)-1 

a=0, b= 0.8 ,   h= (b-a)/n= (0.8-0)/8=  0.1 

 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Y= 

( 4 + x2)-1 

1/4 1/4.01 1/4.04 1/4.09 1/4.16 1/4.25 1/4.36 1/4.49 1/4.64 

 y0 y1    y2    y3   y4    Y5   y6    Y7   y8 

 

(i) Using  Trapezoidal rule 

I =  (h/2)[  y 0 + yn  +    2(y1 +  y2  + y3  +  .................. +   y n-1 ) ]     

   =  (0.1/2)[  y 0 + y8 +    2(y1 +  y2  + y3  +y4+   y 5 + y6+   y 7) ]    

 = 0.05 [ 0.25+ 1/4.64+    2(1/4.01+ 1/4.04+ 1/4.09+1/4.16+ 1/4.25+ 1/4.36+1/4.49 ) ]    

 

(ii) Using  Simpsons  rule 

I =  (h/3) [ y 0 + y2m  + 4(y1 + y3  +  ............ +   y 2m-1 )   + 2(  y2  + y4  +  .......... +   

y 2m-2)  ]  

         = (h/3) [ y 0 + y8  + 4(y1 + y3  +  y5 + y7)   + 2(  y2  + y4 + y6 )  ]     

= (0.1/3) [0.25+ 1/4.64+   4(1/4.01+  1/4.09+ 1/4.25+ 1/4.49) 

+2(1/4.04+1/4.16+ 1/4.36) ]    

By direct integration we get 
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=10.900704743176 

Comparing  the result we get error in Trapezoidal and Simpsons rule. 

 

 

 



        

  

17. Using  Trapezoidal and Simpsons rule evaluate the  following integral with number of subintervals n =6 

    

I = 


6.0

0 1 x

dx
 

Solution: 

Here integrand y = f(x) = 
x1

1
 

a=0, b= 0.6 ,   h= (b-a)/n  =  (0.6-0)/6  =  0.1 

 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 

Y= 

x1

1
 

1 

1.1

1
 

=0.953462 

2.1

1
 

=0.912871 

 

3.1

1
 

=0.877058 

 

4.1

1
 

=0.845154 

 

5.1

1
 

=0.816496 

 

6.1

1
 

=0.790569 

 

 y0 y1    y2    y3   y4    Y5   y6  

 

(i) Using  Trapezoidal rule 

I =  (h/2)[  y 0 + yn  +    2(y1 +  y2  + y3  +  .................. +   y n-1 ) ]     

   =  (0.1/2)[  y 0 + y6 +    2(y1 +  y2  + y3  +y4+   y 5 ) ]    

 = 0.05 [ 1+ 0.790569+    2(0.953462 + 0.912871 + 0.877058+0.845154+0.816496 ) ]    

 

(ii) Using  Simpsons  rule 

I =  (h/3) [ y 0 + y2m  + 4(y1 + y3  +  ............ +   y 2m-1 )   + 2(  y2  + y4  +  .......... +   

y 2m-2)  ]  

         = (h/3) [ y 0 + y6  + 4(y1 + y3  +  y5 )   + 2(  y2  + y4  )  ]     

= (0.1/3) [  1+ 0.790569+ 4(0.953462 +  0.877058+0.816496)+2(0.912871 + 0.845154 )]    

 

 



        

  

(iii) Using  Simpsons  3/8th  rule 

I =  (3h/8)  [ y 0 + y3m  + 3(y1 + y2  + y4 + y5  + ....... +   y 3m - 1 )   + 2(  y3  + y6  +  

....... +   y 3m – 3 )  ]           

   = (3h/8) [ y 0 + y6  + 3(y1 + y2  + y4  +  y5 )   + 2(  y3  )  ]     

= (0.3/8) [ 1+ 0.790569+  

3(0.953462 + 0.912871 + 0.845154  +0.816496)+2(0.877058 )]    

 

 

UNIT-II 

Linear System:  Solution by iteration 

Gauss-Seidal  iteration method 

This is an iterative  method used to find approximate solution of a system of linear equations. 

Some times in iterative  method convergence is faster  where matrices have large diagonal 

elements. In this case Gauss elimination method  require more number of steps and more row 

operations. Also sometimes a system has many zero coefficients  which require more space to 

store zeros for example 30 zeros after or before decimal point. In such cases Gauss-Seidal  

iteration method is very useful to overcome these difficulties and find approximate solution of 

a system of linear equations. 

Procedure: 

We shall find a solution x of the system of equations Ax=b with given initial guess x0. 

A is an n x n matrix with non-zero diagonal elements 

Step-I   Rewrite the given equations  in such a way that in first equation coefficient of x1 is 

maximum,  in second   equation coefficient of x2 is maximum, in third equation coefficient of 

x3 is maximum and so on. 

Step-II  From    first equation write x1  in terms of other variables x2   ,  x3  ,  x4    etc. 

From    the second  equation write x2  in terms of other variables x1   ,  x3  , x4    etc. 

From    third  equation write x3  in terms of other variables  x1  , x2   ,  x4    etc. 

And so on write all equations  in this form. 

Step-III     

If initial guess  is given we take that value otherwise  we assume X = (1, 1, 1) as initial guess. 

   Put    x2   =   1,  x3   =   1 in first equation to get x1         ........................................(1) 



        

  

                     Put   x3   = 1 and put value of x1  obtained in (1) in the second  equation to get value of x2.  ...........(2) 

Put values of x1  , x2    obtained in (1) and (2)  in the third equation to get value of x3.   

Step-IV    

We repeat this procedure up to desired accuracy and  up to desired number of steps. 

 

18. Solve following linear equations using Gauss-Seidal  iteration method starting from 1, 1, 1 

 

x1    +  x2       + 2 x3    = 8     

2x1    + 3 x2   + x3    =  12    

5x1    +  x2   + x3    =  15     

Solution Rewrite the given equations  so that each equation for the variable that has coefficient largest we get 

5x1    +  x2   + x3    =  15         ..........................................................(1) 

2x1    + 3 x2   + x3    = 12      ..........................................................(2) 

x1    +  x2       + 2 x3    = 10    ..........................................................(3) 

From equation (1) we get x1  in terms of other variables x2   and   x3   as  

5x1   = 1 5 - x2    - x3             

x1   = (1 5 - x2    - x3 )/5  =  3 – 0.2 x2 – 0.2 x3      ..........................................................(4) 

From equation (2) we get x2     in terms of other variables   x1  and   x3   as  

2x1    + 3 x2   + x3    = 12    

x2   =  4  - (2x1   + x3   )/3  ..........................................................(5) 

From equation (3) we get x3  in terms of other variables x1    and  x2   as 

x1    +  x2       + 2 x3    =10     

  x3    = 5     - 0.5 x1    -  0.5 x2     ..........................................................(6) 

Step-1 

   Putting     x2   =   1,  x3   =   1 in  equation  (4) we  get  

x1         =  3 – 0.2 x2 – 0.2 x3      = 3 – 0.2  – 0.2 = 2.6       

Putting     x1   =   2.6,  x3   =   1 in  equation  (5) we  get  

 x2   =  4  - (2x1   + x3   )/3  = 4 – (5.2+1)/3 =  1.93333 



        

  

Putting     x2   =   1.93333,  x1  =   2.6 in  equation  (6) we  get 

x3    = 5     - 0.5 x1    -  0.5 x2     = 5     - 0.5 (2.6)    -  0.5 (1.93333) = 2.73333      

Step-2 

Putting     x2   =   1.93333,  x3   =   2.73333      in  equation  (4) we  get  

x1         =  3 – 0.2 x2 – 0.2 x3      = 3 – 0.2(1.93333)  – 0.2 (2.73333 )= 2.066666       

Putting     x1   =   2.06666,  x3   =   2.73333       in  equation  (5) we  get  

 x2   =  4  - (2x1   + x3   )/3  = 4 – (4.13333 + 2.73333   )/3 =  1.71111 

Putting     x2   =   1.71111,  x1  =   2.066666      in  equation  (6) we  get 

x3    = 5     - 0.5 x1    -  0.5 x2     = 5     - 0.5 ( 2.066666  )   -  0.5 (1.71111) = 3 .11111 

Step-3 

Putting     x2   =   1.71111,  x3   =   3 .11111 in  equation  (4) we  get  

x1         =  3 – 0.2 x2 – 0.2 x3      = 3 – 0.2(1.71111)  – 0.2 (3 .11111  )= 2.035555       

Putting     x1   =   2.035555      ,  x3   =   3 .11111in  equation  (5) we  get  

 x2   =  4  - (2x1   + x3   )/3  = 4 – (  4.07111 + 3 .11111)/3 =  1.605925 

Putting     x2   =   1.605925,  x1  =   2.035555      in  equation  (6) we  get 

x3    = 5     - 0.5 x1    -  0.5 x2     = 5     - 0.5 (2.035555)   -  0.5 (1.605925) = 3 .17926 

Step-4 

Putting     x2   =   1.605925,  x3   =   3 .17926 in  equation  (4) we  get  

x1         =  3 – 0.2 x2 – 0.2 x3      = 3 – 0.2(1.605925)  – 0.2 (3 .17926)= 2.042962 

Putting     x1   =   2.042962,  x3   =   3 .17926 in  equation  (5) we  get  

 x2   =  4  - (2x1   + x3   )/3  = 4 – (  4.08592 + 3 .17926)/3 =  1.57827 

Putting     x2   =   1.57827,  x1  =   2.042962 in  equation  (6) we  get 

x3    = 5     - 0.5 x1    -  0.5 x2     = 5     - 0.5 (2.042962)   -  0.5 (1.57827) = 3 .18938 

 

 

 

 

 



        

  

Eigen values and Eigen vectors by Power method 

This is an iterative  method used to find approximate value of Eigen values and Eigen vectors 

of an n x n non-singular matrix A. 

Procedure: 

We start with any non-zero vector x0 of n components and  compute followings. 

x1   = Ax0 

x2   = A x1 

x3   = A x2 

.......................... 

.......................... 

.......................... 

xn   = A xn-1 

For any n x n non-singular matrix A we  can apply  this method and we get a dominant  

eigen value λ  such that  absolute value of this eigen value   λ  is greater than that of other 

eigen values. 

Theorem:  Let  A be an n x n real symmetric  matrix. Let x ≠ 0 be any real vector with n 

components. Let y=Ax,  m0 = xT x,      m 1=xTy,      m2=yTy 

Then the ratio r = m1 / m0     called Rayleigh quotient   is an approximate eigen value λ of A. 

Assuming r = λ  -  ϵ   we have I ϵ I   
2

0

2 r
m

m
  

   where ϵ  is the error of ratio r = m1 / m0      

19  . Find   the  eigen values and eigen vectors  of the matrix 
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Dominated eigen value  is 9 and  and eigen vector is   
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x2   = A x1 
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Dominated eigen value  is 7.666 and  and eigen vector is   








536.0

1
 

x3   = A x2 

= 
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Dominated eigen value  is 7.608 and  and eigen vector is   
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20  . Find   the  eigen values and eigen vectors  of the matrix 
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Dominated eigen value  is  10 and  and eigen vector is   
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x2   = A x1 
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Dominated eigen value  is 8.5 and  and eigen vector is   

















9411.0

4705.0

1

 

x3   = A x2 
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Dominated eigen value  is    8.3526  and  and eigen vector is   
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Unit III: Solution of IVP by Euler’s method, Heun’s method and Runge-Kutta fourth order 
method. Basic concept of optimization, Linear programming, simplex method, degeneracy, 
and Big-M method.  

Numerical Solution of Differential Equation: 

 Introduction: 

We consider the first order differential equation  

  ),( yxfy   

With the initial condition 

  y (xo) = y0  

The sufficient conditions for the existence of unique solution on the interval [x0 , b] are the 
well-known Lipschitz conditions. However in ‘Numerical Analysis’, one finds values of y at 
successive steps, x = x1 , x2 , … , xn with spacing h. There are many numerical methods 
available to find solution of IVP, such as : Picards method, Euler’s method, Taylor’ series 
method, Runge-Kutta method etc. 

In the present section we will solve the ode   

  00 )(),,( yxy      yxfy   in the interval ),( 0 nxxI   (1) 

using a numerical scheme applied to discrete node xn = x0 + nh, where h is the step-size by 
Euler’s method, Heun’s method and Runge-Kutta method.  

 In Euler’s method we use the slope evaluated at the current level ),( nn yx  and use 

that value as an approximation of the slope throughout the interval  ),( 1nn xx . 

 Hune’ method samples the slope at beginning and at the end and uses the average 
as the final approximation of the slope. It is also known as Runge-kutta method of 
order-2. 

 Runge-kutta method of order-4 improve on Euler’ s method looking at the slope at 
multiple points. 

The necessary formula for  solution of (1) by  Euler’ s method is: 

 ),(1 jjjj yxhfyy  , j = 0, 1, 2, … n - 1. 

The necessary formula for  solution of (1) by Hune’ s method is: 

)(
2

1
211 kkyy jj  , j = 0, 1, 2, … n - 1. 

Where      ),(),,( 121 kyhxhfkyxhfk jjjj   

The necessary formula for  solution of (1) by Runge – Kutta  method of order-4 is: 

    )22(
6

1
43211 kkkkyy jj  , j = 0, 1, 2, …, n – 1.  

Where   ),(1 jj yxhfk   

)
2

1
,

2

1
( 12 kyhxhfk jj   



)
2

1
,

2

1
( 23 kyhxhfk jj   

 

),( 34 kyhxhfk jj 

   

Example : Use the Euler method to solve numerically the initial value problem 

   
1)0(,2 2  utuu

 

With h = 0.2 on the interval [0, 1]. Compute u (1.0) 

We have 

.4,3,2,1,02 ,
2

1  j         uhtuu jjjj    [Here x and y are replaced by t and u 

respectively]  

With h=0.2. The initial condition gives u0=1 

For j = 0: t0 = 0, u0 = 1 

u (0.2) = u1 = u0 – 2ht0u0
2 = 1.0. 

For j = 1: t1 = 0.2, u1 = 1 

u (0.4) = u2= u1 – 2ht1u1
2 = 0.92. 

For j = 2: t2   =   0.4, u2 = 0.92 

u (0.6) = u3 = u2-2ht2u2
2 = 0.78458. 

For    j = 3: t3 = 0.6, u3 = 0.78458 

u(0.8) = u4  = 0.63684. 

Similarly, we get 

u(1.0) = u5 = 0.50706. 

Note: In the similar way IVP can be solved by Heun’s method and Runge-Kutta fourth order 
method. 

Optimization 

Optimization is the means by which scarce resources can be utilized in an efficient manner  
so as to maximize the profit or minimize the loss.  

Basic components of an optimization problem: 
 
An objective function expresses the main aim of the model which is either to be minimized 

or maximized. For example, in a manufacturing process, the aim may be to maximize the 

profit or minimize the cost. In comparing the data prescribed by a user-defined model with 

the observed data, the aim is minimizing the total deviation of the predictions based on the 

model from the observed data. In designing a bridge,  the goal is to maximize the strength and 

minimize size. 



 
A set of unknowns or variables control the value of the objective function. In the 

manufacturing problem, the variables may include the amounts of different resources used or 

the time spent on each activity. In fitting-the-data problem, the unknowns are the parameters 

of the model. In the pier design problem, the variables are the shape and dimensions of the 

pier. 
 
A set of constraints are those which allow the unknowns to take on certain values but 

exclude others. In the manufacturing problem, one cannot spend negative amount of time on 

any activity, so one constraint is that the "time" variables are to be non-negative. In the pier 

design problem, one would probably want to limit the breadth of the base and to constrain its 

size. 
 
The optimization problem is then to find values of the variables that minimize or maximize 

the objective function while satisfying the constraints. 

Objective Function 
 
As already stated, the objective function is the mathematical function one wants to maximize 

or minimize, subject to certain constraints. Many optimization problems have a single 

In the present context we will apply the optimization technique to Linear programming 
problem. 

The general form of a linear programming problem is: 

Maximize(Minimize) z = c1x1 + c2x2 + …. + cnxn 

Subject to the constraints: 

   c11x1 +  c12 x2 + …. + c1nxn ≤ / ≥ / = b1 

   c21x1 +  c22 x2 + …. + c2nxn ≤ / ≥ / = b2 

   ….  ….  …. 

   cm1x1 +  cm2 x2 + …. + cmnxn ≤ / ≥ / = bm 

    x1, x2, …. xn  ≥ 0 

In short, Maximize(Minimize) Z = CX  ….  (1) 

Subject to the constraints: AX ≤ / ≥ / = B  ….  (2) 

X ≥ 0  ….  (3) 

Where the expression under (1), (2) and (3) are known as objective function, constraints and 
non-negativity restrictions respectively. 

The problem definition and formulation includes the steps: identification of the decision 
variables; formulation of the model objective(s) and the formulation of the model constraints. 
In performing these steps the following are to be considered. 
 

1. Identify the important elements that the problem.  
2. Determine the number of independent variables, the number of equations required to 

describe the system, and the number of unknown parameters. 



 

 

Graphical Method 
 
 

To solve Linear Programming problem (LPP), Graphical method helps to visualize the 

procedure explicitly. It also helps to understand the different terminologies associated with 

the solution of LPP. Let us discuss these aspects with the help of an example. However, this 

visualization is possible for a maximum of two decision variables. Thus, a LPP with two 

decision variables is opted for discussion. However, the basic principle remains the same for 

more than two decision variables also, even though the visualization beyond two-dimensional 

case is not easily possible. 
 
Let us consider the same LPP (general form) discussed in previous class, stated here once 

again for convenience. 
 

Maximize Z = 6x +5y  

subject to 2x −3y ≤ 5 (C −1) 

 x +3y ≤11 (C − 2) 

 4x + y ≤15 (C −3) 

 x, y ≥ 0 (C − 4) & (C −5) 
 

First step to solve above LPP by graphical method, is to plot the inequality constraints one-

by-one on a graph paper. Fig. 1a shows one such plotted constraint. 
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  -2 2x −3y ≤ 5    

Fig. 1a Plot showing first constraint ( 2x −3y ≤ 5 ) 

 
Fig. 1b shows all the constraints including the nonnegativity of the decision variables (i.e., x 

≥ 0 and y ≥ 0 ). 
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Common region of all these constraints is known as 

implies that each and every point in this region satisfies all the constraints involved in the 

LPP. 
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Once the feasible region is identified, objective function ( 

As the (optimum) value of Z 

constant, k (Fig. 1d). The straight line, 

This line can be shifted in its perpendicular direction (as shown in the Fig. 1d) by changing 

the value of k. Note that, position of 

 5 
x +3y ≤11 

  
 

    
 

 4    4x + y ≤15
 

 3      
 

 
2 

x ≥ 0    
 

      
 

 1 y ≥ 0    
 

     
 

 0      
 

-1 0 1 2 3 4 5
 

 -1      
 

 
2 

  2x −3y ≤ 5  
 

      
 

Fig. 1b Plot of all the constraints 

Common region of all these constraints is known as feasible region (Fig. 1c). Feasible region 

implies that each and every point in this region satisfies all the constraints involved in the 
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Fig. 1c Feasible region 

Once the feasible region is identified, objective function ( Z = 6x + 5y ) is to be plotted on it. 

 is not known, objective function is plotted by considering any 

(Fig. 1d). The straight line, 6x + 5 y = k (constant), is known as 

This line can be shifted in its perpendicular direction (as shown in the Fig. 1d) by changing 

. Note that, position of Z line shown in Fig. 1d, showing the intercept, 

(Fig. 1c). Feasible region 

implies that each and every point in this region satisfies all the constraints involved in the 

) is to be plotted on it. 

is not known, objective function is plotted by considering any 

(constant), is known as Z line (Fig. 1d). 

This line can be shifted in its perpendicular direction (as shown in the Fig. 1d) by changing 

shown in Fig. 1d, showing the intercept, c, on the 
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Now it can be visually noticed that value of the objective function will be maximum when it 

passes through the intersection of 

second and third inequality constraints). This is known as 

optimal point of the present problem is 

= 6x
*
 +5y

*
 = 31.727 

 

 
 
 

y = k => 5y = −6x + k => y = −6 x + k , i.e.,

     5 5   
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Fig. 1d Plot of Z line and feasible region   
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Fig. 1e Location of Optimal Point 
 
 
 

Now it can be visually noticed that value of the objective function will be maximum when it 

passes through the intersection of x + 3y =11 and 4x + y =15 (straight lines associated with the 

second and third inequality constraints). This is known as optimal point 

of the present problem is x
*
 = 3.091 and y

*
 = 2.636 . And the optimal solution is 

i.e., m = −6 and 
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Now it can be visually noticed that value of the objective function will be maximum when it 

(straight lines associated with the 

 (Fig. 1e). Thus the 

2.636 . And the optimal solution is 



 
 
 
 
 
 

Visual representation of different cases of solution of LPP

 
A linear programming problem may have i) a 

solution iii) multiple (or infinite) number of optimal solutions, iv) infeasible solution and v) a 

unique feasible point. In the context of graphical method it is easy to visually demonstrate the 

different situations which may result in different types of solutions.

 

Unique, finite solution 

 
The example demonstrated above is an example of LPP having a unique, finite solution. In 

such cases, optimum value occurs at an extreme point or vertex of the feasible region.

 

Unbounded solution 

 
If the feasible region is not bounded, it is possible that the value of the objective function 

goes on increasing without leaving the feasible region. This is known as unbounded solution 

(Fig 2). 

 

 

 

Visual representation of different cases of solution of LPP 

A linear programming problem may have i) a unique, finite solution, ii) an unbounded 

solution iii) multiple (or infinite) number of optimal solutions, iv) infeasible solution and v) a 

unique feasible point. In the context of graphical method it is easy to visually demonstrate the 

ns which may result in different types of solutions. 

The example demonstrated above is an example of LPP having a unique, finite solution. In 

such cases, optimum value occurs at an extreme point or vertex of the feasible region.

If the feasible region is not bounded, it is possible that the value of the objective function 

goes on increasing without leaving the feasible region. This is known as unbounded solution 

  5      
 

  4      
 

  3   
Z Line 

 
 

  
2 

   
 

       
 

  1      
 

  0      
 

-2 -1 0 1 2 3 4 5
 

  -1      
 

  -2      
 

Fig. 2 Unbounded Solution 

unique, finite solution, ii) an unbounded 

solution iii) multiple (or infinite) number of optimal solutions, iv) infeasible solution and v) a 

unique feasible point. In the context of graphical method it is easy to visually demonstrate the 

The example demonstrated above is an example of LPP having a unique, finite solution. In 

such cases, optimum value occurs at an extreme point or vertex of the feasible region. 

If the feasible region is not bounded, it is possible that the value of the objective function 

goes on increasing without leaving the feasible region. This is known as unbounded solution 



 
 
 
 

Multiple (infinite) solutions 
 

 
If the Z line is parallel to any side of the feasible region all the points lying on that side 

constitute optimal solutions as shown in Fig 3. 
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Fig. 3 Multiple (infinite) Solution 
 
 

Infeasible solution 
 

Sometimes, the set of constraints does not form a feasible region at all due to inconsistency in 

the constraints. In such situation the LPP is said to have infeasible solution. Fig 4 illustrates 

such a situation. 
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Fig. 4 Infeasible Solution 



 
 
 
 

Unique feasible point 

 

This situation arises when feasible region 

only when number of constraints is at least equal to the number of decision variables. An 

example is shown in Fig 5. In this case, there is no need for optimization as there is only one 

solution. 

 

 

 

 
 

 

This situation arises when feasible region consist of a single point. This situation may occur 

only when number of constraints is at least equal to the number of decision variables. An 

example is shown in Fig 5. In this case, there is no need for optimization as there is only one 
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Fig. 5 Unique feasible point 

consist of a single point. This situation may occur 

only when number of constraints is at least equal to the number of decision variables. An 

example is shown in Fig 5. In this case, there is no need for optimization as there is only one 



 
Simplex method 
 
 
Recall from the previous discussion that the optimal solution of a LPP, if exists, lies at 

one of the vertices of the feasible region. Thus one way to find the optimal solution is to 

find all the basic feasible solutions of the standard form and investigate them one-by-

one to get at the optimal. However, again recall thatt, for m equations with n variables 

there exists a huge number ( n cm ) of basic feasible solutions. In such a case, inspection 

of all the solutions one-by-one is not practically feasible. However, this can be 

overcome by simplex method. Conceptual principle of this method can be easily 

understood for a three dimensional case (however, simplex method is applicable for any 

higher dimensional case as well). 
 
Imagine a feasible region (i.e., volume) bounded by several surfaces. Each vertex of 

this volume, which is a basic feasible solution, is connected to three other adjacent 

vertices by a straight line to each being the intersection of two surfaces. Being at any 

one vertex (one of the basic feasible solutions), simplex algorithm helps to move to 

another adjacent vertex which is closest to the optimal solution among all the adjacent 

vertices. Thus, it follows the shortest route to reach the optimal solution from the 

starting point. It can be noted that the shortest route consists of a sequence of basic 

feasible solutions which is generated by simplex algorithm. 

Simplex algorithm 
 
Simplex algorithm is discussed using an example of LPP. Let us consider the 

following problem. 
 

Maximize Z  4x1 − x2  2x3 

subject to 2x1  x2  2x3 ≤ 6 

 x1 − 4x2  2x3 ≤ 0 

 5x1 − 2x2 − 2x3 ≤ 4 

 x1 , x2 , x3 ≥ 0  
Simplex algorithm is used to obtain the solution of this problem. First let us transform 

the LPP to its standard form as shown below. 

 



Maximize Z  4x1 − x2  2x3 

subject to 2x1  x2  2x3  x4   6 

 x1 − 4x2  2x3  x5   0 

 5x1 − 2x2 − 2x3  x6   4 

 x1 , x2 , x3 , x4 , x5 , x6  ≥ 0 
 
It can be recalled that x4 , x5 and x6 are slack variables. Above set of equations, including the 
objective function can be transformed to canonical form as follows: 
 

− 4x1     x2 −  2x3   0x4   0x5    0x6  Z  0 

2x1     x2   2x3    1x4   0x5    0x6   6 

x1  −  4x2   2x3    0x4   1x5    0x6   0 

5x1  −  2x2 −  2x3     0x4   0x5    1x6   4 

The basic solution of above canonical form is x4   6 , x5   0 , x6  4 , x1  x2   x3   0 and

Z  0 . It can be noted that, x4 , x5 and x6  are known as basic variables and x1 , x2  and x3 are 
 
known as nonbasic variables of the canonical form shown above. Let us denote each equation 

of above canonical form as: 
 

 Z  − 4x1      x2 −  2x3   0x4   0x5    0x6  Z    0

 x4  2x1      x2   2x3    1x4   0x5    0x6  6

 x5  x1  −  4x2   2x3    0x4   1x5    0x6  0

 x6  5x1  −  2x2 −  2x3     0x4   0x5    1x6  4
 
For the ease of discussion, right hand side constants and the coefficients of the variables are 

symbolized as follows: 

The left-most column is known as basis as this is consisting of basic variables. The 

coefficients in the first row ( c1 Λ  c6 ) are known as cost coefficients. Other subscript 

notations are self explanatory and used for the ease of discussion. For each coefficient, first 

subscript indicates the subscript of the basic variable in that equation. Second subscript 

indicates the subscript of variable with which the coefficient is associated. For example, c52 is 

the coefficient of x2 in the equation having the basic variable x5 with nonzero coefficient (i.e., 

c55 is nonzero). 
 
This completes first step of calculation. After completing each step (iteration) of calculation, 

three points are to be examined: 

 



 
1. Is there any possibility of further improvement?  

 
2. Which nonbasic variable is to be entered into the basis?  

 
3. Which basic variable is to be exited from the basis? 

The procedure to check these points is discussed next.  

4. Is there any possibility of further improvement?  
 

If any of the cost coefficients is negative, further improvement is possible. In 

other words, if all the cost coefficients are nonnegative, the basic feasible 

solution obtained in that step is optimum.  

 
5. Which nonbasic variable is to be entered?  

 
Entering nonbasic variable is decided such that the unit change of this variable 

should have maximum effect on the objective function. Thus the variable having 

the coefficient which is minimum among all the cost coefficients is to be 

entered, i.e., xS is to be entered if cost coefficient cS is minimum.  

 
6. Which basic variable is to be exited?  

 
After deciding the entering variable xS , xr  (from the set of basic variables) is  

decided to be the exiting variable if 

b
r is minimum for all possible r, provided  

  

 
c

rs 
 

crs  is positive.   
 

 
 

   It can be noted that, crs  is considered as pivotal element to obtain the next  
 

   canonical form.            
 

In this example, c1  −4 is the minimum. Thus, x1 is the entering variable for the next step
 

of calculation. r may take any value from 4, 5 and 6. It is found that 

b
4 6 

 3 ,

 

 

 

  

c
41 2

 

 b5 
0
 0 and 

b6  
4
 0.8 . As,  

b5 is minimum, r is 5. Thus x5 is to be exited and c51  is 

 c
51 

 c
61 

  
 

 1 5   
c

51        
 

the pivotal element and x5 is replaced by x1 in the basis. Set of equations are transformed 

through pivotal operation to another canonical form considering c51 as the pivotal element. 

The procedure of pivotal operation is already explained in first class. However, as a refresher 

it is explained here once again. 

 



 
1. Pivotal row is transformed by dividing it with the pivotal element. In this case, pivotal 

element is 1.  
 

2. For other rows: Let the coefficient of the element in the pivotal column of a particular row 

be “l”. Let the pivotal element be “m”. Then the pivotal row is multiplied by l / m and then 

subtracted from that row to be transformed. This operation ensures that the coefficients of 

the element in the pivotal column of that row becomes zero, e.g., Z row: l = -4 , m = 1. So, 

pivotal row is multiplied by l / m = -4 / 1 = -4, obtaining  
 

− 4x1  16x2 − 8x3  0x4 − 4x5  0x6   0 
 

This is subtracted from Z row obtaining, 
 

0x1   −  15x2     6x3    0x4     4x5     0x6    Z  0
 

The other two rows are also suitably transformed. 
 
After the pivotal operation, the canonical form obtained is shown below. 
 

 Z  0x1 −  15x2    6x3   0x4    4x5    0x6  Z  0 

 x4  0x1    9x2 −   2x3    1x4 −   2x5    0x6   6 

 x1  1x1 −   4x2    2x3    0x4     1x5  0x6   0 

 x6  0x1  18x2 − 12x3 −  0 x4 −   5x5  1x6   4 

The basic solution of above canonical form is x1  0 , x4   6 , x6   4 , x3  x4   x5   0 and

Z  0 . However, this is not the optimum solution as the cost coefficient c2 is negative. It is

observed that c2 (= -15) is minimum. Thus, s  2 and x2  is the entering variable. r may take

any value from 4, 1 and 6. However, c12   −4 is negative. Thus, r may be either 4 or 6. It is

found that, 
b

4  6  0.667 , and 
b

6   4  0.222 . As   b6  is minimum, r is 6 and x6  is to
 

9

  

18

  c
62  

c
42   

c
62                     

be exited from the basis. c62 (=18) is to be treated as pivotal element. The canonical form for

next iteration is as follows:                                       

 Z  
  

0x1   0x2 
 
−   4x3   0x4  − 

 1
x5   

5 
 x6    Z 

10  
 

   

 6 6  3 
 

 

                                
 

 x4  
  

0x1    0x2 
 
   4x3    1x4  

   1
 x5  − 

  1
 x6  4  

 
 

   
2 2

 
 

                                
 

 x1    
1x1    0x2  −

   2 x3    0x4  −     1 x5       2 x6  
8   

 

   

3 
     

9 9 
  

 

               9        
 

 x2    
0x1  1x2 − 2 x3    0 x4  −   5x5  

 1 x6  
2   

 

   

18 18 9 
  

 

        3                
 

 
 



The basic solution of above canonical form is x   
8

, x 
2


2

 , x 
4

 4 , x 
2

 x 
3

 x 
5

 0 and 
 

 1 9  9       
 

                 
 

Z  
 10

. 
               

 

3
               

 

                 
 

 
It is observed that c3  (= - 4) is negative. Thus, optimum is not yet achieved. Following similar 
 

procedure as above, it is decided that x3  should be entered in the basis and   x4  should be 
 

exited from the basis. Thus,  x4   is replaced by  x3  in the  basis. Set of equations are 
 

transformed to another canonical form considering c43 (= 4) as pivotal element. By doing so, 
 

the canonical form is shown below.                                
 

 Z  0x1   0x2    0x3   1x4   
 1

 x5   
 1 

x6  Z 
 22  

 

3 3 3
  

 

                         
 

 x3  0x1    0x2    1x3  
1  

x4 
   1 

x5 − 
1 

x6  1   
 

 

4 
  

8 8 
 

 

                            
 

 x1  1x1    0x2    0x3  
1 

x4  − 
1

x5  
   5

x6  
14  

 

6 36  36  9 
  

 

                     
 

 x2  0x1  1x2  0x3  
 1

x4  − 
7   x

5 − 
 1  x

6  
 8    

 

6 36  36  9   
 

The basic solution of above canonical form is x  14 , x 
2 
 8 , x 

3

 1, x 
4

 x 
5

 x 
6

 0 and 

   

1 9  9      
 

              
 

Z   
22

 .                 
 

3                 
 

 
It is observed that all the cost coefficients are positive. Thus, optimum is achieved. Hence, the 

optimum solution is 
 

Z  
22

3  7.333 x1 

 
14

9  1.556 

 

x2  
8

9  0.889 

x3  1 
 
The calculation shown above can be presented in a tabular form, which is known as Simplex 

Tableau. Construction of Simplex Tableau will be discussed next. 

 
 
 
 



Construction of Simplex Tableau 
 
Same LPP is considered for the construction of simplex tableau. This helps to compare the 

calculation shown above and the construction of simplex tableau for it. 
 
After preparing the canonical form of the given LPP, simplex tableau is constructed as 
follows. 
 

              
 

 

Iteration   Basis Z 

  Variables   
b

r 

 br  

        
 

             

 x
1 x2 

x
3 x4 

x
5 

x
6 

 c
rs  

     
 

         
 

 Z 1 -4 1 -2 0 0 0 0 --  
 

 x4 0 2 1 2 1 0 0 6 3   
 

 1 

0 1 

           
 

 
x

5 -4 2 0 1 0 0 0   
 

 
x6 0 5 -2 -2 0 0 1 4 

 4   
 

 
5 

  
 

            
 

             
 

 Pivotal Row  Pivotal Column          
 

   Pivotal Element           
 

 After completing each iteration, the steps given below are to be   followed. 
  

Logically, these steps are exactly similar to the procedure described earlier. However, steps 

described here are somewhat mechanical and easy to remember! 

 
 
 
 
Check for optimum solution: 

 
1. Investigate whether all the elements in the first row (i.e., Z row) are nonnegative 

or not. Basically these elements are the coefficients of the variables headed by 

that column. If all such coefficients are nonnegative, optimum solution is 

obtained and no need of further iterations. If any element in this row is negative, 

the operation to obtain simplex tableau for the next iteration is as follows:  

 
 
 
 



Operations to obtain next simplex tableau: 
 

2. The entering variable is identified (described earlier). The corresponding column 

is  marked as Pivotal Column as shown above.  
 

3. The exiting variable from the basis is identified (described earlier). The 

corresponding row is marked as Pivotal Row as shown above.  
 

4. Coefficient at the intersection of Pivotal Row and Pivotal Column is marked as  
 

Pivotal Element as shown above.  
 

5. In the basis, the exiting variable is replaced by entering variable.  
 

6. All the elements in the pivotal row are divided by pivotal element.  
 

7. For any other row, an elementary operation is identified such that the coefficient in 

the pivotal column in that row becomes zero. The same operation is applied for all 

other elements in that row and the coefficients are changed accordingly. A similar 

procedure is followed for all other rows.  
 

For example, say, (2 x pivotal element + pivotal coefficient in first row) produce zero 

in the pivotal column in first row. The same operation is applied for all other 

elements in the first row and the coefficients are changed accordingly.  
 
Simplex tableaus for successive iterations are shown below. Pivotal Row, Pivotal Column 

and Pivotal Element for each tableau are marked as earlier for the ease of understanding. 

 
 

Iteration   Basis Z 

  Variables   

br 

 br  

       
 

          

x1 x2 x3 x4 x5 x6 
 c

rs 
 

    
 

       

           
 

Z 1 0 -15 6 0 4 0 0 --  
 

x4 0 0 9 -2 1 -2 0 6 1 3 
 

2            
 

x
1 0 1 -4 2 0 1 0 0 --  

 

x6 0 0 18 -12 0 -5 1 4 2 9 
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Iteration   Basis Z 

    Variables                  
br 

br 
 

 

                          
 

                        

 

   

 

x1 
 

x2 x3

 

x4 
 

x5 
   

x6 
c

rs 
 

 

                  
 

                    

                                 
 

  Z 1 0 0 -4 0  − 
 1   5    10  

-- 
 

 

 6   6     3    
 

                        
 

  x4 0 0 0 4 1 
 1   

  − 
1
 4  

 
1 

 
 

2 
       

 

              2         
 

3         
2
      

1 
 
 2 

   
8 
    

 

  
x1 0 1 0 − 0 

 
− 

      
-- 

 
 

  

3
 

9 
 

9 
           

    

9 
   

 

                       
 

  
x2 0 0 1 − 

2
0 

 
− 

 5   1    2   
-- 

 
 

  

3
 

18 18 
          

  

9 
   

 

                    
 

                                    
 

 
 
 
 
 

Z 1 0 0 0 1  1 1 22  

 

3 3 
 

       3  

           
 

x3 0 0 0 1 1  1 − 1 1 
 

4 
    4  8  8  

 

    

1 
 

 1 2 
 

 

x1 0 1 0 0 − 
14 

 

6 36 9 9 
 

      
 

x2 0 0 1 0 
1 

− 
 7 

− 
1 8 

 

6 36 36 9 
 

       
 

 
Optimum value of Z 

 
 
 
All the coefficients are 
nonnegative. Thus optimum 
solution is achieved. 

Value of x3 

  
Value of x1  
Value of x2 



As all the elements in the first row (i.e., Z row), at iteration 4, are nonnegative, optimum 

solution is achieved. Optimum value of Z is 22/3 as shown above. Corresponding 

 

values of basic variables are x1  
14

9  1.556 , x2  
8

9  0.889 , x3  1 and those of 

nonbasic variables are all zero (i.e., x4  x5  x6  0 ). 

 

 
It can be noted that at any iteration the following two points must be satisfied: 

 

1. All the basic variables (other than Z) have a coefficient of zero in the Z row.  

 

2. Coefficients of basic variables in other rows constitute a unit matrix.  

 

If any of these points are violated at any iteration, it indicates a wrong calculation. However, 

reverse is not true. 



Big-M method 
 

Introduction 
 

In the previous lecture the simplex method was discussed with required transformation of 

objective function and constraints. However, all the constraints were of inequality type with 

‘less-than-equal-to’ ( ≤ ) sign. However, ‘greater-than-equal-to’ ( ≥ ) and ‘equality’ (  ) 

constraints are also possible. In such cases, a modified approach is followed, which will be 

discussed in this lecture. Different types of LPP solutions in the context of Simplex method 

will also be discussed. Finally, a discussion on minimization vs maximization will be 

presented. 
 
 
Simplex Method with ‘greater-than-equal-to’ ( ≥ ) and equality (  ) constraints 
 

The LP problem, with ‘greater-than-equal-to’ ( ≥ ) and equality (  ) constraints, is 

transformed to its standard form in the following way. 
 

• One ‘artificial variable’ is added to each of the ‘greater-than-equal-to’ ( ≥ ) and equality 

(  ) constraints to ensure an initial basic feasible solution.  
 

• Artificial variables are ‘penalized’ in the objective function by introducing a large 

negative (positive) coefficient M for maximization (minimization) problem.  
 

• Cost coefficients, which are supposed to be placed in the Z-row in the initial simplex 

tableau, are transformed by ‘pivotal operation’ considering the column of artificial 

variable as ‘pivotal column’ and the row of the artificial variable as ‘pivotal row’.  
 

• If there are more than one artificial variable, step 3 is repeated for all the artificial 

variables one by one.  
 
Let us consider the following LP problem 
 

Maximize Z  3x1  5x2 

subject to x1  x2 ≥ 2 

 x2 ≤ 6 

 3x1  2x2  18 

 x1 , x2 ≥ 0 
 
 
 
 
 
 
 
 
 
 



 
After incorporating the artificial variables, the above LP problem becomes as follows: 
 
 
 
 

Maximize Z  3x1  5x2 − Ma1 − Ma2  
subject to x1  x2 − x3  a1  2 x2  

x4  6  
3x1  2x2  a2  18 

x1 , x2 ≥ 0 
 
where x3 is surplus variable, x4 is slack variable and a1 and a2 are the artificial variables. Cost 

coefficients in the objective function are modified considering the first constraint as follows: 

 

Z − 3x1 − 5x2  Ma1  Ma2  0  E1   

x1  x2 − x3     a1  2  E2  Pivotal Row 

 
Pivotal Column 

 

 

Thus, pivotal operation is E1 − M  E2 , which modifies the cost coefficients as follows: 
 

Z − 3  M x1 − 5  M x2  Mx3  0 a1  Ma2   −2M 

 
Next, the revised objective function is considered with third constraint as follows: 
 

Z − 3  M x1 − 5  M  x2  Mx3  0 a1  Ma2  −2M  E3   

3 x1  2 x2     a2  18  E4  Pivotal Row 
 

Pivotal Column 
 

Obviously pivotal operation is E3 − M  E4 , which further modifies the cost coefficients as 

follows: 
 

Z − 3  4M x1 − 5  3M x2  Mx3  0 a1  0 a2   −20M 

 
The modified cost coefficients are to be used in the Z-row of the first simplex tableau. 
 
Next, let us move to the construction of simplex tableau. Pivotal column, pivotal row and 

pivotal element are marked (same as used in the last class) for the ease of understanding. 

 
 
 
 
 
 
 
 
 



 

Iteration  Basis Z 

  Variables    
br 

br  

       
 

          

 x
1 x2 

x
3 x4 a1 a2 

c
rs 

 

    
 

      
 

Z 1  − 3 − 4M   − 5 − 3M    M0 0 0 − 20M-- 
 

a
1 0 1 1 -1 0 1 0 2 2  

 

1            
 

x4 0 0 1 0 1 0 0 6 --  
 

a2 0 3 2 0 0 0 1 18 6  
 

         
 

Note   that   while  comparing − 3 − 4M  and − 5 − 3M  , it   is decided that 
  

− 3 − 4M   − 5 − 3M  as M is any arbitrarily large number. 
 
Successive iterations are shown as follows: 

 
 
 
 

Iteration  Basis Z 

  Variables    
br 

br
 

 

       
 

         

x1 x2 x3 x4 a1 a2 
c

rs

 
 

    
 

      

       
 

Z 1 0 − 2  M   − 3 − 3M0 3  4M0 6 − 12M-- 
 

x
1 0 1 1 -1 0 1 0 2 --  

 

2    

0 

      
 

x4 0 0 1 1 0 0 6 --  
 

a2 0 0 -1 3 0 -3 1 12 4  
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Iteration   Basis Z 

  Variables     
br 

br 
 

 

            
 

              

 

x1 x2 x3 x4 a1 a2 
c

rs 
 

 

     
 

       

              
 

 Z 1 0 -3 0 0  M1  M18 --  
 

 x1 
0 1 

2 
0 0 0 

1  
6 9 

 
 

  
3 3 

  
 

 

3 
           

 

   

1 

           
 

 x4 0 0 0 1 0 0  6 6  
 

 x3 0 0 − 1 1 0 -1 1  4 --  
 

    3      3     
 

              
 

 Z 1 0 0 0 3 M1  M36 --  
 

 x1 0 1 0 0 − 
2

 0 1  2 --  
 

 4     3  3     
 

               
 

 x2 0 0 1 0 1 0 0  6 --  
 

 
x3 0 0 0 1 

 1  
-1 

 1  
6 -- 

 
 

 
3 

 
3 

  
 

            
 

                
 

 
 
 

It is found that, at iteration 4, optimality has reached. Optimal solution is Z  36 with x1  2 

and x2  6 . The methodology explained above is known as Big-M method. Hope, reader has 

already understood the meaning of the terminology! 

 
‘Unbounded’, ‘Multiple’ and ‘Infeasible’ solutions in the context of Simplex Method 
 
As already discussed in lecture notes 2, a linear programming problem may have different 

type of solutions corresponding to different situations. Visual demonstration of these 

different types of situations was also discussed in the context of graphical method. Here, the 

same will be discussed in the context of Simplex method. 



 
Unbounded solution 
 
If at any iteration no departing variable can be found corresponding to entering variable, the 

value of the objective function can be increased indefinitely, i.e., the solution is unbounded. 

 

Multiple (infinite) solutions 
 
If in the final tableau, one of the non-basic variables has a coefficient 0 in the Z-row, it 

indicates that an alternative solution exists. This non-basic variable can be incorporated in the 

basis to obtain another optimal solution. Once two such optimal solutions are obtained, 

infinite number of optimal solutions can be obtained by taking a weighted sum of the two 

optimal solutions. 

 

Consider the slightly revised above problem,  

Maximize Z  3x1  2x2 

subject to x1  x2 ≥ 2 

 x2 ≤ 6 

3x1  2x2  18 

x1 , x2 ≥ 0 
 
 
Curious readers may find that the only modification is that the coefficient of x2 is changed 

from 5 to 2 in the objective function. Thus the slope of the objective function and that of third 

constraint are now same. It may be recalled from lecture notes 2, that if the Z line is parallel to 

any side of the feasible region (i.e., one of the constraints) all the points lying on that side 

constitute optimal solutions (refer fig 3 in lecture notes 2). So, reader should be able to 

imagine graphically that the LPP is having infinite solutions. However, for this particular set 

of constraints, if the objective function is made parallel (with equal slope) to either the first 

constraint or the second constraint, it will not lead to multiple solutions. The reason is very 

simple and left for the reader to find out. As a hint, plot all the constraints and the objective 

function on an arithmetic paper. 

 
 

Now, let us see how it can be found in the simplex tableau. Coming back to our problem, 

final tableau is shown as follows. Full problem is left to the reader as practice. 

 
 
 
 



 Final tableau:                 
 

 

Iteration   Basis Z 

     Variables     
br 

b
r  

            
 

               

 

x1 
x

2 
x

3 x4 a1 a2 

c
rs 

 

     
 

       
 

  Z 1 0 0  0 0 M1  M18 --  
 

  
x1 0 1 

 2  
0 0 0 

 1  
6 9 

 
 

 

3 
3  

3   
 

 x
4 

          
 

 0 0 1  0 1 0 0  6 6  
 

     
 

  x3 0 0 − 1 1 0 -1  1  4 --   

   

3 
  

 

     3       
 

 
Coefficient of non-basic variable x2  is zero 

 
 
 
As there is no negative coefficient in the Z-row the optimal is reached. The solution is Z  18 

with x1  6 and x2  0 . However, the coefficient of non-basic variable x2 is zero as shown in 

the final simplex tableau. So, another solution is possible by incorporating x2 in the basis. 

Based on the 
br

  , x
4
  will be the exiting variable. The next tableau will be as follows: 

c
rs 

 

 

Iteration   Basis Z 

  Variables     
br 

br 
  

 

              
 

                

 x
1 

x
2 x3 x4 

a
1 

a
2 

c
rs 

  
 

       
 

        
 

  Z 1 0 0 0 0 M1  M18 --   
 

  
x1 0 1 0 0 − 2 0 

 1  
2 -- 

  
 

    

3 
   

 

 
4 x

2 
    3       

 

 
0 0 1 0 1 

 
0 0 

 
6 6 

  
 

      
 

  x
3 0 0 0 1 

 1  
-1 

 1  
6 18 

  
 

  3  3    
 

              
 

  Coefficient of non-basic variable x4 is zero         
 

                   
 

 

 

Thus, another solution is obtained, which is Z  18 with x1  2 and x2  6 . Again, it may be 

noted that, the coefficient of non-basic variable x4 is zero as shown in the tableau. If one 

more similar step is performed, same simplex tableau at iteration 3 will be obtained. 



Thus, we have two sets of solutions as 
  

and 
  

. Other optimal solutions will be obtained 

    
 

 0  6   
 

        
 

as β 
6
 1− β 

2
where, β ∈ 0,1 . For example, let β   0.4 , corresponding solution is

 

    
 

          
 

  0   6   
 

            
 

3.6          
 

      

x1  3.6 and x2  3.6 . Note that values of the objective function are not changed 

  , i.e., 
 

3.6          
 

            
 

for different sets of solution; for all the cases Z  18 . 
 
 

Infeasible solution 
 
If in the final tableau, at least one of the artificial variables still exists in the basis, the 

solution is indefinite. 

 
Reader may check this situation both graphically and in the context of Simplex method by 

considering following problem: 

 

Maximize Z  3x1  2x2 

subject to x1  x2 ≤ 2 

 3x1  2x2 ≥ 18 

 x1 , x2 ≥ 0 
 
 

Minimization versus maximization problems 
 
As discussed earlier, standard form of LP problems consist of a maximizing objective 

function. Simplex method is described based on the standard form of LP problems, i.e., 

objective function is of maximization type. However, if the objective function is of 

minimization type, simplex method may still be applied with a small modification. The 

required modification can be done in either of following two ways. 
 

1. The objective function is multiplied by −1 so as to keep the problem identical and 

‘minimization’ problem becomes ‘maximization’. This is because of the fact that 

minimizing a function is equivalent to the maximization of its negative.  
 

2. While selecting the entering nonbasic variable, the variable having the maximum 

coefficient among all the cost coefficients is to be entered. In such cases, optimal 

solution would be determined from the tableau having all the cost coefficients as non-

positive ( ≤ 0 ) 



 

Still one difficulty remains in the minimization problem. Generally the minimization problems consist of 

constraints with ‘greater-than-equal-to’ ( ≥ ) sign. For example, minimize the price (to compete in the 

market); however, the profit should cross a minimum threshold. Whenever the goal is to minimize some 

objective, lower bounded requirements play the leading role. Constraints with ‘greater-than-equal-to’ ( ≥ ) 

sign are obvious in practical situations. 

 

To deal with the constraints with ‘greater-than-equal-to’ ( ≥ ) and  sign, Big-M method is to be 

followed as explained earlier. 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

 

 

    



UINT - IV

1 Data: Representation, Average, Spread

Data can be represented numerically or graphically in various ways. For instance, your

daily newspaper may contain tables of stoke prces and money exchange rates, curves or

bar of charts illustrating economical or political developments, or pie charts showing how

your tax dollar is spent. And there are numerous other representations of data for special

purposes.

In this section we discuss the use of standard representations of data in statistics.

We explain corresponding concepts and methods in terms of typical examples begin-

ning with

89 84 87 81 89 86 91 90 78 89 87 99 83 89. (1)

These are n = 14 measurements of the tensile strength of sheet steel in kg/mm2 recorded

in the order obtained and rounded to integer values. To see what is going on, we aort

these data, that is, we order them by size

78 81 83 84 86 87 87 89 89 89 89 90 91 99. (2)

Graphical Representation of Data

We shall now discuss standard graphical representations used in statistics for obtaining

information on properties of data.

Stem and Leaf Plot

This is one of the simplest but most useful representations of data. For data (1) it is

shown below.

Leaf unit =1.0

1 4 8

4 8 134

11 8 6779999

13 9 01

14 9 9

1



The numbers in (1) range from 78 to 99. We divide these numbers into 5 groups,

75− 79, 80− 84, 85− 89, 90− 94, 95− 99. The integers in the tens position of the groups

are 7, 8, 8, 9, 9. These form the stem. The first leaf is 8. The second leaf is 134(representing

81, 83, 84), and so on.

The number of times a value occurs is called its absolute frequency. Thus 78 has

absolute frequency 1, the value 89 has absolute frequency 4 etc. The column to the

extreme left shows the cummulative absolute frequency, that is the sum of the absolute

frequencies of the values up to the line of the leaf. Thus the number 4 in the second line

on the left shows that (1) has 4 values up to and including 84. The number 11 in the

next line shows that there are 11 values not exceeding 89, etc. Dividing the cummulative

absolute frequencies by n(= 14) gives the cummulative relative frequencies.

Histogram

For large sets of data, histograms are better in displayng the distribution of data than

stem-and-leaf plots.

Center and Spread of data: Median

As a center of the location of data values we can simply take the median, the data

value that falls in the middle when the values are ordered. In (2) we have 14 values.

The seventh of them is 87, the eighth is 89, and we the split the difference, obtaining the

median 88.

Mean, Standard deviation, Variance

The average size of the data values can be measured in a more refined way by the

mean

x =
1

n

n∑
j=1

xj =
1

n
(x1 + x2 + · · ·+ xn). (3)

This is the arithmetic mean of the data values, obtained by taking their sum and dividing

by the data size n. Thus in (1),

x =
1

14
(89 + 84 + · · ·+ 89) =

611

7
≈ 87.3.

Similarly, the spread of the data values can be measured in a more refined way by the

standard deviation s or by its square, the variance

s2 =
1

n− 1

n∑
j=1

(xj − x)2 =
1

n− 1
[(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2].

Thus to obtain the variance of the data, take the difference xj −x of each data value from

2



the mean, square it, take the sum of these n squares, and divide it by n− 1. To get the

standard deviation s, take the square root of s2.

For example, using x = 611/7, we get the data (1) the variance

s2 =
1

13
[(89− 611

7
)2 + (84− 611

7
)2 + · · ·+ (89− 611

7
)2] =

176

7
≈ 25.14.

2 Experiments, Outcomes, Events

An experiment is a process of measurement or observation, in a labortory, in a factory,

on the street, in nature or wherever; so “experiment” is used in a rather general sense.

Our interest is in experiments that involve “randomness”, chance effects, so that we

can not predict a result exactly.

A “trail” is a single performance of an experiment. Its result is called an “outcomes”

or a “sample point”. n trails then give a “sample” of “size n” consisting of n sample

points.

The “sample space S” of an experiment is the set of all possible outcomes.

Examples are:

(1) Inspecting a lightbulb. S = {Defective, Nondefective}.
(2) Rolling a die. S = {1, 2, 3, 4, 5, 6}.
(3) Measuring tensile strength of wire. S the numbers in some interval.

(4) Measuring copper content of brass. S: 50% to 90%.

(5) Counting daily traffic accidents in New York. S the integers in some interval.

The subsets of S are called “events” and the outcomes “simple events”.

3 Probability

The “probability” of an event A in an experiment is supposed to measure how frequenty

A is about to occur if we make any trials.

Defination 1. Probability

If the sample space S of an experiment consists of finitely many outcomes that are

equally likely, then the probability P (A) of an event A is

P (A) =
Number of points in A

Number of points in S
.

3



Thus in particular,

P (S) = 1.

Defination 2. Probability

Given a sample space S, with each event A of S there is associated a number P (A),

called the probability of A, such that the following axioms of probability are satisfied.

1. For every A in S,

0 ≦ P (A) ≦ 1.

2. The entire sample space S has the probability

P (S) = 1.

3. For mutually exclusive events A and B(A ∩B = ∅) then

P (A ∪B) = P (A) + P (B).

4 Random variables, Probability Distributions

A probability distribution shows that the probabilities of events in an experment. The

quantity that we observe in an experiment will be denoted by X and is called a ran-

dom variable because the value it will assume in the next trial depends on chance, on

randomness.

If we count (cars on the road, deaths by cancer, etc), we have a discrete random

variable and distribution. If we measure (electric voltage, rainfall, hardness of steel), we

have a continuous random variable and distribution.

In both the cases the distribution of X is determined by the distribution function

F (x) = P (X ≦ x); (4)

this is the probability that X will assume any value not exceeding x. From (4) we obtain

the fundamental formula for the probability corresponding to an interval a < x ≦ b,

P (a < X ≦ b) = F (b)− F (a).

Discrete random variabls and Distributions

A random variable X and its distribution are discrete if X assumes only finitely many
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or at most countably many values x1, x2, · · · , called the probability values of X, with

positive probabilities p1 = P (X = x1), p2 = P (X = x2), · · · , whereas the probability of

P (X ∈ I) is zero for any interval I containing no possible value.

Obviously, the discrete distribution is also determined by the probability function f(x)

of X, defined by

f(x) =

{
pj if x = xj, (j = 1, 2, · · · )
0 otherwise .

From this we get the values of the distribution function F (x) by takng sums,

F (x) =
∑
xj≦x

f(xj) =
∑
xj≦x

pj.

where for any given x we sum all the probabilities pj for which xj is smaller that or equal

to that x.

For the probability corresponding to intervals we have

P (a < X ≦ b) =
∑

a<xj≦b

pj.

This is the sum of all probabilities pj for which xj satisfies a < xj ≦ b.

Note:
∑
j

pj = 1.

Continuous random variabls and Distributions

A random variableX and its distribution are of continuous type or, briefly, continuous,

if its distribution function F (x) can be given by an integral

F (x) =

∫ x

−∞
f(v)dv,

whose integrand f(x), called the density of the distribution.

Differentiating gives the relation of f to F as

f(x) = F ′(x)

for every x at which f(x) is continuous.

For the probability corresponding to an interval:

P (a < X ≦ b) = F (b)− F (a) =

∫ b

a

f(v)dv.
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Note: ∫ ∞

−∞
f(v)dv = 1.

Example

Let the random variable X =Sum of the two numbers when two dice turn up. The

probability function and the distribution function are as follows:

x 2 3 4 5 6 7 8 9 10 11 12

f(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

F (x) 1
36

3
36

6
36

10
36

15
36

21
36

26
36

30
36

33
36

35
36

36
36

Example

Let X have the density function f(x) =

{
0.75(1− x2) if − 1 ≦ x ≦ 1,

0 otherwise .
Find the

distribution function. Find the probability P (−1
2
≦ X ≦ 1

2
) and P (−1

4
≦ X ≦ 2). Fnd x

such that P (X ≦ x) = 0.95.

Solution:

From the defination, it is clear that F (x) = 0 if x ≦ −1,

F (x) = 0.75

∫ x

−1

(1− v2)dv = 0.5 + 0.75x− 0.25x3, −1 < x ≦ 1,

and F (x) = 1 for x > 1.

P (−1

2
≦ X ≦ 1

2
) = F (

1

2
)− F (−1

2
) = 0.75

∫ 1/2

−1/2

(1− v2)dv = 68.75%

P (
1

4
≦ X ≦ 2) = F (2)− F (

1

4
) = 0.75

∫ 2

1/4

(1− v2)dv = 31.64%

Finally,

P (X ≦ x) = F (x) = 0.5 + 0.75x− 0.25x3 = 0.95.

Algebraic simplification gives 3x− x3 = 1.8. A solution is x = 0.73, approximately.

5 Mean and variance of a distribution

The mean µ and variance σ2 of a random variableX and its distribution are the theoretical

counterparts of the mean x and variance s2 of a frequency distribution. The mean µ is

defined by
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µ =


∑
j

xjf(xj) (Discrete distribution),∫ ∞

−∞
xf(x)dx (Continuous distribution),

and the varance σ2 is defined by

σ2 =


∑
j

(xj − µ)2f(xj) (Discrete distribution),∫ ∞

−∞
(x− µ)2f(x)dx (Continuous distribution),

σ is called the standard deviation of X and its distribution. f is the probability func-

tion (or probability mass function) or the density function, respectively, in discrete and

continuous distribution.

6 Binomial Distribution

Consider a set of n independent trials (n being finite) in which the probability p of success

in any trail is constant for each trial, then q = 1 − p, is the probability of failure in any

trail.

A random variable X is said to follow binomial distribution if it assumes only non-

negative values and its probability mass function is given by:

P (X = x) = p(x) =

{ (n
x

)
pxqn−x x = 0, 1, 2, · · · , n; q = 1− p, ,

0 otherwise,

The mean of the binomial distribution is

µ = np

and the variance is

σ2 = npq.

Example:

Ten coins are thrown simultaneously. Find the probability of getting at least seven

heads.

Solution: Here p= Probability of gettng a head =1
2

q= Probability of not gettng a head =1
2
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∴ Probability of getting at least seven heads is given by :

P (X ≥ 7) = p(7) + p(8) + p(9) + p(10) = 176
1024

.

7 Poisson Distribution

A random variable X is said to follow Poisson distribution if it assumes only non-negative

values and its probability mass function is given by:

P (X = x) = p(x, λ) =


e−λλx

x!
x = 0, 1, 2, · · · ; λ > 0

0 otherwise,

Here λ is known as the parameter of the distribution.

Here the mean and varance of the Poisson distribution are each equal to λ. It can be

proved that this distribution is obtained as limting case of the binomial distribution, if

we let p → 0 and n → ∞ so that the mean np = λ is a finite value.

Example

If on the average, 2 cars enter a certain parking lot per minute, what is the probability

that during any given minute, 4 or more cars will enter the lot?

Solution:

To understand that the Poisson distribution is a model of the situation, we imagine

the minute to be divided into very many short time intervals, let p be that probability

that a car will enter the lot during any such short interval, and assume independence of

the events that happens during those intervals.

Then we are dealing with binomial distributionwith very large n and very small p,

which we can approximate by the Poisson distribution with λ = np = 2.

Thus the complementary event “3 cars or fewer enter the lot” has the probability:

P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = e−2

(
20

0!
+

21

1!
+

22

2!
+

23

3!

)
= 0.857.

∴ P (4 or more cars will enter the lot) = 1− 0.857 = 0.143

8 Normal Distribution

A random variable X is said to have a normal distribution with parameters µ (called

mean) and σ2 (called variance) if its probability density function (pdf) is given by the
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probability law:

f(x) =
1

σ
√
2π

exp

[
− 1

2

(
x− µ

σ

)2]
, −∞ < x < ∞, −∞ < µ < ∞, σ > 0.

Remark: When a r.v. X is normally distributed with mean µ and standard deviation

σ, it is customary to write X as distributed as N(µ, σ2) and is expressed as X ∼ N(µ, σ2).

Distribution function F (x)

The normal distribution has the distribution function

F (x) =
1

σ
√
2π

∫ x

−∞
exp

[
− 1

2

(
v − µ

σ

)2]
dv.

For the corresponding standardized normal distribution with mean 0 and standard

deviation 1 we denote F (x) by

Φ(z) =
1√
2π

∫ x

−∞
e−u2/2du.

Result 1

The distribution function F (x) of the normal distribution with any µ and σ s related

to the standardized distribution function Φ(z) by the formula

F (x) = Φ

(
x− µ

σ

)
.

Result 2

The probability that a normal random variable X with mean µ and standard deviation

σ assume any value in an interval a < x ≦ b is

P (a < x ≦ b) = F (b)− F (a) = Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)
.

9 Regression Analysis

Regression analysis is a mathematical measure of the average relationship between two

or more variables in terms of the original units of the data.

Linear regression

If the variables in a bivariate distribution are related, we will find the points in the

scatter diagram will cluster arround some curve called the “curve of regression”. If the

curve is a straight line, it is called the line of regression and there is said to be linear
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regression between two variables, otherwise regression is said to be curvilinear.

The line of regression is the line which gives the best estimate to the value of one

variable for any specific value of other variable. Thus the line of regression is the line of

“best fit” and is obtained by the principle of least squares.

Let us suppose that in the bivariate distribution (xi, yi); = 1, 2, · · · , n; Y is dependent

variable and X is independent variable. Let the line of regression of Y on X be

y = a+ bx.

The above equation represents a family of straight lines for different values of the arbitrary

constants a and b. The problem is to determine a and b so that the line y = a+ bx is the

line of “best fit”.

Using Least square method, we get the line of regression of Y on X passes through

the point (x, y) as

y − y = k1(x− x),

where x and y are the means of the x− and y− values in our sample, and the slope k1 is

called the regression coefficient, is given by

k1 =
sxy
s2x

,

with the “sample covariance” sxy given by

sxy =
1

n− 1

n∑
j=1

(xj − x)(yj − y) =
1

n− 1

[ n∑
j=1

xjyj −
1

n

( n∑
j=1

xj

)( n∑
j=1

yj

)]
,

and the “sample variance of the x-values” s2x is given by

s2x =
1

n− 1

n∑
j=1

(xj − x)2 =
1

n− 1

[ n∑
j=1

x2
j −

1

n

( n∑
j=1

xj

)2]
.

Example Obtain the line of regression of Y on X for the following data.

X : 65 66 67 67 68 69 70 72

Y : 67 68 65 68 72 72 69 71

Solution: Here x = 68, y = 69, sx = 2.12, sy = 2.35, sxy = 2.9892.
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∴ Equation of line of regression of Y on X is:

y − 69 =
2.9892

(2.12)2
(x− 68) ⇒ y = 0.665x+ 23.78

10 Correlation Analysis

Correlation analysis is concerned with the relation between X and Y in a two-dimensional

random variable (X, Y ). A sample consists of n ordered pairs of values (x1, y1), · · · ,
(xn, yn), we shall use the sample means x and y, the sample variances s2x and s2y and the

sample covariance sxy.

The sample correction coefficient is

r =
sxy
sxsy

.

Remarks:

1. The correction coefficient r satisfies −1 ≦ r ≦ 1, and r = ±1 if and only if the sample

values lie on a straight line.

2. Two independent variables are uncorrelated.

3. Correlation coefficient is independent of change of origin and scale.

11 Tests of Significance

A very important aspect of the sampling theory is the study of the tests of significance,

which enables us to decide on the basis of sample results, if

(i) the deviation between the observed sample statistic and the hypothetical parameter

values.

(ii) the deviation between two independent sample statistics; is significant or might be

attributed to chance or the fluctuations of sampling.

11.1 Null and Alternative hypopthesis

For applying the test of significance we first set up a hypopthesis- a definite statement

about the population parameter. Such a hypothesis, which is usually a hypothesis of no

difference, is called “null hypopthesis” and usually denoted by H0.

Any hypopthesis which is complementary to the null hypopthesis is called an “alter-

native hypopthesis” and usually denoted by H1. For example if we want to test the null
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hypopthesis that the population has a specifiedmean µ0, (say), i.e., H0 : µ = µ0 then the

alternative hypopthesis could be:

H1 : µ ̸= µ0 (i.e., µ > µ0 or µ < µ0) (ii)H1 : µ > µ0 (iii)H1 : µ < µ0

The alternative hypopthesis in (i) is known as a “two-tailed alternative” and the alterna-

tives in (ii) and (iii) are known as “right-tailed” and “left-tailed alternatives” respectively.

11.2 Critical values or significant values

The value of test statistics which separates the critical (or rejection) region and the

acceptance region is called the critical value or significant value. It depends upon:

(i) The level of significance used, and

(ii) The alternative hypopthesis, whether it is two-tailed or single-tailed.

11.3 Procedure for testing of hypothesis

We now summarize below the various steps in testing of a statistical hypopthesis in a

systematic manner.

1. Null hypopthesis. Set up the null hypopthesis H0.

2. Alternative hypopthesis. Set up the alternative hypopthesis H1. This will enable us

to decide whether we have to use a single-tailed test or right-tailed test.

3. Level of significance. Choose the appropriate level of significance (α) depending on

the reliability of the estimates and permission risk. This is to decided before sample is

drawn.

4. Test statistic. Compute the test statistic.

5. Conclusion. We compare the computed value in step 4 with significant value (tabulated

value) at the given level of significance. If the calculated value in in modulus is less than

tabulated value, then the null hypopthesis is accepted.

11.3.1 Test of significance for single proportion

If X is the number of successes in n independent trials with constant probability P of

success for each trial, then set the statistic as

Z =
p− P√
PQ/n

, where p = X/n, Q = 1− P.
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11.3.2 Test of significance for dfference of proportions

Suppose we want to compare two distinct populations with respect to the prevalence of

a certain attribute, say A, among theirs members. Let X1 and X2 be the number of

persons possessing the given attributes A n random samples of sizes n1 and n2 from two

populations respectively. Then the sample proportions are given by : p1 = X1/n1 and

p2 = X2/n2.

Under H0 : P1 = P2, the test statistic for difference proportions is given by

z =
p1 − p2√

P̂ Q̂( 1
n1

+ 1
n2
)
, where P̂ =

n1p1 + n2p2
n1 + n2

, Q̂ = 1− P̂ .

11.3.3 Test of significance for single mean

Here the statistic is

z =
x− µ

σ/
√
n
,

where n is the sample size with mean x from a normal population with mean µ and

standard deviation σ.

11.3.4 Test of significance for difference of means

Let x1 be the mean of a sample of size n1 from a population with mean µ1 and variance

σ2
1 and let x2 be the mean of an independent random sample of size n2 from another

population with mean µ2 and variance σ2
2.

Here the test statistic becomes

z =
x1 − x2√

(σ2
1/n1) + (σ2

2/n2)
.

For more details about the theory, workout examples and questions, see the

book:

“Fundamentals of Mathematical Statistics” by S.C. Gupta and V.K. Kapoor.
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