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Module I                 8 hours  

Sampling Theorem: 
 

All pulse modulation scheme undergoes sampling process. Sampling of low 
frequency(LF) signal is achieved using a pulse train. Sampling process provides samples 
of the message signal. Sampling rate of sampling process must be proper to get original 
signal back. Sampling theorem defines the sampling rate of sampling process in order to 
recover the message signal. The solution to sampling rate was provided by Shannon.  

Basically there are two types of message signal, such as- 
(i) Low-pass (baseband) signal, 
(ii) Band-pass (passband) signal. 

 

 Sampling rate for Low-Pass Signal:--  
Sampling theorem states that if g(t) being a lowpass signal of finite energy and is 
band limited to W Hz, then the signal can be completely described by and 
recovered from its sampled values taken at a rate of 2W samples or more per 
second. 
 

 

Fig. 1.1  Representation of sampling process. 

 

Thus the time period of sampled signal must be, Ts ≤ 1/(2W). 

Considering a signal g(t) as shown be a low pass signal where fourier transform of g(t), 

  G(f) = 0,  for f > W 

         = finite,  for f ≤ W. 

Ideally, we can get sampled values of g(t) at a regular time interval of time Ts if we 
multiply a train of pulses δTs to g(t) as shown. 
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In fig. 1.2 the spectrum of g(t) extends over the first half of the frequency interval 
between harmonics of the sampling frequency, that is, from 2fs to 2.5fs. As a result, 
there is no spectrum overlap, and signal recovery is possible. It may also be seen 
from the figure that if the spectral range of g(t) extends over the second half of the 
interval from 2.5 fs to 3fs, there would similarly be no overlap. Suppose, however 
that the spectrum of g(t) were confined neither to the first half nor to the second 
half of the interval between sampling frequency harmonics. In such a case, there 
would be overlap between the spectrum patterns, and signal recovery would not 
be possible. Hence the minimum sampling frequency allowable is fs=2(fM - fL) 
provided that either fM or fL is a harmonic of fs. 
If neither fM  nor fL is a harmonic of fS, a more general analysis is required. In fig 
1.3a, we have reproduced the spectral pattern of fig 1.2. The positive frequency 
part and negative frequency part of the spectrum are called PS and NS 
respectively. Let us , for simplicity, consider separately PS and NS and the manner 
in which they are shifted due to the sampling and let us consider initially what 
constraints must be imposed so that we cause no overlay over, say, PS. The 
product of g(t) and the dc component of the sampling waveform leaves PS 
unmoved, which will be considered to reproduce the original signal. If we select 
the minimum value of fs=2(fm - fL) = 2B, then the shifted Ps patterns will not 
overlap  

 
 
Fig. 1.3 (a) Spectrum of the bandpass signal (b) Spectrum of NS shifted by the (N-1)st and 

the Nth harmonic of the sampling waveform. 
 
PS. The NS will also generate a series of shifted patterns to the left and to the right. 
The left shiftings can not cause an overlap with unmoved PS. However, the right 
shifting of NS might cause an overlap and these right shifting of NS are the only 
possible source of such overlap over PS. Shown in fig. 1.3b, are the right shifted 
patterns of NS due to the (N-1)th and Nth harmonics of the sampling waveform. It 
is clear that to avoid overlap it is necessary that,  
  
  (N-1)fs - fL ≤ fL       (1.4a) 
and,      Nfs - fM ≥ fM        (1.4b) 



So that, with B = fM - fL, we have 
  (N - 1)fs  ≤ 2(fM - B)       (1.4c) 

  and,        Nfs ≥ 2fM        (1.4d) 

If we let k = fM/B, eqn. (1.4c) & (1.4d) become 

  fS ≤ 2B(K-1)/(N-1)       (1.4e) 

and,   fs ≤ 2B(K/N)        (1.4f) 

In which k ≥ N, since fs ≥ 2B. Eqn. (1.4e) and (1.4f) establish the constraint which 
must be observed to avoid an overlap on PS. It is clear from the symmetry of the 
initial spectrum and the symmetry of the shiftings required that this same 
constraint assumes the there will be no overlap on NS. Eqn.(1.4e) and (1.4f) has 
been plotted in fig. 1.4 for several values of N. 
Let us take a case where fL=2.5 KHz and fM=3.5 KHz. So, B=1 KHz and K=fM/ = 
3.5. On the plot of fig. 1.4 line for k=3.5 has been erected vertically. For this value 
of k if fs = 2B, then overlapping occurs. If fs is increased in the range of 3.5 to 5 
KHz, then no overlap occurs corresponding to N=2. If fs is 7B or more then no 
overlap occurs. 

 
 
Fig. 1.4  The shaded region are the regions where the constraints eqn. (1.4e) and (1.4f) are 

satisfied. 
 
From this discussion, we can write bandpass sampling theorem as follows---A 
bandpass signal with highest frequency fH and bandwidth B, can be recovered 
from its samples through bandpasss filtering by sampling it with frequency fs=2 
fH/k, where k is the largest integer not exceeding fH/B. All frequencies higher than 
fs but below 2fH(lower limit from low pass sampling theorem) may or may not be 
useful for bandpass sampling depending on overlap of shifted spectrums. 
 
m(t) – low pass signal band limits to fM. 

s(t) – impulse train 



s(t) = Δt/Ts + 2. Δt/Ts(cos2πt/Ts + cos(2.2 πt/Ts) + cos(3.2 πt/Ts) + ……) 
       = Δt.fs + 2. Δt.fs(cos2π.fs.t + cos(2.2 π.fs.t) + cos(3.2 π.fs.t) + ……) (1.4g) 
 
Product of m(t) and s(t) si the sampled m(t) ie, ms(t) 
ms(t) = m(t).s(t) 

= Δt/Ts.m(t) +  Δt/Ts[2.m(t)cos2π.fs.t + 2.m(t).cos(2π.2.fs.t) + 2.m(t).cos(2                      
π.3.fs.t) + ……]        (1.4h) 

By using a low pass filter(ideal) with cut-off frequency at fm then Δt/Ts.m(t) will 
be passed so the m(t) can be recovered from the sample. 

Band pass m(t) with lower frequency ‘fL’ & upper frequency ‘fH’,  fH - fL = B. The 
minimum sampling frequency allowable is fs = 2(fH - fL) provided that either fH or 
fL is a harmonic of fs. 

A bandpass signal with highest frequency fH and bandwidth B, can be recovered 
from its samples through bandpass filtering by sampling it with frequency fs = 
2.fH/k, where k is the largest integer not exceeding fH/B. All frequencies higher 
than fs but below 2.fH(lower limit from low pass sampling theorem) may or may 
not be useful for bandpass sampling depending on overlap of shifted spectrum. 

Eg.  Let us say, fL=2.5 KHz and fH=3.5 KHz.  
        So, B=1 KHz, k=fM / B =3.5.  
        Selecting fs = 2B = 2 KHz cause overlap.        
        If k is taken as 3 then fs = 2*3.5 kHz/3 = 7/3 kHz cause no overlap. 
        If k is taken as 2 then fs = 2*3.5 KHz/2 = 3.5 KHz cause no overlap. 
 
• Aliasing Effect:- 
From the spectrum of Gs(f) we can filter out one of the spectrum, say –W<f<W, 
using a low pass filter and can reconstruct the time domain representation of it 
after doing inverse fourier transform of the spectrum. This is possible only when fs 

>= 2W. 
But when fs <2W, ie, Ts > 1/2W, then there will be overlap of adjacent spectrums. 
Here high frequency part of 1st spectrum interfere with low frequency part of 2nd 
spectrum. This phenomenon is the aliasing effect. In such a case the original signal 
g(t) cannot be recovered exactly from its sampled values gs(t).  
 
 

 Signal Reconstruction : 
 

The process of reconstructing a continuous time signal g(t)[bandlimited to W Hz] 
from its samples is also known as interpolation. This is done by passing the 
sampled signal through an ideal low pass filter of bandwidth W Hz. As seen from 
eqn. 1.4, the sampled signal contains a component 1/Ts G(f), and to recover G(f)[or 
g(t)], the sampled signal must be passed through on ideal low-pass filter of 
bandwidth W hz and gain Ts. 



           Thus the reconstruction(or interpolating) filter transfer function is,  

  H(f) = Ts rect(f/2W)        (1.5) 

         The interpolation process here is expressed in the frequency domain as a filtering 
operation. 

Let the signal interpolating (reconstruction) filter impulse response be h(t). Thus, if we 
were to pass the sampled signal gr(t) through this filter, its response would be g(t). 

Let us now consider a very simple interpolating filter whose impulse response is 
rect(t/Ts), as shown in fig. 1.5. This is a gate pulse of unit height, cantered at the origin, 
and of width Ts(the sampling interval). Each sample in gδ(t), being an impulse generates a 
gate pulse of the height equal to the strength of the sample. For instance the kth sample is 
an impulse of strength g(kTs) located at t=kTs, and can be expressed as g(kTs) δ(t-kTs). 
When this impulse passes thorugh the filter, it generates and ouput of g(kTs) rect(t/Ts). 
This is a gate pulse of height g(kTs), centred at t=kTs(shown shaded in fig. 1.5). 

Each sample in gδ(t) will generate a corresponding gate pulse resulting in an output, 

ሻݐሺݕ  ൌ ∑ gሺk. . Tsሻ୩ rect ቀ ୲
ୱ

ቁ        (1.6) 

 

Fig. 1.5  Simple interpolation using zero-order hold circuit 

The filter output is a staircase approximation of g(t), shown dotted in fig. 1.5b. This filter 
thus provides a crude form of interpolation. 

The transfer function of this filter H(f) is the fourier transform of the impulse response 
rect(t/Ts). Assuming the Nyquist sampling rate, ie, Ts = 1/2W, 

 W(t) = rec(t/Ts) = rect(2Wt) 

and,  H(f) = Ts.sinc(π.f.Ts) = 1/(2W).sinc(πf/2W)     (1.7) 

The amplitude response |H(f)| for this filter shown in fig. 1.6, explains the reason for the 
crudeness of this interpolation. This filter is also known as the zero order hold filter, is a 
poor approximation of the ideal low pass filter(as shown double shaded in fig. 1.6). 



 

Fig. 1.6  Amplitude response of interpolation filter. 

We can improve on the zero order hold filter by using the first order hold filter, which 
results in a linear interpolation instead of the staircase interpolation. The linear 
interpolator, whose impulse response is a triangular pulse Δ(t/2Ts), results in an 
interpolation in which successive sample tops are connected by straight line segments. 
The ideal interpolation filter transfer function found in eqn. 1.5 is shown in fig. 1.7a. The 
impulse response of this filter, the inverse fourier transform of H(f) is, 

  h(t) = 2.W.Ts.sinc(Wt), 

Assuming the Nyquist sampling rate, ie, 2WTs = 1, then 

  h(t) = sinc(Wt)        (1.8) 

This h(t) is shown in fig. 1.7b. 

 

Fig. 1.7 Ideal interpolation. 

The very interesting fact we observe is that, h(t) = 0 at all Nyquist sampling instants(t = 
±n/2W) except at t=0. When the sampled signal gδ(t) is applied at the input of this filter, 
the output is g(t). Each sample in gδ(t), being an impulse, generates a sine pulse of height 
equal to the strength of the sample, as shown fig. 1.7c. 



The process is identical to that shown in fig. 1.7b, except that h(t) is a sine pulse instead of 
gate pulse. Addition of the sine pulses generated by all the samples results in g(t). The kth 
sample of the input gδ(t) is the impulse g(kTs)δ(t-kTs); the filter output of this impulse is 
g(kTs)h(t-kTs). Hence, the filter output to gδ(t), which is g(t), can now be expressed as a 
sum. 

     ݃ሺݐሻ ൌ ∑ ݃ሺ݇. ሻݏܶ hሺt െ KTsሻ 

   ൌ ∑ ݃ሺ݇. ሻݏܶ sincሾWሺt െ KTsሻሿ     (1.9a) 

   ൌ ∑ ݃ሺ݇. ሻݏܶ sincሾWt െ K/2ሿ     (1.9b) 

Eqn. 1.9 is the interpolation formula, which yields values of g(t) between samples as a 
weighted sum of all the sample values. 

 
 Practical Difficulties: 

If a signal is sampled at the Nyquist rate fs = 2W hz, the spectrum Gδ(f) without 
any gap between successive cycles.. To recover g(t) from gδ(t), we need to pass the 
sampled signal gδ(t) through an ideal low pass filter. Such filter is unrealizable; it 
can be closely approximated only with infinite time delay in the response. This 
means that we can recover the signal g(t) from its samples with infinite time delay. 
A practical solution to this problem is to sample the signal at a rate higher h=than 
the Nyquist rate(fs > 2W). This yields Gδ(f), consisting of repetition of G(t) with a 
finite band gap between successive cycles. We can now recover G(g) from Gδ(f) 
from Gδ(f) using a low pass filter with a gradual cut-off characteristics. But even in 
this case, the filter gain is required to be zero beyond the first cycle of G(f). By 
Paley-Wiener criterion, it is also impossible to realize even this filter. The only 
advantage in this case is that the required filter can be closely approximated with a 
smaller time delay. 
This indicated that it is impossible in practice to recover a band limited signal gδ(t) 
exactly from its samples even if sampling rate is higher than the Nyquist rate. 
However as the sampling rate increases, the recovered signal approaches the 
desired signal more closely. 
 

 The Treachery of Aliasing: 
There is another fundamental practical difficulty in reconstructing a signal from its 
samples. The sampling theorem was proved on the assumption that the signal g(t) 
is bandlimited. All practical signals are time limited, ie, they are of finite duration 
width. A signal cannot be time-limited and band-limited simultaneously. If a 
signal is time limited, it cannot be band limited and vice-versa(but it can be 
simultaneously non time limited and non band limited). This means that all 
practical signals which are time limited are non band limited; they have infinite 
bandwidth and the spectrum Gδ(f) consists of overlapping cycles of G(f) repeating 
every fs hz(the sampling frequency) as shown in fig. 1.8.  
 
 
 



 
Fig. 1.8   Aliasing effect 

 
 
Because of the overlapping tails, Gδ(f) no longer has complete information about 
G(f) and it is no longer possible even theoretically to recover g(t) from the sampled 
signal gδ(t). If the sampled signal is passed through and ideal low pass filter the 
output is not G(f) but a version of G(f) distorted as a result of two separate causes: 
1. The loss of the tail of G(f) beyond |f| > fs/2 Hz.  
2. The reappearance of this tail inverted or folded onto the spectrum. 

The spectra cross at frequency fs/2 = 1/2Ts Hz, is called the folding frequency. The 
spectrum, therefore, folds onto itself at the folding frequency. In fig. 1.8, the 
components of frequencies above fs/2 reappear as components of frequencies 
below fs/2. This tail inversion, known as spectral folding or aliasing is shown 
shaded in fig. 1.8. In this process of aliasing, we are not only losing all the 
components of frequencies above fs/2 Hz, but these very components 
reappear(aliased) as lower frequency components also as in fig. 1.8. 

 
 A Solution: The Antialiasing Filter 

The potential defectors are all the frequency components beyond fs/2 = 1/2Ts Hz. 
We should eliminate (suppress) these components from g(t) before sampling g(t). 
This way, we lose only the components beyond the folding frequency fs/2 Hz. 
These components now cannot reappear to corrupt the components with 
frequencies below the folding frequency. This suppression of higher frequencies 
can be accomplished by an ideal low pass filtr of bandwidth fs/2 hz. This filter is 
called the antialiasing filter. This antialiasing operation must be performed before 
the signal is sampled. 
The antialiasing filter, being an ideal filter, is unrealizable. In practice we use a 
steep cut off filter which leaves a sharply attenuated residual spectrum beyond the 
folding frequency fδ/2. 
Even using antialiasing filter, the original signal may not be recovered if Ts > 
1/2W, ie, fs < 2W. For this case also aliasing will occur. To avoid this sampling 
frequency fs should be always greater than or atleast equal to 2W, where W is the 
highest frequency component available in information signal. 
 
 



 Some Applications of the Sampling Theorem: 
In the field of digital communication the transmission of a continuous time 
message is replaced by the transmission of a sequence of numbers. These open 
doors to many new techniques of communicating continuous time signals by pulse 
trains. The continuous time signal g(t) is sampled, and samples values are used to 
modify certain parameters of a periodic pulse train. As per these parameters, we 
have pulse amplitude modulation (PAM), pulse width modulation (PWM) and 
pulse position modulation (PPM). In all these cases instead of transmitting g(t), we 
transmit the corresponding pulse modulated signal. One advantage of using pulse 
modulation is that it permits the simultaneous transmission of several signals on a 
time sharing basis-time division multiplexing (TDM) which is the dual of FDM. 
 

 Pulse Amplitude Modulation(PAM) : 
In PAM, the amplitude of regularly spaced rectangular pulses vary with the 
instantaneous sample value of a continuous message signal in one to one fashion.  
  
  VPAM(t) =  ሾ1  Ka. gሺn. Tsሻሿδሺt െ n. Tsሻஶ

୬ୀିஶ୩  
 
Where g(nTS) represents the nth sample of the message signal g(t), Ts  is the 
sampling time, ka is a constant called the amplitude sensitivity(or modulation 
index of PAM) and δTS(t) demotes the pulse train. ‘ka’ is chosen so as to maintain a 
single polarity, ie, {1+kag(nTs)} > 0 for all values of g(nTs). 
Different forms of pulse analog modulation (PAM, PWM & PPM) are illustrated 
below:- 

 
Fig. 1.9  Pulse modulated signals. 

 



Transmission BW in PAM 

We know  << Ts ≤ 1/2W 
Considering ‘ON’ and ‘OFF’ time of PAM it is velar the maximum 

frequency of PAM is fmax = 1/2.  
So transmission BW ≥ fmax = 1/2 >> W. 
Noise performance of PAM is never better than the baseband signal 

transmission.  
However we need PAM for message processing for a TDM system, from 

which PCM can be easily generated or other form of pulse modulation can be 
generated. 

Be it single or multi user system the detection should be done in 
synchronism. So synchronization between transmitter and receiver is an important 
requirement. 

 
 

 Pusle Width Modulation(PWM): 
In pulse width modulation, the instantaneous sample values of the message signal 
are used to vary the duration of the individual pulses. This form of modulation is 
also referred to as pulse duration modulation (PDM) or pulse length modulation 
(PLM). 
Here the modulating wave may vary the time of occurrence of leading edge, the 
trailing edge or both edges of the pulse. 
 
Disadvantage – In PWM, long pulses (more width) expand considerable power 
during the pulse transmission while bearing no additional information.  
 
 VPWM = P(t – n.Ts) = ߜሺݐ െ ݊. ൏ ݏܶ݊ ሻ                forݏܶ ݐ ൏ ൫݊ܶݏ  ݇݊. ݃ሺ݊ܶݏሻ൯ 
       = 0         for [nTs + kw.g(nTS)]≤ t ≤(n+1)Ts 
 
 
 

 Generation of PWM and PPM waves: 
 
The figure below depicts the generation of PWM and PPM waves. Hence for the 
PWM wave the trailing edge is varied according to the sample value of the 
message. 
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Fig. 2.2  Various quantizers transfer functions. 

 Non Uniform Quantization: 
For many classes of signals the uniform quantization is not efficient, for example, 
in speech communication it is found(statistically) that smaller amplitudes 
predominate in speech and that larger amplitudes are relatively rare. The uniform 
quantizing scheme is thus wasteful for speech signals; many of the quantizing 
levels are rarely used. An efficient scheme is to employ a non uniform quantizing 
method in which smaller steps for small amplitudes are used. 

 
 

Fig. 2.3.  Non-uniform quantization 
 



The same result can be achieved by first compressing the signal samples and then 
using a uniform quantizing. The input-output characteristics of a compressor are 
shown in below fig. 2.4 
 
The same result can be achieved by first compressing the signal samples and then 
using a uniform quantizing. The input output characteristics of a compressor are 
shown in fig.  The horizontal axis is the normalized input signal (ie, g/gp), and the 
vertical axis is the output signal y. The compressor maps input signal increment 
Δg, into larger increment Δy for small signal input signals and small increments 
for larger input signals. Hence, by applying the compressed signals to a uniform 
quantizer a given interval Δg contains a larger no. of steps (or smaller step-size) 
when g is small. 
 

 
Fig.  2.4 Characteristics of Compressor. 

 
A particular form of compression law that is used in practice (in North America 
and Japan) in the so called µ law (µ law compressor), defined by 

                y = ln(1 + µ|g/gp|)/ln(1 + µ).sgn(g) for |g/gp|≤1 where, µ is a +ve constant  
and sgn(g) is a signum function. 

Another compression law popular in Europe is the so A-law, defined by, 

y = A/(1+lnA).(g/gp)                            for 0 ≤ g/gp ≤1/A 
   = (1+lnA|g/gp|/(1+lnA)).sgn(g)      for 1/A≤|g/gp|≤1      (2.1) 
 
The values of µ & A are selected to obtain a nearby constant output signal to 
quantizing noise ratio over an input signal power dynamic range of 40 dB. 
To restore the signal samples to their correct relative level, an expander with a 
characteristic complementary to that of compressor is used in the receiver. The 
combination of compression and expansion is called companding. 



 
 Encoding:- 

 

 

Fig. 2.5  Representation of each sample by its quantized value and binary representation. 

A signal g(t) bandlimited to B hz is sampled by a periodic pulse train PTs(t) made up of a 
rectangular pulse of width 1/8B seconds (cantered at origin), amplitude 1 unit repeating 
at the Nyquist rate(2B pulses per second. Show that the sampled signal is given by, 

  

    ҧ݃(t) = ¼.g(t) +  ቀ ଶ
୬గ

. sin ሺn4/ߨሻgሺtሻcosn. ws. tቁ
ஶ

ୀଵ
    (2.2) 

 
 Quantizing Noise or  Quantizing Error : 

We assume that the amplitude of g(t) is confined to the range(-gp, gp). This range is 
divided into L no. of equal segments. Each segment is having step size Δ, given by, 
  
  Δ = 2.gp/L        (2.3) 
 
A sample amplitude value is approximated by the mid-points of the interval in 
which it lies. The input-output characteristic of a midrise uniform quantizer is 
shown in fig. 
The difference between the input and output signals of the quantizer becomes the 
quantizing error or quantizing noise. 
It is apparent that with a random input signal, the quantizing error ‘qe’ varies 
randomly within the interval, 
 

–Δ/2 ≤ qe ≤ Δ/2       (2.4) 
 



Assuming that the error is equally likely to lie anywhere in the range (-Δ/2, Δ/2), 
the mean square quantizing error <q2e> in given by, 
  

 <q2e> = 1/Δ ݍ
ଶ݀ݍ

೩
మ

ି೩
మ

 = Δ2/12      (2.5) 

 
Substituting eqn.(2.3) in eqn.(2.5) we get, 
 
   
 <q2e> = g2p/(3L2) 
 
 Si = <g2(t)> =  ݃ଶሺݐሻ

ି
. ଵ

ଶ
. ݃.dg = g2p/3 

 
 

 Transmission Bandwidth and the output SNR : 
For binary PCM, we assign a distinct group of ‘n’ binary digits(bits) to each of the 
L quantization levels. Because a sequence of n binary digits can be arranged in 2n 

distinct patterns, 
 
  L = 2n or n = log2L       (2.6) 
 
Each quantized sample is thus, encoded into ‘n’ bits. Because a signal g(t) 
bandlimited to W Hz requires a minimum of 2W samples second, we require a 
total of 2nW bits per second(bps), ie, 2nW pieces of information per second. 
Because a unit bandwidth (1 Hz) can transmit a maximum of two pieces of 
information per second, we require a minimum channel of bandwidth BT Hz, 
given by, 
 
  BT = n.W    Hz       (2.7) 
 
This is the theoretical minimum transmission bandwidth required to transmit the 
PCM signal. We shall see that for practical reasons we may use transmission 
bandwidth higher than as in eqn.(2.7). 
 
  Quantizing Noise = No = <q2e> = g2p/(3.L2)   (2.8) 
 
Assuming the pulse detection error at the receiver is negligible, the reconstructed 
signal ො݃ (t) at the receiver output is, 
 
  ො݃ (t) = g(t) + qe(t)       (2.9) 
 
The desired signal at the output is g(t), and the (quantizing) noise is qe(t). Since the 
power of the message signal g(t) is <g2(t)>, then 
 
 S0 = <g2(t)>          (2.10) 



 
So,  SNR = So/No = <g2(t)>/( g2p/(3.L2)) = 3L2 < g2(t)>/ g2p  

 (2.11) 

 

 So/No(dB) = 10.log(3L2) < g2(t)>/ g2p 
 
Signal to noise ration can be written as, 
 
 So/No  = 3.2(2n) < g2(t)>/ g2p      (2.12) 
   
  = C(2)2n        (2.13) 

Where,  
   C = 3.< g2(t) >/ g2p    (uncompressed case, as in eqn.(2.12)) 
      = 3/[ln(1+µ)]2           (compressed case) 
 
For a µ-law compander, the output SNR is, 
 So/No  = 3.l2/[ln(1+µ)]2             µ2 >> g2p/<g2(t)> 

Substituting eqn.(2.7) in eqn.(2.12), we find 

  So/No  = C(2)2.BT/W        (2.14) 

From eqn.(2.14), it is observed that SNR increases almost exponentially with the 
transmission bandwidth BT. This trade-off SNR with bandwidth is attractive and come 
close to the upper theoretical limit. A small increase in bandwidth yields a large benefit in 
terms of SNR. This trade relationship is clearly seen by rewriting eqn.(2.14) using decibel 
scale as, 

 S0/N0 (dB) = 10.log(So/No) 

          = 10log(C22n) 

          = 10logC + 20log2 

          = (α + 6n) dB        (2.15) 

Where, α = 10logC. This shows that increasing n by 1, quadruples the output SNR(6 dB 
increase). Thus if we increase ‘n’ from 8 to 9, the SNR quadruples, but the transmission 
bandwidth increases only from 32 to 36 Khz(an increase of only 12.5%). This shows that 
in PCM, SNR can be controlled by transmission bandwidth. We shall see later that 
frequency and phase modulation also do this. But it requires a doubling of the bandwidth 
to quadruple the SNR. In this respect, PCM is strikingly superior to FM or PM. 

 Digital Multiplexer :-- 

This is a device which multiplexers or combines several low bit rate signals to form one 
high bit rate signal to be transmitted over a high frequency medium. Because of the 
medium is time shared by various incoming signals, this is a case of time-division 



multiplexing (TDM. The signals from various incoming channels may be such diverse 
nature as digitized voice signal (PCM), a computer output, telemetry data, a digital 
facsimile and so on. The bit rates of the various tributaries (channels) need not be the 
same. 
Multiplexing can be done on a bit-by-bit basis(known as bit or digit interleaving) or on a 
word-by-word basis(known as byte or word interleaving). The third category is 
interleaving channel having different bit rate. 

T1 carrier system:-- The input to the (fast) 13-bit ADC comes from an analog 
multiplexer. The digital processor compresses the digital value according to μ-law.  

 

Fig. 2.6 T-1 carrier system. 

The 8-bit compressed voice values are sent consecutively, MSB first. The samples of all 
24 inputs comprise a frame. Most serial communications transmits data LSB first 
(“little endian”). 



 
 Synchronizing & Signalling : 

Binary code words corresponding to samples of each of the 24 channels are 
multiplexed in a sequence as shown in fig 2.7. A segment containing one 
codeword (corresponding to one sample) from each of the 24 channels is called a 
frame. Each frame has 24x8 = 192 information bits. Because the sampling rate is 
8000 samples per second, each frame takes 125 µs. At the receiver it is necessary to 
be sure where each frame begins in order to separate information bits separately. 
For this purpose, s framing bit is added at the beginning of each frame. This makes 
a total of 193 bits per frame. Framing bits are chosen so that a sequence of framing 
bits, one at the beginning of each frame, forms a special pattern that is unlikely to 
be formed in a speech channel. 

 

Fig. 2.7 T-1 frame. 

The sequence formed by the first bit from each frame is examined by the logic of 
the receiving terminal. If this sequence does not follow the given coded pattern 
(framing bit pattern), then a synchronization lost is detected and the next position 
is examined to determine whether it is actually the framing bit. It takes about 0.4 to 
6 ms to detect and about 50 ms (in the worst possible case) to reframe. 

In addition to information and framing bits we need to transmit signalling bits 
corresponding to dialling pulses, as well as telephone on-hook/off-hook signals. 
When channels developed by this system are used to transmit signals between 
telephone switching systems, the switches must be able to communicate with each 
other to use the channels effectively. Since all eight bits are now used for 
transmission instead of the seven bits used in the earlier version, the signalling 
channel provided by the eighth bit is no longer available. Since only a rather low 
speed signalling channel is required, rather than create extra time slots for this 
information we use one information bit(the least significant bit) of every sixth 
sample of a signal to transmit this information. This means every sixth sample of 
each voice signal will have a possible error corresponding to the least significant 
digit. Every sixth frame, therefore, has 7x24 = 168 information bits, 24 signalling 
bits and 1 framing bit. In all the remaining frames, there are 192 information bits 



and 1 framing bit. This technique is called 75/6 bit encoding and the signalling 
channel so derived is called robbed-bit signalling. The slight SNR degradation 
suffered by impairing one out of six frame is considered to be an acceptable 
penalty. The signalling bits for each signal occur at a rate of 8000/6 = 1333 
bits/sec.  

In such above case detection of boundary of frames is important. A new framing 
structure called the super frame was developed to take care of this. The framing 
bits are transmitted at the 8 kbps rate as before (earlier case) and occupy the first 
bit of each frame. The framing bits form a special pattern which repeats in twelve 
frames: 100011011100. The pattern thus allows the identification of frame 
boundaries as before, but also allows the determination of the locations of the sixth 
and twelfth frames within the superframe. Since two signalling frames are used so 
two specific job can be initiated. The odd numbered frames are used for frame and 
sample synchronization and the even numbered frames are used to identify the A 
& B channel signalling frames(frames 6 & 12). 

A new superframe structure called the extended superframe (ESF) format was 
introduced during 1970s to take advantage of the reduced framing bandwidth 
requirement. An ESG is 24 frames in length and carries signalling bits in the eighth 
bit of each channel in frames 6, 12, 18 and 24. Sixteen state signalling is thus 
possible. Out of 24 framing bits 4th, 8th, 12th, 16th, 20th and 24th(2 kbps) are used for 
frame synchronization and have a bit sequence 001011. Framing bits 1, 5, 9, 13, 17 
and 21(2 kbps) are for error detection code. 12 remaining bits are for management 
purpose and called as facility data link(FDL). The function of signalling is also the 
common channel interoffice signalling (CCIS). 

 
Differential Pulse Code Modulation : 

In analog messages we can make a good guess about a sample value from a 
knowledge of the past sample values. In other words, the sample values are not 
independent and there is a great deal of redundancy in the Nyquist samples. 
Proper exploitation of this redundancy leads to encoding a signal with a lesser 
number of bits. Consider a simple scheme where instead of transmitting the 
sample values, we transmit the difference between the successive sample values. 

If g[k] is the kth sample instead of transmitting g[k], we transmit the difference 
d[k] = g[k] – g[k-1]. At the receiver, knowing the d[k] and the sample value g[k-1], 
we can construct g[k]. Thus form the knowledge of the difference d[k], we can 
reconstruct g[k] iteratively at he receiver. Now the difference between successive 
samples is generally much smaller than the sample values. Thus peak amplitude, 
gp of the transmitted values is reduced considerably. Because the quantization 
interval Δ = gp/L, for a given L(or n) this reduces the quantization interval Δ. 
Thus, reducing the quantization noise which is given by Δ2/12. 



This means that for a given n(or transmission bandwidth), we can increase the 
SNR or for a given SNR we can reduce n(or transmission bandwidth). 

We can improve upon scheme by estimating the value of the kth sample g[k] from 
knowledge of the previous sample values. If this estimate is ො݃[k], then we transmit 
the difference (prediction error) d[k] = g[k] – ො݃[k]. At the receiver also we 
determine the estimate ො݃[k] from the previous sample values and then generate 
g[k] by adding the received d[k] to the estimate ො݃[k]. Thus we reconstruct the 
samples at the receiver iteratively. If our prediction is worthful the predicted value 
ො݃[k]will be close to g[k] and their difference (prediction error) d[k] will be even 
smaller than the difference between the successive samples. Consequently this 
scheme known as the differential PCM(DPCM) is superior to that described in the 
previous paragraph which is a special case of DPCM, where the estimate of a 
sample value is taken as the previous sample value, ie, ො݃[k]=g[k-1].  

Consider for example a signal g(t) which has derivative of all orders  at ‘t’. Using 
Taylor series for this signal, we can express g(t+Ts) s, 

  g(t+Ts) = g(t) + Ts. ሶ݃ ሺݐሻ + T2s/2! ሷ݃ሺݐሻ + ……    (2.16) 

                         = g(t) + Ts. ሶ݃ ሺݐሻ  for small Ts.    (2.17) 

So from eqn.(2.16) it is clear a future signal can be predicted from the present 
signal and its all derivatives. Even if we know the first derivative we can predict 
the approximated signal. 

Let us denote the kth sample of g(t0 by g[k], ie, g[kTs] =g[k] and g(kTs ± Ts) = g[k ± 
1] and so on. Setting t=kTs in eqn.(2.17) and recognizing g(kTs) ≈ [g(kTs) – g(kTs – 
Ts)]/Ts. 

We obtain,  

 g[k+1] ≈ g[k] + Ts[{g[k] – g[k-1}/Ts]] 

   = 2g[k] – g[k-1]       (2.18) 

This shows that we can find a crude prediction of the (k+1)th sample from two 
previous samples. The approximation in eqn.(2.17) improves as we add more 
terms in the series on the right hand side. To determine the higher order 
derivatives in the series, we require more samples in the past. The larger the 
member of past samples we use, the better will be the prediction. Thus, in general 
we can express the prediction formula as, 

 g[k] ≈ a1g[k-1] + a2g[k-2]+……….+ aNg[k-N]    (2.19) 

The right hand side of eqn.(2.19), is , ො݃[k, the predicted value of g[k]. Thus, 

  ො݃[k] = a1g[k-1] + a2g[k-2]+……….+ aNg[k-N]    (2.20) 



This is the eqn. of an Nth order predictor. Larger n would result in better 
prediction in general. The output of this filter (predictor) is ො݃[k], the predicted 
value of g[k]. the input is the previous samples g[k-1], g[k-2],……,g[k-n], although 
it is customary to say that the input is g[k] and the output is ො݃[k]. 

Eqn.(2.20) reduces to ො݃[k] = g[k-1] for the 1st order predictor. This is similar to 
eqn.(2.17). This means a1 = 1 and the 1at order predictor is a simple time delay.  

The predictor described in eqn.(2.20) is called a linear predictor. It is basically a 
transversal filter(a tapped delay line), where the tap gains are set equal to the 
prediction coefficients as shown in fig. 2.8. 

 

Fig. 2.8  Transversal filter(tapped delay line) used as a liner predictor 

 

 Analysis of DPCM : 
As mentioned earlier, in DPCM we transmit not the present sample g[k] but 
d[k] (the difference between  g[k] and its predicted value ො݃[k]). At the receiver, 
we generate ො݃[k] from the past sample values to which the received d[k] is 
added to generate g[k]. There is, however, one difficulty in this scheme. At the 
receiver, instead of the past samples g[k-1], g[k-2],……. as well as d[k], we have 
their quantized versions gp[k-1], gp[k-2],….. Hence, we cannot determine ො݃[k]. 
We can only determine gp[k], the estimate of the quantized sample gq[k] in 
terms of the quantized samples gq[k-1], gq[k-2],………. This will increase the 
error in reconstruction. In such a case, a better strategy is to determine ො݃q[k], 
the estimate of gq[k](instead of g[k]), at the transmitter also from the quantized 
samples gq[k-1], gq[k-2],………. The difference d[k] = g[k] - gq[k-2],……. is now 
transmitted using PCM. At the receiver we can generate ො݃q[k], and from the 
received d[k], we can reconstruct gq[k]. 
Fig 2.9 shows a DPCM transmitter. We shall soon see that the predictor input is 
gq[k]. Naturally its output is ො݃q[k], the predicted value of gq[k]. The difference, 
 
  d[k] = g[k] - ො݃q[k]       (2.21) 
 
is quantized to yield 
 



  dq[k] = d[k] + q[k]       (2.22) 
         

 
 

Fig. 2.9  DPCM system—Tansmitter and Receriver 
 
In eqn.(2.22) q[k] is the quantization error. The predictor output ො݃q[k] is fed 
back to its input so that the predictor input gq[k] is, 
 
 gq[k] = ො݃q[k] + dq[k] 
           = g[k] – d[k] + dq[k] 
           = g[k] + q[k]        (2.23) 
 
This shows that gq[k] is a quantized version of g[k]. The predictor input is 
indeed gq[k] as assumed. The quantized signal dq[k] is now transmitted over 
the channel. The receiver shown in fig 2.9 is identical to the shaded portion of 
the transmitter. The input in both cases is also the same, viz., dq[k]. Therefore, 
the predictor output must be ො݃q[k] (the same as the predictor output at the 
transmitter). Hence, the receiver output (which is the predictor input) is also 
the same, viz., gq[k] = g[k] + q[k], as found in eqn.(2.23). This shows that we are 
able to receive the desired signal g[k] plus the quantization noise q[k]. This is 
the quantization noise associated with the difference signal d[k], which is much 
smaller than g[k]. The received samples are decoded and passed through a low 
pass filter of D/A conversion.  
 

 SNR Improvement : 
To determine the improvement in DPCM over PCM, let gp and dp be the peak 
amplitudes of g(t) and d(t). If we use the same value of ‘L’ in both cases, the 
quantization step Δ in DPCM is reduced by the factor gp/dp. Because the 
quantization noise power is Δ2/12, the quantization noise in DPCM reduced by 
the factor (gp/dp)2 and the SNR increases by the same factor. Moreover, the 
signal power is proportional to its peak value squared (assuming other 
statistical properties invariant). Therefore, Gp(SNR improvement due to 
prediction) is 
 
    Gp = Pg/Pd      (2.24) 

 

 



Where Pg and Pd are the powers of g(t) and d(t) respectively. In terms of dB 
units, this means that the SNR increases by 10log(Pm/Pd) dB. 
For PCM, 
 
  (S0/N0) = α + Gn  where, α = 10logC   (2.25) 
 
In case of PCM the value of α is higher by 10log(Pg/Pd) dB. A second order 
predictor processor for speech signals can provide the SNR improvement of 
around 5.6 dB. In practice, the SNR improvement may be as high as 25 dB. 
Alternately, for the same SNR, the bit rate for DPCM could be lower than that 
for PCM by 3 to 4 bits per sample. Thus telephone systems using DPCM can 
often operate at 32 kbits/s or even 24 kbits/s. 
 

 Delta Modulation: 
Sample correlation used in DPCM is further exploited in delta modulation(DM) 
by oversampling(typically 4 times the Nyquist rate) the baseband signal. This 
increases the correlation between adjacent samples, which results in a small 
prediction error that can be encoded using only one bit (L=2) for quantization 
of the g[k] – ො݃q[k]. In comparison to PCM even DPCM, it us very simple and 
inexpensive method of A/D conversion. A 1-bit code word in DM makes word 
framing unnecessary at the transmitter and the receiver. This strategy allows us 
to use fewer bits per sample for encoding a baseband signal. 
 
 

 
 

Fig. 2.10  Delta Modulation is a special case of DPCM 
 
In DM, we use a first order predictor which as seen earlier is just a time delay 
of Ts(the sampling interval). Thus, the DM transmitter (modulator) and the 
receiver (demodulator) are identical to those of the DPCM in fig2.9 with a time 
delay for the predictor as shown in fig 2.10. From this figure, we obtain, 
 
  ො݃q[k] = gq[k-1] +  dq[k]      (2.26) 
 
Hence,          gq[k-1] = gq[k-2] + dq[k-1]     (2.27) 
 
Substituting eqn.(2.27) into eqn.(2.26) yields 
  



  gq[k] = gq[k-2] + dq[k] + dq[k-1]     (2.28) 
 
Proceeding iteratively in this manner and assuming zero initial condition, ie, 
gq[0] = 0, yields, 
 
  gq[k] = ∑ ሾ݃ሿ ݍ݀

ୀ        (2.29) 
 
This shows that the receiver(demodulator) is just an accumulator(adder). If the 
output dq=[k] is represented by an integrator because its output is the sum of 
the strengths of the input impulses(sum of the areas under the impulses). We 
may also replace the feedback portion of the modulator (which is identical to 
the demodulator) by an integrator. The demodulator output is gp[k], which 
when passed through a low pass filter yields the desired signal reconstructed 
from the quantized samples.  
 
 
 

 
Fig. 2.11  Delta Modulation 

 



Fig 2.11 shows a practical implementation of the delta modulator and 
demodulator. As discussed earlier, the first order predictor is replaced by a low 
cost integrator circuit (such as and RC integrator). The modulator consists of a 
comparator and a sampler in the direct path and an integrator amplifier n the 
feedback path. Let us see how this delta modulator works. 
The analog signal g(t) is compared with the feedback signal(which served as a 
predicted signal) ො݃q[k]. The error signal d(t) = g(t) – ො݃q[k] is applied to a 
comparator. If d(t) is +ve, the comparator output is a constant signal of 
amplitude E, and if d(t) is –ve, the comparator output is –E. Thus, the 
difference is a binary signal [L = 2] that is needed to generate a 1-bit DPCM. 
The comparator output is sampled by a sampler at a rate of fs samples per 
second. The sampler thus produces a train of narrow pulses dq[k] with a 
positive pulse when g(t)> ො݃q[k]  and a negative pulse when g(t)< ො݃q[k]. The 
pulse train dq(t) is the delta modulated pulse train. The modulated signal dq(t) 
is amplified and integrated in the feedback path to generate ො݃q[k] which tries to 
follow g(t).  
To understand how this works we note that each pulse in dq[k] at the input of 
the integrator gives rise to a step function (positive or negative depending on 
pulse polarity) in ො݃q[k]. If, eg, g(t) > ො݃q[k], a positive pulse is generated in dq[k], 
which gives rise to a positive step in ො݃q[k], trying to equalize ො݃q[k] to g(t) in 
small steps at every sampling instant as shown in fig 2.11. It can be seen that 
ො݃q[k] is a kind of staircase approximation of g(t). The demodulator at the 
receiver consists of an amplifier integrator (identical to that in the feedback 
path of the modulator) followed by a low pass filter.  
 
 

 DM transmits the derivative of g(t) 
In DM, the modulated signal carries information not about the signal samples 
but about the difference between successive samples. If the difference is 
positive or negative a positive or negative pulse (respectively) is generated in 
the modulated signal dq[k]. Basically, therefore, DM carries the information 
about the derivative of g(t) and , hence, the name delta modulation. This can 
also be seen from the face that integration of the delta modulated signal yields 
gq(t), which is an approximation of g(t). 
 

 Threshold of coding and overloading 
Threshold and overloading effects can be clearly seen in fig 2.11c. Variation in 
g(t) smaller than the step value(threshold coding) are lost in DM. Moreover, if 
g(t) changes too fast ie, ො݃q[k] is too high, ො݃q[k] cannot follow g(t), and 
overloading occurs. This is the so called slope overload which gives rise to 
slope overload noise. This noise is one of the basic limiting factors in the 
performance of DM. We should expect slope overload rather than amplitude 
overload in DM, because DM basically carries the information about ො݃q[k]. The 
granular nature of the output signal gives rise to the granular noise similar to 
the quantization noise. The slope overload noise can be reduced by increasing 
the step size Δ. This unfortunately increases granular noise. There is an 



optimum value of Δ, which yields the best compromise giving the minimum 
overall noise. This optimum value of Δ depends on the sampling frequency fs 
and the nature of the signal. 
The slope overload occurs when ො݃q[k] cannot follow g(t). During the sampling 
interval Ts, ො݃q[k] is capable of changing by Δ, where Δ is the height of the step 
Hence, the maximum slope that ො݃q[k] can follow is Δ/Ts=, or Δfs, where fs is the 
sampling frequency. Hence, no overload occurs if 
 
  | ሶ݃ ሺݐሻ| < Δfs        (2.30) 

   
Consider the case of a single tone modulation, 
 
ie,   g(t) = A.cos(wt) 
 
 
The condition for no overload is 
 
  | ሶ݃ ሺݐሻ|max = wA < Δfs      (2.31) 

 
Hence, the maximum amplitude ‘Amax’ of this signal that can be tolerated 
without overload is given by 
   Amax = Δfs/W      (2.32) 
The overload amplitude of the modulating signal is inversely proportional to 
the frequency W. For higher modulating frequencies, the overload occurs for 
smaller amplitudes. For voice signals, which contain all frequency components 
up to(say) 4 KHz, calculating Amax by using W = 2.pi.4000 in eqn.(2.32) will 
give an overly conservative value. It has been shown by De Jager that ‘Amax’ for 
voice signals can be calculated by using Wr = 2.pi.800 in eqn.(2.32), 

    [Amax]voice ≈ Δfs/wr      (2.33) 

Thus, the maximum voice signal amplitude ‘Amax’ that can be used without 
causing slope overload in DM is the same as the maximum amplitude of a 
sinusoidal signal of reference frequency fr(fr = 800 Hz) that can be used without 
causing slope overload in the same system.  
 
 



 
Fig. 2.12  Voice Signal Spectrum 

 
Fortunately, the voice spectrum (as well as the TV video signal) also decays 
with frequency and closely follows the overload characteristics (curve c, fig 
2.11). For this reason, DM is well suited for voice (and TV) signals. Actually, 
the voice signal spectrum (curve b) decrease as 1/W upto 2000 Hz, land 
beyond this frequency, it decreases as 1/W2. Hence, a better match between the 
voice spectrum and the overload characteristics is achieved by using a single 
integration up to 2000 Hz and a double interaction beyond 2000 Hz. Such a 
circuit (the double integration) is fast responding, but has a tendency to 
instability, which can be reduced by using some lower order prediction along 
with double integration. The double integrator can be built by placing in 
cascade tow low pass RC integrators with the time constant R1C1 = 1/2000.pi 
and R2C2 = 1/4000.pi, respectively. This result in single integration from 100 Hz 
to 2000 Hz and double integration beyond 2000 Hz. 
 
 

 Adaptive Delta Modulation 
The DM discussed so far suffers from one serious disadvantage. The dynamic 
range of amplitudes is too small because of the threshold and overload effects 
discussed earlier. To correct this problem, some type of signal compression is 
necessary. In DM a suitable method appears to be the adaptation of the step 
value ‘Δ’ according to the level of the input signal derivative. For example in 
fig.2.11c when the signal g(t) is falling rapidly, slope overload occurs. If we can 
increase the step size during this period, this could be avoided. On the other 
hand, if the slope of g(t) is small, a reduction of step size will reduce the 
threshold level as well as the granular noise. The slope overload causes dq[k] to 
have several pulses of same polarity in succession. This call for increased step 
size. Similarly, pulses in dq[k] alternating continuously in polarity indicates 
small amplitude variations, requiring a reduction in step size. This results in a 
much larger dynamic range for DM. 
 
 
 



 Output  SNR 
The error d(t) caused by the granular noise in DM, (excluding slope overload), 
lies in the range (-Δ,Δ) , where Δ is the step height in gq(t). The situation is 
similar to that encountered in PCM, where the quantization error amplitude 
was in the range from –Δ/2 to Δ/2.  The quantization noise is, 
 

<q2e> = 1/Δ ݍ
ଶ݀ݍ

∆
మ

ି∆
మ

 = Δ2/12     (2.34) 

  Similarly the granular noise power <g2n> is 

   <g2n> = 1/(2A)  ݃
ଶ. ݀݃

௱
ି௱  (2.35)     3/3߂ = 

The granular noise PSD has continuous spectrum, with most of the power in 
the frequency range extending well beyond the sampling frequency ‘fs’. At the 
output, most of this will be suppressed by the baseband filter of bandwidth W. 
Hence the granular noise power N0 will be well below that indicated in 
equation (18). To compute N0 we shall assume that PSD of the quantization 
noise is uniform and concentrated in the band of 0 to fs Hz. This assumption 
has been verified experimentally. Because the total power Δ3/3 is uniformly 
spread over the bandwidth fs, the power within  the baseband W is  
   
  N0 = (Δ3/3)W/fs = Δ2.W/(3fs)     (2.36) 
 
The output signal power is S0 = <g2(t)>. Assuming no slope overload distortion 
 
  S0/N0 = 3.fs<g2(t)>/(Δ2.W)      (2.37) 
 
If gp is the peak signal amplitude, then eqn. (2.33) an be written as, 
 
  gp = Δfs/Wr 
&  S0/N0 = 3.f3s<g2(t)>/(W2r.W.g2p)     (2.38) 
 
Because we need to transmit fs pulses per second, the minimum transmission 
bandwidth BT = fs/2. Also for voice signals, W=4000 and Wr =2.pi.800 =1600.pi. 
Hence,  
  S0/N0 = [3.(2BT)3<g2(t)>]/[1600x1600.π2Wg2p] 
   =150/ π2.(BT/W)3.<g2(t)>/g2p    (2.39) 
 
Thus the output SNR varies as the cube of the bandwidth expansion ratio 
BT/W. This result is derived for the single integration case. For double 
integration DM, Greefkes and De Jager have shown that, 
 
  S0/N0 = 5.34(BT/W)5<g2(t)>/g2p     (2.40) 
 



It should be remembered that these results are valid only for voice signals. In 
all the preceding developments, we have ignored the pulse detection error at 
the receiver. 
 

 Comparison With PCM   
The SNR in DM varies as a power of BT/W, being proportional to (BT/W)3 for 
single integration and  (BT/W)5 for double integration. In PCM on the other 
hand the SNR varies exponentially with BT/W. Whatever the initial value, the 
exponential will always outrun the power variation. Clearly for higher values 
of BT/W, PCM is expected to be superior to DM. The output SNR for voice 
signals as a function of the bandwidth expansion ratio BT/W is plotted in fig. 
for tone modulation, for which <g2> /gp2 = 0.5. The transmission band is 
assumed to be the theoretical minimum bandwidth for DM as well as PCM. It 
is clear that DM with double integration has a performance superior to 
companded PCM(which is the practical case) for lower valued of BT/W = 10. In 
practice, the crossover value is lower than 10, usually between 6 & 7(fs = 50 
kbits/s). This is true only for voice and TV signals, for which DM is ideally 
suited. For other types of signals, DM does not comparable as well with PCM. 
Because the DM signal is digital signal, it has all the advantages of digital 
system, such as the use of regenerative repeaters and other advantages as 
mentioned earlier. As far as detection of errors are concerned, DM is more 
immune to this kind of error than PCM, where weight of the detection error 
depends on the digit location; thus for n=8, the error in the first digit is 128 
times as large as the error in the last digit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For DM, on the other hand, each digit has equal importance. Experiments have 
shown that an error probability ‘Pe’ on the order of 10-1 does not affect the 

Fig. 2.21a   Comparison of DM and PCM.



intelligibility of voice signals in DM, where as ‘Pe’ as low as 10-4 can cause 
serious error, leading to threshold in PCM. For multiplexing several channels, 
however, DM suffers from the fact that each channel requires its own coder 
and decoder, whereas for PCM, one coder and one decoder are shared by each 
channel. But his very fact of an individual coder and decoder for each channel 
also permits more flexibility in DM. On the route between terminals, it is easy 
to drop one or more channels and insert other incoming channels. For PCM, 
such operations can be performed at the terminals. This is particularly 
attractive for rural areas with low population density and where population 
grows progressively. The individual coder-decoder also avoids cross-talk, thus 
alleviating the stringent design requirements in the multiplexing circuits in 
PCM.  
In conclusion, DM can outperform PCM at low SNR, but is inferior to PCM in 
the high SNR case. One of the advantages of DM is its simplicity, which also 
makes it less expensive. However, the cost of digital components, including 
A/D converters, ie, coming down to the point that the cost advantage of DM 
becomes insignificant. 
 

 Noise in PCM and DM 
 

            
 

Fig. 2.13 A binary PCM encoder-decoder. 
 

In the above figure m(t) is same as g(t). The baseband signal g(t) is quantized, giving 
rise to quantized signal gq(t), where  
  gq(t) = g(t) + e(t)       (2.41) 
(e(t) is same as qe(t) as discussed earlier). 
The sampling interval is Ts=1/2fm , where fm is the frequency to which the signal g(t) is 
bandlimited. 



The sampling pulses considered here are narrow enough so that the sampling may be 
considered as instantaneous. With such instantaneous sampling, the sampled signal may 
be reconstructed exactly by passing the sequence of samples through a low pass filter 
with cut off frequency of fm. Now as a matter of mathematical convenience, we shall 
represent each sampling pulse as an impulse. The area of such an impulse is called its 
strength, and an impulse of strength I is written as Iδ(t). 
The sampling impulse train is therefore s(t), given by, 
  
  s(t) = I∑ ݐሺߜ െ ݇ሻஶ

ିஶ ௦ܶ      (2.42) 
Where,   Ts = 1/(2.fm) 

From equation 1 and 2 , the quantized signal  gq(t) after sampling becomes gqs(t), 
written as, 
 
 gqs(t) = g(t)I∑ ݐሺߜ െ ݇ ௦ܶሻஶ

ୀିஶ  + e(t)I∑ ݐሺߜ െ ݇ ௦ܶሻஶ
ୀିஶ    (2.43a) 

           = gs(t) + es(t)        (2.43b) 
 
The binary output of the A/D converter is transmitted over a communication channel 
and arrives at the receiver contaminated as a result of the addition of white thermal 
noise W(t). Transmission may be direct as indicated in fig.2.13, or the binary output 
signal may be used to modulate a carrier as in PSK or FSK. 
In any event the received signal is detected by a matched filter to minimize errors in 
determining each binary bit and thereafter passed on to a D/A converter.  The output of 
a D/A converter is called gqs(t). In the absence of thermal noise and assuming unity 
gain from the input to the A/D converter to the output of the D/A converter, we should 
have g~qs(t) = gqs(t) . Finally the signal g~qs(t) is passed through the low pass baseband 
filter. At the output of the filter we find a signal g0(t) which aside from a possible 
difference in amplitude has exactly the waveform of the original baseband signal g(t). 
This output signal however in accompanied by a noise waveform Wq(t) due to thermal 
noise. 

 
 Calculation of Quantization Noise 

 
Let us calculate the output power due to the quantization noise in the PCM system as in 
fig.2.14 ignoring the effect of thermal noise. 
The sampled quantization error waveform, as given by eqn (2.43b), 
 
  es(t) = e(t)I∑ ݃ሺݐ െ ݇ ௦ܶሻஶ

ୀିஶ       (2.44) 
 
It is to be noted that if the sampling rate is selected to be the nyquist rate for the 
baseband signal g(t) the sampling rate will be inadequate to allow reconstruction of the 
error signal e(t) from its sample es(t). In fi.2 the quantization levels are separated by 
amount ∆. We observe that e(t) executes a complete cycle and exhibits an abrupt 
discontinuity every time g(t) makes an excursion of amount ∆. Hence spectral range of 
e(t) extends for beyond the band limit fm of g(t). 
 



 
 

Fig. 2.14 Plot of mq(t) and e(t) as a function of m(t). 
 
To find the quantization noise output power Nq, we require the PSD of the sampled 
quantization error es(t) given in eqn (2.44). 
 
 
Since δ(t-kTs) = 0 except when t=kTs es(t) may be written as, 
 
  es(t) = I.∑ ݁ሺ݇ ௦ܶሻߜሺݐ െ ݇ ௦ܶሻஶ

ୀିஶ      (2.45) 
 
The waveform of eqn (2.45) consists of a sequence of impulses of area=A=e(kTs) I 
occurring at intervals Ts. The quantity e(kTs) is the quantization error at sampling time 
and is a random variable. 
The PSD Ges(f) of the sampled quantization error is, 
 

         (2.46) 

  and,                 
 
For a step size of ∆ the quantization error is 
 
  e2(t) = Δ2/12        (2.47) 
 
Equation 6 involves <e2(kTs)>  rather than <e2(t)>. However since the probability 
density of e(t) does not depend on time the variance of e(t) is equal to the variance of 
e(t= kTs) . 
 
Thus,  <e2(t)> = <e2(kTs)> = Δ2/12      (2.48) 
From eqn. (2.46)  and eqn. (2.49)  we have, 
 
  Ges(f) = I2Δ2/(Ts.12)       (2.49) 
 
Finally the quantization noise Nq is, from eqn. (2.50),  
 

       (2.50) 

      [take ‘S’ as ‘Δ’ ] 



 
 The Output Signal Power 

The sampled signal which appears at the input to the baseband filter shown in fig.2.14 
is given by gs(t) in eqn(2.43) as. 
 
  gs(t) =g(t).I.∑ ݐሺߜ െ ݇ ௦ܶሻஶ

ୀିஶ      (2.51) 
 
Since the impulse train is periodic it can be represented by a fourier series. Because the 
impulses have strength I and are separated by a time Ts, the first term in Fourier series 
is the dc component which is 1/Ts. Hence the signal g0(t) at the output of the baseband 
filter is 
 
  g0(t) = I/Ts.g(t)       (2.52) 
 
Since Ts=1/2fm , other terms in the series of equation 11 lie outside the passband of the 
filter. The normalised signal output power is from eqn  (2.52), 
  ݃

ଶሺݐሻതതതതതതത = I2/T2 .݃ଶሺݐሻതതതതതതത       (2.53) 
 
We can now express ݃ଶሺݐሻതതതതതതത in terms of the number M of quantization levels and the step 
size ∆. To do this we can say that the signal can vary from -m∆/2 to m∆/2, i.e we 
assume that the instantaneous value of g(t) may fall anywhere in its allowable range of 
‘m∆’ volts with equal likelihood. Then the probability density of the instantaneous 
value of g in f(g) given by, 
 
  f(g) = 1/(MΔ) 
 
The variance σ2 of g(t), ie, ݃ଶሺݐሻതതതതതതത is, 
 

  ݃ଶሺݐሻതതതതതതത =  ݃ଶ
ಾ∆

మ
ିಾ∆

మ
݂ሺ݃ሻ݀݃ =  M2.Δ2/12     (2.54) 

 
Hence from eqn. (2.53), the output signal power is  
 
  S0 = ݃

ଶሺݐሻതതതതതതത = I2/T2 . M2.Δ2/12       (2.55) 
 
From eqn.(2.50)  and (2.55) we find the signal to quantization noise ratio is  
 
  So /Nq = M2 = (2N)2       (2.56) 
 

where, N is the number of binary digits needed to assign individual binary code 
designations to the M quantization levels. 
 

 The Effects of Thermal Noise 
The effect of additive thermal noise is to calculate the matched filter detector of 
fig.2.14 to make an occasional error in determining whether a binary 1 or binary 0 was 
transmitted. If the thermal noise is white and Gaussian the probability of such an error 
depends on the ratio Eb/η. Where Eb is signal energy transmitted during a bit and η/2 is 
the two sided power spectral density of the noise. The probability depends also on the 
type of modulation employed. 



 
Rather typically, PCM system operate with error probabilities which are small enough 
so  that we may ignore the likelihood that more than a single bit error will occur with in 
a single word. For example, if the error probability Pe=10-5 and a word of 8 bits we 
would expect on the average that 1 word would be in error for every 12500 word 
transmitted. Indeed the probability of two words being transmitted in error in the same 
8 bit word is 28*10-10. 
 
Let us assume that a code word used to identify a quantization level has N bits. We 
assume further that the assignment of code words to levels is in the order of numerical 
significance of the word. Thus we assign 00.....00 to the most negative level to the next 
higher level until the most positive level is assigned the codeword 1 1.....1 1. 
 
An error which occurs in the least significant bit of the code word corresponds to an 
incorrect determination by amount ‘∆’ in the quantized value gs(t) of the sampled 
signal. An error in the next higher significant bit corresponds to an error 2∆; in the next 
higher, 4∆, etc. 
Let us call the error δgs. Then assuming that an error may occur with equal likelihood 
inany bit of the word, the variance of the error is, 
 
  <δg2

s> = 1/N.[ Δ2 + (2Δ)2 + (4Δ)2 + ...........+(2N-1Δ)2] 
  = Δ2/N.[ 12 + (2)2 + (4)2 + ...........+(2N-1)2]     (2.57) 
 The sum of the geometric progression in eqn.(2.57), 
 
  <δg2

s> = Δ2/N.2(2N-1)/(22-1) =  22N.Δ2/(3N),    for N ≥ 2   (2.58a) 
 
The preceding discussion indicates that the effect of thermal noise errors may be taken 
into account by adding at the input to the A/D converter in fig. 2.14, an error voltage 
δgs , and by detecting the white noise source and the matched filter. We have assumed 
unity gain from the input to the A/D converter to the output of the D.A converter. Thus 
the same error voltage appears at the input to the lowpass baseband filter. The results of 
a succession of errors is a train of impulses, each of strength I(δgs). These impulses are 
of random amplitude and of random time of occurrence.  
       A thermal noise error impulse occurs on each occasion when a word is in error. 
With Pe the probability of a bit error, the mean separation between bits which are in 
errors is 1/ Pe. 
With N bits per word , the mean separation between words which are in error is 1/N Pe 
words. Words are separated in time by the sampling interval Ts. Hence the mean time 
between words which are in error is T, given by  
 

                                                                          (2.58b) 
 
The power spectral density of the thermal noise error impulses train is, using 
eqn.(2.58a) and(2.58b), 
 
  Gth(f) = I2/T < δ.gs

2 > = NPeI2/Ts
  <δ.gs

2>    (2.59) 
 
using eqn.(2.58a), we have 
 



 Gth(f) = 22NΔ2PeI2/(3T2
e)       (2.60) 

 
Finally, the output power due to the thermal error noise is, 
 
 Nth =  ௧ሺ݂ሻ݂݀ ܩ

ି
 = 22N.Δ2PeI2/(3.Ts

2)     (2.61) 
 

 Output Signal To Noise Ratio in PCM 
The output SNR including both quantization and thermal noise , is found by combining 
equation 10,16 and 23. The result is 
 

      
[replace ‘S’ by ‘Δ’; S is same as Δ] 

 
    

                                                                                          (2.62) 
In PSK(or for direct transmission) we have, 
 

                                                                      (2.63) 
 
Where, Eb is the signal energy of a bit and η/2 is the two sided thermal noise power 
spectral density. Also, for coherent reception of FSK we have, 
 

                                               (2.64) 
 
To calculate Eb, we note that if a sample is taken at intervals of Ts and the code word of 
N bit occupies the total interval between samples, then a bit has a duration Ts/N. If the 
received signal power is Si , energy associated with a single bit is 
 

                                                                 (2.65) 
 
Combining eqns. (2.62), (2.63) & (2.65), we find, 
 

                     (2.66) 
 
using eqn.(2.64) in place of eqn.(2.63), we have 
 
   

                            (2.67) 



 
 

  
 

                                   (2.68) 
 
 
From fig. we find both the PCM system exhibit threshold, FSK threshold occurring at a 
Si/ηfm which is 2.2 dB greater than that for PSK. Experimentally, the onset of threshold 
in PCM is marked by an abrupt increase in a crackling noise analogous to the clicking 
noise heard below threshold in analogue FM systems. 
 
 
 

 Delta Modulation:  
 

A delta modulation system including a thermal noise source is shown in fig.2.15. The 
impulse generator applies the modulator a continuous sequence of impulses pi(t) of 
time separation τ. The modulator output is a sequence of pulses P0(t) whose polarity 
depends on the polarity of the difference signal δ(t)=g(t) – g~(t) , where g~(t) is the 
integrator output. We assume that the integrator has been adjusted so that its response 
to an input impulse of strength I is a step size ∆; i.e. g~(t) = (∆/I)∫P0(t)dt. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15  A delta modulation system. 

 
A typical impulse train P0(t) is shown in fig.2.16(a). Before transmission, the impulse 
waveform will be converted to the two level waveform of fig.2.16(b). Since this latter 
waveform has much greater power than a train of narrow pulses. This conversion is 



accomplished by the block in fig.2.15 marked “transmitter”. The transmitter in 
principle need be nothing more complicated than a bistable multivibrator. We may 
readily  

 
 

Fig.2.16  (a) A typical impulse train p0(t)appearing at the modulator output in previous fig. 
                 (b) The two-level signal transmitted over the communication channel. 
 
arrange that two positive impulses set the flip-flop into one of its stable states, while the 
negative impulses reset the flip-flop to its other stable state. The binary waveform of 
fig.2.16(b) will be transmitted directly or used to modulate as a carrier in FSK or PSK. 
After detection by the matched filter shown in fig.2.15, the binary waveform will be 
reconverted to a sequence of impulses P0′(t). In the absence of thermal noise 
P0′(t)=P0(t), and the signal g~(t) is recovered at the receiver by passing P0’(t) through an 
integrator. We assume that transmitter and receiver integrators are identical and that the 
input to each consists of a train of impulses of strength +I or -I. Hence in the absence of 
thermal noise , the output of both the integrators are identical. 
 

 Quantization Noise in Delta Modulation  
 
Here in fig. 2.17  g~(t) in the delta modulator approximation to g(t). Fig 2.17 shows the 
error waveform δ(t) given by, 
 
  δ(t) = g(t) – ො݃(t)       (2.69) 
This error waveform is the source for quantization noise. 
 

 



 
 

Fig. 2.17 The estimate ො݃(t) and error Δ(t) when g(t) is sinusoidal. 
 
 
 
 

We observe that, as long as slope overloading is avoided, the error δ(t) is always less than the 
step size ∆. We shall assume that δ(t) takes on all values between -∆ and +∆ with equal 
likelihood. So we can assume the probability δ(t) is, 
 
 f(δ) = 1/(2Δ),  -Δ ≤ δ(t) ≤ Δ      (2.70) 
 
The normalization power of the waveform δ(t) is then, 
 
 <[δ(t)]2> =  ݂ሺߜሻ௱

ି௱  Δ2/3      (2.71)  =  ߜଶ݀ߜ
 
Our interest is in estimating how much of this power will pass through a baseband 
filter. For this purpose we need to know something about the PSD of δ(t) . 
 
In fig. 2.17 the period of the sinusoidal waveform g(t) i.e. T has been  selected so that T 
is an integral multiple of step duration τ. We then observe that the δ(t)  is periodic with 
fundamental period T, and is of course, rich in harmonics. Suppose, however, that the 
period T is charged very slightly by amount δT. Then the fundamental period of δ(t)  
will not be T but will be instead T * τ/δT corresponding to a fundamental frequency 
near zero as  δT tends to 0. And again, of course δ(t) will be rich in harmonics. Hence, 
in the general case, especially with g(t) a random signal, it is reasonable to assume that 
δ(t) has a spectrum which extends continuously over a frequency which begins near 
zero. 
 
To get some idea of the upper frequency range of the spectrum of the waveform δ(t). 
Let us contemplate passing δ(t) through a LPF of adjustable cutoff frequency. Suppose 



that initially the cutoff frequency is high enough so that δ(t) may pass with nominally 
no distortion. As we lower the cutoff frequency, the first type of distortion we would 
note is that the abrupt discontinuities in the waveform would exhibit finite rise and fall 
times. Such is the case since it is the abrupt changes which contribute the high 
frequency power content of the signal. To keep the distortion within reasonable limits, 
let us arrange that the rise time be rather smaller than the interval τ. To satisfy this 
condition we require the filter cutoff frequency fc be of the order of fc=1/τ, since the 
transmitted bit rate fb=1/τ, fc=fb as expected. 
 
We now have made it appear reasonable, by a rather heuristic arguments that the 
spectrum of δ(t) extends rather continuously from nominally zero to fc = fb. We shall 
assume further that over this range the spectrum is white. It has indeed been established 
experimentally that the spectrum of δ(t) is approximately white over the frequency 
range indicated. 
 
  We may now finally calculate the quantization noise that will appear at the output of a 
baseband filter of cutoff frequency fm. Since the quantization noise power in a 
frequency range fb is ∆3/3 as given by equation 32, the output noise power in the 
baseband frequency range fm is  
 

  [replace ‘S’ with ‘Δ’ ]   (2.72) 
 
 
We may note also, in passing, that the two-sided power spectral density of δ(t) is, 
 
  Gδ(f) = Δ2/(3.2.fb) = Δ2/(6.fb),   -fb ≤ f ≤ fb   (2.73) 
 
 

 The Output Signal Power 
 

In PCM, the signal power is determined by the step size and the number of quantization 
levels. Thus, with step size ∆ and M levels, the signal could make excursion only 
between -M∆/2 and M∆/2. In delta modulation there is no similar restriction on the 
amplitude of the signal waveform, because the number of levels is not fixed. On the 
other hand, in delta modulation there is a limitation on the slope of the signal wave 
form which must be observed if slope overload is to be avoided. If however, the signal 
waveform changes slowly , there is normally no limit to the signal power which may be 
transmitted. 
 
Let us consider a worst case for delta modulation. We assume that the signal power is 
concentrated at the upper end of the baseband. Specifically let the signal be, 
 
  g(t) = A.sin(wmt) 
 
With ‘A’ the amplitude and ωm =2πfm, where fm is the upper limit of the baseband 
frequency range. Then the output signal power 
 
  S0(t) = ݃ଶሺݐሻതതതതതതത = A2/2        (2.74a) 



 
The maximum slope of g(t) is  ωmA. The maximum average slope of the delta 
modulator approximation  g~(t) is ∆/τ = ∆fb, where ∆ is step size and fb the bit rate. The 
limiting value of ‘A’ just before the onset of slope overload is, therefore given by the 
condition, 
 
  wM . A = Δfb        (2.74b) 

 
From eqns.(2.74a) and (2.74b), we have that the maximum power which may be 
transmitted in, 
 
  S0 = Δ2f2

b/(2w2
M)       (2.75) 

 
The condition specified in equation 37 is unduly severe. A design procedure, more 
often employed, is to select the ∆fb product to be equal to the rms value of the slope 
g(t). In this case the output signal power can be increased above the value given in 
equation 38. 
 
 
 
 

 Output Signal to Quantization Noise Ratio for Delta Modulation 
 
The output signal to quantization noise ratio for delta modulation is found by dividing 
eqn.(2.75) by eqn.(2.72). The result is 
  

                              (2.76) 
 
It is of interest to note that when our heuristic analysis is replaced by a rigorous 
analysis, it is found that eqn. 39 continues to apply, except with a factor 3/80 replaced 
by 3/64, corresponding to a difference of less than 1dB. 
 
The dependence of S0/Nq on the product fb/fm should be anticipated. For suppose that 
the signal amplitude were adjusted to the point of slope overload, if now, say, fm were 
increased by some order to continue to avoid overload. 
 
Let us now make a comparison of the performance of PCM and DM in the matter of the 
ratio S0/Nq. We observe that the transmitted signals in DM and in PCM are of the same 
waveform, a binary pulse train. In PCM a voltage level, corresponding to a single bit 
persists for the time duration allocated to one bit of codeword. With sampling at the 
Nyquist rate 1/2fm s , and with N bits per code word , the PCM bit rate is fb=2fmN. In 
DM, a voltage corresponding to a single bit is held for a duration τ which is the interval 
between samples. Thus the DM system operates at a bit rate fb=1/τ. 
 
If the communication channel is of limited bandwidth, then there is a possibility of 
interference in either DM or PCM. Whether such inter-symbol interference occurs in 
DM depends on the ratio of fb to the bandwidth of the channel and similarly in PCM on 
the ratio of fb to the channel bandwidth. For a fixed channel bandwidth, if inter-symbol 



interference is to be equal in the two cases, DM or PCM , we require that both systems 
operate at the same bit rate or 
 

fb=f’b=2fmN                                                                                 (2.77) 
 
Combining eq 17 and 40 for PCM yields 
 

S0/Nq=22N=2fb/fm        (2.78) 
  
Combining eq 39 and 40 for delta modulation yields 
 

S0/Nq = N3 (3/π2)        (2.79) 
 
Comparing equation 41 with 42 , we observe that for a fixed channel bandwidth the 
performance of DM is always poorer than PCM. For example if a channel is adequate 
to accommodate code words in PCM with N=8, equation 41 gives S0/Nq = 48dB. The 
same channel used for DM would, from equation 42 yield S0/Nq =22dB. 
 

 Comparison of DM and PCM for Voice 
 

when signal to be transmitted is the waveform generated by voice, the comparison 
between DM and PCM is overly pessimistic against DM. For as appears in the 
discussion leading to equation 37, in our concern to avoid slope overload under any 
possible circumstances, we have allowed for the very worst possible case. We have 
provided for the possibility that all the signal power might be concentrated at the 
angular frequency ωm which is the upper edge of the signal bandwidth. Such is 
certainly not the case for voice. Actually for speech a bandwidth fm = 3200Hz is 
adequate and the voice spectrum has a pronounced peak at 800Hz = fm/4. If we replace   
ωm by ωm/4 in eqn. (2.74b) we have, 
 
    wM .A/4 = Δ.fb 
 
The amplitude ‘A’ will now be four times larger than before and the allowed signal 
power before slope overload will be increased by a factor of it(12dB). Correspondingly, 
equation 39 now becomes, 
 

  S0/Nq = 6/π2.(fb/fM)3 = 0.6(fb/fM)3 = 5N3    (2.80) 

 
It may be readily verified that for (fb/fm)≤8 the signal to noise ratio for DM , SNR(δ), 
given by eqn.(2.80) is larger than SNR(PCM) given by eqn (2.78). At about (fb/fm) = 4 
the ratio SNR(DM)/ SNR(PCM) has maximum value 2.4 corresponding to 3.8db 
advantage. Thus if we allow fm = 4KHz for voice, then to avail ourselves of this 
maximum advantage offered by DM we would take fb = 16KHz. 
 
In our derivation of the SNR in PCM we assumed that at all times the signal is strong 
enough to range widely through its allowable excursion. As a matter of fact, we 
specifically assumed that the distribution function f(g) for the instantaneous signal 
value g(t) was uniform throughout the allowable signal range. As a matter of practice, 
such would hardly be the case.  The commercial PCM systems using companding, are 
designed so that the SNR remains at about 30dB over a 40dB range of signal power. In 



short while eqn (2.78) predicts a continuous increase in SNR(PCM) with increase in  
fb/fm, this result is for uncompanded PCM and in practice SNR(PCM) is approximately 
constant at 30dB. The linear DM discussed above has a dynamic range of 15dB. In 
order to widen this dynamic range to 40dB one employs adaptive DM(ADM), which 
yields advantages similar to the companding of PCM. When adaptive DM is employed, 
the SNR is comparable to the SNR of companded   PCM. Today the satellite business 
system employs ADM operating at 32kb/s rather than companded PCM which operates 
at 64kb/s thereby providing twice as many voice channels in a given frequency band. 
 

 The Effect of Thermal Noise in DM       
 

When thermal noise is present, the matched filter in the receiver will occasionally make 
an error in determining the polarity of the transmitted waveform. Whenever such an 
error occurs , the received impulse stream P0′(t) will exhibit an impulse of incorrect 
polarity. The received impulse stream is then  
 
       P0′(t)=P0(t) + Pth(t)          (2.81) 
 
In which Pth(t) is the error impulse stream due to thermal noise.  If the strength of the 
individual impulses is I, then each impulse in Pth is of strength 2I and occurs only at 
each error. The factor of two results from the fact that an error reverses the polarity of 
the impulse. 
 
The thermal error noise appears as a stream of impulses of of random time of 
occurrence and of strength ±2I. The average time of separation between these impulses 
is τ/Pe, where Pe is the bit error probability and τ is the time duration of a bit. The PSD 
of thermal noise impulses is 
 
        Gpth(f)  =    

ఛ
ሺ2ܫሻଶ         (2.82) 

 
Now the integrators (assumed identical in both the DM transmitter and receiver) as 
having the property that when the input is an impulse of strength the output is a step of 
amplitude ∆ is 
 

F{∆u(t)} = ∆/jω       ;  ω≠0 
             = ∆πδ(ω)         ;  ω=0       (2.83) 
 
We may ignore the dc component in the transform since such dc components will not 
be transmitted through the baseband filter. Hence we may take the transfer function of 
the integrator to be Hi(f) given by 
       
          Hi(f) = ∆

ூ
ଵ

ఠ
       ; ω ≠ 0 -      (2.84) 

And        │ Hi(f) │2 = ሺ ∆
ூ
 ሻଶ ଵ

ఠమ    ; ω=0         (2.85) 
  
From equation 46 and 49 we find that the PSD of the thermal noise at the input to the 
baseband filter is Gth(f) given by 
 
         Gth(f) = │ Hi(f) │2 Gpth(f) = ସ∆మ

ఛఠమ         (2.86) 



 
It would now appear that to find the thermal noise output, we need not to integrate 
Gth(f) over the passband of the baseband filter. During integration we have extended the 
range of integration from –fm through f=0 to +fm, even though we recognised that 
baseband filter does not pass dc and eventually has a low frequency cutoff f1. However 
in other cases the PSD of the noise near f=0 is not inordinately large in comparison 
with the density throughout the baseband range generally. Hence, it as is normally the 
case, f1<<fm, the procedure is certainly justified as a good approximation. We observe 
however that in the                      
present case [eqn (2.86)], Gth (f) →∞  at 0ω→ , and more importantly that the integral 
of Gth(f), over a range which include 0ω→ ,is infinite. Let us then explicitly take 
account of the low frequency cutoff f1 of the baseband filter. The thermal noise output 

is using eqn (2.86) with 2 fω π= and since fb
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If  f1 << fm, unlike the situation encountered in all other earlier cases, the thermal noise 
output in delta modulation depends upon the low frequency cutoff rather than the 
higher frequency limit of the baseband range. In many application such as voice 
encoder where the voice signal is typically band limited from 300 to 3200 Hz, the use of 
band pass output filter(f1=300Hz) is common place. 
 

 Output Signal-to-Noise ratio in DM 
 

The o/p SNR is obtained by combining eqn (2.72), (2.80) and (2.89), the result is 
2 2
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Which may be written as 
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If transmission is direct or by means of PSK, 
1 /
2e sP erfc E η=

         (2.92) 
Where Es is the signal energy is a bit, is related to the received signal power Si 
By    Es= SiTb = Si/fb         (2.93) 
Combining eqn (2.91), (2.92) and (2.93), we have 
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 Comparison of PCM and DM 
 

We can now compare the output signal SNR I PCM and DM by comparing 
eqn(2.66)and (2.94). To ensure that the communications channels bandwidth required is 
same in the two cases, we use the condition, given in eqn(2.77), that 2N = fb/fm . Then 
eqn(2.66) can be written as 
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+        (2.95) 
Eqn (2.95) and (2.94) are compared in fig.2.18 for N=8(fb(DM)=48 Kb/s) : to obtain the 
thermal performance of the delta modulator system, we assume voice transmission 
where fm=300 Hz and f1 = 300 Hz . 
 
 Thus fb/fm =16          (2.96) 
And fm/f1 = 10         (2.97) 
 
Let us compare the ratios S0/N0 for PCM and DM for case of voice transmission. We 
assume that fm=3000 Hz, f1 = 2Nfm= 48 x 103 Hz. Using these numbers and resulting 
that the probability of an error in a bit as Peb = ଵ

ଶ
ඥ݂ܿݎ݁ ܵ/ߟ ݂  we have from eqn (2.94) 

& (2.95) the result for DM is, 
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Fig.2.18  A comparison of PCM & DM 
 
And for PCM 
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When the probability of bit error is very small, the PCM system is seen to have higher 
output SNR than the DM system. Indeed the o/p SNR for PCM system is 48 dB and 
only about 33 dB for DM system. However, an o/p SNR of 30 dB is all that is required 
in a communication system. Indeed if commanded PCM is employed the o/p SNR will 
decrease by about 12 dB to 36 dB for PCM system. Thus eqn (2.99) indicates that the 
output SNR is higher for PCM system, the output SNR. In practice, can we consider as 
being comparable. 
 With regard to the threshold, we see that when Pe ~ 10-6 the PCM system has 
reached threshold with the DM system reaches threshold when Pe ~ 10-4. In practice, we 
find that our ear does not detect threshold Pe is about 10-4 for PCM and 10-2 for DM and 
ADM. Some ADM systems can actually produce understandable speech at error rates 
as high as 10-1-. Fig.2.18 shows a comparison of PCM and DM for N=8 and fm/f1 = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Module-III           (12 Hours) 
Principles of Digital Data Transmission: 
A Digital Communication System 
 

 
Line Coding 
Digital data can be transmitted by various line codes 
Desirable properties from a line code 

1. Transmission bandwidth – It should be as small as possible 
2. Transmitted power – It should be as small as possible 
3. Error detection and correction capability – It must be good 
4. Favorable PSD – It is desirable to have zero power spectral density (PSD) at ω = 0, because 

AC coupling and transformers are used at the repeaters. Significant powers in low frequency 
components cause DC wander in the pulse stream when AC coupling is used. 

5. Adequate timing content – It should be possible to extract timing and clock information from 
the signal 

6. Transparency – It should be possible to transmit a digital signal correctly regardless of the 
pattern of 1’s and 0’s. If the data are so coded that for every possible sequence of data the 
coded signal is received faithfully, the code is then transparent.  

 

                                
Figure 3.1 Binary signaling formats 

 

/Unipolar RZ 

/Bipolar RZ 

/Unipolar NRZ 

/Bipolar NRZ 

Split‐phase 
(Manchester)  (f ) 

t → 

Source  Multiplexer  Line coder Regenerative 
Repeater 

1. Digital Data Set 
2. Computer output 
3. Digital Voice Signal (PCM or DM) 
4. Digital facsimile signal 
5. Digital TV signal 
6. Telemetry equipment signal 
7. Etc. 

Figure 3.0 A Simple Digital Communication System 



Various line codes  
Various line codes are as shown in Figure 3.1 
 
Power Spectral Density (PSD) of Line Codes 

1. The output distortion of a communication channel depends on the power spectral density of the 
input signal 

2. Input PSD depends on 
i)  pulse rate (spectrum widens with pulse rate) 
ii)  pulse shape (smoother pulses have narrower PSD) 
iii)  pulse distribution 

3. Distortion can result in smeared channel output; output pulses are (much) longer than input 
pulses 

4. Inter symbol interference (ISI): received pulse is affected by previous input symbols 
 
 
Figure 3.2 
 
 
Power Spectral Density (review) 
For an energy signal g(t) the energy spectral density is the Fourier transform of the autocorrelation: 

    (3.1) 
The autocorrelation of a periodic signal is periodic. 

     (3.2) 
For a power signal, autocorrelation and PSD are average over time. Defines 

       (3.3) 
 
Then,             (3.4) 
 
PSD of Line Codes 
The PSD of a line code depends on the shapes of the pulses that correspond to digital values. Assume 
PAM. 

 

        (3.5) 



The transmitted signal is the sum of weighted, shifted pulses. Where, Tb is spacing between pulses. 
(Pulse may be wider than Tb.) PSD depends on pulse shape, rate, and digital values {ak}. We can 
simplify analysis by representing {ak} as impulse train as shown in figure 3.3(c). 
 

 
Figure 3.3 
 
PSD of y(t) is Sy(f) = |P(f)|2Sx(f). 
 

 P(f) depends only on the pulse, independent of digital values or rate. 
 Sx(f) increases linearly with rate 1/Tb and depends on distribution of values of { ak }. E.g., ak = 1 for 

all k has narrower PSD. 
 
PSD of Impulse Train 
 
The autocorrelation of          (3.6) 
 
 
can be found as the limit of the autocorrelation of pulse trains: 
 

     (3.7) 
 
The autocorrelation of this pulse train (a power signal) is 
 

    (3.8) 
 
Therefore,            (3.9) 
 
 
 
 
 
 
 
 
 
 



 
 
 

         
  and in general 
        

          
    (3.10) 
   
 
The autocorrelation is discrete. 
Therefore PSD is periodic in frequency. 
 
The PSD of pulse signal is product 
 

 
    (3.11) 
 
  
 
 
 

Figure 3.4 
 
PSD of Polar Signaling 
 

  Figure 3.5 
 

• 1 → +p(t) , 0 → −p(t) 

• Since ak and ak+n (n ≠ 0) are independent and equally likely, 

               (3.12) 

                (3.13) 
 

• Example: NRZ (100% pulse) p(t) = Π(t/Tb) 



    (3.14) 
 

• Half-width: p(t) = Π(t/(Tb/2)) 

   (3.15) 
 
Power spectral density of Polar Signaling (Half-Width Pulse) 
 
 
For NRZ,            (3.16) 
 
 

 
Figure 3.6 PSD of Polar Signaling (Half-Width Pulse) 
 
The bandwidth 2Rb is 4× theoretical minimum of 2 bits/Hz/sec. 
 
PSD of On-Off Signaling 
 
• On-off signaling is shifted polar signaling: 

       (3.17) 

• The DC term results in impulses in the PSD: 

      (3.18) 

• We can eliminate impulses by using a pulse p(t) with 

       (3.19) 

• Overall, on-off is inferior to polar. For a given average power, noise immunity is less than for 

bipolar signaling. 
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Figure 3.8 PSD of bipolar, polar, and split phase signals normalized for equal power. (Half width 

rectangular pulses are used) 
 
Nyquist First Criterion 
 
Reducing ISI: Pulse Shaping 

• A time-limited pulse cannot be band-limited 
• Linear channel distortion results in spread out, overlapping pulses 
• Nyquist introduced three criteria for dealing with ISI. 
 
The first criterion was that each pulse is zero at the sampling time of other pulses. 

 

    (3.22) 
 

 
  Figure 3.9 
 
Pulse Shaping: Sinc Pulse 

 Let Rb = 1/Tb. The sinc pulse, sinc(πRbt) satisfies Nyquist’s first crierion for zero ISI: 

     (3.23) 
 



 This pulse is band-limited. Its Fourier transform is     (3.24)  
 
 

 
Figure 3.10 Sic pulse (minimum bandwidth pulse) and its Fourier transform. 

 
 Unfortunately, this pulse has infinite width in time and decays slowly. 

 
Nyquist Pulse 
Nyquist increased the width of the spectrum in order to make the pulse fall off more rapidly. 
The Nyquist pulse has spectrum width (1/2) (1 + r)Rb, where 0 < r < 1.  
 

 
Figure 3.11 Proposed Nyquist pulse 

 
If we sample the pulse p(t) at rate Rb = 1/Tb, then  
            (3.25) 
 
The Fourier transform of the sampled signal is       (3.26)  
 
 
Since we are sampling below the Nyquist rate 2Rb, the shifted transforms overlap. 
Nyquist’s criterion requires pulses whose overlaps add to 1 for all f.  

 
Figure 3.12 Sampled Nyquist pulse 

 
For parameter r with 0 < r < 1, the resulting pulse has bandwidth      (3.27) 
       
The parameter r is called roll-off factor and controls how sharply the pulse spectrum declines above 
(1/2)Rb.  
 
There are many pulse spectra satisfying this condition. e.g., trapezoid: 



    (3.28) 
 
 
A trapezoid is the difference of two triangles. Thus the pulse with trapezoidal Fourier transform is the 
difference of two sinc2 pulses.  
Example: for r = 1/2 , 

        (3.29) 
 
So the pulse is,           (3.30) 
 
This pulse falls off as 1/t2  

 
Nyquist chose a pulse with a “vestigial” raised cosine transform. This transform is smoother than a 
trapezoid, so the pulse decays more rapidly. 
The Nyquist pulse is parameterized by r. Let fx = rRb/2. 
 

 
Figure 3.13 Vestigial spectrum 
 
Nyquist pulse spectrum is raised cosine pulse with flat porch. 

    (3.31) 
 
The transform P(f) is differentiable, so the pulse decays as 1/t2. 
 
Special case of Nyquist pulse is r = 1: full-cosine roll-off. 

        (3.32) 
 



This transform P(f) has a second derivative so the pulse decays as 1/t3. 

     (3.33) 
 

 
Figure 3.14 Pulses satisfying the Nyquist criterion 
 
Controlled ISI (Partial Response Signaling) 
We can reduce bandwidth by using an even wider pulse. This introduces ISI, which can be 
canceled using knowledge of the pulse shape. 
 

 
Figure 3.15 Duo-binary pulse 
 
The value of y(t) at time nTb is an-2 + an-1 . Decision rule: 

      (3.34) 
 
A related approach is decision feedback equalization: once a bit has been detected, its contribution 
to the received signal is subtracted. The ideal duo-binary pulse is 
 

       (3.35) 
 
The Fourier transform of p(t) is 

     (3.36) 
 
The spectrum is confined to the theoretical minimum of Rb/2. 



 
Figure 3.16 Minimum bandwidth pulse that satisfies the duo-binary pulse spectrum 
 
Zero-ISI, Duobinary, Modified Duobinary Pulses 
Suppose pa(t) satisfies Nyquist’s first criterion (zero ISI). Then 

pb(t) = pa(t) + pa(t – Tb)       (3.37) 
 
is a duo-binary pulse with controlled ISI. By shift theorem, 

Pb(f) = Pa(1 + e−j2πTbf )        (3.38) 
 
Since Pb(Rb/2) = 0, most (or all) of the pulse energy is below Rb/2. We can eliminate unwanted DC 
component using modified duo-binary, where pc(−Tb) = 1, pc(Tb) = −1, and pc(nTB) = 0 for other 
integers n. 
 
pc(t) = pa(t + Tb) – pa(t – Tb) ⇒ Pc(f) = 2jPa(f) sin 2πTbf     (3.39) 
 
The transform of pc(t) has nulls at 0 and ±Rb/2. 
 

 



 
Figure 3.17 Zero-ISI, Duobinary, Modified Duobinary and other Pulses 
 
Partial Response Signaling Detection 
 
Suppose that sequence 0010110 is transmitted (first bit is startup digit). 
Digit xk    0   0  1  0  1  1  0 
Bipolar amplitude -            -1         -1  1         -1  1  1         -1 
Combined amplitude                         -2  0  0  0  2  0 
Decoded values              -2  0  2  0  0  2 
Decode sequence    0  1  0  1  1  0 
 
Partial response signaling is susceptible to error propagation. If a nonzero value is mis-detected, 
zeros will be mis-detected until the next nonzero value. 
Error propagation is eliminated by pre-coding the data: pk = xk ⊕ pk-1. 
 

 
Figure 3.18 Duo-binary pulse generator 
 
Scrambling 
In general, a scrambler tends to make the data more random by removing long strings of 1’s or 0’s. 
Scrambling can be helpful in timing extraction by removing long strings of 0’s in data. Scramblers, 
however, are primarily used for preventing unauthorized access to the data, and are optimized for 
that purpose. Such optimization may actually result in the generation of a long string of zeros in 
the data. The digital network must be able to cope with these long zero strings using zero 



suppression techniques as discussed in case of high density bipolar (HDB) signaling and binary 
with 8 zeros substitution (B8ZS) signaling. 
 

    
 Figure 3.19 Scrambler and Descrambler  
 
 
Above figure 3.19 shows a typical scrambler and descrambler. The scrambler consists of a 
feedback shift register, and the matching descrambler has a feed-forward shift register as indicated. 
Each stage in the shift register delays a bit by one unit. To analyze the scrambler and the matched 
descrambler, consider the output sequence T of the scrambler [figure 3.19 (a)]. If  S is the input 
sequence to the scrambler, then  
 

S ⊕ D3T ⊕ D5T = T         (3.40) 
 
Where, D represents the delay operator; i.e., DnT is the sequence T delayed by ‘n’ units. The 
symbol ⊕ indicates modulo 2 sum. Now recall that the modulo 2 sum of any sequence with itself 
gives a sequence of all 0’s. Modulo 2 addition of (D3 ⊕ D5)T to both sides of the above equation, 
we get 
 

S = T ⊕  (D3 ⊕ D5)T 
   = [1 ⊕  (D3 ⊕ D5)]T  
   = (1 ⊕ F)T ; where, F = D3 ⊕ D5       (3.41) 

 
To design the descrambler at the receiver side, we start with T, the sequence received at the 
descrambler. Now we can see that received signal after descrambling i.e. R is same as S. 
 

R = T ⊕  (D3 ⊕ D5)T = T ⊕  FT = (1 ⊕ F)T = S     (3.42) 
 
Regenerative Repeater 
Basically, a regenerative repeater performs three functions. 

1. Reshaping incoming pulse by means of equalizer 
2. The extraction of timing information required to sample incoming pulses at optimum instants. 
3. Decision making based on the pulse samples. 

 
The schematic of a repeater is shown in the following figure. A complete repeater also includes 
provision for the separation of DC power from AC signals. This is normally accomplished using 
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transformer by coupling the signals and bypassing the DC around transformers to the power supply 
circuitry.  

 
 
Figure 3.20 Regenerative Repeater 
 
Preamplifier 
Preamplifier, as the name suggests, is an electronic device to amplify very weak signal. The output 
from it becomes the input for another amplifier.  
A signal is modulated by superimposing a known frequency on it and the amplifier is set to detect 
only those signals on which the selected frequency is superimposed. Such an amplifier is known as 
lock-in-amplifier. Noise not modulated by the selected frequency will not be amplified. Therefore 
it will be filtered off. 
                  
Equalization 
As discussed in the Pulse Shaping, a properly shaped transmit pulse resembles a sinc function, and 
direct superposition of these pulses results in no ISI at properly selected sample points. 
In practice, however, the received pulse response is distorted in the transmission process and may 
be combined with additive noise. Because the raised cosine pulses are distorted in the time 
domain, you may find that the received signal exhibits ISI. If you can define the channel impulse 
response, you can implement an inverse filter to counter its ill effect. This is the job of the 
equalizer. See figure 9 below, which depicts the response to a single transmit pulse at various 
points in the system. 

 
Figure 3.21 Transmission process with pulse responses example 
 
The original rectangular pulse is shaped by the raised cosine filter before transmission. This 
ensures that the sampled spectra do not alias and therefore there is no ISI. This third waveform 
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portrays the distorted impulse response received at the input of the equalizer. This distortion can be 
caused by spectral shaping due to a non-flat frequency response or multipath reception of the 
channel. This distortion can be removed by applying a filter that is the exact inverse (multiplicative 
inverse in spectral domain) of the channel frequency response. 
 
Equalizers 

 
 
Figure 3.22 Block diagram of a tap delay equalizer 
 
Zero Forcing Equalizer 

       (3.43) 
 

   (3.44) 
 
In the above matrix represents 2N + 1 independent equations as many number of tap weights Ci 
which are uniquely determined by solving the matrix. 
 
Mean square and Adaptive Equalizer 

 

 
 
 
 



Eye Diagrams 
Polar Signaling with Raised Cosine Transform (r = 0.5) 

 
Figure 3.23 Eye diagram of Polar Signaling with Raised Cosine Transform (single window) 

     (3.45) 
 
Polar Signaling with Raised Cosine Transform (r = 0.5). The pulse corresponding to P(f) is  

        (3.46) 

 
Figure 3.24 Eye diagram of Polar Signaling with Raised Cosine Transform (multiple window) 
 
Eye Diagram Measurements 

 Maximum opening affects noise margin 
 Slope of signal determines sensitivity to timing jitter 
 Level crossing timing jitter affects clock extraction 
 Area of opening is also related to noise margin 



 

 
Figure 3.25 Measurement using Eye diagram 
 
Timing Extraction 
The received digital signal needs to be sampled at précised instants. This requires a clock signal at 
the receiver in synchronism with the clock signal at the transmitter (Symbol or bit 
synchronization). Three general methods of synchronization exist.  
1. Derivation from a primary or a secondary standard (e.g. transmitter and receiver slaved to a 

master timing source) 
2. Transmitting a separate synchronizing signal (Pilot clock) 
3. Self synchronization, where the timing information is extracted from the received signal itself.   

 
The first method is suitable for large volume of data and high speed communication systems 
because of its high cost. In the second method, part of the channel capacity is used to transmit 
timing information and is suitable when the available capacity is large compared to the data rate. 
The third method is a very efficient method of timing extraction or clock recovery because the 
timing is derived from the digital signal itself. 
 
Timing Jitter 
Variations of pulse positions or sampling instants cause timing jitter. This results from several causes, 
some of which are dependent on the pulse pattern being transmitted where as others are not. The 
former are cumulative along the chain of regenerative repeaters because all the repeaters are affected in 
the same way, where as the forms of jitter are random from regenerator to regenerator and therefore 
tend to partially cancel out their mutual effects over a long-haul link. Random forms of jitter are caused 
by noise, interference, and mistuning of clock circuits. The pattern-depend jitter results from clock 
mistuning, amplitude-to-phase conversion in the clock circuit, and ISI, which alters the position of the 
peaks of the input signal according to the pattern. The r.m.s. value of the jitter over a long chain of ‘N’ 
repeaters can be shown to increase as √ܰ .  
Jitter accumulation over a digital link may be reduced by buffering the link with an elastic store and 
clocking out the digital stream under the control of highly stable PLL. Jitter reduction is necessary 
about every 200 miles in a long digital link to keep the maximum jitter with reasonable limits.  
 



A Baseband Signal Receiver 
 
 
 

 

 

 

 
The above figure explains that noise may cause an error in the determination of a transmitted voltage level.  

 

Figure 3.27 A receiver for a binary coded signal. 

Peak SNR 

 
 
Figure 3.28 (a)The signal output (b) the noise output of the integrator as shown in figure 3.27 
 
      
            (3.47) 

             (3.48) 
  
             

              (3.49)
   

Figure 3.26 Transmitted pulse with noise 



 
The variance of noise is no(T) is known to us and is      (3.50)  
 

       (3.51) 
 
Figure of merit is           (3.52) 
 

Probability of Error 

 
Figure 3.29 The Gaussian probability density of the noise sample no(T) 
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Figure 3.30 Variation of Pe versus Es/η 

 
 
 
 



Optimum Threshold 

 
Figure 3.31 Decision threshold when apriori probability are (a) equal (b) unequal 
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Optimum Receiver  
 We assume that the received signal is a binary waveform. One binary digit (bit) is represented by a 
signal waveform s1(t) which persists for time T, while the other bit is represented by the waveform s2(t) 
which also lasts for an interval T. For example, in the case of transmission at baseband, as shown in 
Fig. 3.27, s1(t) = +V, while s2(t) = –V; for other modulation systems, different waveforms are 
transmitted. For example, for PSK signaling, s1(t) = A cos ω0t and s2(t) = –A cosω0t; while for FSK, 
s1(t) = A cos (ω0 + Ω)t and s2(t) = A cos (ω0 – Ω)t. 
 

 
Figure 3.32 A receiver for binary coded signaling 
 
An error [we decide s1(t) is transmitted rather than s2(t)] will result if 
  
 

                                             (3.61) 
 

  
 
 

  
 

 The complementary error function is monotonically decreasing function of its argument 
(indicated in Fig. 3.30). Hence, as is to be anticipated, Pe decreases as the difference so1(T) – so2(T) 
becomes larger and as the r.m.s. noise voltage σo becomes smaller. The optimum filter, then, is the 
filter which maximizes the ratio  

         (3.62) 
We shall now calculate the transfer function H(f) of this optimum filter. As a matter of 
mathematical convenience we shall actually maximize γ2 rather than γ 
 

 
Signal to the optimum filter is p(t) ≡ s1(t) – s2(t) 
Corresponding output signal of the filter is po(t) ≡ so1(t) – so2(t) 
Let P(f) and Po(f) be the Fourier transforms, respectively, of p(t) and po(t). Then 
 

Po(f) = H(f)P(f)          (3.63) 



    (3.64) 
 

        (3.65) 
 

Normalized output noise power         (3.66) 
 

   (3.67) 
  
Schwarz inequality defines         (3.68) 
 
The equal sign applies when  X(f) = KY*(f)       (3.69) 

  (3.70) 
 

Or,         (3.71)  
         

 

         (3.72) 
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1

ඥܩሺ݂ሻ
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The ratio 

ଶሺܶሻ/ߪ
ଶ will attain its maximum value when     (3.73) 

 
Optimum Filter using Matched Filter 
An optimum filter which yields a maximum ratio 

ଶሺܶሻ/ߪ
ଶ is called a matched filter when the input 

noise is white. In this case Gn(f) = η/2, and equation (3.73) becomes 

         (3.74) 

 

                           (3.75) 
 

    (3.76) 



 
        (3.77)    
 
 
 

 
 
 

 

 

 

 

   

 

 

 
 
 
 
Probability of Error of Matched Filter 
 
  
       (3.78) 
 
 
From Parseval’s theorem,        (3.79)  
 

    (3.80) 

The optimum choice of s2(t) is as given by s2(t) = – s1(t)     (3.81) 

Hence,               (3.82)  

Figure 3.33 



        (3.83) 

        (3.84) 

Integrator as Matched Filter  
 
When we have,               (3.85) 
 
 
Impulse response of the matched filter is, ݄ሺݐሻ ൌ ଶ

ఎ
ሾݏଵሺܶ െ ሻݐ െ ଶሺܶݏ െ  ሻሿ  (3.86)ݐ

 
Hence,  ݄ሺݐሻ ൌ ଶ

ఎ
ሺ2ܸሻሾݑሺݐሻ െ ݐሺݑ െ ܶሻሿ       (3.87) 

The inverse transform of h(t), that is, the transfer function of the filter, becomes, 
 

 

          (3.88) 
 
The first term in equation (3.88) represents an integration beginning at t = 0, while the second term 
represents an integration with reverse polarity beginning at t = T. 
 
Optimum Filter using Correlator 
 

 
Figure 3.34 A coherent system of signal reception 
 
            (3.89) 
 
            (3.90) 
If h(t) is the impulsive response of the matched filter, then  

     (3.91) 
 



        (3.92) 

     (3.93) 

      (3.94) 

ሺܶሻݏ ൌ ଶ
ఎ  ݏ

்
 ሺߣሻሾݏଵሺߣሻ െ  (3.95)       ߣሻሿ݀ߣଶሺݏ 

Where, si(λ) is equal to s1(λ) or s2(λ) 
Similarly, ݊ሺܶሻ ൌ ଶ

ఎ  ்݊
 ሺߣሻሾݏଵሺߣሻ െ ݏଶሺߣሻሿ݀(3.96)      ߣ 

 Thus so(t) and no(t), as calculated from equations (3.89) and (3.90) for the correlation receiver, 
and as calculated from equations (3.95) and (3.96) for the matched filter receiver, are identical. 
Hence the performances of the two systems are identical. 
 
Optimal Coherent Reception: PSK 
 
The input signal is            (3.97)  
 

In PSK, s1(t) = – s2(t), Equation (3.84) gives the error probability as in base band transmission 

 
         (3.98) 

 

 Imperfect Phase Synchronization            (3.99) 

 
 

 

         (3.100) 
If the overlap is in the other direction, integration extends from –τ to T – τ   
 

        (3.101) 
  
Correspondingly,      (3.102) 
 
If τ = 0.05T, the probability of error is increased by a factor 10 
If both phase error and timing error are present, then 



 
Probability of error         (3.103)  
 
 
Optimal Coherent Reception: FSK 
 

         (3.104) 
 
Local waveform is            (3.105) 
 

  
 
We start with               (3.106) 
 

 

 (3.107) 

 

        (3.108) 

Largest value when Ω is selected so that 2ΩT = 3π/2 

       (3.109) 

      (3.110) 
Where, the signal energy is Es = A2T/2 
 

 

          (3.111) 
 Comparing the probability of error obtained for FSK [Eq. (3.110)] with probability of error obtained for 
PSK [Eq. (3.98)], we see that equal probability of error in each system can be achieved if the signal energy 
in the PSK signal is 0.6 times as large as the signal energy in FSK. As a result, a 2 dB increase in the 
transmitted signal power is required for FSK. Why is FSK inferior to PSK? The answer is that in PSK,    
s1(t) =  – s2(t), while in FSK this condition is not satisfied. Thus, although an optimum filter is used in each 
case, PSK results in considerable improvement compared with FSK. 



Optimal Coherent Reception: QPSK 

 
Figure 3.35 A phasor diagram representation of the signals in QPSK 

 

Figure 3.36 A correlation receiver for QPSK 

 We note from Fig. 3.35, that the reference waveform of correlator 1 is an angle φ = 450 to the axes of 
orientation of all of the four possible signals. Hence, from equation (3.99), since (cos 450)2 = ½, the 
probability that correlator 1 or correlator 2 will make an error is   

         (3.112) 
 

        (3.113) 

       (3.114) 
 

           (3.115) 
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BPSK  
Generation 
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                                                                                           0cosA tω  

                                                                   

Fig.4.1 Balanced Modulator 

 Transmitted signals are 

 ( ) ( ) 2 cosH BPSK s oV t V t P tω==                                          (4.1) 

( ) ( ) 2 (cos )

                               = - 2 cos
H BPSK s o

s o

V t P tV t

P t

ω π

ω

= +=
                                   (4.2) 

In BPSK the data b(t) in a stream of binary digit with voltage levels which as a matter of  
convenience, we take +1 V and -1 V. So BPSK can be written as  

( ) (t) 2 cosBP s oSK b PV tt ω=                           (4.3) 

Transmission  

This VBPSK (t) signal is transmitted through the channel. While it moves in the transmission path of 
the channel, the phase of the carrier may be changed at the output of the receiver. So the BPSK 
signal received at the input of the receiver can be taken as ܸௌሺݐሻ ൌ ܾሺݐሻඥ2 ௦ܲcos ሺ߱ݐ  ߶ሻ 
where / ot φ ωΔ =  is the time delay. 
 
Receiver 
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Modulator 



 
Fig. 4.2 Synchronous demodulator 

Spectrum 
 
The waveform b(t) is a NRZ binary waveform which makes an excursion between  and -s sP P+ . 
The PSD of this waveform 
 

2sin(f) P T ( )bsb b
b

fTG
fT
π

π
=                                            (4.5) 

The BPSK waveform is the NRZ waveform multiplied by 2 coss oP tω . Thus the power spectral 
density of the BPSK signal is  
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Simultaneous bit transmission and thereafter overlapping of spectra is known as inter-channel 
interference. Restricting the overlapping by considering the principal lobe to transmit 90% of 
power ultimately cause inter-symbol interference.  
 
Geometrical representation of BPSK signals: 
 
When BPSK signal can be represented, in terms of one orthogonal signal 
 

( )1 2 / cos obu T tt ω= as 

( ) 1
2(t) cos (t) (t)s oBP bS s
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The distance between signals is 
2 2s b bd P T E= =            (4.8) 

1
e

d P∝              (4.9) 

 
DPSK(Differential Phase Shift Keying) 
 
 In BPSK receiver to regenerate the carrier we start by squaring  (t) 2 coss ob P tω .but when the 
received signal were instead (t) 2 coss ob P tω− , the recovered carrier would remain as before. 
Therefore we shall not be able to determine whether the received baseband is transmitted signal 
b(t) or its negative i.e. -b(t). DPSK and DEPSK are modification of BPSK which have the merit 
that they eliminate the ambiguity about whether the demodulated data is actual or inverted. In 
addition DPSK avoids the need to provide the synchronous carrier required at the demodulator for 
detecting a BPSK signal. 
 
Transmitter (Generation) 
    d(t)                                                                                                    
                                                                          b(t) 
                                                                                                          ( )DPSKV t        
 
 
            b(t-Tb) 
 
                                                                                                           2 coss oP tω       

Fig.4.3 generation of DPSK 
 
Here, (t) d(t) b(t T )bb = ⊕ −                                                (4.10) 
b(0) cannot be found unless we know d(0) and b(-1). Here we have b(0) = 0, b(+1) = 0 so d(1) 
should be 0. 
In this Fig. 4.3, d(0) & b(-1) is not shown. Here we have chosen b(0) = 0. If we choose b(0) = 1, 
then there is no problem in detection of b(t). 

(t) b(t) 2 cos
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ω

ω
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±
                         (4.11) 

 
Transmission 
 
When VDPSK(t) is transmitted from the generator to the channel, at passes through the channel, then 
b(t) may be changed to –b(t) before reaching receiver. 
Receiver 
 
          b(t)b(t-Tb) = 1,                  if d(t) = 0 
but     b(t)b(t-Tb) =-1,                  if d(t) = 1 
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                                                                                                                                To integrate bit                      

(t) 2 cos( )b s oP tω θ+                                                                                                          synchronizer 
 
 
 
 
 
 
                                                                              
                                                                         (t T ) ( )2 cos( )b bb s oP t Tω θ− − +  
                                                       
                                                  Fig. 4.6 Receiver of DPSK 
 
Advantage of DPSK over BPSK 
 
1. Local carrier generation not required and receiver circuit is simple. 
2. If whole of the bits of b(t) is inverted then also correct d(t) can be recovered. 
 
Disadvantage 
 
1. Noise in one bit interval may cause errors to two bit determination that is a tendency for bit 

errors to occur in pairs. The single errors are also possible. 
2. Specrum of DPSK is same as BPSK .the geometrical representation of DPSK is same as BPSK. 
 
DEPSK (Differentially Encoded Phase Shift Keying) 
 
DPSK demodulator requires a device which operates at the carrier frequency and provides a delay 
of Tb. Differentially encoded PSK eliminates the need for such a piece of hardware Transmitter or 
generator is same as DPSK  
 
                 b(t) from synchronous demodulator  
 
 
 
                                                                                                                      d(t)= b(t) ⊕  b(t-Tb) 
 
 
                                                                                  b(t-Tb) 
                

Fig 4.7a Generation of DEPSK 
 
QPSK (Quadrature Phase Shift Keying ) 
 
 The transmission bandwidth of bit NRZ signal is fb. So the transmission rate is 
2fbbps.Hence to transmit BPSK signal the channel must have a bandwidth of 2fb. QPSK has been 
formulated to allow the bits to be transmitted using half the bandwidth. D-flip flop is used in 
QPSK transmitter to operate as one bit storage device. 
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Fig 4.7b Generation of QPSK 
 
Transmission 
 
Due to finite distance between generator and receiver the signal available at receiver may have 
some phase change so, 

1 0 2 0( ) ( )sin( ) ( )cos( )QPSK s o s eV t k P b t w t k P b t w tθ θ= + + +        (4.12) 
Reception 
 
QPSK receiver 
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 Samples are taken alternatively from one and the other integrator output at the end of each 
bit time Tb and these samples are half in the latch for the bit time Tb and these samples half in the 
latch for the bit time Tb. Each individual integrator output is sampled at intervals 2Tb. The latch 
output is the recovered bit stream b(t). 
 
Spectrum: 
 
The waveform bo(t) or be(t) (if NRZ ) is binary waveform makes an excursion sP+  and sP− . The 
PSD of this waveform  

2
sin (2T )(f) G (f) P (2T )

(2T )o e
b

b b s b
b

fG
f
π

π
⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

                                                                 (4.13) 

 
When QPSK signal is multiplied by cos otω . Then the PSD of the QPSK signal is 
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                                  (4.14) 

Symbol versus bit transmission 
  
In BPSK we deal with each bit individually in its duration Tb. In QPSK we lump two bits together 
to form what is termed a symbol. The symbol can have any one of four possible values 
corresponding to the two bit sequence 00, 01, 10 and 11. We therefore arrange to make four 
distinct signals available for transmission. At the receiver each signal represents one symbol and 
correspondingly two bits. When bits are transmitted, as in BPSK, the signal changes occur at the 
bit rate. When symbols are transmitted the changes occur at the symbol rate which is one half the 
bit rate. Thus the symbol time is Ts = 2Tb (OQPSK). Ts = Tb(QPSK) 
 
Geometrical representation of QPSK signals in signal space 

Four symbols are four quadrature signals. These are to be represented in signal space. One 
possibility representing the QPSK signal in one equation is 

ொܸௌ ൌ ඥ2 ௦ܲcos ሾ߱ݐ  ሺ2݉  1ሻഏ
రሿ ; m=0, 1, 2, 3     (4.15)

0 02 cos[(2 1) ]cosw 2 sin{(2 1) }sinw
4 4QPSK s sV P m t P m tπ π

= + − +     (4.16) 

To represent this signal in signal space, two ortho-normal signals are be selected. They can be 

1 0
2(t) cos tU w
T

= and 2 0
2(t) sin tU w
T

=  

So QPSKV  can be written as  

ொܸௌ ൌ ൣඥ ௦ܲܶcos ሺ2݉  1ሻഏ
ర൧ටଶ

்
ݐ߱ݏܿ െ ൣඥ ௦ܲܶsin ሺ2݉  1ሻഏ

ర൧ටଶ
்

 (4.17)  ݐ߱݊݅ݏ

bo and be take values as +1 or -1. So we can write the same QPSKV signal as 



1 2(t).u (t) (t).u (t)QPSK b e b oV E b E b= −        (4.18) 

Where, 

(t) 2 cos(2 1)
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π
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                                             (4.19) 

In the above equations 2 bT T= . Working at above signals four symbols can be shown in signal 
space as shown below. Four dots in the signal space represents four symbol. The distance of signal 
point form the origin is sE , which in the square root of the signal energy associated with the 

symbol. i.e  2s s s s bE PT PT= = . The signal points which differ in a signal bit are separates by the 

distance .s b bd PT E= = Noise immunity in QPSK is same as BPSK. 

M-ary Phase shift keying 

In BPSK we transmit each bit individually. Depending on Whether b(t) is logic 0 or logic 
1, We transmit one or another of sinusoid for the bit time bT , the sinusoids differ in phase by 

.2 / 2 180π = . In QPSK We lump together two bits. Depending on which of the four two-bit words 
develops, we transmit one or another of four sinusoids of duration 2 / Mπ ,the sinusoids differing 
in phase by amount .2 / 4 90π = . The scheme can be extended. Let us lump together N bits so that 
in this N- bit symbol, extending over the N bT , there are 2N M= possible symbol as shown in Fig. 

4.9. Now let us represent the symbols by sinusoids of duration N bT = sT  which differ from one 
another by the phase 2 / Mπ . Hardware to accomplish this M-ary communication is available. So

( )0 0( 2 cos )cos ( 2 sin )sin         m 0,1,2,3 M 1M aryPSK s m s mV P w t P w tφ φ− = − = −−−− −   (4.20) 

Where, mφ = (2 1)m
M
π

= +
 

 



 

Fig 4.9 Spectrum of M-ary PSK 

The co-ordinate are the orthogonal waveforms 1 0
2(t) cos
S

u w t
T

= and  2 0
2(t) sin
S

u w t
T

= . 

0 0( 2 cos )cos ( 2 sin )sinM aryPSK s m s mV P w t P w tφ φ− = −     (4.21) 

0 0cos sin

, 2 cos

2 sin

e o

e s m

o s m

P w t P w t

where P P

P P

φ

φ

= −

=

=         (4.22) 

Spectrum 

2
sin(t) G (t) P s

e o s s
s

fTG T
fT
π

π
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

        (4.23) 

When carrier multiplied to bit , the resultant spectrum is centered at the carrier frequency 

and extends normally over a 
22 2 b

s
s

fBW B f
T N

= = = = . 

The distance between symbol signal points 

2 24 sin 4 sin
2s b Nd E NE

M
π π⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
      (4.24) 
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Fig 4.10 Transmission of M-ary PSK 

 

Finally (s )mv  is applied as a control input to a special type of constant amplitude 

sinusoidal signal source whose phase mφ  is determined by (s )mv . Altogether, then the output is 
fixed amplitude, sinusoidal waveform, whose phase has a one to one correspondence to the 
assembled N-bit symbol. The phase can change once per symbol time. 

 

Fig 4.11 Reception of M-ary PSK 
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The integrator outputs are voltages whose amplitudes are proportional to s eT P and s oT P  
respectively and charge at the symbol rate. These voltages measure the components of the received 
signal in the directions of the quadrature phasors 0sin w t & 0cos w t . Finally the signals  s eT P  and 

s oT P  are applies to advice which reconstructs the digital N-bit signal which constitutes the 
transmitted signal. 

BFSK (Frequency shift keying) 

The BFSK signal can be represented for binary data waveform b(t) as  

0(t) 2 cos( ( ) )BFSK sV P w t b t t= + Ω        (4.25) 

Where b(t)=+1 or -1 corresponding to the logic level 0 and 1. The transmitted signal is of 
amplitude 2 sP  and is either 

0

0

(t) V (t) 2 cos( )

(t) V (t) 2 cos( )
BFSK H s

BFSK L s

V P w t

V P w t

= = +Ω

= = −Ω
       (4.26) 

And thus fhas an angular frequency 0w +Ω  or 0w −Ω  with Ω  a constant offset from the 

normal carrier frequency 0w . So, Hw = 0w +Ω  & 0 0 .2L bf f f f
π
Ω

= + = + = 0w −Ω  

Transmitter (Generation of BFSK) 

At any time (t)orP (t)H LP  is 1 but not both so that the generated signal is either at angular 

frequency Hw or at Lw . 

 

Fig 4.12 Transmission of BFSK 
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Receiver (Reception of BFSK) 

0 0 .2H bf f f f
π
Ω

= + = +  

The BFSK signal is applied to two band pass filters one with frequency at Hf  the other at 

bf . Here we have assumed, that Hf - s oT P =2 bf .The filter frequency ranges selected do not overlap 
and each filter has a pass band wide enough to encompass a main lobe in the spectrum of BFSK. 

Hence one filter will pass nearby all the energy in the transmission at Lf . The filter outputs 
are applied to envelope detectors and finally the envelope detector outputs are compared by a 
comparator. 

 
Fig 4.13 Reception of BFSK 

When noise is present, the output of the comparator may vary due to the system response to 
the signal and noise. Thus, practical system use a bit synchronizer and an integrator and sample the 
comparator output only once at the end of each time interval bT . 

Spectrum(BFSK) 

In terms of the variable (t) & P (t)H LP the BFSK signal can be written as 

(t) 2 . .cos( ) 2 . .cos( )BFSK s H H H s L L LV P P w t P P w tθ θ= + + +      (4.27) 

 Here each of two signals are of independent and random, uniformly distributed phase. E 
ach of the terms in above equation looks like the signal 02 (t) coswsP b t which we encountered in 

BPSK, but there is an important difference. In the BPSK case, b(t) is bipolar(it alternates between 
+1 and-1), while in the present case HP & LP  are unipolar (it alternates between+1 and 0). We may 

however, rewrite HP & LP   as the sum of a constant and a bipolar variable, i.e. 
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1 1(t) (t)
2 2
1 1(t) (t)
2 2

H H

L L

P P

P P

= +

= +
          (4.28) 

In the above equation (t)HP & , (t)LP are bipolar, alternating between +1 and -1 and are 
complementary. We have then 

, ,(t) cos( ) cos( ) cos( ) cos( )2 2 2 2
s s s s

BFSK H H c L H H H L c L
P P P PV w t w t P w t P w tθ θ θ θ= + + + + + + + (4.29) 

The first terms in above equation produce a power spectral density which consists of two impulses, 
one at Hf  and one at Lf . The last two terms produce the spectrum of two binary PSK signals, one 

centered at---- and one about 2H L bf f f− = is assumed. For this separation 2 bf between Hf and Lf  
we observe that the overlapping between the two parts of the spectra is not large and we may 
expect to be able, without excessive difficulty, to distinguish the levels of the binary waveforms 
b(t). in any event, with this separation the bandwidth of BFSK is, 4BFSK bBW f=  

Geometrical representation of orthogonal BFSK in signal space 

We know that any signal could be represented as 1c 1(t)u + 2c 2 (t)u  Where 1 0(t) 2 / cossu T w t= and

2 0(t) 2 / sinsu T w t= are the orthogonal vectors in the signal space. 1(t)u and 2 (t)u are orthogonal 

over the symbol interval sT and if the symbol is single bit s bT T= .The coefficients 1c & 2c are 

constants. In M-ary PSK the orthogonality of the vectors 1u and 2u results from their phase 
quadrature. In the present case of BFSK it is appropriate that the orthogonality should result from a 
special selection of the frequencies of the unit vectors. Accordingly, with m and n integers, let us 
establish unit vectors. 

1 0

2 0

2(t) cos

2(t) sin

s

s

u w t
T

u w t
T

=

=

          (4.30) 

 In which, as usual, 1
b

b

f
T

= . The vectors 1u and 2u at the mth & nth and harmonics of the 

fundamental frequency bf . As we are aware, from the principles of Fourier analysis, different 

harmonics( m n± ) are orthogonal over the interval of the fundamental period 1
b

b

T
f

= . It now the 

frequencies Hf and Lf in a BFSK system are selected to be 



H b

L b

f mf
f nf

=
=

 

Then corresponding signal vectors are 

1(t) (t)H bV E u=  and 2(t) (t)L bV E u=  

The signal (t)HV & (t)LV , like vectors are orthogonal. The distance between signal end points is 

therefore 2 bd E= which is considerably smaller than the distance separating end points  

(i.e 2 bd E= ) of BPSK signal, which are antipodal. 

If we consider Non-orthogonal BFSK and 3(w w )T
2H L b
π

− =  then distance 2.4 bd E≈  

1.  Not be as effective as BPSK in the presence of noise. Because in BFSK, since carrier 
is present in the spectrum and takes some energy, information bearing term is there by 
diminished. 

2. d is less so eP is more & SNR is less. 
3. BW requirement is higher. 

M-Ary FSK 

  

 

Fig 4.14 M-ary FSK 

 At the transmitter an N-bit symbol is presented for each sT  to an N-bit D/A converter. The 
converter output is applied to a frequency modulator, which generates a carrier waveform whose 
frequency is determined by the modulating waveform. The transmitted signal for the duration of 
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the symbol interval, is of frequency 0,orf 1,f or 1mf − , where 2NM = 2NM = . At the receiver, 

the incoming signal is applied to M parallel band pass filter with carrier frequency 0 1 1, ..... Mf f f −  
and each followed by an envelope detector. The envelope detectors apply their outputs to a device 
which determines which of the detector indication is the largest and transmit that envelope output 
to an N-bit A/D converter. In this scheme the probability of error is minimized by selecting 
frequencies 0 1 1, ...... Mf f f −  so that the M signals are mutually orthogonal. One common employed 
arrangement simply provides that the carrier frequency be successive even harmonics of the 
symbol frequency 1/s sf T= . Thus the lowest frequency, say 0 sf Kf= , while 1 (K 2)fsf = +  etc. in 
this case the spectral density patterns of the individual possible transmitted signals overlap, which 
is an extension of BFSK. It is clear that to pass M-Ary FSK the required spectral range is  

2 sB Mf=             (4.31a) 

Since,
b

s
ff
N

=  and  2NM =  

So,  12 /N
bB f N+=            (4.31b) 

 M-Ary FSK required a considerably increased BW in comparison with M-Ary PSK. 
However as we shall see the probability of error for M-Ary FSK decreases as M increases, while 
for M-Ary PSK, the probability of error increases with M.  

Geometrical Representation of M-Ary FSK in Signal Space 

 The case of M-Ary orthogonal FSK signal is extension of signal space representation for 
the case of orthogonal binary FSK. We can simply conceive of co-ordinate system with M 
mutually orthogonal co-ordinate axes. The signal vectors are parallel to these axes. The best we 
can do pictorially is the 3-dimensional case. The square of the length of the signal vector is the 
normalized energy and the distance between the signal points is 

2 2s bd E NE= =            (4.32) 

This value of d is greater than the value of d calculated for M-Ary PSK. 

Minimum Shift Keying (MSK) 

The wide spectrum of QPSK is due to the character of baseband signal. This signal consists of 
abrupt changes, and abrupt changes give rise to spectral components at high frequencies. The 
problem of interchannel interference in QPSK is so serious that regulatory and standardization 
energies such as FCC and CCIR will not permit these system will be used except with band pass 
filtering at carrier frequencies to suppress the side lobe. If we try to pass the baseband signal 
through a low pass filter to suppress the insignificant side lobes (the main lobe contains 90% of 
signal energy). Such filtering will cause ISI. 



 The QPSK is a system which the signal is of constant amplitude, the information content 
being borne by phase changes. In both QPSK and OQPSK are abrupt phase changes in the signal. 

In QPSK these changes can occur at the symbol rate 1/ 1/ 2s bT T=  and can be as large as 180o . In 

OQPSK phase changes of 90o  can occur at the bit rate. Such abrupt phase changes cause many 
problems. 

 There are two difference between QPSK and MSK 

1. In MSK the baseband waveform, that multiplies the quadrature carrier, is much smoother 
than the abrupt rectangular wave form of QPSK. While the spectrum of MSK has a main 
centre lobe while as 1-5 times as wide the main lobe of QPSK. 

2. The wave form of MSK exhibits phase continuity that is there are no abrupt changes in 
QPSK. As a result we avoid the ISI caused by non-linear amplifier. 

The staggering which is optimal in QPSK is essential in MSK. MSK transmitter needs two 
waveforms sin 2 ( / 4 )bt Tπ and cos 2 ( / 4 )bt Tπ to generate smooth baseband. The MSK transmitted 
signal is 

0 0(t) 2 [ (t).sin 2 (t/ 4T )]cosw 2 [ (t).cos 2 (t/ 4T )]sinwMSK s e b s o bV P b t P b tπ π= +       (4.33) 

suppose 2 / 4 bTπ =Ω  . then we can rewrite the above equation as 

0 0(t) 2 [ (t).sin ]cos 2 [ (t).cos ]sinMSK s e s oV P b t w t P b t w t= Ω + Ω      (4.34) 

The above equation to be modified form of OQPSK, which we can call “shaped QPSK”. We can 
call apparent that MSK is an FSK system. 

0 0 0 0

0 0 0 0

(t) (t)(t) 2 [ {sin .cos cos .sin } {sin .cos cos .sin }2 2
(t) (t)                               {sin .cos cos .sin } {sin .cos cos .sin }]2 2

e e
MSK s

o o

b bV P w t t w t t w t t w t t

b bw t t w t t w t t w t t

= Ω + Ω − Ω − Ω

+ Ω + Ω + Ω − Ω
(4.35)     

 0 0
(t) (t) (t) (t)2 .sin( ) t 2 .sin( ) t

2 2
o e o e

s s
b b b bP w P w+ −⎡ ⎤ ⎡ ⎤= +Ω + −Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

      

 
If we define 0, ,

2 2
o e o e

H L H
b b b bC C w w+ −

= = = +Ω& 0Lw w= −Ω  then the above equation can be 

written as, 

(t) 2 (t).sin 2 (t).sinMSK s H H s L LV P C w t P C w t= +       (4.36) 

Here 1ob = ± and 1eb = ± , so it can be easily verified that, if o eb b= =  then 0LC = write 

1H o eC b b= = = ± , Further if o eb b= , then 0HC = and 1L o eC b b= = = ± , Thus  depending on the 

value of the bits Hw and Lw in each bit interval, the transmitted signal is at angular frequency ωH 

or at ωL precisely as in FSK and amplitude is always equal to 2 sP . 



In MSK, the two frequencies Hf and Lf are chosen to ensure that the two possible signals are 

orthogonal over the bit interval bT . That is, we impose the constraint that 

0

sin .sin 0
bT

H cw t w t =∫            (4.36a) 

This is possible only when, 2 ( )H L bf f T mπ π+ = and 2 ( )H L bf f T nπ π− = ,     (4.37) 

where m and n are integers. In equation (4.35) 

2 4

2 4

b
H o o

b
L o o

ff f f

ff f f

π

π

Ω
= + = +

Ω
= − = −

 

. 1b bf T =  

AS, ( )2 H L bf f T nπ π− =  

⇒ 2 . .2
b

b b
f T nπ π=  

1n⇒ =             (4.38) 

Again, 

( )2 H L bf f T mπ π+ =  

⇒ 02 .2f .b bT mπ π=  

⇒ 0 .
4 b
mf f=

           (4.39) 

Eq(38) shows that sincen=1, fH and fL are as close together as possible for orthogonality to prevail. 
It is for this reason that the present system is called “minium shift keying”. Equation(4.39) shows 
that the carrier frequency f0 is an integral multiple of fb/4. Thus 

( 1). 4

( 1). 4

b
H

b
L

ff m

ff m

= +

= −
          (4.40) 

 

 

 



MSK Transmitter & Receiver 

 

Fig 4.15 Transmission of MSK 

 

Fig 4.16 Reception of MSK 
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Spectrum of MSK 

We see that the base band waveform which multiplies the sinω0t in MSK is 

0(t) 2 cos      -T     
2s b b bp b f t t Tπρ = ≤ ≤

        
(4.41) 

The waveform ρ (t) has a PSD ( )

2

2 2
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2
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 b
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G f E f f
f

f

π
π

⎡ ⎤
⎢ ⎥= ⎢ ⎥

−⎢ ⎥⎣ ⎦        

(4.42) 

Then the PSD for the total MSK signal of equation (4.33) is 

2

0 0
2 2 2

0 0

8 cos 2 (f f ) / f cos 2 (f f ) / f(f)
1 [4(f f ) / f ] 1 [4(f f ) / f ]

b b b
msk

b b

EG π π
π

⎡ ⎤⎧ ⎫ ⎧ ⎫− +
⎢ ⎥= +⎨ ⎬ ⎨ ⎬− − − +⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦     

(4.43) 

It is clear from the fig-4.9 that the main loab in MSK is wider than the main lobe in QPSK. In 
MSK the band width required to accommodate this lobe is 2*3/4fb=1.5fb while it is only 1fb in 
QPSK. However in MSK the side lobe are very greatly suppressed in comparision to QPSK. in 
QPSK ,G(f) falls off as 1/f2 while in MSK G(f) falls off as 1/f4 ,It turns out that in MSK 99% of the 
signal power is contained in a band width of about 1.2fb . while in QPSK the corresponding 
bandwidth is about 8fb. 

Geometrical representation of MSK in signal space 

The signal space representation of MSK is shown in Fig 4.17a. The orthogonal unit vectors of the 
co-ordinate system are given by uff(t)   and  ul(t). The end point of the four possible signal vectors 
are indicated by dots. The smallest distance between signal point is 2 2s bd E E= =  

QPSK generates two BPSK signal which are orthogonal to one another by virtue of the fact that 
the respective carriers are in phase quadrature. Such phase quadrature can also be charactarised as 
time quadrature since , at a carrier frequency to a phase shift of π/2 is accomplished by a time shift 
in amount 1/4f0i.e 0 0 0 0sin 2 (t 1/ 4f ) sin(2 f t / 2) cos 2 ff tπ π π π+ = + =   It is of interest to note , in 
contrast, that in MSK we have again two BPSK signal  [i.e the two individual terms in equation 
4.36] 



Here, however ,the respective carriers are orthogonal to one another by virtue of the fact that they 
are in frequency quadrature. 

Phase continuity in MSK 

A most important and useful feature of MSK in its phase continuity. This matter is illustrated in 
4.17 b in waveform g, h ,and i. Here we have assumed f0=5fb/4 so that 

fH= f0+fb/4= 5fb/4 +fb/4 =1.5fb          (4.44) 

fL= f0-fb/4= 5fb/4 -fb/4 =1fb                                (4.45) 

Carriers of fH and fL are shown in g & h. We also find form eqn(4.35),that for the various 
combination of b0 and be , ( ) / 2 smskV t P  . It is clear that because of staging ,b0 and be don’t change 
simultaneously. The waveform Vmsk(t) is generated in the following way: in each bit interval we 
determine from eqn (4.36a), whether to use the carrier frequency fH or fl and also whether to use 
carrier waveform is to be inverted. Having made such a determination the waveform  of  Vmsk(t) is 
smooth  and exhibits no abrupt changes in phase. Hence, in MSK we avoid the difficulty described 
above (pulse case),which results from the abrupt phase changes in the waveform of QPSK. We 
shall now see that the phase continuity and is a general characteristics of MSK. For this purpose 
we note from table 3 that the Vmsk(t) 

Waveform of eqn(4.35) or eqn (4.36) can be written as 

0 0 0(t) b (t) 2 sin (t)b (t) tmsk s eV P t bω= + Ω⎡ ⎤⎣ ⎦          (4.46) 

The instantaneous phase (t)φ  of the sinusoidal in eqn (4.46) is given by  

0 0(t) (t)b (t) tet bφ ω= + Ω            (4.47) 

For convergence we represent the two phases as (t)φ+  or (t)φ− , where 

0(t) ( ) t      ;b (t)b (t)=+1o eφ ω+ = +Ω           (4.48) 

0(t) ( ) t      ;b (t)b (t)=-1o eφ ω− = −Ω          (4.49) 

b0(t) can take +-1and be(t) can take +-1.The term b0(t) ,be(t) in eqn(4.46) can change at times 
KTb(k inis an integer).but they don’t change at the same time .consider then ,first a change in 
be(t).such a change will cause a phase change which is a multiple of 2π  ,which is equivalent to no 

change at all (be(t) can only change when k is even ).when b0(t) changes the phase change in (t)φ  
will be an odd multiple of π  i.e a phase change of π .but as per eqn (4.46) and its coefficient b0(t) 
which multiplies 2 sin (t)sP φ .whenever there is a change in b0(t) to change the phase (t)φ  by π ,the 
coefficient  b0(t) will also change the sign of ,yielding an additional π phase change. Hence a 
change in b0(t) produces no net phase discontinuity. 

 



Use of signal space to calculate probability of error for BPSK & BFSK 

BPSK: in BPSK case,the signal space is one dimensional . The signal s1 & s2 are given by  

1
0

2

(t)
2 (t)cos  ;         0<t

s (t) s b
s

P b t Tω
⎫⎪ = ≤⎬
⎪⎭           

(4.50) 

Where b(t)=+1 for s1 and  b(t)=-1 for s2. Ps is the signal power. If we introduce the unit 
(normalized) 

Vector 02(t) cos
b

u tT ω=  ,then 

1
0

2

(t) 2(t) cos  
s (t) s b

b

s
b P T t

T
ω

⎫⎪ =⎬
⎪⎭          

(4.51) 

 

Fig 4.17 (a) Signal Vector (b) Co-relator Receiver 

So signal vectors each of length s bPT  ,measured in terms of unit vector u(t).processing at the 
correlator  receiver, we will generate a response r1 or r2 for s1 and s2 respectively when no. noise  is 
present. Now suppose that in some interval, because of noise  a response r is generated.if we find 

1 2r r r r− < − ,then we determine that s1(t) was transmitted. 

The relevant noise in BPSK case is  

0 0 0
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b

n t
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Where n0 is a Gaussian  random variable. 
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Variance of noise energy = 0         
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(4.53) 

Let us take S2(t) was transmitted. The error probability ie the probability that the signal  is 
mistaken or judged as S1(t).This is possible only when 0 s bn P T>  .thus error probability Pe  is given 
by 
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Let us assume 
22 0x η
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η η

= =
        

 (4.56) 

As argument of erfc increases ,its value decreases .ie pe decreases . 

Thus error probability is seen to fall off monotonically with an increase in distance between 
signals. 

BFSK 

The unit vectors in BFSK considered are   

1 1

2 2
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2(t) cos

b
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u tT
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ω

ω

⎫= ⎪⎪
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          (4.57) 

1ω and  2ω are selected in sucha manner that they are orthogonal over the interval bT  .The 
transmitted signal 1(t)s  and s2(t) are of power Ps are given by 

1 1 1 1(t) 2 cos cos (t)s s b s bS P t P T t P T uω ω= = =          (4.58)

2 2 2 2(t) 2 cos cos (t)s s b s bS P t P T t P T uω ω= = =          (4.59) 

In the absence of noise , when s1(t) is received, then r2=0 and 2 s br P T=

 

.fors2(t) is received, then 

r1=0 and 1 s br P T= .The vectors representing r1 and r2 are of length s bP T  .since the signal is two 
dimensional ,the relevant noise in the present case is  



1 1 2 2(t) n (t)u (t) n (t)u (t)n = +            (4.60) 

Where n1 and n2 are Gaussian random variable each of variance 2 2
1 2 .2

ησ σ= = =   

 

Fig 4.18 Reception in BFSK signal 

Now let us suppose that s2(t) is transmitted and the observed voltage at the output of the receiver  
are r1

’ and r2
’  .we find r2

’not equal to r2 because of the noise n2 and '
1 0r ≠ because of noise then n1 . 

we have locus of points  equidistant from  r1 and r2
  suppose as shown that received voltage r is 

closer to r1 to r2.Then we shall have made an error in estimating  which signal was transmitted.It is 
readily apparent that  such an error will occur when ever noise  1 2 2rη η> −  or 1 2( ) s bP Tη η+ >  .since 

n1 and n2 are uncorrelated ,random variable 0 1 2(n n )n = +  has a variance 2 2 2
0 1 2 nσ σ σ= + =  and its 

probability density function  
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The probability error is  
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         (4.63)

 

For comparison of equation 4.55 & 4.62 should be used. Equation 4.56 & 4.63 are generalized 
equation.
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