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MODULE- I (10 hrs) 

 

1.Magnetic coupled circuits. (Lecture -1) 

 

1.1.Self inductance 
When current changes in a circuit, the magnetic flux linking the same circuit changes and e.m.f 

is induced in the circuit. This is due to the self inductance, denoted by L. 
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FIG.1 

 

1.2.Mutual Inductance  
The total magnetic flux linkage  in a linear inductor made of a coil is proportional to the 

current 

passing through it; that is,  



 
 

Fig. 2 

Li   
. By Faraday‟s law, the voltage across the inductor is equal to the time derivative of the total 

influx linkage; given by,  

di d
L N

dt dt


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1.3. Coupling Coefficient 

 

A coil containing N turns with magnetic flux Ø_ linking each turn has total magnetic flux 

linkage λ=NØ 

. By Faraday‟s law, the induced emf (voltage) in the coil is 

d d
e N

dt dt

    
      

     
 . A negative sign is frequently included in this equation to signal that the voltage polarity is 

established according to Lenz‟s law. By definition of self-inductance this voltage is also given by 

Ldi=dtÞ; hence, 

 

 

The unit of flux(Ø) being the weber, where 1 Wb = 1 V s, it follows from the above relation that 

1 H = 1 Wb/A. Throughout this book it has been assumed that Ø and i are proportional to each 

other, making 

 L = (NØ) /I = constant  

 
 

Fig.3 

 

 

In Fig.3 , the total flux  resulting from current i1 through the turns N1 consists of leakage flux, 



Ø11, and coupling or linking flux, Ø12. The induced emf in the coupled coil is given by 

N2(dØ12/dt). This same voltage can be written using the mutual inductance M: 
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Also, as the coupling is bilateral, 
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Hence,mutual inductance , M is given by  

1 2M k L L
  

And the mutual reactance XM is given by 

1 2MX k X X
 

The coupling coefficient, k, is defined as the ratio of linking flux to total flux: 
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1.4.Series connection of coupled circuit ( lecture 2) 

When inductors are connected together in series so that the magnetic field of one links with the 

other, the effect of mutual inductance either increases or decreases the total inductance 

depending upon the amount of magnetic coupling. The effect of this mutual inductance depends 

upon the distance apart of the coils and their orientation to each other. 

Mutually connected inductors in series can be classed as either “Aiding” or “Opposing” the total 

inductance. If the magnetic flux produced by the current flows through the coils in the same 

direction then the coils are said to be Cumulatively Coupled. If the current flows through the 

coils in opposite directions then the coils are said to be Differentially Coupled as shown below. 

1.4.1.Cumulatively Coupled Series Inductors 



 

Fig.4 

While the current flowing between points A and D through the two cumulatively coupled coils is 

in the same direction, the equation above for the voltage drops across each of the coils needs to 

be modified to take into account the interaction between the two coils due to the effect of mutual 

inductance. The self inductance of each individual coil, L1 and L2 respectively will be the same 

as before but with the addition of M denoting the mutual inductance. 

Then the total emf induced into the cumulatively coupled coils is given as: 

  

 

Where: 2M represents the influence of coil L1 on L2 and likewise coil L2 on L1. 

By dividing through the above equation by di/dt we can reduce it to give a final expression for 

calculating the total inductance of a circuit when the inductors are cumulatively connected and 

this is given as: 

Ltotal = L 1 + L 2 + 2M 

If one of the coils is reversed so that the same current flows through each coil but in opposite 

directions, the mutual inductance, M that exists between the two coils will have a cancelling 

effect on each coil as shown below. 

1.4.2.Differentially Coupled Series Inductors 



 

Fig.5 

The emf that is induced into coil 1 by the effect of the mutual inductance of coil 2 is in 

opposition to the self-induced emf in coil 1 as now the same current passes through each coil in 

opposite directions. To take account of this cancelling effect a minus sign is used with M when 

the magnetic field of the two coils are differentially connected giving us the final equation for 

calculating the total inductance of a circuit when the inductors are differentially connected as: 

Ltotal = L 1 + L 2 – 2M 

Then the final equation for inductively coupled inductors in series is given as: 

 

Inductors in Series Example No2 

Two inductors of 10mH respectively are connected together in a series combination so that their 

magnetic fields aid each other giving cumulative coupling. Their mutual inductance is given as 

5mH. Calculate the total inductance of the series combination. 

 

  

Inductors in Series Example No3 

Two coils connected in series have a self-inductance of 20mH and 60mH respectively. The total 

inductance of the combination was found to be 100mH. Determine the amount of mutual 

inductance that exists between the two coils assuming that they are aiding each other. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1.4.DOT RULE (lecture 3) 



 

Fig.6 

 



 

 

 
Fig.7 

     

 

The sign on a voltage of mutual inductance can be determined if the winding sense is 

shown on the circuit diagram, as in Fig. To simplify the problem of obtaining the correct sign, 

the coils are marked with dots at the terminals which are instantaneously of the same polarity. To 

assign the dots to a pair of coupled coils, select a current direction in one coil and place a dot at 

the terminal where this current enters the winding. Determine the corresponding flux by 

application of the right-hand rule [see Fig. 14-7(a)]. The flux of the other winding, according to 

Lenz‟s law, opposes the first flux. Use the right-hand rule to find the natural current direction 

corresponding to this second flux [see Fig. 14-7(b)]. Now place a dot at the terminal of the 

second winding where the natural current leaves the winding. This terminal is positive 

simultaneously with the terminal of the first coil where the initial current entered. With the 

instantaneous polarity of the coupled coils given by the dots, the pictorial representation of the 



core with its winding sense is no longer needed, and the coupled coils may be illustrated as in 

Fig. 14-7(c). The following dot rule may now be used:  

(1) when the assumed currents both enter or both leave a pair of coupled coils by the dotted 

terminals, the signs on the M-terms will be the same as the signs on the L-terms; but 

 (2) if one current enters by a dotted terminal while the other leaves by a dotted terminal, the 

signs 

on the M-terms will be opposite to the signs on the L-terms 

 

 

 

1.5.CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS 

 

From the mesh current equations written for magnetically coupled coils, a conductively 

coupled 

equivalent circuit can be constructed. Consider the sinusoidal steady-state circuit of Fig. 14-9(a), 

with 

the mesh currents as shown. The corresponding equations in matrix form are 
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1.6.Single tuned coupled circuit 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 
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FIG. variation of V0 with   for different values of K 
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At resonance 
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1.7.Double tuned coupled circuit.(lecture-4) 
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Fig.10 

 

In this circuit the tuning capacitors are placed both in primary as well as secondary side. 

From the figure the eq. impedance on primary side is, Z11, 

Given by  
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Applying loop analysis 
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FIG. variation of V0 with   for different values of K 

 

 

 

Or, 
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For maximum out put voltage at resonance, 



The denominator should be minimum 

As 
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2.Two-Port Networks 

 

2.1.Terminals and Ports (lecture-5) 

 

 

In a two-terminal network, the terminal voltage is related to the terminal current  by the 

impedance 

Z=V / I.  

 

 

 

 

 

 

 

 Fig.1  

   

In a four-terminal network, if each terminal pair (or port) is connected separately to another 

circuit as in Fig. , the four variables i1, i2, v1, and v2 are related by two equations called the 

terminal characteristics. These two equations, plus the terminal characteristics of the connected 

circuits, provide the necessary and sufficient number of equations to solve for the four variables. 

 

 

 

 2.2.Z-PARAMETERS (open circuit parameters) 

 

The terminal characteristics of a two-port network, having linear elements and dependent 

sources, 

may be written in the s-domain as 

V1=Z11 I1+Z12 I2     (1) 

V2=Z21I1+Z22 I2     (2) 

Z11 = V1/ I1  (for I2=0) 



Z21  = V2/ I1      (for I2   =0) 

Z12= V1 /I2      (for   I1=0) 

Z22 = V2 /I2     (for   I1=0) 

 

2.3.Y-PARAMETERS(short circuit parameters) 

 

The terminal characteristics may also be written as , where I1 and I2 are expressed in terms of 

V1 and V2. 

 

I1 = Y11V1 + Y12V2      (3) 

I2 = Y21V1 + Y22V2      (4) 

this yields  

Y11 =I1 /V1  forV2=0 

Y11 =I1/V2  For V1=0 

Y21=I2/V2  for V2=0 

Y22 =I2/V22 forV1=0 
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5ohm
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b

d
5 0hm

 
Fig.2 

Solution: 

 

We can make two separate neyworks one a T netwotk  comprising R1,R2,R3 and anetwork 

containing R4 only.  
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Similarly for the next network 
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Example.Find the Y parameters for the given circuit 
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2.4.Transmission Parameters (ABCD parameters)  

 

 

The transmission parameters A, B, C, and D express the required source variables V1 and I1 in 

terms 

of the existing destination variables V2 and I2. They are called ABCD or T-parameters and are 

defined 

by 

 

V1 = AV2 – BI2 

I1= CV2 – DI2 



 

A =V1/V2      (for I2=0) 

 

B=  -  V1/I2 (for V2=0) 

 

C =I1/V2 (for I2=0) 

 

 

D =  - I1/I2  (for V2=0) 

 

 

2.5.Hybrid parameters (lecture-6) 

 

Short circuit and open circuit terminal conditions are used for determining the hybrid parameters. 

H – parameters representation used in modeling of electronic components and circuits. 
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Are called input impedance and forward current gain 
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Are called reverse voltage gain and out put admittance 

 

 

 

 

2.6.Condition for reciprocity and symmetry in two port parameters 

 

A network is termed to be reciprocal if the ratio of the response to the excitation remains 

unchanged even if the positions of the response as well as the excitation are interchanged. 

A two port network is said to be symmetrical it the input and the output port can be interchanged 

without altering the port voltages or currents. 
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Fig.3 

 

For short circuit and current direction output side is negative. 
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From the above two equations 
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Let us now interchange the input and output 
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From these equations we find  
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Symmetry in Z parameters 

 

Keeping the output port open supplying V in the input side  

We get, 
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And applying voltage at the output port and keeping the input port open 

We get, 
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 Similarly the other parameters can be studied and reported in table 
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2.7.Interconnecting Two-Port Networks (lecture-7) 

 

 

Two-port networks may be interconnected in various configurations, such as series, parallel, or 

cascade connection, resulting in new two-port networks. For each configuration, certain set of 

parameters may be more useful than others to describe the network. 

 

2.7.1.Series Connection 

 

A series connection of two two-port networks a and b with open-circuit impedance parameters 

Za and Zb, respectively. In this configuration, we use the Z-parameters since they are combined 

as a series connection of two impedances.  

 
Fig.4 

 

 

 

The Z-parameters of the series connection are  

 

Z 11= Z11A + Z11B 



 

Z12 = Z12A + Z12B 

 

Z 21 = Z21A + Z21B 

 

Z22 = Z 22A + Z 22B 

 

Or in the matrix form 

 

[Z]=[ZA]+[ZB] 

 

 

2.7.2.Parallel Connection 

Fig.6 

 

Fig.6 

 
 

Fig.6 

 

Figure shows a parallel connection of two-port networks a and b with short-circuit admittance 

parameters Ya and Yb. In this case, the Y-parameters are convenient to work with. The Y-

parameters 

of the parallel connection are (see Problem 13.11): 

 

Y11 = Y11A +Y11B 

 

Y12 ¼ Y12A + Y12B 

 

Y21 ¼ Y21A + Y21B 

 

Y22 ¼ Y22A + Y22B 

 

or, in the matrix form 

[Y] = [YA] + [YB] 

 

 

2.7.3.Cascade Connection 



 

 

 

 

 

 

The cascade connection of two-port networks a and b is shown in Figure above. In this case the 

transmission-parameters are particularly convenient. The transmission-parameters of the cascade 

combination are 

 

A = A aAb + B aCb 

B  =A aB b +B aD b 

C  =C aAb + D aC b 

D  =C aB b + D aDb 

 

or, in the matrix form, 

 

[T]=[Ta][Tb] 

 

2.8. Y- parameters in terms of  z- parameters (lecture-8) 

 

 

1 11 1 12 2V Z I Z I 
, 

Or, 

1 12 2
1

11

( )V Z I
I

Z




 
similarly 
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Equating the two equations  R.H.S 
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Also from the two equations 
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And equating the both we get  
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Hence the y parameters can be expressed in z parameters as given below  

 

11 12

12 22

,  

,

Y Y

Y and Y

 

 
 

  

2.9.Z parameters in terms of Y parameters 
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From the above equation we find 
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1 11 1 12 2I Y V Y V 
      (2.9.3)     
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Hence, 
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2.10.Z parameters in terms of ABCD parameters 
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2.11.Z parameters in terms of hybrid- parameters 

 

1 11 1 12 2V h I h V 
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    (2.11.2) 

Using the above equation we get, 
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Putting the value of V2 in the first equation, we get, 
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Comparing the equations with governing equation of Z-parameters 
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2.12.Y- parameters in terms of ABCD parameters  
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2.13. ABCD parameters in terms of Y- parameters 

 

The governing equation for Y parameters  

1 11 1 12 2I Y V Y V 
    (2.13.1) 
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    (2.13.2) 
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For the above equation 
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Putting  the value of V1 
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Comparing the equation with governing equation for ABCD parameters we get 
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3.Transients in DC circuits and AC circuits  

 

3.1.What do you mean by transient? (lecture-9) 

 

 

Whenever a circuit is switched from one condition to another, either by a change in the 

applied source or a change in the circuit elements, there is a transitional period during which the 

branch currents and element voltages change from their former values to new ones. This period 

is called the transient. After the transient has passed, the circuit is said to be in the steady state. 

Now, the linear differential equation that describes the circuit will have two parts to its solution, 

the complementary function (or the homogeneous solution) and the particular solution. The 

complementary function corresponds to the transient, and the particular solution to the steady 

state. 

 

 

 

 

3.2.Transients in R-L circuit D.C and A.C source 

 

 

3.2.1.Consider a series R-L circuit supplied by an DC source with a switch . 

Step response of dc circuit. 

 

Take the initial condition of the circuit before closing the switch. Applying KVL to the 

given circuit. Taking laplace transform  
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Fig.1 

 

 

 

 
 

 

3.2.2.Transient response of series R-L –C circuit with step input. 

 

  

 

 



 
Fig.2. 

 

1/
( )

1/

s
I s

R Ls Cs


   

2

1/
( )

( / ) 1/

L
I s

s R L s LC


   
 

1/
( )

( )( )

s
I s

s s 


   
2

1
,

2 2

R R
where

L L LC
 

 
    

   
Case1 

Both roots era real and not equal 

 

1

2

R

L LC


 

1 2( )
( ) ( )

K K
I s

s s 
 

   

1

1/ 1

( ) ( )
s

L
K

s L


  


 
 

 

2

1/ 1

( ) ( )
s

L
K

s L


  


 
 

 
1 1

( )
( )( ) ( )( )

I s
L s L s     

 
     
1 1

( )
( ) ( )

t ti t e e
L L

 

   

  
  

    
 

 

Case 2 
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Taking inverse Laplace transform 

We get, 
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3.2.3.Pulse  response of RC series circuit (lecture-10) 

 

 

 

 In this section we will derive the response of a first-order circuit to a rectangular pulse. The 

derivation applies to RC or RL circuits where the input can be a current or a voltage. As an 

example, we use the series RC circuit in Fig. 7-17(a) with the voltage source delivering a pulse 

of duration T and height V0. For t < 0, v and i are zero. For the duration of the pulse, we use (6b) 

and (6c) in Section 

 

 
 

 

 
 

 

 

Fig.3 
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When the pulse ceases, the circuit is source-free with the capacitor at an initial voltage VT . 
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taking into account the time shift T, we have 
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The capacitor voltage and current are plotted in Figs.(b) and (c) 

 

3.2.4.R-L series with sine wave 

Applying KVL to the circuit 

 

 
Fig.4. 

 

Applying KVL to the circuit 
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Taking Laplace transform  
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Taking inverse Laplace Transform 
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 ********End of module –I **************** 

 

 



MODULE-II(10 HOURS) 

CHAPTER - 4 

 

NETWORK FUNCTIONS & RESPONSES 

4.1 INTRODUCTION(lecture-11) 

 

In engineering, a transfer function (also known as the system function or network 

function and, when plotted as a graph, transfer curve) is a mathematical representation for fit or 

to describe the inputs and outputs of black box models. 

All the systems are designed to produce a particular output, when the input is applied to 

it. The system parameters, perform some operation on the applied input, in order to produce the 

required output. The mathematical indication of cause and effect relationship existing between 

input and output of a system is called the system function or transfer function of the system. The 

Laplace transform plays an important role in defining the system function. 

4.2 CONCEPT OF COMPLEX FREQUENCY 

             A complex number used to characterize exponential and damped sinusoidal motion in 

the same way that an ordinary frequency characterizes the simple harmonic motion; designated 

by the constants corresponding to a motion whose amplitude is given by 𝐴𝑒𝑠𝑡 , where A is a 

constant and t is time. 

A type of frequency that depends on two parameters; one is the “σ” which controls the 

magnitude of the signal and the other is “ω”, which controls the rotation of the signal; is known 

as “complex frequency”.  

A complex exponential signal is a signal of type 1  

 

                   𝑋 𝑡 = 𝑋𝑚𝑒𝑠𝑡……………………………... (4.2.1) 

 

Where 𝑋𝑚  and s are time independent complex parameter and S = σ + jω where 𝑋𝑚  is the 

magnitude of  X (t), sigma (σ) is the real part in S and is called neper frequency and is expressed 

in Np/s. “ω” is the radian frequency and  is expressed in rad/sec. “S” is called complex frequency 

and is expressed in complex neper/sec. 

Now put the value of S in equation (4.2.1), we get  

 

𝑋 𝑡 =  𝑋𝑚𝑒𝜎𝑡+𝑗𝜔𝑡  
 

𝑋 𝑡 =  𝑋𝑚𝑒𝜎𝑡𝑒𝑗𝜔𝑡  
By using Euler‟s theorem 

http://en.wikipedia.org/wiki/Line_chart
http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Black_box


 

                                           i.e.  𝑒𝑖ѳ = 𝑐𝑜𝑠ѳ + 𝑖 𝑠𝑖𝑛ѳ 

 

                                                𝑋 𝑡 = 𝑋𝑚𝑒𝜎𝑡 [Cos (ωt) + j sin (ωt)] 

 

 The real part is 

                                                   X (t) =𝑋𝑚𝑒𝜎𝑡cos⁡(𝜔𝑡) 

 

And imaginary part is  

                                                   X (t) =𝑋𝑚𝑒𝜎𝑡sin⁡(𝜔𝑡) 

            

The physical interpretation of complex frequency appearing in the exponential form will be 

studied easily by considering a number of special cases for the different value of S.  

 

Case no 1: When ω =0 and σ has a certain value, then, the real part is 

 

                                                           X (t) =𝑋𝑚𝑒𝜎𝑡cos⁡(𝜔𝑡) 

 

                                                           X (t) =𝑋𝑚𝑒𝜎𝑡 . 1 

 

                                                           X (t) =𝑋𝑚𝑒𝜎𝑡  

The imaginary part is zero (0),  

Since S = σ + jω, S =σ as ω = 0 

                       

 Now there are also three cases in above case no 1. 

 

(i) If the neper frequency is positive i.e. σ > 0 the curve obtains is exponentially 

increasing curve as shown below. 

 

 

 

 

 

 

 

 

              

  

                                                                      Fig. 4.1 

(ii) If σ < 0 then the curve obtain is exponentially decreasing curve as shown below.  
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                                                                      Fig. 4.2  

(iii) If σ = 0 then the curve obtain is the steady state DC curve as shown below fig. 4.3 

 

 

 

 

 

 

 

 

 

 

                                                                    Fig. 4.3 

 

Case no 2: When σ = 0 and ω has some value then, the real part is 

𝑋 𝑡 = 𝑋𝑚𝑒0.𝑡cos⁡(𝜔𝑡) 
 

𝑋 𝑡 = 𝑋𝑚cos⁡(𝜔𝑡) 
And the imaginary part is 

𝑋 𝑡 = 𝑋𝑚sin⁡(𝜔𝑡) 

 

Hence the curve obtained is a sinusoidal steady state curve, as shown in the below figure. 
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Fig. 4.4 

 

Case no 3: When σ and ω both have some value, then the real part is  

𝑋 𝑡 = 𝑋𝑚𝑒𝜎𝑡cos⁡(𝜔𝑡) 

And the imaginary part is 

𝑋 𝑡 = 𝑋𝑚𝑒𝜎𝑡sin⁡(𝜔𝑡) 

So, the curve obtained is time varying sinusoidal signal. These case no 3 is also has some two 

cases 

(a) When σ > 0 

               Real Part 

 

Fig. 4.5 

              Imaginary Part 

        

Fig. 4.6 

 

 

 



 

 

(b) When σ< 0 

                Real Part 

               
Fig. 4.7 

               Imaginary Part 

              

Fig. 4.8 

4.3 NETWORK FUNCTIONS FOR ONE PORT NETWORK: (Lecture -12) 

(a) Driving Point Impedance Function 

The ratio of the Laplace transform of the voltage at the port to the Laplace transform of the 

current at the same port, neglecting initial conditions is called driving point impedance function, 

denoted as Z(s) 

𝑍 𝑠 =
𝑉(𝑠)

𝐼(𝑠)
 

(b) Driving Point Admittance Function 

The ratio of the Laplace transform of the current at the port to the Laplace transform of the 

voltage at the same port, neglecting initial conditions is called driving point admittance function. 



                                                                    𝑌 𝑠 =
𝐼 (𝑠)

𝑉 (𝑠)
  

 

Example 4.3.1 For the given one port network shown in fig., find driving point impedance 

function. 

 

                                                              Fig.4.9 

Solution: To find the driving point impedance for the given network, first convert the network 

into s domain which is called transformed network. 

 

                                                          Fig. 4.10 

The transformed network is as shown in fig 

Then,                                                    𝑍 𝑠 = 𝑅 + 𝑠𝐿 +
1

𝑠𝐶
 

 

                                                            = 
𝑅 𝑠𝐶 + 𝑠𝐿  𝑠𝐶 +1

𝑠𝐶
=

𝑠𝑅𝐶+𝑠2𝐿𝐶+1

𝑠𝐶
 

Hence, the driving point impedance function of a given network is 

                                                              𝑍 𝑠 =
𝑠2𝐿𝐶+𝑠𝑅𝐶+1

𝑠𝐶
 

Example 4.3.2 Find driving point admittance function for the given network having only one 

port. 



 

                                                                           Fig. 4.11 

Solution: First transform the given network as shown in fig. 4.12 

 

                                                      Fig. 4.12 Transformed network 

When the branches are connected in parallel it is very easy to find admittance of an overall 

function by adding admittances of individual branches which are connected in parallel. 

Admittance of capacitive branch is given as 

𝑌1 𝑠 =
1

1/𝑠𝐶
= 𝑠𝐶 

Admittance of the inductive branch is given as 

𝑌2 𝑠 =
1

𝑅 + 𝑠𝐿
 

∴Total admittance is given as 

𝑌 𝑠 = 𝑌1 𝑠 + 𝑌2(𝑠) 

                                             = 𝑠𝐶 +
1

𝑅 + 𝑠𝐿
=

𝑠𝑅𝐶 + 𝑠2𝐿𝐶 + 1

𝑅 + 𝑠𝐿
 

Hence, the driving point admittance function of a given network is, 

𝑌 𝑠 =
𝑠2𝐿𝐶 + 𝑠𝑅𝐶 + 1

𝑅 + 𝑠𝐿
 

 



4.4 NETWORK FUNCTIONS FOR TWO PORT NETWORK: (Lecture -13) 

 

                                                                   Fig. 4.13 

        For the two port network, there are two ports. The variables measured at port 1 are 𝑣1 𝑡  

and 𝑖1(𝑡) while the variables measured at port 2 are 𝑣2 𝑡  and 𝑖2(𝑡). This is shown in above fig. 

4.13. The ratio of the variables measured at the same port either port 1 or port 2 defines driving 

point function. Hence, for two port networks, we can define,  

(a) Driving Point Impedance Function 

         This is the ratio of 𝑉1(𝑠) and 𝐼1(𝑠) at port 1, denoted as 𝑍11(𝑠) or the ratio of 𝑉2(𝑠) to 𝐼2(𝑠) 

at port 2, denoted as𝑍22(𝑠). Both are driving impedance functions. 

                                           𝑍11 𝑠 =
𝑉1(𝑠)

𝐼1(𝑠)
  and  𝑍22 𝑠 =

𝑉2(𝑠)

𝐼2(𝑆)
 

(b) Driving Point Admittance Function 

          The reciprocals of the driving point impedance functions at the ports give the driving point 

admittance functions at the respective ports. These are denoted as 𝑌11(𝑠) and 𝑌22(𝑠) at the two 

ports respectively. 

                                             𝑌11 𝑠 =
𝐼1(𝑠)

𝑉2(𝑠)
 and 𝑌22 𝑠 =

𝐼2(𝑠)

𝑉2(𝑠)
 

4.5 TRANSFER FUNCTION OF TWO PORT NETWORK: 

            The function defined as the ratio or Laplace of two variables such that one variable is 

defined at one port while the other variable is defined at the second port. Accordingly, four 

transfer functions can be defined for two port network as, 

1. Voltage Ratio Transfer Function 

It is the ratio of Laplace transforms of voltage at one port to voltage at other port. It is denoted as 

G(s).  



∴ 𝐺 𝑠 =
𝑉2(𝑠)

𝑉1(𝑠)
 

2. Current Ratio Transfer Function 

It is the ratio of Laplace transforms of current at one port to current at other port. It is denoted as 

α(s).  

∴ 𝛼 𝑠 =
𝐼2(𝑠)

𝐼1(𝑠)
 𝑜𝑟 

𝐼1(𝑠)

𝐼2(𝑠)
 

3. Transfer Impedance Function 

It is the ratio of Laplace transforms of voltage at one port to current at other port. It is denoted as 

𝑍12 𝑠  or 𝑍21 𝑠 . 

∴ 𝑍21 𝑠 =
𝑉2(𝑠)

𝐼1(𝑠)
 𝑎𝑛𝑑 𝑍12 𝑠 =

𝑉1(𝑠)

𝐼2(𝑠)
 

4. Transfer Admittance Function 

It is the ratio of Laplace transforms of current at one port to voltage at other port. It is denoted as 

𝑌12 𝑠  or 𝑌21 𝑠 . 

∴ 𝑌21 𝑠 =
𝐼2(𝑠)

𝑉1(𝑠)
 𝑎𝑛𝑑 𝑌12 𝑠 =

𝐼1(𝑠)

𝑉2(𝑠)
 

Example 4.5.1 For given two port network find driving point impedance function and voltage 

ratio transfer function.   

 

                                                                 Fig. 14 

Solution: Transforming given network in s domain, the network will be as shown in below fig. 



 

                                                                   Fig 15 

To find voltage ratio transfer function, find 𝑉2 using potential divider rule as follows, 

𝑉2 = 𝑉1  
1/𝑠𝐶

𝑅 + 1/𝑠𝐶
  

 

∴
𝑉2

𝑉1
=

1/𝑠𝐶

𝑠𝑅𝐶 + 1
𝑠𝐶

 

𝑉2

𝑉1
=

1

𝑠𝑅𝐶 + 1
 

As port 2 is open circuited, 𝐼2 = 0. 

Hence current 𝐼1will flow through R and C. 

𝑉1 = 𝐼1  𝑅 +
1

𝑠𝐶
  

𝑍 𝑠 =
𝑉1

𝐼1
=

𝑠𝑅𝐶 + 1

𝑠𝐶
 

4.6 POLES & ZEROS OF NETWORK FUNCTIONS : (lecture-14) 

            In pole/zero analysis, a network is described by its network transfer function which, for 

any linear time-invariant network, can be written in the general form: 

𝐻 𝑠 =  
𝑁(𝑠)

𝐷(𝑠)
=  

𝑎0𝑠
𝑚 + 𝑎1𝑠

(𝑚−1) + ⋯ + 𝑎𝑚

𝑏0𝑠𝑛 + 𝑏1𝑠(𝑛−1) + ⋯ + 𝑏𝑛
 

 In the factorized form, the general function is: 



𝐻 𝑠 =   
𝑎0

𝑏0
 .
 𝑠 + 𝑧1  𝑠 + 𝑧2 …  𝑠 + 𝑧𝑖 … (𝑠 + 𝑧𝑚)

 𝑠 + 𝑝1  𝑠 + 𝑝2 …  𝑠 + 𝑝𝑗  … (𝑠 + 𝑝𝑛)
 

            The roots of the numerator N(s) (that is,𝑧𝑖   ) are called the zeros of the network function, 

and the roots of the denominator D(s) (that is, 𝑝𝑗 ) are called the poles of the network function. S 

is a complex frequency. 

The dynamic behavior of the network depends upon the location of the poles and zeros 

on the network function curve. The poles are called the natural frequencies of the network. In 

general, you can graphically assume the magnitude and phase curve of any network function 

from the location of its poles and zeros. 

Example 4.6.1 A function given by  𝑍 𝑠 =
𝑆+4

𝑆
 . Find the pole-zero plot. 

Solution: In the above function the zero is at s = -4 and the pole is at s = 0. The pole-zero plot is 

shown below in fig. 16 

 

 

 

                                                             Fig. 16 

Example 4.6.2 A function given by  𝑍 𝑠 =
2𝑠

 𝑠+2 (𝑠2+2𝑠+2)
 . Obtain its pole-zero plot. 

Solution: The zero is at s = 0 and the pole is at s = -2,(-1+j1),(-1-j1) . The pole-zero plot is 

shown below in fig. 17 

 

 

   

                                           

 

                                                           Fig. 17 

 

j𝟂 

σ 

(-1+j1) 

(-1-j1) 

 

j𝟂 

σ 



4.7 RESTRICTION ON POLE AND ZERO LOCATIONS OF NETWORK FUNCTION 

( Lecture -15) 

     The following are the restrictions on pole and zero location of network function: 

(a) The co-efficient of the polynomials of numerator and denominator of the network 

function H (s) must be real and positive. 

(b) Poles and zeros, if complex or imaginary, must occur in conjugate pairs. 

(c) The real parts of all poles and zeros must be zero or negative. 

(d) The polynomial of the numerator or denominator cannot have any missing term between 

those of highest and lowest order values unless all even order or all odd order terms are 

missing. 

(e) The degree of the numerator or the denominator polynomial may differ by zero or one 

only. 

(f) The lowest degree in numerator and denominator may differ in degree by at the most one. 

Example 4.7.1 Check if the impedance function Z(s) given by 𝒁 𝒔 =
𝒔𝟒+𝒔𝟐+𝟏

𝒔𝟑+𝟐𝒔𝟐−𝟐𝒔+𝟏𝟎
   can 

represent a passive one port network. 

Solution: The given function is not suitable to represent the impedance of a one port network 

due to the following reasons: 

(i) In the numerator one co-efficient is missing. 

      (ii) In the denominator one co-efficient is negative. 

4.8 IMPULSE RESPONSE     

           The system function is defined as, 

                                   H(s) = 
𝐿𝑎𝑝𝑙𝑎𝑐𝑒  𝑜𝑓  𝑜𝑢𝑡𝑝𝑢𝑡  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝐿𝑎𝑝𝑙𝑎𝑐𝑒  𝑜𝑓 𝑖𝑛𝑝𝑢𝑡  𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛
=

𝑅(𝑠)

𝐸(𝑠)
 

∴ 𝑅 𝑠 = 𝐻 𝑠 . 𝐸(𝑠) 

Let the input impulse function 𝛿(𝑡). 

∴ 𝑒 𝑡 = 𝛿(𝑡) 

∴ 𝐸 𝑠 = 𝐿 𝛿(𝑡) = 1 

∴ 𝑅 𝑠 = 𝐻 𝑠 . 1 = 𝐻(𝑠) 

Thus the Laplace of the response is same as the system function, for unit impulse input. Thus, if r 

(t) is the impulse response of the network then as 



𝑅 𝑠 = 𝐻 𝑠  

                                    Impulse response =𝐿−1 𝑅(𝑠) = 𝐿−1 𝐻(𝑠) = ℎ(𝑡)  

Thus 𝒉(𝒕) = 𝑳−𝟏 𝑯(𝒔)  is nothing but the impulse response of the network. 

Example 4.8.1 Find the impulse response of the network shown in below fig. 16. The excitation 

is the voltage v (t) while the response is i (t). 

 

Fig. 16 

Solution:The excitation is v(t) and i(t) is response hence, 

𝐻 𝑠 =
𝐼(𝑠)

𝑉(𝑠)
 

 

                                                                         Fig. 17 

As the initial condition is zero, the circuit can be transformed in the Laplace domain as shown in 

above fig. 

After applying KVL, 

                                                       -I(s) R-I(s) Ls+V(s) = 0 

                                                             I(s) [R + Ls] = V(s) 

𝐻 𝑠 =
𝐼(𝑠)

𝑉(𝑠)
=

1

𝑅 + 𝑠𝐿
 

Example 4.8.2 Impulse response of a circuit is given as ℎ 𝑡 =  −𝑡𝑒−𝑡 + 2𝑒−𝑡 , 𝑡 > 0. Find the 

transfer function of the network. 



Solution: L [Impulse Response] = Transfer Function 

                                                𝐻(𝑠) = −
1

(𝑠+1)2
+

2

(𝑠+1)
 

                                                            =
−1+2(𝑠+1)

(𝑠+1)2
 

                                                             =
2𝑠+1

(𝑠+1)2
 

Example 4.8.3 The transfer function of a network is given by  𝑠 =
1

1+𝑠𝑅𝐶
 . Find its impulse 

response. 

Solution: 𝛿 𝑡 = 𝐿−1  
1

1+𝑠𝑅𝐶
  

                         = 𝐿−1  
1

𝑅𝐶
1

𝑅𝐶
+𝑠

  

                         =
1

𝑅𝐶
𝑒−𝑡/𝑅𝐶  

4.9 COMPLETE RESPONSE 

            Complete response is the sum of forced response (steady state response) and source free 

response (natural response). The response of a circuit or network with presence of source is 

called forced or source response. This response is independent of the nature of passive elements 

and their initial condition but this response completely depends on type of input. This response is 

different for different types of input. Response of any circuit or network without any source is 

called as source free response or natural response.   

Example 4.9.1 For the circuit given below, find complete response for i(t) if v (0) =15 V. 

i
+

V

-5Ω
0.1F

12Ω

8Ω

 

Fig.18 



Solution: It is natural response due to the capacitor internal stored energy. This is a source free 

first order RC circuit. 

𝑣 𝑡 =  𝑣𝑜𝑒
−
𝑡

ז  

𝑅𝑒𝑞 = 5‖20 = 4𝛺 

ז = 𝑅𝐶 = 4 ∗ 0.1 = 0.4𝑠𝑒𝑐 

𝑣 𝑡 = 15𝑒
−𝑡
0.4 = 15𝑒−2.5𝑡𝑉 

𝑖 𝑡 =
𝑣(𝑡)

𝑅
=

15𝑒−2.5𝑡

12 + 8
= 0.75𝑒−2.5𝑡𝐴 

4.10  TIME DOMAIN BEHAVIOR FROM POLE-ZERO PLOT (Lecture -16) 

           In time-domain analysis the response of a dynamic system to an input is expressed as a 

function of time. It is possible to compute the time response of a system if the nature of input and 

the mathematical model of the system are known. 

 

                                                                      Fig.19 Array of poles 

The poles 𝑠𝑏  and 𝑠𝑑  are quite different from the conjugate pole pairs. Further, 𝑠𝑏  and 𝑠𝑑  are the 

real poles and the response due to the poles 𝑠𝑏  and 𝑠𝑑  converges monotonically. The poles 𝑠𝑏  

and 𝑠𝑑  may correspond to the quadratic function,  

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = 0; 𝜁 > 1 

And the roots 

𝑠𝑏 , 𝑠𝑑 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1;      𝜁 > 1     ………………… (1) 



  The contribution to the total response, due to poles 𝑠𝑏  and 𝑠𝑑  is 

𝐾𝑏е𝑠𝑏 𝑡 + 𝐾𝑑е𝑠𝑑 𝑡  

The contribution to response due to the pole 𝑠𝑏  is predominant compared to that of 𝑠𝑑  as  𝑠𝑑  ≫
 𝑠𝑏  . In this case, 𝑠𝑏  is dominant compared to 𝑠𝑑 . The pole 𝑠𝑏  is the dominant pole amongst these 

two real poles. The response due to pole at 𝑠𝑑  dies down faster compared to that due to pole at 

𝑠𝑏 . The complex conjugate poles 𝑠𝑎  and 𝑠𝑎
∗ which belong to the quadratic factor 

                                                               𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2;    𝜁 >1 

The roots are 

𝑠𝑎 , 𝑠𝑎
∗= −𝜁𝜔𝑛  ± j𝜔𝑛 1 − 𝜁2 

Contribution to the total response by the complex conjugate poles 𝑠𝑎  and 𝑠𝑎
∗ is  

𝐾𝑎𝑒
−𝜁𝜔𝑛 𝑡𝑒j𝜔𝑛 1−𝜁2𝑡 + 𝐾𝑎

∗𝑒−𝜁𝜔𝑛 𝑡𝑒−j𝜔𝑛 1−𝜁2𝑡  

The factor exp(−𝜁𝜔𝑛𝑡) gives the decreasing function, whereas the factor exp(j𝜔𝑛 1 − 𝜁2𝑡) 

gives sustained oscillation. The resultant will give the damped sinusoid waveform, as shown in 

fig. 20 

 

            Fig. 20 Nature of response for arbitrary magnitude for all poles. 

Similarly, 𝑠𝑐  and 𝑠𝑐
∗ are also the complex conjugate pole pair. The response due to 𝑠𝑐  and 𝑠𝑐

∗ will 

die down faster than due to 𝑠𝑎  and 𝑠𝑎
∗ . Hence 𝑠𝑎  and 𝑠𝑎

∗ are the dominant complex conjugate pole 

pair compared to the complex pole pair 𝑠𝑐  and 𝑠𝑐
∗. The time domain response can be obtained by 

taking the inverse Laplace transform after the partial fraction expansion, 

ℒ−1  
𝐾𝑎

𝑠 − 𝑠𝑎
+

𝐾𝑎
∗

𝑠 − 𝑠𝑎∗
+

𝐾𝑏

𝑠 − 𝑠𝑏
+

𝐾𝑐

𝑠 − 𝑠𝑐
+

𝐾𝑐
∗

𝑠 − 𝑠𝑐∗
+

𝐾𝑑

𝑠 − 𝑠𝑑
  

Where the residues 𝐾𝑎  and 𝐾𝑎
∗ are complex conjugate, as also the residues 𝐾𝑐  and 𝐾𝑐

∗. Any 

residues 𝐾𝑟  can be obtained as 



𝐾𝑟 = 𝐻 ×
 𝑠 − 𝑠1 …  𝑠 − 𝑠𝑛 

 𝑠 − 𝑠𝑎 … .  𝑠 − 𝑠𝑟 …  𝑠 − 𝑠𝑚 
(𝑠 − 𝑠𝑟) 

The term (𝑠𝑟 − 𝑠𝑛) is also a complex number expressed in polar co-ordinates as 

𝑠𝑟 − 𝑠𝑛 = 𝑀𝑟𝑛 exp⁡(𝑗𝜙𝑟𝑛 ) 

𝐾𝑟 = 𝐻 ×
𝑀𝑟1 … . . 𝑀𝑟𝑛

𝑀𝑟𝑎 ……𝑀𝑟𝑚
𝑒𝑥𝑝𝑗(𝜙𝑟1 + 𝜙𝑟2 … . . 𝜙𝑟𝑛 − 𝜙𝑟𝑎 …𝜙𝑟𝑚 ) 

Example 4.10.1 A transfer function is given by 𝑌 𝑠 =
10𝑆

 𝑆+5+𝐽15 (𝑆+5−𝐽15)
.Find the time domain 

response. 

Solution:  𝑌 𝑠 = 𝑘1𝑒−(5+𝑗15)𝑡 + 𝑘2𝑒−(5−𝑗15)𝑡  

 

 

 

 

 

 

 

 

                                                                    Fig.21 

𝑘1 =
10 52 + 152 < 90 + 𝑡𝑎𝑛−  

5
15

 

30 < 90
= 5.267 < 18.4 

𝑘2 =
10 52 + 152 < −90 − 𝑡𝑎𝑛−  

5
15

 

30 < −90
= 5.267 < −18.4 

𝑌 𝑡 = 5.267 < 18.4𝑒−(5+𝑗15)𝑡 + 5.267 < −18.4𝑒−(5−𝑗15)𝑡  

 

j𝟂 

σ 

 

(-5+j15) 

(-5-j15) 

-5 



CHAPTER - 5  

 

THREE PHASE CIRCUITS 

5.1 INTRODUCTION   (Lecture -17) 

           There are two types of system available in electric circuit, single phase and three phase 

system. In single phase circuit, there will be only one phase, i.e. the current will flow through 

only one wire and there will be one return path called neutral line to complete the circuit. So in 

the single phase minimum amount of power can be transported. Here the generating station and 

load station will also be single phase. This is an old system using from previous time. 

             In 1882, a new invention has been done on polyphase system, that more than one phase 

can be used for generating, transmitting and for load system. Three phase circuit is the 

polyphase system where three phases are sent together from the generator to the load. Each phase 

is having a phase difference of 120°, i.e. 120° angle electrically. So from the total of 360°, three 

phases are equally divided into 120° each. The power in three phase system is continuous as all 

the three phases are involved in generating the total power. The sinusoidal waves for 3 phase 

system is shown below 

            The three phases can be used as single phase each. So if the load is single phase, then one 

phase can be taken from the three phase circuit and the neutral can be used as ground to 

complete the circuit. 

 

                                                          Fig. 1 

 

5.2 IMPORTANCE OF THREE PHASE OVER SINGLE PHASE 

           There are various reasons for this because there are a number of advantages over single 

phase circuit. The three phase system can be used as three single phase line so it can act as three 

http://www.electrical4u.com/electric-current-and-theory-of-electricity/
http://www.electrical4u.com/three-phase-circuit-star-and-delta-system/


single phase system. The three phase generation and single phase generation are the same in the 

generator except the arrangement of coil in the generator to get 120° phase difference. The 

conductor needed in three phase circuit is 75% that of conductors needed in a single phase 

circuit. And also the instantaneous power in a single phase system falls down to zero as in single 

phase, we can see from the sinusoidal curve, but in three phase system the net power from all the 

phases gives a continuous power to the load. 

 

            Till now we can say that there are three voltage source connected together to form a three 

phase circuit. And actually it is inside the generator. The generator is having three voltage 

sources which are acting together in 120° phase difference. If we can arrange three single phase 

circuit with 120° phase difference, then it will become a three phase circuit. So 120° phase 

difference is must otherwise the circuit will not work, the three phase load will not be able to get 

active and it may also cause damage to the system. 

           The size or metal quantity of three phase devices is not having much difference. Now if 

we consider the transformer, it will be almost same size for both single phase and three phase 

because transformer will make only the linkage of flux. So the three phase system will have a 

higher efficiency compared to single phase because of the same or little difference in mass of 

transformer, three phase line will be out whereas in single phase it will be only one. And losses 

will be minimized in three phase circuit. So overall in conclusion the three phase system will 

have better and higher efficiency compared to the single phase system. 

In a three phase circuit, connections can be given in two types: 

1. Star connection 

2. Delta connection 

5.2.1 STAR CONNECTION 

         In star connection, there are four wires, three wires are phase wire and fourth is neutral 

which is taken from the star point. Star connection is preferred for long distance power 

transmission because it is having the neutral point. In this we need to come to the concept of 

balanced and unbalanced current in power system. 

        When equal current will flow through all the three phases, then it is called as balanced 

current. And when the current will not be equal in any of the phases, then it is unbalanced 

current. In this case, during balanced condition, there will be no current flowing through the 
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neutral line and hence there is no use of the neutral terminal. But when there will be an 

unbalanced current flowing in the three phase circuit, neutral is having a vital role. It will take 

the unbalanced current through to the ground and protect the transformer.  

Unbalanced current affects transformer and it may also cause damage to the transformer 

and for this star connection is preferred for long distance transmission. 

The star connection is shown below- 

 

 

 

                                                                 Fig. 2, 3 

http://www.electrical4u.com/electric-current-and-theory-of-electricity/
http://www.electrical4u.com/electric-current-and-theory-of-electricity/


           In star connection, the line voltage is √3 times of phase voltage. Line voltage is the 

voltage between two phases in three phase circuit and phase voltage is the voltage between one 

phase to the neutral line. And the current is same for both line and phase. It is shown as 

expression below 

𝐸𝑙𝑖𝑛𝑒 =   3 𝐸𝑝ℎ𝑎𝑠𝑒  𝑎𝑛𝑑 𝐼𝐿𝑖𝑛𝑒 = 𝐼𝑝ℎ𝑎𝑠𝑒  

5.2.2 DELTA CONNECTION 

          In delta connection, there are three wires alone and no neutral terminal is taken. Normally 

delta connection is preferred for short distance due to the problem of unbalanced current in the 

circuit. The figure is shown below for delta connection. In the load station, ground can be used as 

the neutral path if required. 

                                         

In delta connection, the line voltage is same with that of phase voltage. And the line current is √3 

times of the phase current. It is shown as expressed below, 

𝐸𝑙𝑖𝑛𝑒 =   𝐸𝑝ℎ𝑎𝑠𝑒  𝑎𝑛𝑑 𝐼𝐿𝑖𝑛𝑒 =  3𝐼𝑝ℎ𝑎𝑠𝑒  

In a three phase circuit, star and delta connection can be arranged in four different ways- 

1. Star-Star connection 

2. Star-Delta connection 

3. Delta-Star connection 

4. Delta-Delta connection 

          But the power is independent of the circuit arrangement of the three phase system. The net 

power in the circuit will be same in both star and delta connection. The power in three phase 

circuit can be calculated from the equation below, 

𝑃𝑇𝑜𝑡𝑎𝑙 = 3 × 𝐸𝑃ℎ𝑎𝑠𝑒 × 𝐼𝑃ℎ𝑎𝑠𝑒 × 𝑃𝐹 

         Since there are three phases, so the multiple of 3 is made in the normal power equation and 

the PF is the power factor. Power factor is a very important factor in three phase system and 

sometimes due to certain error, it is corrected by using capacitors. 

5.3 ANALYSIS OF BALANCED THREE PHASE CIRCUITS(Lecture -18) 

           In a balanced system, each of the three instantaneous voltages has equal amplitudes, but is 

separated from the other voltages by a phase angle of 120. The three voltages (or phases) are 

typically labeled a, b and c. The common reference point for the three phase voltages is 

designated as the neutral connection and is labeled as n. The three sources 𝑉𝑎𝑛 , 𝑉𝑏𝑛   and 𝑉𝑐𝑛  are 

designated as the line-to-neutral voltages in the three-phase system.                                                               

An alternative way of defining the voltages in a balanced three-phase system is to define the 

voltage differences between the phases. These voltages are designated as line-to-line voltages. 

The line-to-line voltages can be expressed in terms of the line-to-neutral voltages by applying 

Kirchoff‟s voltage law to the generator circuit, which yields 
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                                        Fig.4 

 

Either a positive phase sequence (abc) or a negative phase sequence(acb) as shown below.  

 
 

 

                                                         Fig.5 

 

Inserting the line-to-neutral voltages for a positive phase sequence into the line-to-line equations 

yields 

𝑉𝑎𝑏 = 𝑉𝑎𝑛 − 𝑉𝑏𝑛 = 𝑉𝑟𝑚𝑠∠0∘ − 𝑉𝑟𝑚𝑠∠−120∘ 
 

= 𝑉𝑟𝑚𝑠  𝑒
𝑗0∘

− 𝑒−𝑗120∘
 = 𝑉𝑟𝑚𝑠  1 −  cos 120∘ − 𝑗𝑠𝑖𝑛(120∘)   

 

𝑉𝑎𝑏 = 𝑉𝑎𝑛 − 𝑉𝑏𝑛  

𝑉𝑏𝑐 = 𝑉𝑏𝑛 − 𝑉𝑐𝑛  

𝑉𝑐𝑎 = 𝑉𝑐𝑛 − 𝑉𝑎𝑛  



= 𝑉𝑟𝑚𝑠  1 +
1

2
+ 𝑗

 3

2
 = 𝑉𝑟𝑚𝑠  

3 + 𝑗 3

2
 =  3𝑉𝑟𝑚𝑠  

 3 + 𝑗1

2
  

 

=  3𝑉𝑟𝑚𝑠  1∠30∘  
 

=  3𝑉𝑟𝑚𝑠  ∠30∘  
 

 

𝑉𝑏𝑐 = 𝑉𝑏𝑛 − 𝑉𝑐𝑛 = 𝑉𝑟𝑚𝑠∠−120∘ − 𝑉𝑟𝑚𝑠∠120∘ 
 

= 𝑉𝑟𝑚𝑠  𝑒
−𝑗120∘

− 𝑒𝑗120∘
 = 𝑉𝑟𝑚𝑠   cos 120∘ − 𝑗𝑠𝑖𝑛(120∘) −  𝑐𝑜𝑠 120∘ + 𝑗𝑠𝑖𝑛(120∘)   

 

= 𝑉𝑟𝑚𝑠  −2𝑗𝑠𝑖𝑛(120∘) = 𝑉𝑟𝑚𝑠  −2𝑗
 3

2
 =  3𝑉𝑟𝑚𝑠  1∠ − 90∘  

 

=  3𝑉𝑟𝑚𝑠  ∠−90∘  
 

𝑉𝑐𝑎 = 𝑉𝑐𝑛 − 𝑉𝑎𝑛 = 𝑉𝑟𝑚𝑠∠120∘ − 𝑉𝑟𝑚𝑠∠0∘ 
 

= 𝑉𝑟𝑚𝑠  𝑒
𝑗120∘

− 𝑒𝑗0∘
 = 𝑉𝑟𝑚𝑠   cos 120∘ + 𝑗𝑠𝑖𝑛 120∘ − 1   

 

= 𝑉𝑟𝑚𝑠  −
1

2
+ 𝑗

 3

2
− 1) = 𝑉𝑟𝑚𝑠  

−3 + 𝑗 3

2
 =  3𝑉𝑟𝑚𝑠  

− 3 + 𝑗1

2
  

 

=  3𝑉𝑟𝑚𝑠  1∠150∘  
 

 

=  3𝑉𝑟𝑚𝑠  ∠150∘  
 

If we compare the line-to-neutral voltages with the line-to-line voltages, we find the following 

relationships, 

 

Line-to-neutral voltages Line-to-line voltages 

𝑉𝑎𝑛 = 𝑉𝑟𝑚𝑠∠0∘ 𝑉𝑎𝑏 =  3𝑉𝑟𝑚𝑠∠30∘ 

𝑉𝑏𝑛 = 𝑉𝑟𝑚𝑠∠ − 120∘ 𝑉𝑏𝑐 =  3𝑉𝑟𝑚𝑠∠ − 90∘ 

𝑉𝑐𝑛 = 𝑉𝑟𝑚𝑠∠120∘ 𝑉𝑐𝑎 =  3𝑉𝑟𝑚𝑠∠150∘ 

 

Line-to-line voltages in terms of line-to-neutral voltages: 

 

𝑉𝑎𝑏 =  3𝑉𝑎𝑛𝑒
𝑗30∘

 
 

𝑉𝑏𝑐 =  3𝑉𝑏𝑛𝑒
𝑗30∘

 



 

𝑉𝑐𝑎 =  3𝑉𝑐𝑛𝑒
𝑗30∘

 
 

The equations above show that the magnitudes of the line-to-line voltages in a balanced three-

phase system with a positive phase sequence are  3 times the corresponding line-to-neutral 

voltages and lead these voltages by 30∘. 

 

 

 

 

 

 

 

 

 

 

Fig.6 

          Balanced three-phase circuits consist of a balanced three-phase source and a balanced 

three-phase load can be of four varieties like Y-Y, Y-∆ , ∆ − 𝑌 𝑜𝑟 ∆ − ∆. Common analysis 

procedure for all the possible configurations are done. 

5.3.1 EQUIVALENCE BETWEEEN A Y AND ∆ CONNECTED SOURCE (Lecture -19) 

              Let 𝑉𝑅𝑌 = 𝑉𝐿∠0∘, 𝑉𝑌𝐵 = 𝑉𝐿∠−120∘, and  𝑉𝐵𝑅 = 𝑉𝐿∠120∘ be the three line voltages 

observed in a three-phase circuit and let 𝐼𝑅 = 𝐼𝐿∠ − (𝜃 + 30∘), 𝐼𝑌 = 𝐼𝐿∠ − (𝜃 + 150∘), and 

𝐼𝐵 = 𝐼𝐿∠ − (𝜃 − 90∘) be the observed line currents where the observed phase lag of first line 

current is expressed as 30∘ plus some angle designated by 𝜃. If the source is within a black box 

and have to guess whether it is a Y-connected source or a ∆ - connected source, it becomes 

difficult to resolve the using the observed line voltage phasors and line current phasors. This is 

so because both configurations shown in fig.7 will result in these observed line voltages and line 

currents. 

 

𝑉𝑎𝑏 =  3𝑉𝑟𝑚𝑠∠30∘ 

𝑉𝑐𝑛 = 𝑉𝑟𝑚𝑠∠120∘ 

 

𝑉𝑐𝑎 =  3𝑉𝑟𝑚𝑠∠150∘ 

 

𝑉𝑏𝑛 = 𝑉𝑟𝑚𝑠∠ − 120∘ 

 

𝑉𝑎𝑛 = 𝑉𝑟𝑚𝑠∠0∘ 

 



                                                      Fig.7 

Therefore if a balanced three-phase source is actually ∆ - connected, it may be replaced by an 

equivalent Y-connected source for purposes of analysis. The details of phase – source currents in 

the actual ∆ - connected source can be obtained after the circuit problem is solved using the star 

equivalent source. 

5.3.2 EQUIVALENCE BETWEEEN A Y AND ∆ CONNECTED LOAD 

           The individual branch currents in the branches of delta in the actual ∆-connected load can 

be obtained after line quantities have been obtained by using its equivalent Y-connected model. 

Three-phase symmetry and 
1

 3
 factor connecting line currents and phase currents in a ∆-

connected system can be used for this purpose. The impedance to be used in Y-connected load is 
1

3
 times the impedance present in ∆-connected load as shown in fig. 8. 

 

                                                        Fig.8 

 

5.4 ANALYSIS OF UNBALANCED LOADS 

          Three-phase systems deliver power in enormous amounts to single-phase loads such as 

lamps, heaters, air-conditioners, and small motors. It is the responsibility of the power systems 

engineer to distribute these loads equally among the three-phases to maintain the demand for 

power fairly balanced at all times. While good balance can be achieved on large power systems, 

individual loads on smaller systems are generally unbalanced and must be analyzed as 

unbalanced three phase systems. 

5.4.1 UNBALANCED DELTA CONNECTED LOAD 

An unbalanced condition is due to unequal delta connected load. 



Example 5.4.1.1 A delta connected load as shown in fig. 9 is connected across three-phase 100V 

supply. Determine all the line currents. Also draw the relevant phasor diagram showing all 

voltages and currents. Given   𝑉𝐴𝐵 = 100∠0∘,   𝑉𝐵𝐶 = 100∠ − 120∘, 𝑉𝐶𝐴 = 100∠ − 240∘ 

 

 

 

 

 

 

         Fig. 9 

Solution: Given: 𝑉𝐴𝐵 = 100∠0∘, 𝑉𝐵𝐶 = 100∠ − 120∘, 𝑉𝐶𝐴 = 100∠ − 240∘ 

𝐼𝐴𝐵 =
𝑉𝐴𝐵

𝑍𝐴𝐵
=

100∠0∘

𝑗10
= 10∠0∘ 𝐴, 

 

𝐼𝐵𝐶 =
𝑉𝐵𝐶

𝑍𝐵𝐶
=

100∠−120∘

10
= 10∠ − 120∘ 𝐴, 

 

𝐼𝐶𝐴 =
𝑉𝐶𝐴

𝑍𝐶𝐴
=

100∠ − 240∘

−𝑗10
= 10∠−150∘𝐴 

𝐼𝐴 = 𝐼𝐴𝐵 − 𝐼𝐶𝐴 = 10∠−90∘ − 10∠−150∘ = 10∠−30∘ 𝐴 

𝐼𝐵 = 𝐼𝐵𝐶 − 𝐼𝐴𝐵 = 10∠−120∘ − 10∠−90∘ = 5.17∠165∘ 𝐴 

𝐼𝐶 = 𝐼𝐶𝐴 − 𝐼𝐵𝐶 = 10∠−150∘ − 10∠−120∘ = 5.17∠135∘ 𝐴 

B 

C 

-j10 Ω j10 Ω 

10 Ω 

𝐼𝐵 

𝐼𝐶  

A 
𝐼𝐴 



  

Fig.9 phasor diagram 

 

 

5.4 NEUTRAL SHIFT 

 

                                                                        Fig. 10 

𝐼𝑎  

𝐼𝑏  

𝐼𝑐  

𝑍𝐴  

𝑍𝐵  
𝑍𝐶  O 

𝐼𝐵 𝑉𝐴𝐵  

𝑉𝐴𝐵𝑉𝐴𝐵  

 

 

𝑉𝐵𝐶  

 

𝑉𝐶𝐴 

 

𝐼𝐴𝐵  𝐼𝐵𝐶  

𝐼𝐶𝐴 

𝐼𝐶  

𝐼𝐴 



For balanced three-phase, 𝐼𝑁 = 0. For unbalanced system, 𝐼𝑁 has some finite value, due to flow 

of unequal currents in each of the phases, voltage appears at the neutral and its value can be 

found as follows: 

𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 = 𝑉𝑎0
𝑌𝑎 + 𝑉𝑏0

𝑌𝑏 + 𝑉𝑐0
𝑌𝑐  

                                                                     = 𝑉𝑎𝑛 − 𝑉𝑜𝑛  𝑌𝑎 +  𝑉𝑏𝑛 − 𝑉𝑜𝑛  𝑌𝑏 + (𝑉𝑐𝑛 − 𝑉𝑜𝑛 )𝑌𝑐  

                                                                      =𝑉𝑎𝑛𝑌𝑎 + 𝑉𝑏𝑛𝑌𝑏 + 𝑉𝑐𝑛𝑌𝑐 − 𝑉𝑜𝑛 (𝑌𝑎 + 𝑌𝑏 + 𝑌𝑐) 

Applying KCL at O,  𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 = 0 

𝑉𝑎𝑛𝑌𝑎 + 𝑉𝑏𝑛𝑌𝑏 + 𝑉𝑐𝑛𝑌𝑐 − 𝑉𝑜𝑛  𝑌𝑎 + 𝑌𝑏 + 𝑌𝑐 = 0 

                                        𝑉𝑜𝑛 =
𝑉𝑎𝑛 𝑌𝑎  + 𝑉𝑏𝑛 𝑌𝑏+ 𝑉𝑐𝑛 𝑌𝑐

𝑌𝑎  + 𝑌𝑏+ 𝑌𝑐
…………………… . . (5.4.1) 

The equation 5.4.1 gives the neutral shift. 

5.5 SYMMETRICAL COMPONENTS (Lecture -20) 

 
           When an unbalanced three-phase fault occurs, we can solve the three-phase circuit using  

circuit theory. This is much more numerically complicated than the single phase circuit normally 

used in balanced three phase circuits. The degree of difficulty increases with the third power of 

the system size. For this reason, it is apparent that if we were to solve three different single-phase 

circuits, it would be numerically simpler than solving the one three-phase circuit in one set of 

equations. The purpose of this chapter is to break up the large three-phase circuit into three 

circuits, each one third the size of the whole system. Next, we solve the three components 

individually, and then combine the results to obtain the total system response.  

 

5.5.1 FUNDAMENTALS OF SYMMETRICAL COMPONENTS  

 

           It was Fortescue in 1918 who developed the idea of breaking up asymmetrical three-phase 

voltages and currents into three sets of symmetrical components. These three basic components 

are: 

(1) The positive sequence currents and voltages (known also as the "abc" and often denoted by 

the superscript "1" or " ",) shown on the fig 9. There is a phase shift 120° between any two 

voltages. 

 𝑉𝑎1
 =  𝑉𝑏1

 =  𝑉𝑐1
  

             



 
                                                                  Fig. 9 

 

(2) The negative sequence currents and voltages (known also as the "acb" and often denoted 

by the superscript "2" or " ") . Note the sequence of the phasors is the opposite direction 

from the positive sequence (acb instead of abc). There is a phase shift 120° between any 

two voltages. 

 

 𝑉𝑎2
 =  𝑉𝑏2

 =  𝑉𝑐2
  

                                                                                   Fig. 10  

 

(3) The zero sequence components of currents and voltages (often denoted by the superscript 

"0") .Note that these zero sequence phasors are all in-phase and equal in magnitude.  

 
Fig. 11 

 

Here the phase shift operator is ∝. ∝  the vector by 120°without changing magnitude.We will 

need the vector ∝ 1120°
 , which is a unit vector at an angle of 120 degrees. It is easy to 

see that ∝2
 1240°

 1−120°
 and ∝3

 ∠360∘ = 1∠0∘. 

      It is also clear that 1∝ ∝2 0 . 

  

𝑉𝑎0
 

𝑉𝑏0
 

𝑉𝑐0
 

𝑉𝑐1
=∝ 𝑉𝑎1

 

𝑉𝑏1
=∝2 𝑉𝑎1

 

𝑉𝑎1
 

𝑉𝑏2
=∝ 𝑉2 

𝑉𝑐2
=∝2 𝑉𝑎2

 

𝑉𝑎2
 



𝑉𝑎 = 𝑉𝑎∘
+ 𝑉𝑎1

+ 𝑉𝑎2
 

 

𝑉𝑏 = 𝑉𝑏∘
+ 𝑉𝑏1

+ 𝑉𝑏2
 

 

     𝑉𝑏 = 𝑉𝑎∘
+∝2 𝑉𝑎1

+∝ 𝑉𝑎2
 

    

𝑉𝑐 = 𝑉𝑐∘ + 𝑉𝑐1
+ 𝑉𝑐2

 

 

𝑉𝑐 = 𝑉𝑐∘ +∝ 𝑉𝑎1
+∝2 𝑉𝑎2

 

In matrix form, 

                                                        
𝑉𝑎
𝑉𝑏

𝑉𝑐

 =  
1 1 1
1 ∝2 ∝
1 ∝ ∝2

  

𝑉𝑎0

𝑉𝑎1

𝑉𝑎2
 
 …………………(5.5.1.1) 

In one line we can write the above  equation 5.5.1.1. 

 

𝑉𝑎𝑏𝑐 =  𝐴  𝑉012   
 

𝑉012 =  𝐴−1  𝑉𝑎𝑏𝑐    
 

 

𝑉𝑎0

𝑉𝑎1

𝑉𝑎2
 
 =  

1 1 1
1 ∝2 ∝
1 ∝ ∝2

 

−1

 
𝑉𝑎
𝑉𝑏

𝑉𝑐

  

 

 

𝑉𝑎0

𝑉𝑎1

𝑉𝑎2
 
 =

1

3
 
1 1 1
1 ∝ ∝2

1 ∝2 ∝
  

𝑉𝑎
𝑉𝑏

𝑉𝑐

  

 

𝑉𝑎0
=

1

3
(𝑉𝑎 + 𝑉𝑏 + 𝑉𝑐) 

𝑉𝑎1
=

1

3
(𝑉𝑎+∝ 𝑉𝑏 +∝2 𝑉𝑐) 

 

𝑉𝑎2
=

1

3
(𝑉𝑎 +∝2 𝑉𝑏+∝ 𝑉𝑐) 

 

Similarly, for current  

𝐼𝑎0
=

1

3
(𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐) 

𝐼𝑎1
=

1

3
(𝐼𝑎+∝ 𝐼𝑏 +∝2 𝐼𝑐) 

 

𝐼𝑎2
=

1

3
(𝐼𝑎 +∝2 𝐼𝑏+∝ 𝐼𝑐) 

 

 



5.5.2 POWER IN TERMS OF SYMMETRICAL COMPONENTS 

 

Suppose in abc sequence, 3Φ complex power,   𝑆𝑎𝑏𝑐 = 𝑉𝑎𝐼𝑎
∗ + 𝑉𝑏𝐼𝑏

∗ + 𝑉𝑐𝐼𝑐
∗ 

 

=  𝑉𝑎 + 𝑉𝑏 + 𝑉𝑐  

𝐼𝑎
∗

𝐼𝑏
∗

𝐼𝑐
∗
  

 

 
𝑉𝑎
𝑉𝑏

𝑉𝑐

 = 𝑉𝑎𝑏𝑐 ,     
𝐼𝑎
𝐼𝑏
𝐼𝑐

 = 𝐼𝑎𝑏𝑐  

 

                                                 𝑆𝑎𝑏𝑐 =  𝑉𝑎𝑏𝑐  𝑇 𝐼𝑎𝑏𝑐
∗
 ……………………..(5.5.2.1) 

 

5.2.2.1 RELATION BETWEEN ACTUAL QUANTITIES (a,b,c) AND SEQUENCE 

QUANTITIES 

 

 𝑉𝑎𝑏𝑐  =  𝐴  𝑉012  
 

 𝑉𝑎𝑏𝑐  𝑇 =  𝐴 𝑇 𝑉𝑎𝑏𝑐  𝑇  
 

 𝐼𝑎𝑏𝑐  =  𝐴  𝐼012  
From equation 5.2.2.1, 

 

𝑆𝑎𝑏𝑐 =  𝑉012  𝑇 𝐴 𝑇 𝐴 ∗  𝐼012 ∗ 
 

 𝐴 𝑇 .  𝐴 ∗ =  
1 1 1
1 ∝2 ∝
1 ∝ ∝2

 

𝑇

 
1 1 1
1 ∝2 ∝
1 ∝ ∝2

 

∗

= 3  
1 0 0
0 1 0
0 0 1

 = 3𝑈 

 

𝑆𝑎𝑏𝑐 =  𝑉012 𝑇3 𝑈  𝐼012 ∗ = 3 𝑉012 𝑇   𝐼012 ∗ 
 

= 3 𝑉𝑎0
𝑉𝑎0

𝑉𝑎0  

𝐼𝑎0

∗

𝑉𝑎0

∗

𝑉𝑎0

∗

  

 

= 3 𝑉𝑎0
𝐼𝑎0

∗ + 𝑉𝑎1
𝐼𝑎1

∗ + 𝑉𝑎2
𝐼𝑎2

∗  
 

                                        𝑆𝑎𝑏𝑐 = 3. 𝑆012  
 

 

 

 

************END OF MODULE -II ******************** 

 



Reference books: 

 

(1) Hayt Kemerly Durbin, “Engineering Circuit Analysis”, Tata McGraw Hill Education 

Private Limited, New Delhi,7
th

 Edition 

(2) Van Valkenburg, “Network Analysis”, PHI Learning Private Limited,New Delhi,3
rd

 

Edition 

(3) Chakrabarti, “Circuit Theory”, Educational and Technical Publishers,5
th

 Revised Edition 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

MODULE -III 

Introduction to Realizability concept, Hurwitz property, positive realness, 

properties of real functions, synthesis of R-L, R-C and L-C driving point functions, 

Foster and Cauer forms 

 

 

 

3.1. Network Function (lecture -21) 

It is the relationship between the Laplace Transform of excitation to the Laplace Transform 

of the response in an electrical network. This network function can be analyzed using the 

“pole-zero” concept. A network function is characterized or depends on following factors: 

 Driving point impedance and admittance 

 Transfer impedance and admittance 

 Voltage and current transfer ratio 

(a) Driving point impedance and admittance 

For one-port network, 

 Driving point impedance,  
 

 

V s
Z s

I s
  

 Driving point admittance,  
 

 

I s
Y s

V s
  

 

For two-port network, 

 Driving point impedance, 

 
 

 

 
 

 

1
11

1

2
22

2

V sinput voltage
Z s

input current I s

V soutput voltage
Z s

output current I s

 

 

 

 Driving point admittance, 

 
 

 

 
 

 

1
11

1

2
22

2

I sinput current
Y s

input voltage V s

I soutput current
Y s

output voltage V s

 

 

 

 

(b) Transfer impedance and admittance 

 Transfer impedance,  
 

 
2

12
1

V s
Z s

I s
  



 Transfer admittance,  
 

 
2

12
1

I s
Y s

V s
  

 

(c) Voltage and Current Transfer Ratio 

Voltage transfer ratio,  
 

 
2

12
1

V s
G s

V s
  

Current transfer ratio,  
 

 
2

12
1

I s
s

I s
   

 

3.2. Passive circuits (lecture -22) 

A network can be represented by a network function. Some of the common properties of passive 

RLC functions. 

(i) They are real, rational functions. 

(ii) They do not have poles (or zeros) on the right-half s-plane, nor do theyhave multiple 

order poles on the jω axis. 

(iii)The resulting matrices are symmetric. 

 

The LC network functionshave these additional properties. 

(i) They are simple, that is there are no higher order poles or zeros. 

(ii) All poles and zeros lie on the jω axis. 

(iii)Poles and zeros alternate. 

(iv) The origin and infinity are always critical frequencies, that is, there will beeither a pole or 

a zero at both the origin and at infinity. 

(v) The multiplicative constant is positive. 

 

The properties of RC network functions are: 

(i) The poles and zeros of an RC driving point function lie on the non-positivereal axis. 

(ii) They are simple. 

(iii)Poles and zeros alternate. 

(iv) The slopes of impedance functions are negative, those of admittancefunctions are 

positive. 

3.2. Realizability Concept 

This problem deals with the design of the network function when the excitation and response 

both are known. In this problem, the network function is usually realized as a physical passive 

network. 

 

Examples: 

1. Synthesize the PR impedance.  
3 2

3

8 4 3 1

8 3

s s s
Z s

s s

  



 

Solution: 

Given,    
2

13

4 1
1 1

8 3

s
Z s Z s

s s


   


 

 



Z(s) Z1(s)

1Ω

 
 

Fig.1 

 

where 

 
2

1 3

4 1

8 3

s
Z s

s s





 

 
   

3

1 2 2
1 2

1 8 3
2 2

4 1 4 1

s s s s
Y s s s

Z s Y ss s


      

 
 

 

Y1(s) Y2(s)2F

 
 

Fig.2 

 

 

 
 

2 2
2

1 1 1
4

4 1
Z s s

Y s ss
   


 

 

2H

Z2(s) 1F

 
 

Fig.3 

 

Now, the complete synthesis is 

 

Z(s)

1Ω

2F

2H

1F

 
 



Fig.4 

 

The network function can be realizable if it satisfies certain conditions such as 

(a) Hurwitz property 

 

(b) Positive realness property 

 

 

 

(a) Hurwitz property (lecture -23) 

 

Examples: 

2. Test whether the following function is Hurwitz or not.   4 23 2q s s s    

Solution: 

Given,    4 2
13 2q s s s q s     (say) 

Here,  q s  consists of only even terms. 

Then,     3
2 4 6q s q s s s    

Using continuous fraction method 

 

 1

1

4 2

3 4 2

2 3

3

2

2

3 2

3 1
4 6 0

2 4

3
2 4 6

2
16 8

4
3 3

3
2

2

3 9

2 4

2

3
2

3
1

2 2
3

3

0

q s

q s

s s

s s s s s

s s s

s s s

s

s s

s

s

s

 

   

 

 



 







 

Here, all the quotients are positive. So, the polynomial is Hurwitz. 

 

3. Find the range of value of m in P(s) so that P(s) is Hurwitz. 



  4 3 22 2P s s s ms s      

Solution: 

Given,      4 3 2
1 22 2P s s s ms s P s P s        

Here,    4 2 3
1 22 2,P s s ms P s s s      

Using continuous fraction method 

 

 

 

   

 

 

 

 
 

 

1

2

4 2

3 4 2

2 3

3

2

2

2

2 2

2 2 0 2

2 2

2 1

2 2

2 2
2 2

2
4 4

P s

P s

s ms

s s s s s

m s s s

s s s
m m

m s
m m

s m s s
m m

 

   

 

  


 

 

 
 


 



 

For the polynomial is Hurwitz, all the quotients must be positive. So, 4m  . 

 

(b) Positive Real (PR) Function (lecture -24) 

A network function given by 

 
 

 

1
0 1

1
0 1

...

...

n n
n

m m
m

A s a s a s a
N s

B s b s b s b





  
 

  
 

The function N(s) is called a PR function if  

(i) N(s) is real when s is real 

(ii) B(s) is Hurwitz polynomial 

(iii)If, B(s) consists of quadratic function. Which means in case there are some roots or poles 

on jw-axis,then they are simple and the residues are real and positive 

(iv) Real part of N(s) is positive for all values of w. 

 

Examples: 

4. Test whether the following function is PR or not. 

 
2

3 2

2 2 1

2 2

s s
Z s

s s s

 


  
 

Solution: 

Given,  
 

 

2

3 2

2 2 1

2 2

A s s s
Z s

B s s s s

 
 

  
 

Here, 

Step-1: All coefficients of A(s) and B(s) are positive 

Step-2: check residues of B(s) 

Characteristic equation:   3 22 2 0B s s s s      

  2 1 2 0s s     



Now,  
2

1 1

21
Z s

ss
 


 

Both residues are positive 

Step-3:  
 

 

   

   
   

   

22
1 1

3 2 2 3
2 2

2 1 22 2 1

2 2 2 2

s sA s M s N ss s
Z s

B s M s N ss s s s s s

   
   

     
 

                 
2

2 2 3 2
1 2 1 2 2 1 2 2 2 2 1D s M s M s N s N s s s s s s s          

   
2

22 1D jw w    

Here,  D jw  is positive for all values of w. Hence, the given polynomial is a PR function. 

 

4.3.Procedure of Testing PR Function (lecture -25) 

(1) A(s) and B(s) must be Hurwitz 

(2) N(s) must have simple poles (It has real and positive residues) 

(3)  
   

   
1 1

2 2

M s N s
N s

M s N s





 

Where M1(s) and M2(s) are even terms and N1(s) and N2(s) are odd terms 

 
   

   

       

   
1 1 1 2 1 2

2 2
2 2 2 2

Re Re
M s N s M s M s N s N s

N s
M s N s M s N s

  
         

 

   2 2
2 2M s N s  is always positive for any value of ω. 

So, N(s) is a PR function if          1 2 1 2 0
s j

D s M s M s N s N s


    

 

Examples: 

5. Test whether the following function  
4 1

2

s
Z s

s





 is PR or not. 

 

Solution: 

Given,  
 

 

4 1

2

A s s
Z s

B s s


 


 

Here, 

Step-1: All coefficients of A(s) and B(s) are positive 

Step-2: B(s) has a simple root. So, Z(s) has simple pole. 

Step-3: Check residues of B(s) 

Characteristic equation:  
4 1 4 1

2 2 2

s s
Z s

s s s


  

  
 

  2 1 2 0s s     

Now,   1 2

2 2

1 1

2 21 1

A A
Z s

s ss s
   

  
 

Both residues A1 and A2are positive 

Step-4:  



 
 

 

   2 2

2 2 2

4 1 1 4 2 2 4 7 2 4
Re Re Re Re

2 4 4 4

j j j j
Z j

j

     


   

          
                    

 

Here, for all values of ω,  Re 0Z j     

Hence, the given function is a PR function. 

 

 

6. Test whether the following function  
2 3 5

2

s s
Z s

s

 



 is PR or not. 

 

Solution: 

Given,  
 

 

2 3 5

2

A s s s
Z s

B s s

 
 


 

Here, 

Step-1: All coefficients of A(s) and B(s) are not positive 

Hence, the given function is not a PR function. 

 

3.4. LC Network Synthesis (lecture -26) 

Foster and Cauer first proposed the realization of these networks in various canonical 

forms, in the 1920s. We will now examine each of these forms. There are four canonical 

forms, relating to the realization of LC, RC and RL networks as follows. 

 

 
 

3.4.1. LC Network Synthesis 
A LC network is synthesized in two forms, i.e. Foster and Cauer form 

3.4.1.1 Foster Canonical Form 

(a) First Foster Canonical Form 

 

           1 2 1... ...i n nZ s Z s Z s Z s Z s Z s        

  0 12

2 2 2 2 2 2 2 2
2 1

2 2 22
... ...i n n

i n n

A A s A s A sA s
Z s

s s s s s   





       
   

 

Where, 

(i) 0 0C A pole at origin 



(ii) 
2 2

2 i

i

A s

s 
 has a pair of complex conjugate poles. From this we can find iC  and iL  

as follows. 

2

21
,

2

i
i i

i i

A
C L

A 
   

(iii) L  represents A s  means a pole at infinity. 

 

 
Fig.5 (a) First Foster‟s Canonical Form and (b) Second Foster‟s Canonical Form 

 

(b) Second Foster’s Canonical Form (lecture -27) 

         1 2 ... ...i nY s Y s Y s Y s Y s       

  0 2

2 2 2 2
2

22
... ...i

i

B B sB s
Y s B s

s s s 
      

 
 

Where, 

(iv) 0 0L B pole at origin 

(v) 
2 2

2 i

i

B s

s 
 has a pair of complex conjugate poles. From this we can find iC  and iL  as 

follows. 

2

21
,

2

i
i i

i i

A
C L

A 
   

(vi) C  represents B s  means a pole at infinity. 

 

N.B.: 

1. [Order of Num] > [Order of Den] 

So, one zero is present at   . The denominator has one „s‟ term, so one pole is present at 

0  . Therefore, both first and last terms are present. 

2. [Order of Num] < [Order of Den] 

So, no pole is present at 0  . Therefore, both first and last terms are absent. 

 

Example 



7. The driving point impedance of LC network is given by 

 
  

 

2 2

2

4 16
10

9

s s
Z s

s s

 



. 

Obtain first form Foster‟s network. 

 

Solution: 

 

Given, 

 
  

 

2 2

2

*
0 2 2

4 16
10

9

3 3

s s
Z s

s s

A A A
A s

s s j s j


 




   
 

 

  
 

  
 

2 2

0 2

0

2 2

2

3

4 16
10 71.11

9

4 16
10 19.45

3

s

s j

s s
A

s

s s
A

s s j





 
 



 
 



 

0

0

2

2

2
2 2

2

1
0.0141

10

1
0.0257

2

2
4.322

C F
A

L A H

C F
A

A
L H



 

 

 

 

 

 

 

Z(s)

C0=0.0141F 10H

C2=0.0257F

L2=4.322H

 
 

Fig.6 

 

8. The driving point impedance of LC network is given by 

 
  

 

2 2

2

4 25
8

16

s s
Z s

s s

 



. 

Obtain first form and second form of Foster‟s network. 



 

Solution: 

First form of Foster’s network 

Here, [Order of Num] > [Order of Den] 

So, one zero is present at   . The denominator has one „s‟ term, so one pole is present at 

0  . Therefore, both first and last terms are present. 

Given, 

 
  

 

2 2

2

*
0 2 2

4 25
8

16

4 4

s s
Z s

s s

A A A
A s

s s j s j


 




   
 

 

  
 

  
 

2 2

0 2

0

2 2

2

4

0

4 25
8 50

16
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Second form of Foster’s network 

Given, 
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Here, [Order of Num] > [Order of Den] 



So, one zero is present at  . The denominator has one „s‟ term, so one pole is present at 

0  . Therefore, both first and last terms are present. 
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3.4.1.1 Cauer Form (lecture -28) 

Step1 

For a given input impedance Z(s), determine if the input impedance is LC- or RC-realizable.One 

way to identify if the input impedance is LC-impedance is to locate the pole/zero on the complex 

s-plane.If the input impedance is any rational function with a positive scale factor and with 

simple poles and zeros (conjugate pairs) arranged in alternating order along the imaginary axis, 

then this input impedance Z(s) is realizable as a LC network.For a realizable input impedance of 

a RC network, the input impedance Z(s) must be a rational function, that has simple, alternating 

poles and zeros located on the non-positive real axis with the critical frequency nearest to or at 

the origin being a pole. 

Step 2 



Determine the type of network (Cauer I or Cauer II) to be implemented.Fig. 10 and Fig.11 show 

the Cauer I and Cauer IILC networks and Fig. 12 and Fig. 13 show the Cauer I and Cauer II RC 

networks, respectively. 

 

 
 

Fig.10 Cauer I LC network 

 

 
Fig. 11 Cauer II LC network 

 

 
Fig. 12 Cauer I RC network 

 

 
Fig. 13 Cauer II RC network 

 

Step 3 

Check asymptotic behavior of the input impedance.  



 Cauer I LC: The first element is L, if Z(s) has a pole at s = infinity.  Otherwise the first 

element is C. 

 Cauer II LC: The first element is C, if Z(s) has a pole at s = origin.  Otherwise the first 

element is L. 

 Cauer I RC: The first element is R, if Z(s) has no zero at s = infinity.  Otherwise the first 

element is C. 

 Cauer II RC: The first element is C, if Z(s) has a pole at s = origin.  Otherwise the first 

element is R. 

 

Step 4 

 If the first element is a shunt element, continued fraction expansion is done on input 

admittance Y(s). 

  If the first element is a series element, continued fraction expansion is done on input 

impedance Z(s). 

Step 5 

 If Cauer I is chosen, arrange the numerator and denominator polynomials in 

descending power of s. 

 If Cauer II is chosen, arrange the numerator and denominator polynomials in 

ascending power of s. 

 

                                        ***********End of module III***** 

 


