Course Structure & Syllabus of B. Tech. Programme in Production Engineering

Academic Year – 2019-20

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, ODISHA Burla, Sambalpur-768018, Odisha <u>www.vssut.ac.in</u>

Vision:

To be recognized as a center of excellence in education and research in the field of Production Engineering by producing innovative, creative and ethical Production Engineering professionals for socio-economic upliftment of society in order to meet the global challenges.

Mission:

Production Engineering Department of VSSUT Burla strives to impart quality education to the students with enhancement of their skills to make them globally competitive through:

- Maintaining state of the art research facilities to provide conducive environment to create, analyze, apply and disseminate knowledge.
- Fortifying collaboration with world class R&D organizations, educational institutions, industry and alumni for excellence in teaching, research and consultancy practices to fulfil 'Make In India' policy of the Government.
- Providing the students with academic environment of excellence, leadership, ethical guidelines and lifelong learning needed for a long productive career.

PEOs:

- PEO1: To acquire competency in solving real-life problems and to design/develop sustainable and cost-effective products according to the prevailing socio-economic context.
- PEO2: To broaden and deepen their capabilities in analytical and experimental research methods, analysis of data, and drawing relevant conclusions for scholarly writing and presentation.
- PEO3: To create awareness of societal impact and professional ethics so as to make the graduates enable to excel in their professional career/entrepreneurial skill/research and higher studies.
- PEO4: To create a congenial environment that promotes learning, growth and imparts ability to work with interdisciplinary groups in professional, industry and research organizations by applying engineering and management principles.
- PEO5: To provide opportunity to work and communicate effectively in a team and to engage in the process of lifelong learning.

PSOs:

At the time of graduation, the students will be able to:

- PSO1: Identify, formulate design and investigate Production Engineering problems using first principles of mathematics, basic science and engineering.
- PSO2: Establish themselves as practicing professionals in core service or research sector or entrepreneurial endeavors by solving real life engineering problems to offer techno-commercially feasible and socially acceptable solutions using contemporary knowledge and tools.
- PSO3: Communicate ethically and effectively as well as demonstrate aspiration to learn and ability to handle problems with professional attitude.

Program Outcomes (POs):

- PO1: Ability to apply knowledge of mathematics, science and engineering to solve complex problems in production engineering.
- PO2: Ability to identify, formulate, and solve complex production engineering problems using first principle of mathematics, basic science and engineering.
- PO3: Ability to design, implement and evaluate production engineering projects to meet societal and environmental needs.
- PO4: Ability to design and conduct complex production engineering experiments as well as to analyze and interpret the experimental data.
- PO5: Ability to use the techniques, skills, and modern engineering tools necessary for relevant engineering practices.
- PO6: Ability to assess impact of contemporary social issues on professional practice.
- PO7: Ability to recognize the sustainability and environmental impact of the engineering solutions.
- PO8: Ability to follow prescribed norms, responsibilities and ethics in engineering practices.
- PO9: Ability to work effectively as an individual and in a team.
- PO10: Ability to communicate effectively through oral, written and pictorial means with engineering community and the society at large.
- PO11: Ability to understand and apply engineering and management principles in executing projects.
- PO12: Ability to recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROPOSED CURRICULUM FOR B.TECH. IN PRODUCTION ENGINEERING

	FIRST YEAR: FIRST SEMESTER						
	THEORY						
S/N	Code	Subject		L-T-P	Credits		
1.	BMA01001	Mathematics-I		3-1-0	4		
2.	BCH01001	Chemistry		3-0-0	3		
3.	BEC01001	Basic Electronics		3-0-0	3		
4.	BIT01001	Programming for Problem Solving		3-0-0	3		
5.	BCE01001	Basic Civil Engg.		3-0-0	3		
		SESSIONALS					
1.	BCH01002	Chemistry Lab		0-0-3	1.5		
2.	BEC01002	Basic Electronics Lab		0-0-3	1.5		
3.	BIT01002	Programming Lab		0-0-3	1.5		
4.	BCE01002	Engineering Graphics & Design		0-0-3	1.5		
	NON-CREDIT						
1	BNC01001	Induction Programme and Participation in Clubs/Societies		0-0-0	0		
			TOTAL	15-1-12	22		

	FIRST YEAR: SECOND SEMESTER						
	THEORY						
S/N	Code	Subject	L-T-P	Credits			
1.	BMA02001	Mathematics - II	3-1-0	4			
2.	BPH02001	Physics	3-0-0	3			
3.	BEE02001	Basic Electrical Engg.	3-0-0	3			
4.	BHU02001	English For Business Communication	3-0-0	3			
5.	BME02001	Engineering Mechanics	3-0-0	3			
		SESSIONALS					
1.	BPH02002	Physics Lab	0-0-3	1.5			
2.	BEE02002	Basic Electrical Engg. Lab	0-0-3	1.5			
3.	BHU02002	Business Communication Skills Lab	0-0-3	1.5			
4.	BME02002	Workshop & Manufacturing Practices	0-0-3	1.5			
	NON-CREDIT						
1	BNC02001	NSS/NCC/Yoga	0-0-0	0			
		TOTAL	15-1-12	22			

	SECOND YEAR: THIRD SEMESTER						
	THEORY						
S/N	Code	Subject	L-T-P	Credits			
1	BMA03001	Math-III	3-1-0	4			
2	BPE03001	Thermodynamics	3-0-0	3			
3	BPE03002	Material Engineering & Metallurgy	3-0-0	3			
4	BPE03003	Basic Manufacturing Processes	3-0-0	3			
5	BHU03001	Economics For Engineers	3-0-0	3			
		SESSIONAL					
1	B0300	Instrumentation and Sensor Technology for Engg. Applications	0-0-3	1.5			
2	BPE03004	Production Practice- I	0-0-3	1.5			
3	BPE03005	Computer Aided Machine Drawing	0-0-3	1.5			
4	BPE03006	Thermal & Materials Engineering Lab.	0-0-3	1.5			
		NON CREDIT					
1	BNC03001	Essence of India Traditional Knowledge/					
1	BINC03001	Environmental Sciences	0-0-0	0			
		TOTAL	15-1-12	22			

	SECOND YEAR: FOURTH SEMESTER						
	THEORY						
S/N	Code	Subject	L-T-P	Credits			
1.	BMA04001	Math IV	3-0-0	3			
2.	BPE04001	Theory of Machine	3-1-0	4			
3.	BPE04002	Strength of Materials	3-0-0	3			
4.	BPE04003	Theory of Metal Cutting	3-0-0	3			
5.	BHU04001	Organizational Behavior	3-0-0	3			
		SESSIONAL					
1.	BPE04004	Production Practice- II	0-0-3	1.5			
2.	BPE04005	Metal Cutting Lab.	0-0-3	1.5			
3.	BPE04006	Dynamics Lab	0-0-3	1.5			
4.	BPE04007	Material Testing Lab.	0-0-3	1.5			
		NON CREDIT					
1	BNC04001	Environmental Sciences/ Essence of India Traditional Knowledge	0-0-0	0			
2	BNC04002	Summer Internship/ Training	0-0-0	0			
		TOTAL	15 -1-12	22			

	THIRD YEAR: FIFTH SEMESTER					
	THEORY					
S/N	Code	Subject	L-T-P	Credits		
1.	BPE05001	Design of Machine Elements	3-0-0	3		
2.	BPE05002	Inspection and Metrology	3-0-0	3		
3.	BPE05003	Tool Design	3-0-0	3		
4.		Professional Elective-I	3-0-0	3		
5.		Open Elective-I	3-0-0	3		
6.		Professional Ethics, Professional Law &Human Values / Financial Management, Costing, Accounting, Balance Sheet & Ratio Analysis	2-0-0	2		
		SESSIONAL				
1.	BPE05004	Machine Design Sessional	0-0-3	1.5		
2.	BPE05005	Metrology Lab.	0-0-3	1.5		
3.	BPE05006	Tool Design Sessional	0-0-3	1.5		
		TOTAL	17-0-9	21.5		

	Professional Elective-I				
Sl.No.	Sl.No. Course Code Subjects				
1.	BPEPE501	Measurement & Instrumentation			
2.	BPEPE502	Advanced Casting & Welding			
3.	BPEPE503	Production Planning & Control			
4.	BPEPE504	Maintenance Engineering & Management			

	Open Elective-I				
Sl.No.	Sl.No. Course Code Subjects				
1.	BPEOE501 Maintenance Engineering & Management				
2.	BPEOE502 Logistics & Supply Chain Management				
3.	BPEOE503	Mechatronics			

	THIRD YEAR: SIXTH SEMESTER THEORY					
S/N	Code	Subject	L-T-P	Credits		
1.	BPE06001	Theory of Metal Forming	3-0-0	3		
2.	BPE06002	Principle of Machine Tools	3-0-0	3		
3.		Professional Elective-II	3-0-0	3		
4.		Professional Elective-III	3-0-0	3		
5.		Open Elective-II	3-0-0	3		
6.		Financial Management Costing, Accounting, Balance Sheet & Ratio Analysis/ Professional Ethics, Professional Law &Human Values	2-0-0	2		
		SESSIONAL				
1.	BPE06003	Metal Forming Lab	0-0-3	1.5		
2.	BPE06004	Fluid Dynamics Lab.	0-0-3	1.5		
3.	BPE06005	Simulation Lab.	0-0-3	1.5		
		NON CREDIT	·	·		
		Summer Industry Internship/ Training/ Project	0-0-0	0		
		TOTAL	17-0-9	21.5		

	Professional E	Elective-II
Sl.No.	Course Code	Subjects
1.	BPEPE601	Fluid Mechanics & Fluid Power Engineering
2.	BPEPE602	Manufacturing & Design of Composites
3.	BPEPE603	Industrial Hydraulics
4.	BPEPE604	Precision Engineering
	Professional Elec	ctive -III
Sl.No.	Course Code	Subjects
1.	BPEPE605	Statistical Methods and Design of Experiments
2.	BPEPE606	Finite Element Method in Manufacturing
3.	BPEPE607	Production and Operation Management
4.	BPEPE608	Advanced Material Science
	Open Electiv	/e-II
Sl.No.	Course Code	Subjects
1.	BPEOE601	Automotive & System Engineering
2.	BPEOE602	Production and Operation Management

	FOURTH YEAR: SEVEN SEMESTER					
		THEORY				
S/N	Code	Subject	L-T-P	Credits		
1.	BPE07001	Automation and NC Machine	3-0-0	3		
2.	BPE07002	Non Traditional Machining	3-0-0	3		
3.		Professional Elective- IV	3-0-0	3		
4.		Open Elective-III	3-0-0	3		
		SESSIONAL				
1.	BPE07003	NTM & FMS Lab.	0-0-3	1.5		
2.		Project – I	0-0-6	3		
3.		Seminar on internship	0-0-3	1.5		
		TOTAL	12-0-12	18		

	Professional Elective-IV				
Sl.No.	Course Code	Subjects			
1.	BPEPE701	Engineering Ergonomics			
2.	BPEPE702	Surface Engineering Principles &Systems			
3.	BPEPE703	Design for Manufacturing & Assembly			
	Open Elective -III				
Sl.No.	Course Code	Subjects			
1.	BPEOE701	Performance Measurement & Benchmarking			
2.	BPEOE702	Total Quality System and Engineering			
3.	BPEOE703	Project Management			

		FOURTH YEAR: EIGHT SEMESTER		
		THEORY		
S/N	Code	Subject	L-T-P	Credits
1		Professional Elective-V	3-0-0	3
2		Professional Elective-VI	3-0-0	3
3		Open Elective-IV	3-0-0	3
		SESSIONALS		
1		Project II	0-0-12	6
2		Seminar on Project	0-0-2	1
		TOTAL	9-0-14	16

	Professional Ele	ctive-V
Sl.No.	Course Code	Subjects
1.	BPEPE801	Robotics & Flexible Manufacturing Systems
2.	BPEPE802	Plant layout & Automated Material Handling
3.	BPEPE803	Micro Electro-Mechanical Systems
4.	BPEPE804	Quality Assurance & Reliability

	Professional Elec	tive-VI
Sl.No.	Course Code	Subjects
1.	BPEPE805	Rapid Prototyping & Tooling
2.	BPEPE806	Computer Integrated Manufacturing
3.	BPEPE807	Safety Engineering

	Open Elective- IV												
Sl.No.	Course Code	Subjects											
1.	BEPEOE801	Micro Electro-Mechanical Systems											
2.	BEPEOE802	Entrepreneurship & E-Business											

DETAILS SYLLABI FIRST SEMESTER

B. Tech.: Mathematics-I (Calculus and Linear Algebra) (BMA01001) [3-1-0]

Module 1: Calculus (8 Lectures)

Rolle's theorem, Mean value theorems (statements only) and applications. Introduction to improper integrals. Beta and Gamma functions and their properties.

Module 2: Calculus (8 Lectures)

Convergence of sequence and series, tests of convergence. Fourier series, arbitrary period, even and odd function, half range series.

Module3: Calculus (8 Lectures)

Limit, continuity and partial derivatives (two variables), maxima and minima. Vector and scalar point functions and fields, gradient of a scalar field, directional derivative, divergence of a vector field, curl of a vector field and applications

Module 4: Linear Algebra (8 Lectures)

Linear systems of equations, Gauss elimination, linear independence, rank of a matrix, Gauss-Jordan elimination. Vector Space; basis and dimension'

Module 5: Linear Algebra (8 Lectures)

Eigenvalues, eigenvectors, some applications of eigenvalue problems, symmetric, skew-symmetric and orthogonal matrices, diagonalization, quadratic forms, complex matrices and forms.

Text Book:

- 1) Erwin Kreyszig, Advanced Engineering Mathematics (9th Edition), Wiley India Pvt. Ltd
- 2) S.C. Malik and S. Arora, Mathematical Analysis, New Age International

Reference Books:

- 1) George B. Thomas, Jr. and Ross L. Finney, Calculus and Analytic Geometry, Addison Wesley Publishing Company
- 2) B.V. Ramana, Higher Engineering Mathematics, McGraw Hill
- 3) A. Stroud, Advanced Engineering Mathematics, Industrial Press
- 4) S.K. Paikray, Text book of Matrix Algebra, Kalyani Publisher

Course Outcomes:

Upon completion of the subject the students will be able to:

CO1	Recognize basic knowledge of differential calculus, improper integral, Beta and Gamma
	functions which are useful in various fields of engineering
CO2	Analyse periodic phenomenon and describe Fourier series expansion of periodic function
CO3	Demonstrate functions of several variables that is essential in most of the branches of
	engineering
CO4	Apply Gauss elimination method and rank of a matrix in solving linear equations
CO5	Implement knowledge of eigenvalues and eigenvectors in a comprehensive manner
Course	Articulation Matrix

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	2	1	-	-	-	1	1
CO2	3	3	2	2	1	2	1	-	-	-	1	1
CO3	3	3	2	2	1	2	1	-	-	-	1	1
CO4	3	3	2	2	1	2	1	-	-	-	1	1
CO5	3	3	2	2	1	2	1	-	-	-	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	2	1	2	1	-	-	-	1	1

Subject: Chemistry (BCH01001)

Credits: 4 [3-1-0]

Module–I (9 Hours)

Schrodinger Wave equations (not to be derived), Application to particle in ID box.

Molecular rotational (microwave) spectroscopy: Basic principle and application to diatomic molecules, selection rules.

Molecular vibrational (IR) spectroscopy: Basic principle, types of vibrations and vibrational frequency, application to Harmonic and anharmonic oscillators, selection rules, modes of vibration.

Electronic (UV-Visible) spectroscopy: Basis principle, types of electronic transitions, The Franck - Condon principle, and Jablonski diagram.

Module – II (9 Hours) Thermodynamics of Chemical Processes:

Concept of Entropy and free energy, Chemical Potential, Equilibrium Conditions.

Phase equilibria:

Phase, Components, Degree of Freedom, Phase Rule Equation.

Phase Diagrams: One Component Systems – Water and Sulphur, Basic idea of (a) Peritectic system, (b) Eutectoid system, (c) Binary phase diagrams of Pb-Ag & Fe-C system.

Module–III (9 Hours)

Electrochemistry:

Electrode Potentials and its Relevance to Oxidation and Reduction, Types of electrodes, Galvanic cell, Measurement of EMF and application of EMF measurements, Types of reference electrodes (Hydrogen, Glass, Quinhydrone Electrodes,) Determination of pH, Electrochemical energy systems its types (Dry Cells, lead acid cell and Fuel Cells: Construction, reaction, advantages and applications).

Corrosion: Concept, types of corrosion, dry or chemical and wet or Galvanic/electrochemical Corrosion, Factors affecting corrosion.

Module–IV (9 Hours)

Kinetics of complex Chemical Reactions: Reversible, Consecutive and Parallel Reactions, Steady State Approximation, Chain reaction.

Module-V (9 Hours)

Chemistry of engineering materials:

Nanomaterials: Applications of nanomaterials.

Organometallics: Application of organometallics

Books Recommended:

- 1) P. W. Atkins, Elements of Physical Chemistry, 4th Edition, Oxford University Press
- 2) C. N. Banwell and E. M. MacCash, Fundamentals of Molecular Spectroscopy, 5th Edition,
- 3) P. K. Kar, S. Dash and B. Mishra, B.Tech. Chemistry Vol. I, Kalyani Publications

Course Outcomes:

CO1: Apply the basic concept of classical mechanics and quantum chemistry to real life applications & to understand the basic concept of electromagnetic radiation, spectroscopic techniques and their applications.

CO2: Should perceive the spontaneity/feasibility of a process applying thermodynamics concepts and to keep up with the idea of phase equilibria, phase rule and its application to one and two component system.

CO3: Define the application of electrochemistry to commercial electrochemical cell and corrosion.

CO4: Able to apply the basic concept of kinetics of a reaction to complex reactions.

CO5: To demonstrate the properties and applications of organometallics and nanomaterials.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
a a t	-											
CO1	3	3	1	-	-	-	1	-	-	1	1	1
CO2	3	3	1	-	-	-	1	-	-	1	1	1
CO3	3	3	1	-	-	-	1	-	-	1	1	1
CO4	3	3	1	-	-	-	1	-	-	1	1	1
CO4	3	3	1	-	-	-	1	-	-	1	1	1

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	3	1	-	-	-	1	-	-	1	1	1

BASIC ELECTRONICS (BEC01001)

MODULE	CONTENT	HOURS
MODULE 1	Introduction to Electronics: - Signals, Frequency Spectrum of Signals, Analog and DigitalSignals,	12
	Linear Wave Shaping Circuits: - RC LPF, Integrator, RC HPF, Differentiator.	
	Properties of Semiconductors: - Intrinsic, Extrinsic Semiconductors, Current Flow in Semiconductors,	
	Diodes: - p-n junction theory, Current-Voltage characteristics, Analysis of Diode circuits, Rectifiers,	
	Clippers, Clampers, Special diodes- LED, Photo diode, Zener Diode.	
MODULE 2	Bipolar junction Transistor (BJTs):- Device Structure and Operation, Current-Voltage Characteristics, BJT as an Amplifier and as a Switch. Introduction to Power Amplifiers: - A,B and Ctypes.	10
	JFET:- Physical Structure, Operation and Characteristics	
MODULE 3	Feedback Amplifiers: - General Feedback Structure, Properties of Negative Feedback, Four Basic Feedback Topologies (block diagram only), Practical feedback circuit.	08
	Operational Amplifiers (OP-AMPs): - The Ideal OP-AMP, Inverting Configuration, Non-Inverting Configuration. OP-AMP Applications (Adder, Subtractor, Integrator, Differentiator).	
MODULE 4	Digital Fundamentals:- Binary Numbers, Signed-binary numbers, Decimal-to-Binary & Binary-to-Decimal Conversion, Binary Addition, Subtraction, Multiplication and Division, Hexadecimal Number Systems, Logic Gates, Boolean Algebra, De Morgan's Theorems, Laws of Boolean Algebra, RS Flip Flop	06
MODULE 5	Introduction to Electronic Instruments: - CRO: CRT, Waveform Display, Applications of CRO, Electronic Multimeter, Audio Signal Generator: - Block diagram, Front Panel Controls.	06
	Principles of Communication:- Fundamentals of AM & FM, Block diagram of Transmitters	
TEXT BOOK	1. Microelectronics Circuits, A.S Sedra, K.C. Smith, Oxford Universit Selected portions from chapters 1 to 3, 5, 8,13.	yPress.
	2. Electronics Fundamentals and Applications, D Chattopadhyay a Rakshit, New Age International Publications. Selected portions from 4 to 12, 14, 16 to 18,20,21.	
REFERENCE	1. Integrated Electronics, Millman and Halkias, TMHPublications.	
ВООК	2. Electronic Devices & Circuit Theory, R.L Boylestad and L.Nashelsk PearsonEducation.	у,

COURSE OUTCOME: After completion of course student should be able to

- 1. Understand different types of signals and its application to semiconductor devices and circuits.
- 2. Understand different BJTs and itsoperation.
- 3. Understand the Feedback Amplifiers and Operational Amplifiers.
- 4. Understand fundamentals of different Digital arithmetic operations and Digitalcircuits.
- 5. Understand some important Electronic Instruments and Communicationsystems.

Course Outcomes:

Upon completion of the subject the students will demonstrate the ability to:

CO1	Implement different types of signals and its application to semiconductor devices and
	circuits.
CO2	Analyze the concept of different BJTs and its operation.
CO3	Express the concept of the Feedback Amplifiers and Operational Amplifiers.
CO4	Apply fundamentals of different Digital arithmetic operations and Digital circuits.
CO5	Demonstrate basic principles of important Electronic Instruments and Communication
	systems.

	Relationship of Course Outcomes (CO) to Program Outcomes (PO)													
		1-1	low		2 – M	2 – Moderate				3 – High				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	2	1	2	-	-	-	-	1		
CO2	3	2	2	3	2	1	1	-	-	-	-	1		
CO3	3	2	3	3	2	1	2	-	-	-	-	1		
CO4	3	3	3	3	3	1	1	-	-	-	-	1		
CO5	3	3	3	3	2	1	3	-	-	-	-	1		

Prog

ram Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	2	3	3	2	1	2	-	-	-	-	1

PROGRAMMING FOR PROBLEM SOLVING (BIT01001)

L-T-P: 3-0-0

Module I:

Introduction to computing- Block architecture of a computer, fundamental units of storage: bit, bytes, nibbles, word size. Introduction to problem solving- Basic concepts of an algorithm, program design methods, flowcharts. Level of programming Languages, structure of C program, Compiling and Executing C program

Module II:

C Language Fundamentals- Character set, Identifiers, Keywords, Data Types, Constant and Variables, Statements. Input &Output - Input & Output Assignments, Formatted Outputs. Operators and Expressions-Operators, Precedence of operators. Decision Control Structure, Loop Control Structure and Case Control Structure.

Module III:

Functions: Monolithic vs Modular programs, User defined vs standard functions, formal vs Actual arguments, Functions category, function prototypes, parameter passing, Recursion.Arrays1D Array, 2D Array & Multi-Dimensional Array. Strings- Declaration & Initialization, String Handling Functions.

Module IV:

Pointer variable and its importance, Pointer Arithmetic, Passing parameters, pointer to pointer, pointer to function. Dynamic Memory Allocation. Structure, Nested Structure, Array of Structures, Pointer to Structure, Structure & Functions, Union, Array of Union Variables, Union inside Structure, Bit Fields. Storage Class.

Module V:

Preprocessor Directives- Types, Pragma Directives, Conditional Directives. typedef, Enumerated Data Type. Files- Reading data from Files, Reading data from Files, Writing data to Files, Error Handling during File Operations. Advanced Issues in Input & Output – using argc&argv.

Text Books:

- 1. Programming in ANSI C, E Balaguruswamy
- 2. Computer Fundamentals & Programming in C: ReemaThareja, Oxford University Press.

Reference Books:

- 1. Let us C- Y.Kanetkar, BPB Publications.
- 2. Programming with ANSI and Turbo C- Kamthane, A.N. Pearson Education
- 3. C How to Program- Deitel and Deitel, Pearson Education.
- 4. The C Programming Language- Brian W. Kernighan and Dennis M. Ritchie, PrenticeHall.

(8 Lectures)

Cr.-3

(8 Lectures)

(8 Lectures)

(8 Lectures)

(8 Lectures)

Course Outcomes:

Upon completion of the subject the students will demonstrate the ability to:

- 1. grasp the fundamentals of Computer and problem solving.
- 2. conceptualize fundamentals of C Programming along with control structures.
- 3. Implement different problems on functions and arrays.
- 4. Apply pointers structures and unions for problem solving.
- 5. Gain knowledge of pre-processor directives and file operations.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	2	-	-	3
CO2	3	3	3	3	2	-	-	-	2	-	-	3
CO3	3	3	3	3	2	-	-	-	2	-	-	3
CO4	3	3	3	3	2	-	-	-	2	-	-	3
CO5	3	3	3	3	2	-	-	-	2	-	-	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2	-	-	-	2	-	I	3

Basic of Civil Engineering (BCE01001)

Module-II

Introduction to Civil Engineering – Various disciplines of Civil engineering, Importance of Civil engineering in infrastructure development of the country.

Introduction to types of buildings as per NBC, Selection of site for buildings, Components of a residential building and their functions, Introduction to Industrial buildings and types.

Building Planning – Basic requirements, elements, introduction to various building area terms, computation of plinth area, carpet area.

Module-II

Surveying – Principle and objectives, Instruments used, Horizontal measurements, Ranging (direct ranging only), Instruments used for ranging, Leveling – Definition, Principles, Instruments, Preparation of level book, problems on leveling, Modern surveying instruments – EDM, Total station, GPS (Brief discussion)

Building Materials – Bricks, properties and specifications, Cement – Types, properties, grades, other types of cement and uses, Cement mortar – Constituents, Preparation, Concrete – PCC and RCC, Grades, Steel – Use of steel in buildings, types.

Module-III

Building Construction – Foundations, Classification, Bearing Capacity of Soil and related terms (definition only), Masonry Works – classifications, definition of different technical terms, Brick masonry – types, bonds, general principle, Roofs – functional requirements, basic technical terms, roof covering material, Floors – function, types, flooring materials(brief discussion), Plastering and Painting – objectives, types, preparation and procedure of application.

Module-IV

Basic Infrastructure services – air conditioning & purpose, fire protection & materials, Ventilation, necessity & functional requirements, Lifts, Escalators.

Introduction to planning and design aspects of transportation engineering, Transportation modes, Highway engineering – historical development, highway planning, classification of highway, Railway Engineering – cross section of rail track, basic terminology, geometric design parameter(brief discussion only).

Module-V

Airport engineering – development, types, definition, characteristics of aircraft, basic terminology, Traffic engineering – traffic characteristics, traffic studies, traffic operations (signals, signs, markings), Urban engineering – classification of urban road.

Irrigation & Water Supply Engineering – Introduction, Types of Irrigation, different types of hydraulic structures, dam and weirs, types of dam, purpose and functions.

Text Books:

- Basic Civil engineering, Gopi, S., Pearson Publication
- Basic Civil Engineering, Bhavikatti, S. S., New Age.

Reference Books:

- Construction Technology, Chudley, R., Longman Group, England
- Basic Civil and Environmental Engineering, C.P. Kausik, New Age.
- American Society of Civil Engineers (2011) ASCE Code of Ethics Principles Study and Application

Course Outcomes:

- Analyze the fundamental aspect of building planning.
- Summarize general aspect of building material and surveying.
- Explain about building constructions.
- Judge transportation modes and planning.
- Describe about Airport & Irrigation Structures.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	1	-						
CO2	3	2	1	1	1							
CO3	2	1			3							
CO4	3	2	1	2	1	3						
CO5	3	2	3	2	1	1	3	1	2	2	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО	3	2	2	2	1	2	3	1	2	2	2	3

SESSIONAL

B Tech Chemistry Lab: BCH01002

List of Experiments to be done (Any ten Experiments)

1. Determination of amount of sodium hydroxide and sodium carbonate in a Mixture.

- 2. Determination of Total hardness of water by EDTA method.
- 3. Estimation of calcium present in the limestone.
- 4. Standardization of KMnO4 using sodium oxalate.
- 5. Determination of ferrous iron in Mohr's salt by potassium permanganate.
- 6. Determination of Rate constant of acid catalyzed hydrolysis of ester.
- 7. Determination of dissolved oxygen in a sample of water.
- 8. Conductometric titration of strong acid and strong base
- 9. Determination of Viscosity of lubricating oil by red wood Viscometer.
- 10. Determination of Flash point of given oil by Pensky Marten's Flash Point Apparatus.
- 11. Determination of available chlorine in bleaching powder.
- 12. Preparation of acidic and basic buffer solution and measurement of PH using PH meter

Book Recommended:

B. Tech Practical Chemistry- .

Course Outcomes:

CO1: Develop knowledge of concepts and applications of chemistry, important laboratory analytical techniques, and instrumentation.

CO2: Apply fundamental principles for environmental analytical methods.

CO3: Identify suitable analytical techniques for analysing a specific compound in a sample and ensure quality control.

CO4: Implement suitable techniques for sampling and handling of environmental and chemical samples.

CO5: Hands on training on using different laboratory apparatus and equipments including data analysis and conclusions.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	-	1	-	2	-	1	-	1	_
CO2	3	1	2	-	1	-	2	-	1	-	1	_
CO3	3	1	2	-	1	-	2	-	1	-	1	_
CO4	3	1	2	-	1	-	2	-	1	-	1	-
CO4	3	1	2	-	1	-	2	-	1	-	1	-

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12
CO	3	1	2	-	1	-	2	-	1	-	1	-

Experiment No.	CONTENT
1	Familiarity with electronic components and devices(Testing of semiconductor diode, Transistor, IC Pins connection) Digital Multimeter should be used.
2	Study and use of CRO to view waveforms and measure its Amplitude and Frequency.
3	Frequency response of LPF and HPF.
4	V-I Characteristics of a Semiconductor Diode. Determining DC and AC resistance.
5	Clipper Circuit.
6	Clamper Circuit.
7	Half Wave and Full Wave Rectifier without Capacitor filter. Record of Waveforms, Measurement of Average and RMS value.
8	V-I (Output) Characteristics of N-P-N/P-N-P Transistor in CE Configuration.
9	OP-AMP: Inverting and Non-Inverting Configuration. Record of Waveforms.
10	Verification of Truth table of Logic gates (AND, OR,NOT, NAND, NOR, EX-OR)
SUPPLEMENTARY BOOK	 Integrated Electronics, Millman and Halkias, TMHPublications. Electronic Devices & Circuit Theory, R.L Boylestad andL.
	Nashelsky, PearsonEducation.

Course Outcomes:

Upon completion of the subject the students will demonstrate the ability to:

1	1 5 5
CO1	Implement Acquire basic knowledge on electronic devices and components
CO2	Analyze different electronics circuits using semiconductor diodes.
CO3	Analyze and develop the characteristics of BJT and FET Circuits.
CO4	Apply fundamentals Operational amplifier circuits.
CO5	Implement knowledge on basic digital logic gates

	R	elation	ship of C	Course C	utcom	es (CO)	to Pro	gram O	utcom	es (PO)		
		1-1	low		2 – M	oderate	9		3 – Hi	gh		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	1	2	-	-	-	-	1
CO2	3	2	2	3	2	1	1	-	-	-	-	1
CO3	3	2	3	3	2	1	2	-	-	-	-	1
CO4	3	3	3	3	3	1	1	-	-	-	-	1
CO5	3	3	3	3	2	1	3	-	-	-	-	1

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	2	3	3	2	1	2	-	-	-	-	1

PROGRAMMING FOR PROBLEM SOLVING LAB (BHU01002)

L-T-P: 0-0-3

Topics to be covered:

- 1. Programs using Input Output functions.
- 2. Programs on variable declaration, assignments, operators and typecasting.
- 3. Program on selection & iterative constructs.
- 4. Programs on functions.
- 5. Programs on arrays.
- 6. Programs on string manipulation.
- 7. Programs on pointers.
- 8. Programs on structure & union.
- 9. Programs on file handling.
- 10. A mini-project to be designed by students using features of C.

Course Outcomes

Upon completion of the subject the students will demonstrate the ability to:

CO1: Implement the basicsof C programming.

- CO 2: Exercise conditional and iterative statements to develop programs.
- CO 3: Exercise user defined functions to solve real time problems.
- CO 4: Demonstrate the concept of pointers to access arrays, strings and functions.
- CO 5: Create C programs on file manipulations.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	2	3	-	-	3
CO2	3	3	3	3	2	-	-	2	3	-	-	3
CO3	3	3	3	3	2	-	-	2	3	-	-	3
CO4	3	3	3	3	2	-	-	2	3	-	-	3
CO5	3	3	3	3	2	-	-	2	3	-	-	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2	-	-	2	3	-	-	3

Cr.-1.5

Engineering Graphics & Design (BCE01002)

Course Content

Module-I

Introduction to Engineering Drawing: Drawing instruments, lines, lettering and dimensioning.

Scales: Plain, Diagonal and Vernier Scales.

Module-II

Curves: Parabola, Ellipse, Hyperbola, Cycloid, Epicycloid, Hypocycloid and Involute.

Module-III

Orthographic Projections: Concepts, Orthographic projections of points, Lines, Planes and Solids. Sections of solids; Development of surfaces

Module-IV

Isometric Projections: Principles, Isometric Scale, Isometric Views, Isometric Views of lines, Planes, Simpleand compound Solids.

Module-V

Introduction to Auto-Cad:

Curves: Parabola, Ellipse, Hyperbola, Cycloid, Epicycloid, Hypocycloid and Involute

Reference Books:

1 Engineering drawing by N.D. Bhatt and V.M Panchal, Charotar Publishing House, Anand.

Engineering Drawing by Venugopal, New Age publisher.

Course Outcomes:

- 1. Revise basics of engineering drawings and curves.
- 2. Use Orthographic projections of Lines, Planes, and Solids.
- 3. Apply Sectioning of various Solids and their representation.
- 4. Change Pictorial views to Orthographic Projections
- 5. Construct Isometric Scale, Isometric Projections and Views.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	1	1							
CO2	3	2	1	1	1							
CO3	2	1			2							
CO4	3	2	1	2	1	1						
CO5	3	2	2	2	1	1	3	1	2	2	2	2

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
СО	3	2	2	2	1	1	3	1	2	2	2	2

SECOND SEMESTER

Mathematics-II (Differential Equations and Complex Variables) (BMA02001) [3-1-0]

Module 1: Differential Equations (8 Lectures)

Exact ODEs, integrating factors, linear ODEs, Bernoulli equation, homogeneous linear odes of second order, homogeneous linear ODEs with constant coefficients, Euler-Cauchy equations, non-homogeneous ODEs, Applications of ODEs to electric circuits

Module 2: Power Series Solution of Differential Equations (8 Lectures)

Series solution of differential equation (excluding Frobenius method), Legendre's equation, Legendre polynomials. Bessel's Equation, properties of Bessel's functions, Bessel Functions of the first and Second Kind. *Module 3:* Complex Variables (8 Lectures)

Complex valued function, differentiation, analytic function, Cauchy-Riemann equations, harmonic and conjugate harmonic functions, exponential function, trigonometric and hyperbolic functions, logarithm, general power

Module 4: Complex Variables (8 Lectures)

Line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula, power series, radius of convergence, Taylor and Maclaurin series, singularities and zeros, Laurent series, Cauchy residue theorem (statement only) and applications.

Module 5: Elementary Numerical Methods (8 Lectures)

Solution of algebraic and transcendental equations by Newton-Raphson and secant method.

Interpolation: Lagrange's method, divided difference method, Newton's forward and backward method. Numerical Integration: Trapezoidal and Simpson's Rule. Numerical solutions of differential equations: Euler's method and improved Euler's method.

Text Book:

1) Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd, 9th edition.

Reference Books:

- 1) K.A. Stroud, Advanced Engineering Mathematics, Industrial Press
- 2) Milton Abramowitz and Irene A. Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, Applied Mathematics Series 55
- 3) J. Sinha Roy and S. Padhy, Ordinary and Partial Differential Equation, Kalyani Publisher.
- 4) B.V. Ramana, Higher Engineering Mathematics, McGraw Hill

Course Outcomes:

Upon completion of the subject the students will be able to:

CO1	Develop adequate knowledge of the effective mathematical tools for the solutions of differential equations that models various physical processes
CO2	Describe power series solution of differential equations
CO3	Demonstrate analytic functions and applications of Cauchy-Riemann equations
CO4	Evaluate integration of complex valued functions, and apply Taylor and Laurent series expansions of functions in various fields of engineering problems
CO5	Compute roots of algebraic and transcendental equations, and also evaluate the integrals by Trapezoidal and Simson's rules

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	2	1	-	-	-	1	1
CO2	3	3	2	2	1	2	1	-	-	-	1	1
CO3	3	3	2	2	1	2	1	-	-	-	1	1
CO4	3	3	2	2	1	2	1	-	-	-	1	1
CO5	3	3	2	2	1	2	1	-	-	-	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	2	1	2	1	-	-	-	1	1

ENGLISH FOR BUSINESS COMMUNICATION (BHU02001)

Course Description

The course is designed to give students a comprehensive view of communication, its scope and importance in business, and to build the proficiency needed to succeed in today's technologically enhanced workplace. Effective communication is an integral part of life. This course focuses on improving the LSRW skills, i.e. listening, speaking, reading and writing of the students. Students will learn how to communicate effectively though the prescribed syllabus followed by an intensive practice in the language lab. This integrated approach of theory and language lab sessions will help students to communicate clearly with an impact, by improving their verbal and non-verbal communication style, as well as enhancing their competency in grammar and pronunciation. This course further tries to conversant students with the correct practices and strategies in drafting effective business correspondence.

Syllabus

Module 1: Fundamentals of Communication (6 Hours)

- Process of Communication, Types of Communication (Verbal & Non Verbal)
- Channels of Business Communication
- Barriers to Communication.
- Plain English
- Bias free language
- Cross Cultural Communication

Module 2: Communicative Grammar (6 Hours)

- Time and Tense
- Aspects (Perfective & Progressive)
- Verbs of State and Event
- Passive and Active Voice
- Conditionals

Module 3: Sounds of English (06 Hours)

- The Speech Mechanism and Organs of Speech
- Consonant Sounds of English
- Vowel Sounds of English
- Stress Pattern: Syllable, Stress and Intonation.
- Problem sounds for Indian Speakers

Module 4: Business Writing (06 Hours)

- Paragraph writing
- Sentence Linker
- Business Letters
- Report Writing
- Proposal writing

Module 5: Professional Writing (06 Hours)

- Notice, Circular and Memo writing
- Agenda & Minute writing
- Writing Cover letter
- Résumé (CV) Writing

Reference Books

- 1. Effective Technical Communication by M Ashraf Rizvi (Tata McGraw Hill)
- 2. Business Communication by Hory Sanker Mukerjee (Oxford University Press)
- **3.** Better English Pronunciations by J. D.O Conner (Cambridge University Press)
- **4.** A Communicative Grammar of English by G.N. Leech and Jan Svartik (OUP)
- 5. Business communication by Ramachandran, Lakshmi and Krishna (Macmillan)

Programme Outcomes of BTech Programme

PO1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering
	problems and design system components or processes that meet the specified
	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of
	data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources,
	and modern engineering and IT tools including prediction and modelling to
	complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge
	to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member
	or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make

	effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Outcomes

Upon completion of the course the students will demonstrate the ability to:

CO1	Analyse various components of human communication and to identify key elements and principles of organizational communication.
CO2	Apply correct usage of English grammar in writing and speaking.
CO3	Evaluate students' ability to articulate English key sounds as well as its basic rhythm, stress and intonation patterns correctly.
CO4	Compile, plan and structure various forms of business writing in a professional manner.
CO5	Write various business documents appropriate for different business and employment situations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	-	1	-	-	1	3	-	-
CO2	-	-	-	1	-	1	-	-	1	3	-	-
CO3	-	-	-	1	-	1	-	-	1	3	-	-
CO4	-	-	-	1	-	1	-	-	1	3	-	-
CO5	-	-	-	1	-	1	-	-	1	3	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	-	-	-	-	-	-	-	-	1	3	1	-

ENGINEERING PHYSICS (BPH02001)

Module-I PROPERTIES OF MATTEER

Ideas of Elastic Constants (Y, K, η and σ), relation between elastic constants, torsion pendulum, determination of η , cantilever at one end.

Module-II OSCILLATION AND WAVES

Review of Simple Harmonic Oscillation and application to Compound pendulum, Damped Harmonic Oscillation, Forced Oscillation, Resonance, (Amplitude Resonance, Velocity Resonance, and Sharpness of Resonance).

Module-III OPTICS

Concept of Wave and wave equation, Superposition of Many harmonic waves, Interference, Concept of coherent sources (Division of wave front and division of amplitude), Interference in thin parallel film, Newton's ring (Theory, Application, Determination of Wavelength of Light, Refractive index of liquid)

Concept of Diffraction (Huygen's Principle), Types of Diffraction, Fraunhofer Diffraction due to a single slit and diffraction Grating, Determination of Wavelength, Dispersive Power and Resolving Power of a Plane Diffraction Grating, Polarization, Double Refraction, Half wave Plate, Quarter wave Plate.

Module-IV ELECTROMAGNETISM

Vector Calculus, Gradient, Divergence, Curl (Mathematical Concept), Gauss' Divergence Theorem and Stoke's Theorem (Statement Only), Derivation of Maxwell's Electromagnetic Equations in Differential form

and Integral form, Electromagnetic Wave equations for \vec{E} and \vec{B} in vacuum and in conducting medium, Transverse nature of EM waves.

Module-V QUANTUM MECHANICS AND PHOTONICS

Wave particle duality, Matter Wave (de-Broglie Hypothesis), Wave Functions, Observables as Operators,Eigen Functions and Eigen Values, Normalization, Expectation Values, Schrodinger equation(TimeDependent and Time Independent), Particle in a box.

Lasers: Introduction and Characteristics of Lasers, Einstein's Coefficients and Relation between them, Lasing Action (Population Inversion, Three and Four level Pumping Schemes), Different types of Lasers (Ruby lasers, He-Ne Lasers).

Text Book:

- 1. Principle of Engg. Physics: Md. N. Khan and S. Panigrahi
- 2. Engg. Physics: H.K. Malik and A.K. Singh

Reference Books:

- 1. Oscillations and Waves: N. Subramanyam and Brij Lal
- 2. Optics: A. Ghatak
- 3. Electrodynamics: D.J. Griffith
- 4. Concept of Modern Physics: A. Beiser
- 5. Lasers: Theory and Applications: K. Thyagarajan and A.K. Ghatak

Course Outcomes:

Upon completion of the subject the students will be able to:

Explain the concepts of Stress, Strain, Elastic Modulus and Elastic Constant, Bending of
Beams and identify the importance Elastic properties in Engineering Applications
Demonstrate simple harmonic Oscillator, Damped Harmonic and Forced Oscillators.
Express Quality factor and resonance with applications
Explain the link between Simple Harmonic Motion and Waves. Understand the principle of
superposition, the need of coherent sources, analyze the difference between Interference
and Diffraction and their applications. Illustrate the concept of Polarization of light and its
applications.
The basic mathematical concepts related to electromagnetic vector fields,
Understand the concepts related to Gauss law, Electric and magnetic Flux, Faraday's law,
induced emf, Displacement current, Ampere's Circuital law and Maxwell's equations.
Expalin the transverse nature of electromagnetic wave
Identify and understand the kinds of experimental results which are incompatible with
classical physics,
Interpret the wave function and apply operators to it to obtain information about a particle's physical properties
Solve the Schrodinger equation to obtain wave functions for some basic, physically
important types of potential in one dimension
Describe the requirements for a system to act as a laser.
To explain lasing with need of metastable state and population inversion
To explain the drawbacks of three level laser system and its solution in four level laser
system.

Table	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POP11	PO12
CO1	3	3	2	2	1	-	-	1	-	1	-	1
CO2	3	3	3	2	1	-	-	1	-	1	-	2
CO3	3	3	3	3	1	-	-	1	-	1	-	2
CO4	3	3	3	2	1	-	-	1	-	1	-	2
CO5	3	3	2	3	2	-	-	2	-	2	-	2

BASIC ELECTRICAL ENGINEERING (BEE02001)

MODULE-I (8 HOURS)

D.C circuit analysis and network theorems: Concept of network, Active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, source transformation, Kirchoff's Law: loop and nodal methods of analysis, star delta transformation, network theorems: Thevenin's theorem, Norton's theorem, maximum power transfer theorem. Transients, in R-L, R-C and R-L-C circuits with DC Excitation.

MODULE-II (8 HOURS)

Single phase and three phase ac circuit: Sinusoidal, square and triangular waveforms-average and effective value, form the peak factors, concept of phasors, phasors representation of sinusoidally varying voltage and current, analysis of series-parallel RLC circuits. Apparent, active and reactive powers, power factor, power factor improvement, resonance in series and parallel circuits, bandwidth and quality factors, star and delta connections, balanced supply and balanced load, line and phase voltage/current relation, three phase power measurements.

MODULE-III (8 HOURS)

Magnet circuit & principle of electromechanical energy conversion: Analogy between electric and magnetic circuit, magnetic circuits with DC and AC excitation, magnetic leakage, BH curve, hysteresis and eddy current losses, magnetic circuit calculation, mutual coupling. Principles of dc motor & generator, types, emf equation of DC machine, torque equation of motor, Speed control of dc motor. characteristics and applications of DC motors.

MODULE-IV (8 HOURS)

AC MACHINES: Single Phase Transformer: Principle of operation, construction, emf equation, equivalent circuit, power losses, efficiency, Introduction to auto transformers. Three Phase Induction Motor: Type, principle of operation, slip-torque Characteristics, applications. Single Phase Induction Motor: Principle of operation and introduction to methods of starting, applications. Three Phase Synchronous Machines: Principle of operation of alternator and synchronous motor, emf equation, voltage regulation, applications.

MODULE-V (7 HOURS)

Measurement Instruments & Introduction to Power System: Types of instruments: construction and working principle of PMMC and MI type voltmeter and ammeters, single phase dynamometer type wattmeter and induction type energy meter, use of shunts and multipliers: general layout of electrical power system and function of its elements, concept of grid, Introduction to power converters.

TEXT BOOKS

[1]. Edward Hughes (revised by Ian McKenzie Smith), "Electrical & Electronics Technology", Pearson Education Limited. Indian Reprint 2002, 10th Edition.

[2]. D.Kulshreshtha, "Basic Electrical Engineering" TMH, 1st Edition.

REFERENCE BOOKS

[1]. C.L. Wadhwa, "Electrical Engineering", New Age International Publishers, 2nd Edition.

[2]. S. Parker Smith, "Problems in Electrical Engineering", Asia Publications, 10th Edition.

Course Outcomes:

Upon completion of the subject the students will demonstrate the ability to:

-	
CO1	Implement principles of DC network, theorems and transients.
CO2	Analyze the concept of Single phase and three phase AC circuits.
CO3	Express the concept of magnetic circuit and DC machines.
CO4	Apply basic principles of AC machines and their working.
CO5	Demonstrate basic principles of measuring instruments and power system.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	2	1	-	-	-	-	1
CO2	3	3	2	1	1	2	1	-	-	-	-	1
CO3	3	3	2	1	1	2	1	-	-	-	-	1
CO4	3	3	2	1	1	2	1	-	-	-	-	1
CO5	3	3	2	1	1	2	1	-	-	-	-	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	1	1	2	1	-	-	-	-	1

ENGINEERING MECHANICS (BME02001)

Course Contents

Module - I (8 Hours)

Concurrent forces on a plane: Composition, resolution and equilibrium of concurrent coplanar forces, method of moment.General case of forces on a plane: Composition and equilibrium of forces in a plane, plane trusses, method of joints and method of sections, plane frame, equilibrium of ideal systems.

Module-II (8 Hours)

Friction: Problems involving dry friction, Ladder, WedgesPrinciple of virtual work.

Module - III (8 Hours)

Parallel forces on a plane: General case of parallel forces, center of parallel forces and center of gravity, centroid of composite plane figure and curves, Theorems of Pappus.

Moments of inertia: Plane figure with respect to an axis in its plane and perpendicular to the plane, Polar moment of inertia, parallel axis theorem

Module – IV (8 Hours)

Rectilinear translation: Kinematics, principle of dynamics, D Alembert's Principle,

Principle of work and energy for a particle and a rigid body in plane motion, Conservation of energy, Principle of impulse and momentum for a particle and a rigid bodies in plane motion, Conservation of momentum, System of rigid bodies, Impact, direct and central impact, coefficient of restitution.

Module – V (8 Hours)

Curvilinear translation: Kinematics, equation of motion, projectile, D Alembert's principle of curvilinear motion. Kinematics of rotation of rigid body.

Text Book:

1. Engineering Mechanics: S Timoshenko & Young; 4th Edition (International edition) McGraw Hill.

Reference Books:

- 1. Fundamental of Engineering mechanics (2nd Edition): S Rajesekharan& G ShankaraSubramanium; Vikas Pub. House Pvt ltd.
- 2. Engineering mechanics: K. L. Kumar; Tata MC Graw Hill.

CO1	Draw free body diagrams and determine the resultant of forces and/or moments.
CO2	Solve the problems involving dry friction.
CO3	Determine the centroid and second moment of area of sections.
CO4	Apply Newton's laws and conservation laws to elastic collisions and motion of
	rigid bodies.
CO5	Determine the various parameters in projectile motion.

Upon completion of the subject the students will be able to:

	РО 1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	-	-	-	3	1	-	1
CO2	3	3	2	1	2	-	-	-	3	1	-	1
CO3	3	3	2	1	2	-	-	-	3	1	-	1
CO4	3	3	2	1	2	-	-	-	3	1	-	1
CO5	3	3	2	1	2	-	-	-	3	1	-	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	3	2	1	2	-	-	-	3	1	-	1

PHYSICS LABORATORY (BPH02002)

List of Experiments

- 1. Determination of acceleration due to gravity by using Bar pendulum
- 2. Determination of surface tension of water by capillary rise method
- 3. To draw the characteristics of a bipolar junction transistor
- 4. To determine the rigidity modulus of the material of a wire by using Barton's apparatus.
- 5. Determination of wave length of monochromatic light with the help of Newton's ring apparatus.
- 6. Determination of grating element of a diffraction grating using spectrometer.

Course Outcomes

Upon completion of the subject the students will demonstrate the ability to:

CO1	Express the idea of calculation of acceleration due to gravity at any place using the concept of oscillatory system and simple harmonic motion.
CO2	Demonstrate the working and operational technique to calculate the mechanical properties of fluid and other materials.
CO3	Evaluate the voltage, current, power and characteristics behaviour of the electronic devices.
CO4	Analyze the mechanical properties of any material with the idea of elasticity and its various applications.
CO5	Implement the measurement of different characteristic properties and related calculations of optical devices.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	3	2	1	1	3	3	1	1
CO2	3	3	2	1	3	2	1	1	3	3	1	1
CO3	3	3	2	1	3	2	1	1	3	3	1	1
CO4	3	3	2	1	3	2	1	1	3	3	1	1
CO5	3	3	2	1	3	2	1	1	3	3	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	1	3	2	1	1	3	3	1	1

BASIC ELECTRICAL ENGINEERING LABORATORY (BEE02002)

List of Experiments

- **1.** Preliminary: Preparation of symbol chart for various systems & components as per ISS, to study the constructional & operational features for Voltmeter, Ammeter, Wattmeter, Frequency meter, multi-meter and Rheostat, Study of safety rules as per ISS
- **2.** Measurement of the armature & field resistance of D.C. Machine by volt-amp method. & Starting and speed control of a D.C. shunt motor
- 3. Study of BH Curve
- **4.** Determination of open circuit characteristics (O.C.C) of D.C shunt generator when separately excited at different speeds.
- 5. Measurement of earth resistance and insulation resistance.
- **6.** Starting of Induction motor and measurement of three phase power & power factor by 2-wattmeter method.
- 7. Callibration of a single phase Energy Meter by directed loading & Phantom loading.
- **8.** Obtaining the voltage, current, power and power factor of fluorescent lamp.
- **9.** Demonstration of cut-out sections of machines: dc machine (commutator-brush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging slip ring arrangement) and single-phase induction machine.
- 10. Demonstration of (a) dc-dc converters (b) dc-ac converters PWM waveform

Course Outcomes

Upon completion of the subject the students will demonstrate the ability to:

CO1	Express the safety rules as per ISS and symbols of different electrical components and the use of various electrical instruments in laboratory.
CO2	Demonstrate the working and operational characteristics of dc motor and dc generator.
CO3	Evaluate the voltage, current, power and power factor of fluorescent lamp.
CO4	Implement the measurement of earth resistance and insulation resistance and demonstrate the internal structure of different machines.
CO5	Analyze the connection and calibration of single phase energy meter, three phase power and power factor by two wattmeter method and basic idea about converters.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	3	2	1	1	3	3	1	1
CO2	3	3	2	1	3	2	1	1	3	3	1	1
CO3	3	3	2	1	3	2	1	1	3	3	1	1
CO4	3	3	2	1	3	2	1	1	3	3	1	1
CO5	3	3	2	1	3	2	1	1	3	3	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	1	3	2	1	1	3	3	1	1

Business Communication and Presentation Skills Lab (BHU02002)

Course Description

Good communication skills are indispensable for the success of any professional. The English language, in particular, has become essential in the lives of young engineers who aspire to build their careers anywhere in the world. In this regard the language laboratory plays an important role in developing the students' basic proficiency in English. Since a large number of engineering students completed their education from vernacular medium schools, they lack the basic English language proficiency which is a detrimental factor during recruitment drives in engineering colleges. In this context the language laboratory is very helpful in practicing and assessing students' speech in different communication environments. It provides them facilities to learn pronunciation, accent, stress and rudimentary communicative English grammar along with various practice sessions like presentations, group discussions, debates, case studies which are the part and parcel of corporate life.

Syllabus (Assignments)

- 1. Functional English grammar: Practice and exercises
- 2. Practice of English phonemes
- 3. Reading comprehension
- 4. Drafting business correspondence
- 5. Understanding the importance of body language
- **6.** Oral presentations (Self Introduction, Extempore, Formal Presentation, power point presentations etc.)
- 7. Group discussion
- 8. Preparation for appearing an interview
- 9. Situational conversation practice

Reference Books

- 1. Effective Technical Communication by M Ashraf Rizvi (Tata McGraw Hill)
- 2. Business Communication by Hory Sanker Mukerjee (Oxford University Press)
- 3. Better English Pronunciations by J. D.O Conner (Cambridge University Press)
- 4. A Communicative Grammar of English by G.N. Leech and Jan Svartik (OUP)
- 5. Business communication by Ramachandran, Lakshmi and Krishna (Macmillan)

Programme Outcomes of BTech Programme

PO1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering
	problems and design system components or processes that meet the specified
	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of
	data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources,
	and modern engineering and IT tools including prediction and modelling to
	complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge
	to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member
	or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of
	the engineering and management principles and apply these to one's own work,
	as a member and leader in a team, to manage projects and in multidisciplinary
	environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of
	technological change.

Course Outcomes

Upon completion of the sessional the students will demonstrate the ability to:

CO1	Analyse various components of effective human communication and to apply them
	during various practice sessions.
CO2	Apply correct usage of English grammar in writing and speaking.
CO3	Articulate English key sounds as well as its basic rhythm, stress and intonation
	patterns correctly.
CO4	Compile, plan and structure various forms of business writing in a professional
	manner.
CO5	Confidently face various recruitment drives and qualify them.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	1	3	-	-
CO2	-	-	-	-	-	1	-	-	1	3	-	-
CO3	-	-	-	-	-	1	-	-	1	3	-	-
CO4	-	-	-	-	-	1	-	-	1	3	-	-
CO5	-	-	-	-	-	1	-	-	1	3	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	-	-	-	-	-	-	-	-	1	3	1	-

WORKSHOP & MANUFACTURING PRACTICES (BME02002)

Course content

1. Carpentry Section:

Study of different Hand tools, measuring instruments and equipments used in Carpentry work. Safety precautions.

Preparation of Job:

Wooden rack/bench/chair/stool (any one)

Includes the operations:

Measuring, Marking, Sawing, Planing, Chiseling, Mortesing, Tenoning, making Half-lap joint, Mortese&Tenon joint and Nail joint.

2. Fitting Section:

Study of different Hand tools, measuring instruments and equipments used in Fitting work. Safety precautions. Study of Drilling Machine and Grinding Machine.

Preparation of Job:

Paper Wt. / Square or Rectangular joint (male-female joint) (any one)

Includes the operations:

Measuring, Marking, Filing, Sawing, Drilling, Tapping, Dieing and Punching.

3. Black Smith Section:

Study of different Hand tools, equipments, Open hearth furnace and Induction furnaces used in Blacksmith work. Different types of heat treatment processes. Safety precautions.

Preparation of Job:

Weeding hook/Hexagonal headed bolt/Chisel (any one)

Includes the operations:

Measuring, Marking, Cutting, Upsetting, Drawing down, Bending, Fullering and Quenching.

Course Outcomes:

Upon completion of the subject the students will be able to:

CO1	Acquire knowledge on different types of hand tool, measuring instruments and machine tools are used in Fitting, Carpentry and Smithy work.
CO2	Know about different types of operations and joints performed in different shops i.e. in Fitting and Carpentry.
CO3	Know about the forging temperature of different types of ferrous metals and different types of operation (e.g. upsetting, edging, flattening and bending etc.) carried out on hot metals to prepare jobs.
CO4	Acquire skills for the preparation of different types of jobs Carpentry/fitting/smithy shops by using different types of hand tools and machine tools.
CO5	Understand the importance of safety precaution in different shops.

	РО 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	2	2	1	1	3	1	2	1
CO2	-	-	1	-	2	2	1	1	3	1	2	1
CO3	-	-	-	-	1	2	1	2	3	1	2	1
CO4	-	-	-	-	3	2	1	1	3	1	2	1
CO5	-	-	-	-	-	-	-	1	2	1	1	1

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
СО	-	-	1	-	2	2	1	1	3	1	2	1

THIRD SEMESTER

Mathematics-III (Transforms, Probability and Statistics and Multi variate Analysis) [3-1-0]

(BMA03001)

Module 1: Laplace Transforms (10 Lectures)

Laplace transforms, inverse transforms, linearity, shifting, transforms of derivatives and integrals, solution of ODEs, unit step function, Dirac's delta function, differentiation and integration of transforms, convolution, integral equations.

Module 2: Fourier Transforms (8 Lectures)

Basic concept of Fourier integral, Fourier sine and cosine integral, condition of convergence, Fourier transformation, Fourier sine transform, Fourier cosine transform, properties.

Module 3: Probability (6 Lectures)

Random variables, probability distributions, mean and variance, Binomial, Poisson and hyper-geometric distributions, Normal distribution.

Module 4: Statistics (8 Lectures)

Random sampling, point estimation of parameters, maximum likelihood estimation, confidence intervals, testing of hypotheses for mean and variance, correlation and regression.

Module 5: Multi-variate Analysis (8 Lectures)

Line integrals, double integrals, change of order, Green's theorem (statements only), surface integrals, triple integrals, Divergence theorem of Gauss (statements only), Stoke's theorem (statements only) and applications.

Text Book:

Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd, 9th edition

Reference Books:

- 1) B.V. Ramana, Higher Engineering Mathematics, McGraw Hill
- 2) K.A. Stroud, Advanced Engineering Mathematics, Industrial Press

Course Outcomes:

Upon completion of the subject the students will be able to:

CO1	Develop adequate knowledge of Laplace and Fourier transforms, and apply this idea to solve
	differential equations
CO2	Describe unit step function and Dirac's delta function which are useful in engineering problems
CO3	Apply Binomial, Poisson and Normal distributions in probabilistic models
CO4	Demonstrate random sampling and estimation of parameters
CO5	Evaluate multiple integrals and with various applications

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	2	1	-	-	-	1	1
CO2	3	3	2	2	1	2	1	-	-	-	1	1
CO3	3	3	2	2	1	2	1	-	-	-	1	1
CO4	3	3	2	2	1	2	1	-	-	-	1	1
CO5	3	3	2	2	1	2	1	-	-	-	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation **Program Articulation Matrix row for this Course**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	2	1	2	1	-	-	-	1	1

Subject Co	de: BPE03001	Thermodynamics
Pre-Requis	site:	Co-requisite:
		[0/]
Module -I	sic Concepts: Thermodynamic systems and surr	[06] rounding, state properties, processes and cycles. Thermodynamic
	librium, heat and work transfer across boundaries,	
2.Fir	st Law of Thermodynamics: First law for a close	sed system undergoing a cycle and undergoing a change of state.
Inter	nal energy as a system properties. Application of f	irst law to different thermodynamic processes.
Module -II		[04]
	cond Law of Thermodynamics: Reversible and ir	[06] reversible processes. Refrigerator and heat pump. Equivalence of
		n and its efficiency. Inequality of Clasius and entropy concept.
Chan	nge of entropy for various thermodynamic processe	es.
		Otto, diesel and dual cycles, description and operation of four and
	stroke cycle engine, comparison of SI and CI illution.	l engines, valve timing diagram, power output and efficiency
calcu		
Module -III		[06]
		neasurement of dryness fraction, use of steam table. T-S and H-S
diagr	rams for representing thermodynamic processes.	Boiler, Classification of boiler, comparison between water tube
		sories. Description of Cochran & Babcock -Wilcox boiler.
	sure ratio and maximum discharge, throat and exit	through nozzles, Effect of friction on nozzle efficiency. Critical
press	sure ratio and maximum discharge, unoat and exit	aica.
Module -IV		[06]
	eam Turbines & Condensers: Turbine type and a	pplications. Impulse turbine, pressure and velocity compounding,
		mpulse reaction turbine, velocity diagram, degree of reaction, work
outpu	ut, losses and efficiency. Jet and surface condenser	s. Condenser vacuum and vacuum efficiency.
Module -V		[06]
	at Transfer: Basic modes of heat transfer one dim	ensional steady state, conduction through slab, cylinder and sphere;
	theory of radiant heat transfer, black body & mon	
	· · · ·	
TEXT BOO		
	Engineering Thermodynamics by P. K. Nag, TMH	
2.	Fundamentals of Thermodynamics by Sontag, Borg	gnakke,VanWylen. Willey Publisher.
DEFENSIV		
	CE BOOK(S): Thermodynamics, An Engineering Approach by C	angel and Poles Dublisher: McGrowbill
	Thermodynamics, All Engineering Approach by C Thermodynamics by Moran and Sapiro Publisher:	-
2.	Thermodynamics by Moran and Sapiro Fublisher.	whitey
COURSE O	UTCOMESS:	
	Ability to demonstrate properly about basic conce	pts and first law of thermodynamics.
	Ability to describe second law of thermodynamics	•
	Ability to illustrate about details of steam and vari	
	Ability to describe working principles of various t	
		neat transfer in day-to-day usages of various appliances.
II_		· · · · · · · · · · · · · · · · · · ·

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3			3	3	2			3	3
CO2	3	3	3			2	3	2			3	3
CO3	3	3	3			1	3	3			3	3
CO4	3	3	3			1	3	1			3	3
CO5	3	3	3			3	3	2			3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3			2	3	2			3	3

Subject	Code: BPE03002	Material Engineering & Metallurgy
Pre-Rec	uisite: None	Co-requisite: None
N. 1 1	T	[10]
Module		[10]
	•	, ceramics, polymers and semiconducting materials— materials. Defects in solids- Point, line and surface
		of metals- Elastic and plastic deformation, slip, twin,
		tress, Bauschinger's effect, work hardening, recovery,
	crystallization and grain growth.	
Module	-II	[08]
		s for construction of equilibrium diagrams, Isomorphous
		ation of the size of critical nucleus, equilibrium cooling
ar	nd heating of alloys, lever rule, coring, misci	bility gaps – eutectic reactions.
N. 1 1		[10]
Module		[12]
		r-disorder transformation, eutectoid, peritectoid reaction veen equilibrium diagrams and physical properties of
		rams Fe-Fe3C. Phase transformations in steels pearlitic,
		cooling curves. Isothermal transformation diagrams,
	ansformations on continuous cooling.	
	¥	
Module		[05]
		ealing, normalizing, hardening, critical cooling rate,
ha	ardenability, age hardening, surface hardening	ng, tempering.
	X 7	[07]
Module		[05]
		cryogenic application, thermally insulating materials.
	teels: High Speed Steel, Stainless Steel and	1001 Steels.
TEXT F	BOOK(S):	
1.	Introduction to Physical Metallurgy – S.H.	Avner, TMH.
2.	Material Science and Engineering- V.Ragh	
REFER	ENCE BOOK(S):	
1.	Material Science and Engineering: An Intro	oduction- W.D.Callister, Wiley.
2.	Physical Metallurgy - V. Raghavan, PHI.	
COURS	SE OUTCOMESS: At the end of this course	e, students will able to
CO1	Relate the processing-structure-property-pe	erformance of various materials.
CO2	Interpret different equilibrium diagrams wi	th various transformation phases.
CO3	Make use of iron- carbon equilibrium diag	
CO4	Analyze heat treatments techniques and the	eir effects in the engineering materials.
CO5	Decide materials for various applications a	nd beyond room temperature application.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1		2	3	3	2		2					3		
CO2		2	3	3	2		2					3		
CO3		2	3	3	2		2					3		
CO4		2	3	3	2		2					3		
CO5		2	3	3	2		2					3		

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course		2	3	3	2		2					3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3			3	2	2		3	3
CO2	3	3	3	3			2	1	3		3	3
CO3	3	3	3	3			2	2	2		3	3
CO4	3	3	3	3			2	2	2		3	3
CO5	3	3	3	3			1	3	1		3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3			2	2	2		3	3

Economics for Engineers (3-0-0) (BHU03001)

Course Objectives:

- To understand the basic economic principle as a consumer in an economy
- To be able to know the utility measurement in the presence of risk and uncertainty
- To prepare the Engineering students to learn about the production process and analyse the cost/revenue data.
- To provide the foundation for engineers to make good decisions in business environment and learn about the market mechanism.
- To be able to make decision on project alternatives and justify projects on an economic basis

Syllabus:

Module-1:

Theory of Demand: Demand and Utility, Demand function and the factors determining demand, Law of Demand, Reasons for downward sloping demand curve, Exceptions to the law of demand. The market forces of Supply and Demand, Elasticity of demand and its application, Utility analysis: cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equi-marginal utility

Module-2:

Indifference curve analysis of demand: Concepts, properties, Equilibrium of the consumer, Price Consumption Curve (PCC) and Income Consumption Curve, Decomposition of price effect into income effect and substitution effect, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis, Markowitz hypothesis

Module-3

Production function: short run analysis, Total product, Average product and Marginal product, output elasticity of input, law of variable proportion, Long run production function: Isoquants and concepts of returns to scale, Optimum factor combinations, Homogeneous Production Function, Cobb–Douglas production function, CES Production function, Cost Analysis: Concepts, Accounting cost, Fixed and variable cost, opportunity cost, Short run and long run cost curves, Relationships between average cost and marginal cost

Module-4

Market and its classifications, Perfect competition: Characteristics, Short run and long run equilibrium of firm under perfect competition. Monopoly market: Price and output determination. Modern theories of firms: Baumol's theory of sales revenue maximisation, Bain's limit pricing model

Module-5

Time value of money: use of cash flow diagram, Annual economic worth, present worth, future worth, Internal Rate of Return (IRR), Net Present Value (NPV), Payback period method, Analysis of public projects: Cost-Benefit analysis, cost effectiveness

Reference Books:

- 1. Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press Ltd., London
- 2. Varian, H. R. (1992). Introduction to Micro Economic Analysis, Norton and company, New York
- 3. Salvatore, D. (2008). Microeconomics: theory and applications. Oxford University Press
- 4. Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics, Pearson India, New Delhi
- 5. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi
- 6. Henderson, J. M. and R. E. Quant (2011). Microeconomic Theory: A Mathematical Approach, Indian Higher Education, New Delhi
- 7. Intriligator, M. D., R. G. Bodkin and C. Hsiao(1995). Econometric Models, Techniques, and Applications, Pearson India, New Delhi

Programme Outcomes of BTech Programme

PO1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering
	problems and design system components or processes that meet the specified
	needs with appropriate consideration for the public health and safety, and the
	cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of
	data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources,
	and modern engineering and IT tools including prediction and modelling to
	complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge
	to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate
	the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member
	or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make
	effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of
	the engineering and management principles and apply these to one's own work,
	as a member and leader in a team, to manage projects and in multidisciplinary
	environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of
	technological change.

Course Outcomes:

Upon completion of the subject the student will be able to :

CO1	Utilise economics principles in consumption process
CO2	Describe the utility measurement and measure the utility associated with risk
CO3	Efficient use of resources in production and take decision regarding optimum output
CO4	Describe market mechanism and analyse product market to take proper decisions
CO5	Implement economic principles in company related decision making

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	2	2	-	-	-	3	3
CO2	-	-	-	-	-	3	2	2	-	-	2	1
CO3	-	-	-	-	-	3	3	-	-	-	3	-
CO4	-	-	-	-	-	2	2	1	1	1	3	-
CO5	-	-	-	-	-	1	2	1	2	-	3	1

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	-	-	-	-	-	3	2	1	1	1	3	2

Subject Code:	B 03001	Instrumentation and Sensor Technology for Engg. Applications
Pre-requisite:	None	Co-requisite: None
COURSE OBJE	CTIVES: After success	ful completion of this course, students will able:
1.		•
2.		
3.		
4.		
5.		
LIST OF EXPE	RIMENTS	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
COURSE OUT	COMES: At the end of t	his course, students will demonstrate the ability to

Subject Cl	ode:BPE03004		Production Practice
Pre-requisi	te: None	Co- requisite:	None
COURSE C	DBJECTIVES: After successful completion	on of this course, students will	able:
1.	To introduce different types of r	material removal processes.	
2.	To understand the principles of	operations of lathe, milling ma	chine and shaper & planner.
LIST OF E	XPERIMENTS		
1.	Job on Centre Lathe with taper of	& thread cutting.	
2.	Study of Turret lathe.		
3.	Gear cutting using index head o	n milling machine and Gear ho	bbing machine.
4.	Job on shaper, planner and slott	ing machine	
5.	Study of surface grinding machi	ine.	
6.	Study of drilling machine.		
COURSE (DUTCOMES: At the end of this course, si	tudents will demonstrate the ab	ility to
1.	Work on centre lathe for taper & threa		
2.	Produce gears in milling machine and	gear hobbing machine.	
3.	Create a plane surface using planner n	nachine tool.	
4.	Modify surface by using surface grind	ling machine of a job.	
5.	Develop the confidence to design and participate in various national and interview.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3			3	2	3		3	2
CO2	3	3	3	3			2	3	1		2	3
CO3	3	3	3	3			2	2	2		2	2
CO4	3	3	3	3			2	2	2		2	2
CO5	3	3	3	3			1	1	2		1	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation **Program Articulation Matrix row for this Course**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3			2	2	2		2	2

Subject (Code: BPE03005		Computer Aided Machine Drawing
Pre-requis	ite: None	Co-requisite:	None
LIST OF I	EXPERIMENTS		
	Introduction to CAD		
2.	Interactive graphics for Generation of po	lyhedron, cylinder, sphere, con	e etc.
	3D viewing and transformation, hidden s		
4.	Generation of curves and surfaces; Geon	netric modelling	
5.	Preparation of product assembly details.		
6.	Aggregation for assembly.		
COURSE	OUTCOMES: At the end of this course,	students will demonstrate the a	ability to
1 De	escribe the fundamentals of Computer Ai	ded Design.	
2 Us	se interactive graphic for generation of ba	asic features.	
3 Ge	enerate geometric modelling, curves and	surfaces using the CAD softwa	re.
4 Cr	reate Assemblies for different product.		
5 Aj	oply Computer Aided Design to solve en	gineering problems.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3						3	3
CO2	3	3	3	3	3						2	3
CO3	3	3	3	3	3						3	2
CO4	3	3	3	3	3						1	2
CO5	3	3	3	3	3						2	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3						2	2

Subje	ct Code: BPE0	3006	Ther	mal & Materials Engineering Lab.						
Pre-R	equisite:	None	Co-requisite:	None						
LIST	OF EXPERIM	ENTS								
1.	Study of IC eng	gine (cut model)								
2.	Study of moder	n carburetor.								
3.	Study of fuel In	jection system of dies	el engine.							
4.	Study of power	Transmission system								
5.	To study the we	ear characteristics of a	given sample.							
6.	Study of micro-	-hardness of different	materials.							
7.	Microstructural	Study of different ste	els.							
8.	Heat treatment	of different steels.								
COT										
			is course, students will demo	onstrate the ability to						
C01	Show wear characteristics of various materials. Interpret different principles and operations of IC engine.									
CO2	-									
CO3	mane use of	power transmission s		0						
CO4	1 11101) 20 0110		ne properties of the material	from heat treatment process.						
CO5	Test the stru	Test the structure-property relationships of various materials.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2	3	3	2		2					3
CO2		2	3	3	2		2					3
CO3		2	3	3	2		2					3
CO4		2	3	3	2		2					3
CO5		2	3	3	2		2					3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course		2	3	3	2		2					3

FOURTH SEMESTER

MATHEMATICS-IV (Numerical Methods)

4 Credits [3-1-0]

Module I: Errors and Root Extraction (8 Lectures)

Definition and sources of error, Propagation of errors, finding roots of algebraic and transcendental equations by Bisection method, Newton's method, Secant method, fixed point iteration method.

Module I: Interpolation (8 Lectures)

Interpolation, Lagrange's interpolation, Newton's divided differences, Forward differences, Backward differences, Central differences, Interpolation error.

Module I: Numerical integration (8 Lectures)

Numerical integration: Newton-Cotes Integration formula (without derivation), Trapezoidal rule, Simpson's rule, Gaussian quadrature, Errors in Numerical Integration.

Module I: Numerical Solution of Differentianal Equations (8 Lectures)

Solution of ODE's: Euler's method, Improved Euler's method, Runge-Kutta Methods of order-2 & 4. *Module I:* Numerical Solution of system of linear equations *(8 Lectures)*

Numerical Solution of system of linear equations, Gauss Elimination method, LU decomposition, Gauss-Jordan Elimination method, Gauss Jacobi and Gauss-seidal iteration methods

Text Books:

- 1. An introduction to numerical analysis, Jain, Iyengar and Jain, New Age International
- 2. Numerical Analysis, B. S. Grewal, Khanna Publishers

Course Outcomes:

Upon completion of the subject the students will be able to:

CO1	Compile roots of algebraic and transcendental equations
CO2	Incorporate interpolating polynomial for a given set of data
CO3	Apply numerical integration methods for computing definite integrals
CO4	Describe the solution of ordinary differential equations (IVP) by using numerical methods
CO5	Demonstrate approximate solutions for system of linear equations

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	2	1	-	-	-	1	1
CO2	3	3	2	2	1	2	1	-	-	-	1	1
CO3	3	3	2	2	1	2	1	-	-	-	1	1
CO4	3	3	2	2	1	2	1	-	-	-	1	1
CO5	3	3	2	2	1	2	1	-	-	-	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	2	1	2	1	_	-	-	1	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	1	1	2	1	_	-	-	-	1

Subject	t Code:Bl	PE04001							Subject r	name: Th	eory of N	Aachine
Pre-Re	equisite:		None			Co-rec	uisite:		None			
Modul	• T											[06]
Modul	e -1 chanism: B	asic Kiner	matic conc	ents and	definitions	mechani	sm link	kinematic	pair class	sification	of kinema	[06]
	ree of freed											
	bler's equa											
chai	n and their	inversion.										
												FA (1
Modul	-			f1			:4 of o		linh has a		1	[06]
	ocity and a antaneous c										locity me	thod and
Modul	e -III											[06]
-	tion of a sc	rew and nu	ut, square t	hreaded ci	rew, V-thr	eaded scre	w, pivot a	nd collar, f	friction cire	cle, friction	n axis, fric	<u> </u>
	ches, transr											
Gea	r trains: sin	ple train,	compound	l train, rev	erted train	, epicyclic	train and	their applie	cation.			
N/1	- 117											[0/]
Modul	e -1 v thed gears:	Theory	f chapa ar	d action	of tooth n	roportios r	nothods of	f gonoratic	on of stand	lard Tooth	profiles	[06] Standard
	ortions, In											
	rference.				,			,				
Modul												[06]
	ernors: Ce									nell Gover	rnor, sensi	itiveness,
stabi	ility, Isochi	ronism, Hu	unting, Gov	vernor effo	ort and pov	ver, curves	s of contro	lling force				
TEVT	BOOK(S).										
1 EA 1			s – S. S. Ra	tan Tata l	McGraw H	GII						
2.	•		ry of mach				1 Laxmi F	ublication	1			
2.	11 I Childo	on or theo	ry or maon	intes (in S.	i units)		i, Duilli I	uoneution	•			
REFEI	RENCE B	OOK(S)	:									
1.		. ,	chine Theo	ory- Rao a	nd Dukkir	ati, Wiley	Eastern L	td.				
2.	Theory of	Machines	s –Thomas	Bevan, T	MH.	ī						
COUR	SE OUT											
CO1			gn various	types of li	inkage me	chanisms f	for obtaini	ng specific	e motion ar	nd analyze	them for o	optimal
CO2	functionin		y and accel	laration of	a plana m	achanism						
CO2 CO3			te the pow		-							
CO3			te the spee				8					
CO4			te the effor		-	-	3.					
	Articula			r r	0							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2		3	3	3	3	2	2
CO2	3	3	3	3	2		3	2	3	3	2	2
CO3	3	3	3	3	2		3	2	3	3	2	2
CO4	3	3	3	3	2		3	2	3	3	2	2
CO5	3	3	3	3	2		3	2	3	3	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3		3	2	3	3	2	2
Subject	Code: B	PE04002	2							Stre	ngth of N	/Iateria
			<u> </u>			~						
Pre-Requ	isite:		Engine	eering Me	chanics	Co-1	requisite:		None			
Aodule -	I											[12
		f axially lo	baded men	nbers: Con	mposite ba	ars in tens	ion and co	ompression	n-temperat	ture stresse	s in compo	
			ate problen									
			rincipal Pla	anes, Prin	cipal stres	ss, Mohr's	stress cir	cle, Mem	bers in bia	axial state	of stress: S	Stresses
	in cylind		n Two din	noncional	state of s	rain Drin	ainal Strai	ne Coloui	ation of n	rincipal str	assas from	nrinair
		ain measu		nensionai	state of s	1aiii, Fiiii	cipai Suai	lis, Calcul	ation of p	incipal su	esses non	i princip
50	iums, ou	in measu										
Module -	II											[04
										statically	determina	te bean
re	lationshij	between	bending m	noment an	d shear fo	rce, shear	force and	bending n	noment dia	agrams.		
Module -												гол
		ding of h	eams. The	ory of sir	nnle hend	ing of init	ially straid	tht heams	distribut	ion of norr	nal and sh	[04
	mposite		cams. The	ory or sm	inpre benu	ing of find	lally straig	gin beams	, uisuituu			car suc
Module -	IV											[0
										ircular sha	fts.	
D	eflection	of Beams:	: Slope and	l deflectio	n of beam	s by integ	ration met	hod and N	facaulay's	method.		
Module -	V 7											[04
		f columns	: Euler's th	eory for i	nitially st	aight colu	mns with	various er	d conditio	nc		[04
										ximum pri	ncinal stra	in theor
			rgy theory							F	P	
TEXT BO												
6.	0		ials- S.S. I									
7.	Strengt	n of Mater	ials- G.H.I	Ryder, Ma	acmillan I	ndia						
REFERE			(7 II'1.1.1.	D							
7.			terials- R.C									
8.	Mechar	ics of Ma	terials-I- E	.J. Hern;	Paragama	1.						
COUDSI		MESS.	At the and	of this open	mag atuda	nto mill d	monstrate	the shilit				
COUKSI CO1			At the end							es, 2D stre	e evetom	nrincir
COI	stresses	. Mohr's c	circle, prince	cipal strai	ns. measu	rement of	strains.	temperati	ne suesse	<i>s</i> , <i>2D</i> suc	ss system,	princip
CO2			orce and be					eterminate	e beams.			
CO3			s of simple									
CO4	Solve p	roblems o	f torsion in							on of beam	s by integ	ration a
		ay's meth									_	
CO5		-		imns and	to evaluat	e stress ir	the colur	nns and to	o calculate	e dimension	ns of the c	ompone
	using th	eories of										
~			•									
Course A	Articula	tion Mat	rix									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3							3	1
CO2	3	3	3	3							2	3
CO3	3	3	3	3							1	2
CO4	3	3	3	3							2	2
CO5	3	3	3	3							2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3							2	2

Subject Code	: BPE04003	Theory of Metal Cutting					
Č		· · · · · · · · ·					
Pre-Requisite:	None	Co-Requisite: None					
Module -I		[08]					
	· ·	tion of different angles of cutting tools, tool geometry, and es, geometry of twist drill & slab milling cutter, grinding of single					
	atting tool. Tool materials.						
Module -II		[08]					
	d in chip formation, shear plane, effect of cutting	stress- fracture & yielding mechanism. Types of chips, Factors g variable on chip reduction coefficient, chip formation in drilling					
Module -III		[90]					
	vstem in turning. Merchant circle diagram vel	[08] ocity relationship. Stress in conventional shear plane, Energy of					
cutting		Forces in drilling and plane slab milling. Measurement of forces-					
Module -IV		[08]					
	• • •	e temperature-interface temperature from dimensional analysis-					
-		erature. Coolants- Theory of cutting fluid action at the chip tool					
interfac	e, Techniques for application of cutting fluids.						
Module -V		[08]					
	ear: Criteria of wear Machinability and tool life	, Flank wear. Taylor's tool life equation, Crater wear, Causes and					
	ism of tool failure. Vibration & chatter in machin						
meenun	isin of tool fundre. Floration & chatter in findenin	ing. Decitorites of metal machining.					
TEXT BOOK(S):						
	al cutting Theory & Practice- A. Bhattacharya, C	.B. Publisher					
9. Text	tbook of Production Engineering by Jain and Chi	tale. PHI Publication					
	ourse in workshop technology" Vol-II (Machine						
-	luction Technology- P.C Sharma						
I							
REFERENCE	BOOK(S):						
9. Fund	damentals of Metals machining & machine Tools	s- Boothroyd- International student Edition.					
10. Theo	ory of Metal cutting- M.C. Shaw						
COURSE OUT							
-	lyze and Demonstrate the basics of metal machin						
	elop the theoretical derivation of equations for te						
	marize the theory of metal cutting and compute of						
	ly the various cooling-lubrication methods to cor						
5. Dem	5. Demonstrate the application of appropriate machining processes and conditions for different metals						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		3			2	3	2	3		3
CO2			3		2	2	2			3	3	2
CO3	3	2		3		2			2		3	3
CO4	3	2	3	3	2	2	2			3	3	3
CO5	3		3	3				3	2	3		3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	3	2	2	2	3	2	3	3	3

ORGANIZATIONAL BEHAVIOUR Credit- 3-0-0 Class Hours - 30

Syllabus

Module I (6 hours)

Fundamentals of OB: Learning objectives, Definition, scope and importance of OB, why to study OB, Relationship between OB and the individual, Evolution of OB, Theoretical framework

(cognitive), Behavioristic and social cognitive, Models of OB, New Challenges of OB Manager, Limitations of OB

Learning: Nature of learning, Determinant of learning, How learning occurs, Learning and OB

Case Study Analysis

Module II (6 hours)

Personality: Definition and importance of personality for performance, Nature and Determinants of personality, Theories of Personality, Personality Traits, Personality and OB

Perception: Meaning and concept of perception, Perceptual process, Importance of perception in OB Motivation: Definition & amp; Concept of Motive & amp; Motivation, Theories of Motivation (Herzberg's Two Factor model Theory, Maslow's Need Hierarchy, Aldefer's ERG theory)

Case Study Analysis

Module III (6 hours)

Communication: Importance, The Communication Process, Types of communication, Barriers to communication, Communication networks, Making communication effective

Groups in organization: Nature, Types of Groups, Why do people join groups? Stages of Group

Development, Group cohesiveness, Group decision making and managerial implication,

Developing Work Teams, Team Building, Effective team building

Leadership: Concept of Leadership, Styles of Leadership, Theories of leadership (Trait theory,

Behavioral theory, Contingency theory), How to be an effective leader, Success stories of

today's Global and Indian leaders.

Case Study Analysis

Module IV (6 hours)

Conflict: Nature of conflict, Sources of Conflict, Conflict resolutions, Stages of conflict episode, Conflict management technique

Transactional Analysis (TA): Meaning of TA, Ego states, Types of transactions, Life position

Case Study Analysis

Module V (6 hours)

Organizational Change: Why organizational change? Types of Organizational Change, Planned change, Kurt Lewin's-Three step model, Resistance to Change, Managing resistance to change. Organizational Culture: Meaning & amp; definition, Types of culture, creating, sustaining and

changing a culture, Concept of workplace spirituality.

International OB: Introduction to International business, Individual and group behavior in

International organization, How culture influence International OB?

Case Study Analysis

Reference Books

1. Stephen P. Robbins, Organizational Behaviour, Printice Hall of India, New Delhi, 2013

2. K. Aswathappa, Organizational Behaviour, Himalaya Publishing House, Bombay, 2018

3. Nelson, D. L., and Quick, J. C. (2007)., Understanding Organizational Behaviour (3rded.).,

Thompson South-Western Publication

4. Pareek, U. (2012), Understanding Organizational Behaviour (3rded.)., Oxford University

Press.

Programme Outcomes of BTech Programme

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11	Project management and finance: Demonstrate knowledge and understanding of									
	the engineering and management principles and apply these to one's own work, as									
	a member and leader in a team, to manage projects and in multidisciplinary									
	environments.									
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to									
	engage in independent and life-long learning in the broadest context of									
	technological change.									

COURSE OUTCOMES: At the end of this course, the students will be able to

CO1	Explain the transition process of management thought from traditional period to
	modern approaches.
CO2	Transfer the different motivational theories and evaluate motivational strategies
	used in a variety of organizational settings.
CO3	Identify and analyze the factors affecting individual and group behavior and
	evaluate the appropriateness of various leadership styles.
CO4	Evaluate the appropriateness of various conflict management strategies used in
	organizations and develop strategies for resolving group conflict.
CO5	Explain how organizational change and culture affect working relationships within
	organizations.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	2	2	2	1	1	3	2
CO2	-	-	-	-	-	1	1	1	3	1	-	
CO3	-	-	-	-	-	2	1	-	3	3	3	I
CO4	-	-	-	-	-	-	1	-	1	2	1	1
CO5	-	_	_	_	_	3	1	1	2	1	3	3

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	-	-	-	-	-	2	1	1	3	2	3	2

Subject Code:	BPE04004		Production Practice - II
Pre-Requisite:	None	Co-requisite:	Basic Manufacturing Processes

LIST OF EXPERIMENTS:

1. Welding: Study of basic principle of Arc (A.C and D.C) and Gas Welding. A welding joint will be prepared by each student.

2. Study advanced welding technique TIG and MIG.

3. Foundry Shop: Al-sand casting, study of melting furnace.

4. Study of Brazing and Soldering process

COURSI	COURSE OUTCOMES:							
1	Apply basic principle of Arc (A.C and D.C) and Gas Welding, Brazing and Soldering.							
2	Define advanced welding technique TIG and MIG.							
3	Demonstrate and Analyze on Al-sand casting and define the working operations of melting furnace.							
4	Construct types of pattern used for making a mold for casting process.							
5	Develop a product using arc welding process.							

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3				2	2		2	2
CO2	3	2	3	3				3	3		3	3
CO3	3	3	3	2				2	2		3	2
CO4	3	3	2	3				2	2		2	2
CO5	2	3	3	3				3	2		2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3				2	2		2	2

Subje	ect Code: B	PE04005		Metal Cutting Lab.
Pre-R	equisite:	Theory of Metal Cutting	Co-Requisite:	None
LIST	OF THE EX	XPERIMENTS		
1	_		cut and feed on surface fin	nish of the machined component using roughness
2	To study conditions.	-	nd morphological study o	of chips in turning of steel at different cutting
3	Determina	ion of cutting forces in turning usi	ng lathe tool dynamometer.	
4	Determina	ion of cutting forces in drilling usi	ng drilling tool dynamomet	er.
5	Study on to	ool wear, vibration and tool chatter	during cutting.	
6	To determi	ne the cutting ratio and shear angle	e for metal cutting operation	n on lathe machine.
COUI	RSE OUTCO	OMESS:		
6.		strate understanding of metal cuttin	ng principles and mechanisi	n.
7.	Express	s the cutting tool geometry of single	e point and multipoint cutti	ng tool.
8.	Evaluat	e the different cutting forces in tur	ning and drilling operations	3.
9.	Analyz	e the tool vibration and chatter form	nation on machined surface	e during cutting operation.
1(). Analyz	e the chip formation mechanism in	various metal cutting operation	ations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			2	3	2			2	3	3	2
CO2	3	2	3			2	3	2				
CO3	3	2			3	2	3	2	2		3	2
CO4	3	2	3			2	3			3	3	2
CO5		2		2	3							

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	2	3	2	3	2	2	3	3	2

			Subject name: Dynamics La
equisite:	None	Co-requisite:	None
		aded governor.	
	-		
		• · ·	
		-	
Determination of gra	in fineness number	of moulding sand.	
		6	
SE OUTCOMES	:		
	-		
• •			
Demonstrate the s vibration.	tatic and dynamic b	alancing apparatus and evaluate natu	ral frequency under damped and un-damped
Construct and anal	yze the interference	and undercutting for gear.	
		d properties such as green compressi	ve strength, grain fineness number, clay
	DF EXPERIMEN Determination of gyr Performance charact Determination of crit Experiment on static Determination of nat Study of interference Determination of gre Determination of gre Determination of cla Determination of per SE OUTCOMES Evaluate gyroscop Analyze the perfor Demonstrate the s vibration. Construct and anal Demonstrate and a	DF EXPERIMENTS Determination of gyroscopic couple. Performance characteristics of spring loa Determination of critical speed of rotatir Experiment on static and dynamic balan Determination of natural frequency unde Study of interference and undercutting for Determination of green compressive stree Determination of grain fineness number Determination of clay content in mouldi Determination of permeability of mould SEE OUTCOMES: Evaluate gyroscopic couple and critic Analyze the performance characteristic Demonstrate the static and dynamic b vibration. Construct and analyze the interference	DF EXPERIMENTS Determination of gyroscopic couple. Performance characteristics of spring loaded governor. Determination of critical speed of rotating shaft. Experiment on static and dynamic balancing apparatus. Determination of natural frequency under damped and un-damped vibration. Study of interference and undercutting for gear. Determination of green compressive strength of moulding sand. Determination of clay content in moulding sand. Determination of permeability of moulding sand. Demonstrate the static and dynamic

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2		3	3	3	3	2	2
CO2	3	3	3	3	2		3	2	3	3	2	2
CO3	3	3	3	3	2		3	2	3	3	2	2
CO4	3	3	3	3	2		3	2	3	3	2	2
CO5	3	3	3	3	2		3	2	3	3	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2		3	2	3	3	2	2

Subject	t Code: 1	BPE04007			Material Testing Lab.						
Pre-req	uisite:	None		Co-requisite:	None						
LIST O	F EXPEI	RIMENTS									
1.		nination of the tensile prop	perties of a given samp	ple.							
2.	Determination of the compressive strength of a given specimen.										
3.	To perform three point bend test on a given sample.										
4.	Ericso	Ericson cupping test for three different specimens.									
5.	Effect	Effect of work hardening on tensile properties of metal.									
6.	Deterr	nination of hardness of the	e given specimen.								
7.	Fatigu	e test of a given specimen									
8.	Impac	t test on the given sample.									
COURS	SE OUTC	COMES: At the end of this	s course, students will	demonstrate the	ability to						
1.	Evaluate	e the tensile properties of	nild steel specimen.								
2.	Evaluate	e the flexural strength and	modulus of a given m	naterial.							
3.	Evaluate	e the hardness and compre	ssive strength of a giv	ven material.							
4	Evolut	the fetigue strength of a	riven meterial								

- 4. Evaluate the fatigue strength of a given material
- 5. Evaluate the impact strength of a given material.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3			3			3	1
CO2	3	3	3	3	2			3			2	3
CO3	3	3	3	3	1			3			2	2
CO4	3	3	3	3	2			3			2	2
CO5	3	3	3	3	2			3			1	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2			3			2	2

FIFTH SEMESTER

Subject	Code :BPE05001		Design of Machine Elements
			1
Pre-requi	isite: Strength of Materials	Co-requisite:	None
Module -	Ι		[04]
	lorphology of design process, Basic requirements for n	nachine, elements	
	laterials, their properties and Manufacturing consideration		
	**	1	[00]
Module -	sign of fastening elements: Riveted and welded join	t for pressure vess	[08] [08] [08] [08] [08] [08] [08] [08]
	otter and knuckle joints.	t for pressure vess	sers & subcurar joints, Design of bolied joint,
	× ·		
Module -			[06]
D	esign of shaft, keys and couplings. Design of belt drive	s and pulleys.	
Module -	IV		[08]
	esign of springs: closed coil helical springs of circular	section. Leaf spri	
pr	oblems.	-	
	*7		
Module -	v esign of IC engine components: Piston and Connecting	a rod	[04]
	esign of ic engine components. Fiston and connecting	g 10 u	
TEXT BO			
1.	Design of Machine Elements- V.B.Bhandari, TMH		
2.	Design data hand book by S.Md.Jallaludeen, Anuradl	a Dublications	
۷.	Design data nand book by S.Md.Janaiddeen, Andradi	ha Publications	
REFERE	NCE BOOK(S):		
1.	Mechanical Engineering Design- Shigley, Mischke, E	Budnyas, McGraw	Hill
2.	Machine Design- P.C.Sharma&D.K.Agarwal, S.K.Ka	ataria and Sons	
۷.	Machine Design- L.C.SharmacD.K.Agarwai, S.K.Ka		
3.	Fundamentals of Machine Elements- Bernard Hamro	ck, CRC Press	
COUDSE	OUTCOMES, At the and of this second students will	1 dama an atracta dha a	-1:11/4 4
1.	COUTCOMES: At the end of this course, students will Analyze and apply the domain knowledge in selection		
1.	That ye and apply the domain knowledge in selection	in or materials, mar	anaotaring consideration in design.
2.	Design riveted, welded, bolted, cotter and knuckle joi	ints.	
3.	Design shafts, keys, couplings, belt drives.		
4.	Design close coiled helical springs, leaf springs and the	heories of failure a	pplication in machine components.
	2 course conce noncen springs, rear springs and t		Presentaria in machine components.
5.	Design cylinder, piston and connecting rod of IC eng	ines.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3			3			3	1
CO2	3	3	3	3	2			3			2	3
CO3	3	3	3	3	1			3			2	2
CO4	3	3	3	3	2			3			2	2
CO5	3	3	3	3	2			3			1	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2			3			2	2

Subject	Code:BPE05002	Inspection and Metrology
Pre-Req	uisite:	Co-requisite:
Module		[07]
M Li ba	leasurement, Line standard, end standard. imits, fits and tolerances: Limits, Tolerances, Termin asis system, Interchangeability, selective assembly,	ection, Process of measurement, Precision and accuracy, Errors in hology for Limits and Fits, Types of Fits, Allowances, Hole & shaft Gauges and Gauge Design; Limit gauges; Snap, plug, ring, taper, Screw allowance Screw thread gauge, Thread pitch Gauge.
Module	-11	[07]
C Fl		of various types of comparators; Mechanical, Optical, Pneumatic, , Measurement of Circularity, Types of irregularity.
Module	-111	[06]
Su	urface Measurements: Roughness and waviness, Sur-	face texture, cut off length, RMS & CLA values, Surface roughness metry: Introduction, optical flat, Interferometers Type.
Module	W ⁷	[06]
M G	letrology of screw thread: Errors in threads, Measure	ment of element of threads, 2-wire &3- wire methods.
M. J.J.	X 7	[04]
		[04] phy, Ultrasonic inspection, magnetic test, machine vision system-
TEXT B	OOK(S):	
12.	Engineering Metrology- R.K. Jain	
13.	Production Technology- P.C. Sharma	
REFER	ENCE BOOK(S):	
11.	Engineering Dimensional Metrology- Miller, Edwa	ard Arnold pub.
12.	Precision Engineering in Metrology- R.L. Murty, N	New Age Int.
	I	
COURS	E OUTCOMESS: At the end of this course, stude	nts will demonstrate the ability to
CO1	Analyze the fundamental concepts in measuremen	
CO2	Apply the uses of various gauges and comparators	
CO3	Implement the application of surface roughness me	
CO4		r inspection of various gear elements and thread elements.
CO5	Apply various non-destructive techniques for inspe	ection.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3			3	3		3	2
CO2	3	3	3	3	3			3	3		2	2
CO3	3	3	3	3	3			3	3		2	3
CO4	3	3	3	3	3			3	3		2	1
CO5	3	3	3	3	3			3	3		1	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3			3	3		2	2

	Code: B			
Pre-Requ	isite:	Theory of Metal Cutting	Co-Requisite:	None
Module -	T			201
		ingle point cutting tools tool streng	th and rigidity calculation s	[06] selection of tool angles, chip breakers, carbide
	-	, High production cutting tools.	in and fightity calculation, s	selection of tool angles, emp breakers, carbide
պ		, high production cutting tools.		
Module -	II			[10]
		ocess in broaching, Geometric ele	ments of broach teeth, De	sign of internal & external surface broach
C	alculation	of no. of teeth, Rigidity, Cutting for	ce, Power.	
E	orm Tools	; Method of determining the profile	of circular and flat form tool	analytical and graphical method
		, we not of determining the prome		, analytical and graphical include
Module -	III			[06]
		sign-Upset forging, forging allowand	ces, Forging die design, Drop	
Module -				[09]
	-	•		sure, clearance cutting force, die block design
ni	inch desig	in nunch support stop pilot strippe	n Impolyant blanking & night	
-			• •	rcing die design, progressive & compound die
-		ving dies, metal flow, Blank diamete	• •	rcing die design, progressive & compound die
de	esign, drav		• •	
de Module -	esign, drav	ving dies, metal flow, Blank diamete	er, Drawing force.	[09]
Module - Jig	esign, drav V gs & fixt	ving dies, metal flow, Blank diameter	rinciples of location clampi	[09]
Module - Jia	esign, drav V gs & fixt	ving dies, metal flow, Blank diamete	rinciples of location clampi	[09]
Module - Ji _j ele	esign, drav V gs & fixto ements, D	ving dies, metal flow, Blank diameter	rinciples of location clampi	[09]
Module - Jig	v gs & fixtr ements, D DOK(S):	ving dies, metal flow, Blank diameter	rinciples of location clampi	rcing die design, progressive & compound die [09] ng devices, materials for locating & lamping
Module - Ji _i el TEXT B(v gs & fixtu ements, D DOK(S): Fundam	ving dies, metal flow, Blank diameter ure design; Location & clamping, p besign principles, Design of drilling j	rinciples of location clampi ig, Milling fixture.	[09]
Module - Ji; el: TEXT BC 14.	v gs & fixtr ements, D DOK(S): Fundam Metal cu	wing dies, metal flow, Blank diameter ure design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI.	er, Drawing force.	[09]
Module - Jig eh TEXT BO 14. 15.	v gs & fixtu ements, D DOK(S): Fundam Metal cu A Text	ving dies, metal flow, Blank diameter ure design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI. utting theory & cutting tool design- A	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co.	[09]
Module - Jia ela TEXT BO 14. 15. 16.	v gs & fixtu ements, D DOK(S): Fundam Metal cu A Text	wing dies, metal flow, Blank diameter are design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI. atting theory & cutting tool design- A Book of Production Engineering- P.C	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co.	[09]
Module - Jia ela TEXT BO 14. 15. 16.	v gs & fixtr ements, D DOK(S): Fundam Metal cu A Text 1 Tool En	ving dies, metal flow, Blank diameter ure design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI. atting theory & cutting tool design- Book of Production Engineering- P.C gineering and Design by G R Nagpa OK(S):	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co. 1. Khanna Publishers.	[09]
Module - Jig el TEXT BC 14. 15. 16. 17.	v gs & fixtr ements, D DOK(S): Fundam Metal cu A Text 1 Tool En	wing dies, metal flow, Blank diameter ure design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI. atting theory & cutting tool design- A Book of Production Engineering- P.C gineering and Design by G R Nagpa	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co. 1. Khanna Publishers.	[09]
Module - Jig eh TEXT BO 14. 15. 16. 17. REFERE	v gs & fixtu ements, D DOK(S): Fundam Metal cu A Text 1 Tool En NCE BO Tool De	ving dies, metal flow, Blank diameter ure design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI. atting theory & cutting tool design- Book of Production Engineering- P.C gineering and Design by G R Nagpa OK(S):	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co. I. Khanna Publishers. FMH.	[09] ng devices, materials for locating & lamping
Module - Jia - eh - TEXT BC - 14. - 15. - 16. - 17. - REFERE - 13. - 14.	v gs & fixtu ements, D DOK(S): Fundam Metal cu A Text 1 Tool En NCE BO Tool De Fundam	wing dies, metal flow, Blank diameter ure design; Location & clamping, p pesign principles, Design of drilling j ental of tool Design- ASTME, PHI. htting theory & cutting tool design- A Book of Production Engineering- P.C gineering and Design by G R Nagpa OK(S): sign- Donaldson, Le Cain &Goold, 7 ental of tool Engineering Design- Ba	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co. I. Khanna Publishers. FMH.	[09] ng devices, materials for locating & lamping
Module - Jig eh TEXT BC 14. 15. 16. 17. REFERE 13. 14.	v gs & fixtu ements, D DOK(S): Fundam Metal cu A Text 1 Tool En NCE BO Tool De Fundam	wing dies, metal flow, Blank diameter ure design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI. atting theory & cutting tool design- A Book of Production Engineering- P.C gineering and Design by G R Nagpa OK(S): sign- Donaldson, Le Cain &Goold, 7 ental of tool Engineering Design- Ba	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co. I. Khanna Publishers. FMH. asu, Mukherjee & Mishra, O:	[09] ng devices, materials for locating & lamping
Module - Jig eh TEXT BO 14. 15. 16. 17. REFERE 13. 14. COURSE 11.	v gs & fixtu ements, D DOK(S): Fundam Metal cu A Text 1 Tool En NCE BO Tool De Fundam	wing dies, metal flow, Blank diameter are design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI. atting theory & cutting tool design- A Book of Production Engineering- P.C gineering and Design by G R Nagpa OK(S): sign- Donaldson, Le Cain & Goold, 7 ental of tool Engineering Design- Ba DMES: t the theory of metal cutting, tool life	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co. I. Khanna Publishers. FMH. asu, Mukherjee & Mishra, Or e and geometry of single poir	[09] ng devices, materials for locating & lamping xford & IBH.
Module - Module - Jig ela TEXT BC 14. - 15. - 16. - 17. - REFERE - 13. - 14. - COURSE - 11. - 12. -	v gs & fixtu ements, D DOK(S): Fundam Metal ct A Text 1 Tool En Tool De Fundam COUTCC Interpre Constru	wing dies, metal flow, Blank diameter are design; Location & clamping, p pesign principles, Design of drilling j ental of tool Design- ASTME, PHI. atting theory & cutting tool design- A Book of Production Engineering- P.C gineering and Design by G R Nagpa OK(S): sign- Donaldson, Le Cain & Goold, 7 ental of tool Engineering Design- Ba DMES: t the theory of metal cutting, tool life ct the principles of locating and clam	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co. I. Khanna Publishers. FMH. asu, Mukherjee & Mishra, Or e and geometry of single poir	[09] ng devices, materials for locating & lamping
Module - Jia ela TEXT BO 14. 15. 16. 17. REFERE 13. 14. 13. 14. 13. 14.	v gs & fixtu ements, D DOK(S): Fundam Metal cu A Text I Tool En NCE BO Tool De Fundam COUTCC Interpre Constru Demons	wing dies, metal flow, Blank diameter are design; Location & clamping, p besign principles, Design of drilling j ental of tool Design- ASTME, PHI. atting theory & cutting tool design- A Book of Production Engineering- P.C gineering and Design by G R Nagpa OK(S): sign- Donaldson, Le Cain & Goold, 7 ental of tool Engineering Design- Ba DMES: t the theory of metal cutting, tool life	er, Drawing force. rinciples of location clampi ig, Milling fixture. Arshinov. C. Sharma, S. Chand & Co. I. Khanna Publishers. TMH. asu, Mukherjee & Mishra, Or and geometry of single poir aping devices for designing the	[09] ng devices, materials for locating & lamping xford & IBH.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		2	3		3	2		3	3	2
CO2	3	2	3	2	3	3	3			2	3	
CO3		2	3	2	3	3			2	2	3	2
CO4	3	2	3	2	3	3	3	2		3		2
CO5			3	2		3		2	2	3	3	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	2	3	3	3	2	2	3	3	2

Subject Code : BPEPE501	Measurement and Instrumentation
Pre-Requisite: None	Co-requisite: None
Module -I	[06]
Basic detector-transducer elements: Electrical elements. The differential transformer, Variable photo-electric transducers, Electronic transducer modifying devices, input circuitry. The simple	transducer, sliding Contact devices, Variable-inductance transducer -reluctance transducers, Capacitive transducers. The piezoelectric effect, cer element. Intermediate Modifying system: Electrical intermediate current sensitive circuit, ballast circuit, voltage-dividing potentiometer Resistance bridges. Terminating Devices and Methods; Introduction, CRO
Module -II	[06]
Strain Measurement: The electrical resistance str	rain gauge. The metallic resistance strain gage, selection and installation tallic strain gage, the strain gage ballast circuit, the strain gage bridge
Module -III	[06]
transducers, Elastic diaphragms, Secondary trans	ystems, Pressure measuring transducers, Gravitation transducers, Elastic ducers used with diaphragms, Strain gage pressure cells, Measurement of Dynamic characteristic of pressure measuring systems, Various calibration
Module -IV	[06]
temperature measuring devices. Vibration and sl	pressure thermometers. Thermocouples, Pyrometry. Calibration of hock: Measurement and test methods – Vibrometers and accelerometers, Elementary accelerometers, the seismic instrument.
Module -V	10/1
Description of open and closed loop control sys graph to find overall transfer function.1st and 2	[06] stems and their block diagrams. Use of Block diagrams and signal flow and order systems and their response to step and sinusoidal input, Error Routh's stability criterion, Root-Locus method. Bode plot and Nyquist
TEXT BOOK(S):	
1 Mechanical Measurements- T.G. Beckwith &	
2 Modern Control Engineering- K.K. Ogata, PH	II.
REFERENCE BOOK(S):	
1Instrumentation, Measurement and Analysis-	B. C. Nakra, TMH.
2 Control Systems Engineering- I. J. Nagrath ar	
COURSE OUTCOMES: At the end of this course, stud	
1 Ability to demonstrate basic detectors and trai	
2 Ability to describe various techniques for stra	
 Ability to illustrate various methods for press Ability to describe various techniques for tem 	
· 1	control systems, stability besides gain and phase margins.
s roundy to demonstrate open and closed loop e	sondor systems, statinty besides gain and phase margins.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3			3	3		2	2
2CO2	3	3	3	3	3			3	3		2	2
CO3	3	3	3	3	3			3	3		2	3
CO4	3	3	3	3	3			3	3		2	2
CO5	3	3	3	3	3			3	3		2	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3			3	3		2	2

Subject	Code:H	SPEPE502		Advanced Casting and Welding
U U				
Pre-Requ	isite:	Basic Manufacturing Processes	Co-requisite:	Materials Science
	r			[0/]
Module -		processes: Classification Matal mould case	ting processes princi	[06] [06] [06] [06] [06] [06] [06] [06]
an	id inocu	lation- types of furnaces- Crucibles, Cupe	ola, Oil fired furnaces	- Electric arc and induction furnaces –Melting
		f cast iron, SG iron, steel, aluminium and c		us casting process, centrifugal casting process.
		ve pattern casting-ceramic mould casting –		
	uporuu	Partonin Custing Containe into and Custing	ereeu onnugheu e mour	
Module -				[06]
ele we ter He	ectrode, elding, mperatu eat flow	characteristics of welding power source, weldability, weldability tests, Weldability rre, Stainless steel, use of Scheffler's diagr	pulsed and inverter t ity of cast iron, Pla am. ow, cooling rate deter	elding fluxes, electrode coating, classification of type power source, power source for resistance in carbon steel, Determination of preheating mination, selection of welding parameters based of distortion.
			**	
Module -				[06]
co Sc	ore maki olidifica	ing, sand additives, mould coating, tion of pure metals and alloys-shrinkage	in cast metals-design	bonded, inorganic material bonded mould and n of sprue, runner, gate and risers-problems in ional solidification, minimum distortion and for
		conomy- design problems of L, T, V, X and		, ,
Module -				[06] welding- friction welding-ultrasonic welding –
De we	esign of eld dist			ings- welding classes-residual stresses in welds joints-analysis of statistically loaded welded
Module -	V			[06]
Ca - 1 fu en W	asting d foundry me con wironm Velding o	automations-moulding machines-Automa trol- energy and waste management in for ent	tion of sand plant, mor oundries, quality assur- ructive tests – welding	ection of castings – Casting defect and remedies ulding and fettling sections of foundry-Dust and rance in welding, effects of welding fumes on gmechanization and automation in foundries arc
TEXT BO	DOK(S)):		
18.	-	ple of Metal Casting- Heine, R.W. Loper,	C. Philip and C.R.Rose	enthal, McGraw Hill.
19.		facturing Technology- P.N.Rao,TMH		
20.	Weldi	ng Engineering and Technology- R.S. Parr	narKhanna publisher	
REFERE				
15.		lurgy of Welding Technology-D. Seferian,	_	
16.		ng and Welding Technology- R.Little, TM	Н.	
17.	Princi	ple of Metal Casting- P.L.Jain,TMH		
COURSE		COMESS: Upon completion of this courses	students will be able to	
16.		the knowledge to demonstrate advanced c		
17.		ze the thermal, metallurgical aspects during		
17.		n the gating system and riser to achieve sou		
10.	-	ate welding process behavior for advanced	-	
20.		nize casting and welding induced defects u	-	
			<u> </u>	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	2	2	2	1	2	2
CO2	3	3	3	3	1	1	2	2	2	1	2	2
CO3	3	3	3	3	1	1	2	2	2	1	2	2
CO4	3	3	3	3	1	1	2	2	2	1	2	2
CO5	3	3	3	3	1	1	2	2	2	1	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	1	1	2	2	2	1	2	2

Subject Code:BPEPE503	Production Planning & Control
Pre-Requisite: None	Co-requisite: None
Module -I	
	gnificance and scope; History of OR, applications of OR; OR
	Problems (LPP): introduction, problem formulation, graphical g M method, unconstrained variables, sensitivity analysis, Duality.
solutions. El 1 -simplex method, Big	2 in method, unconstrained variables, sensitivity analysis, Duanty.
Module -II	[06]
	n Problems: Introduction, transportation model, north west corner
	minima (LCET), VAM, optimality test-stepping stone, and Modi
method. Traveling Salesperson Pro	olem.
Module -III	[06]
	, Hungarian method. Typical assignment problems like optimal
assignment of crews and travelling	1
strategies, Dominance Method.	persons zero sum games, pure strategies, saddle point, mixed
strategies, Dominance Method.	
Module -IV	[06]
	on, processing jobs through two machines, three machines.
	eory: concept, waiting line process, single server queuing model
(M/M/1) only.	
Module -V	[06]
	nagement through PERT/CPM. Network construction, CPM,
	project network, project scheduling with limited resources, line of
balance.	
TEXT BOOK(S):	
	nohan, Operations Research, Sultan Chand, Publications, New
Delhi.	
22. H. A. Taha – Operations Researc	ch, Prentice Hall of India, 2007.
REFERENCE BOOK(S):	
18. Operation Research by S D Shar	ma
19. Operation Research, Phillips, Ra	bindran and Solberg, John Wiley & Sons
20. Ronald R. Rardin - Optimization	in Operations Research, Vol. 166, New Jersey: Prentice Hall,
1998	1 , , , , , , , ,
· · · · · · · · · · · · · · · · · · ·	
COURSE OUTCOMESS:	
	research problem formulation techniques to solve engineering
problems using LP.	
	on and Traveling Salesperson Problem.
CO3 Formulate and solve Assignment	
CO4 Evaluate sequencing and queuing	
CO5 Construct PERT/CPM network a	and organize project management.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	3	3	-	2	1	3	2	2
CO2	2	3	2	3	3	3	-	2	1	3	3	2
CO3	2	3	2	3	3	3	-	2	1	3	3	2
CO4	2	3	2	3	3	3	-	2	1	3	3	2
CO5	2	3	2	3	3	3	-	2	1	3	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	3	2	3	3	3	-	2	1	3	3	2

Subject	Code:BPEPE504/BPEOE501	Main	tenance Engineering & Management
Pre-Re	quisite: None	Co-requisite:	None
Module	J		[06]
	mportance of maintenance, Objectives of	f maintenance. Types of	
		• •	enance, Corrective maintenance,
C	pportunistic maintenance, Routine main	ntenance, Preventive ma	aintenance, Predictive maintenance,
0	Condition based maintenance systems, De	esign-out maintenance, S	election of maintenance systems.
			[0/]
Module	and scheduling, and scheduling,	ostablishing a mainta	[06]
	Characteristics of items to be maintained,	-	
	or matching procedures to items.	clussification of hems,	Wantenance procedure, Surdennes
Module			[06]
	faintenance organization, Resource cl		es structure, Maintenance control,
A	Administrative structure, Training of main	itenance personnel.	
Module	-IV		[06]
	ystem operations and documentation, d	ocumenting maintenanc	
	ollection and analysis, Failure statistics,	0	1 1 0
Ν	Iachine Life, Replacement policies, Spar	res and types of spares, s	pares planning.
Module		ativities Evolution of	[06]
	letwork techniques in maintenance a roductive maintenance – development		L .
	roductivity circles as a part of TQM, ber		ins of 11 w, 110ccdures and steps.
TEXT	BOOK(S):		
23.	Maintenance Planning and Control- A.		
24.	Maintenance Engineering and Manager	ment-R. C. Mishra, K. P	athak, PHI Learning Pvt. Ltd.
	RENCE BOOK(S):		
21.	Managing Maintenance Resources- A.		
22.	Handbook of Maintenance Managemen	nt- Levitt Joel, Industrial	Press.
COUD	SE OUTCOMESS:		
COUR: CO1	Express the basic objectives of mainte	nance and enumerate th	e selection of maintenance systems
001	for diverse industries.	mance and enumerate th	e selection of maintenance systems
CO2	Establishing a maintenance plan and de	efine the characteristics of	of diverse items to be maintained.
CO3	Develop maintenance organizational s		
	of maintenance operations.		
CO4	Organize spare planning and demonstra	ate the scheduling plant	shut downs.
CO5	Evaluate maintenance performance and	l explain basic systems o	of TPM.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	-	2	3	3	3	-	2	-	2
CO2	2	3	3	-	2	3	2	-	-	-	-	-
CO3	1	-	3	-	3	3	2	2	-	2	2	2
CO4	-	-	3	-	2	2	1	2	-	2	3	2
CO5	1	3	3	-	2	3	2	3	-	2	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	1	1	3	-	2	3	2	2	-	2	2	2

Subject (Code: BPE	DE502		Logistics & Supply Chain Management
Pre-Req	uisite:	Mathematics - II	Co-requisite:	None
Module ·				[06]
				apply chain management, issues in SCM,
				ement (SCM) decision phases, Scope in
			ilosophy and concept work of	logistics, logistics & competitive strategy
su	pply chain,	supply chain flows.		
M. J.J.			1	[0.4]
Module ·		norformonool Customon driv	van structuring in production 8	[04]
	* * *	•	U	distribution systems, customer focus in logistics costs & performance. Drivers&
				tegic fit and scope; Supply chain drivers,
		Achieving Strategic fit.	uppry chain performance. Sua	tegie in and scope, suppry chain unvers,
Module -	III			[08]
Pl	anning Den	and & Supply in SC: Deman	d forecasting, Aggregate Planr	ning, Planning & managing inventories in
S	C,Design th	e Distribution network des	igns factors influencing netwo	work designs, Network: Designing the
				ribution, factors influencing distribution,
				in uncertain environment the SC, factors
in	fluencing ne	etwork design, models for faci	lity location.	
Module ·				[08]
				ated production & distribution networks,
				of JIT, Total Quality Control and product
				pply chain performance. Mathematical
				suring Logistics costs & performance.
	-	sportation and their performation		actors affecting transportation decisions,
111		sportation and their performan		
Module ·	-V			[04]
		Best practices & benchmar	king for SC towards Green St	C, towards World class SCM, Role of IT
		anagement. IT application in		
	•	e	5 5	urcing decision in SC, supplier selection,
				and the bullwhip effect, Supply chain
		ystem, E-business and supply		
	OOK(S):			
25.				on Asia: Strategy, Planning, and
		Chopra Sunil and Meindl Pet		
26.	R.P. Moha	nty, S.G. Deshmukh, Essentia	ils of Supply Chain manageme	nt, Phoenix publishing House Pvt Ltd.
	ENCE BOO			
23.		1 0 11	y Chain Management, Pitman	Publishing. : Text and Cases, JanatSaha,
2.1		lucation, First Edition, 2009.		
24.		acharya ,Logistics and Supply	Chain Management, Martin C	Christoper, Pearson PublicationEducation,
	1998.			
COUDSI	E OUTCON	AESS.		
COURS CO1		e manufacturing operation of	a firm	
CO1 CO2	•			es, operations planning, MRP and lean
002		ring concepts.	chormance by applying sale	es, operations planning, wike and lean
CO3			to improve the supply chain o	neration
CO4				sion making and process improvement.
CO5	Express the	e best practices and benchmar	King for SC as well as the cond	cept of Coordination in the SC

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	3	3	1	2	1	2	3	1
CO2	1	1	3	2	3	3	1	3	1	3	3	3
CO3	3	3	3	2	3	3	2	3	1	2	3	3
CO4	3	3	3	3	3	3	2	3	1	2	3	2
CO5	1	2	3	1	3	3	2	3	1	2	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	3	2	3	3	2	3	1	2	3	2

Pre-	Theory of Machine, Manufacturing	Co-requisite:	None
requisite:	Science, Basic Electronics, Mathematics	-	
Module -I			[06]
	Introduction: Introduction to Mechatronics:	Mechatronic system,	, measurement systems, Introduction to Mechanical,
		Rotational and Trans	national systems, Electro-Mechanical, Hydraulic-
	Mechanical systems.		
	-		
Module -I			[06]
	of flight sensors, Binary force sensor, tempo		y sensors, Velocity, motion and Force sensors, Time
	of flight sensors, Binary force sensor, tempe	erature and Fressure in	leasurement, Sensor selection.
Module -I	П		[06]
inouule in		Pneumatic and Hydra	aulic systems, Directional control valves, Rotary
			Electrical Actuation Systems- Electrical Systems,
			DC servo motors, Stepper Motors. Drive selection.
Module -I	V		[06]
			ucture, Digital Interfacing, Analog Interfacing,
	Microcontrollers: 8051 Microcontroller, Applications Programming- Assembly/ C (I		ucture, Digital Interfacing, Analog Interfacing,
	Applications Programming- Assembly/ C (I		ucture, Digital Interfacing, Analog Interfacing, lling a stepper motor).
Module -V	Applications Programming- Assembly/ C (I	LED Blinking, Contro	ucture, Digital Interfacing, Analog Interfacing, lling a stepper motor). [06]
Module -V	Applications Programming- Assembly/ C (I Interfacing: Interfacing microcontrollers w	LED Blinking, Contro 	ucture, Digital Interfacing, Analog Interfacing, lling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing
Module -V	Applications Programming- Assembly/ C (I	LED Blinking, Contro 	ucture, Digital Interfacing, Analog Interfacing, Iling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing
	Applications Programming- Assembly/ C (I Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfacing	LED Blinking, Contro 	ucture, Digital Interfacing, Analog Interfacing, Iling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing
TEXT BO	Applications Programming- Assembly/ C (I Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa	LED Blinking, Control ith general purpose the	ucture, Digital Interfacing, Analog Interfacing, Iling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing
	Applications Programming- Assembly/ C (I Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfacing OK(S): Mechatronics- W Bolton, Pearson Educatio	LED Blinking, Control ith general purpose the acing with sensors, International Intern	ucture, Digital Interfacing, Analog Interfacing, Iling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485.
TEXT BO 1.	Applications Programming- Assembly/ C (I Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa	LED Blinking, Control ith general purpose the acing with sensors, International Intern	ucture, Digital Interfacing, Analog Interfacing, Iling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485.
TEXT BO 1. 2.	Applications Programming- Assembly/ C (I Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfacing OK(S): Mechatronics- W Bolton, Pearson Educatio	LED Blinking, Control ith general purpose the acing with sensors, International Intern	ucture, Digital Interfacing, Analog Interfacing, Iling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485.
TEXT BO 1. 2.	Applications Programming- Assembly/ C (I Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa OK(S): Mechatronics- W Bolton, Pearson Educatio MEMS and Microsystems Design and Man	LED Blinking, Control ith general purpose the purpose the sensors, International purpose the sensors, International purpose the sensor	ucture, Digital Interfacing, Analog Interfacing, lling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485. u, TMH.
TEXT BO 1. 2. REFEREN	Applications Programming- Assembly/ C (1 Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfacing OK(S): Mechatronics- W Bolton, Pearson Educatio MEMS and Microsystems Design and Man	LED Blinking, Contro ith general purpose the acting with sensors, Inter- n. ufacture- Tai, Ran Hsu G.C.Onwubolu, Butter	ucture, Digital Interfacing, Analog Interfacing, lling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485. u, TMH. rworth-Heinemann
TEXT BO 1. 2. REFEREN 1.	Applications Programming- Assembly/ C (1 Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa OK(S): Mechatronics- W Bolton, Pearson Educatio MEMS and Microsystems Design and Man NCE BOOK(S): Mechatronics Principles and Applications-	LED Blinking, Contro ith general purpose the acting with sensors, International Ran Hsu ufacture- Tai, Ran Hsu G.C.Onwubolu, Buttern n International Edition	ucture, Digital Interfacing, Analog Interfacing. Iling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485. u, TMH. rworth-Heinemann
TEXT BO 1. 2. REFEREN 1. 2. 3.	Applications Programming- Assembly/ C (1 Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa OK(S): Mechatronics- W Bolton, Pearson Educatio MEMS and Microsystems Design and Man VCE BOOK(S): Mechatronics Principles and Applications- Foundations of MEMS- Chang Liu, Pearson Fundamentals of Microfabrication- Madou,	LED Blinking, Control ith general purpose the cong with sensors, Inter- n. ufacture- Tai, Ran Hsu G.C.Onwubolu, Butter n International Edition CRC Press.	ucture, Digital Interfacing, Analog Interfacing, lling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485. u, TMH. rworth-Heinemann h.
TEXT BO 1. 2. REFEREN 1. 2. 3.	Applications Programming- Assembly/ C (1 Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa OK(S): Mechatronics- W Bolton, Pearson Educatio MEMS and Microsystems Design and Man VCE BOOK(S): Mechatronics Principles and Applications- Foundations of MEMS- Chang Liu, Pearson Fundamentals of Microfabrication- Madou, OUTCOMES: At the end of this course, stud	LED Blinking, Control ith general purpose the cong with sensors, Inter- n. ufacture- Tai, Ran Hsu G.C.Onwubolu, Butter n International Edition CRC Press.	ucture, Digital Interfacing, Analog Interfacing. Iling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485. u, TMH. rworth-Heinemann the ability to
TEXT BO 1. 2. REFEREN 1. 2. 3. COURSE 1.	Applications Programming- Assembly/ C (1) Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa OK(S): Mechatronics- W Bolton, Pearson Educatio MEMS and Microsystems Design and Man NCE BOOK(S): Mechatronics Principles and Applications- Foundations of MEMS- Chang Liu, Pearson Fundamentals of Microfabrication- Madou, OUTCOMES: At the end of this course, stuc Analyze the mechatronics system design an	LED Blinking, Control ith general purpose the cong with sensors, Inter- n. ufacture- Tai, Ran Hsu G.C.Onwubolu, Butter n International Edition CRC Press.	ucture, Digital Interfacing, Analog Interfacing lling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485. u, TMH. worth-Heinemann the ability to
TEXT BO 1. 2. REFEREN 1. 2. 3. COURSE 1. 2.	Applications Programming- Assembly/ C (1 Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa OK(S): Mechatronics- W Bolton, Pearson Educatio MEMS and Microsystems Design and Man NCE BOOK(S): Mechatronics Principles and Applications- Foundations of MEMS- Chang Liu, Pearson Fundamentals of Microfabrication- Madou, OUTCOMES: At the end of this course, stuc Analyze the mechatronics system design an Define the applications of Sensors.	LED Blinking, Contro ith general purpose the acting with sensors, Inter- n. ufacture- Tai, Ran Hsu G.C.Onwubolu, Butter n International Edition CRC Press.	ucture, Digital Interfacing, Analog Interfacing, lling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485. u, TMH. rworth-Heinemann the ability to
TEXT BO 1. 2. REFEREN 1. 2. 3. COURSE 1.	Applications Programming- Assembly/ C (1) Interfacing: Interfacing microcontrollers w solenoids, Interfacing stepper motor, Interfa OK(S): Mechatronics- W Bolton, Pearson Educatio MEMS and Microsystems Design and Man NCE BOOK(S): Mechatronics Principles and Applications- Foundations of MEMS- Chang Liu, Pearson Fundamentals of Microfabrication- Madou, OUTCOMES: At the end of this course, stuc Analyze the mechatronics system design an	LED Blinking, Contro ith general purpose the acting with sensors, Inter- national edition G.C.Onwubolu, Butter n International Edition CRC Press.	ucture, Digital Interfacing, Analog Interfacing. lling a stepper motor). [06] hree-state transistors, interfacing relays, Interfacing erfacing with RS 232 and RS485. u, TMH. rworth-Heinemann t. the ability to nsors and actuators.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	2			2			2	2
CO2	3	2	3	3	3			3			3	3
CO3	3	3	3	2	2			3			3	2
CO4	3	3	2	3	2			2			2	2
CO5	2	3	3	3	3			3			2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2			3			2	2

Subjec	t Code: BPE05004 Machine Design Sessional
Assign	ments (Any Five)
	1. Design of Components with application to theories of failure
	2. Design and drawing of riveted joint
	3. Design and drawing of cotter joint
	4. Design and drawing of knuckle joint
	5. Design of shafts subjected to combined loading
	6. Design and drawing of flange coupling
	7. Design of connecting rod
	8. Design of piston
TEXT	BOOK(S):
1	Design data hand book by S.Md. Jalaludeen, Anuradha Publications
2	Design Data Hand Book by K. Mahadevan and K. Balaveer Reddy, CBS Publishers
COUP	SE OUTCOMESS: At the end of this course, students will have ability to
1	Evaluate dimensions of a machine component subjected to complex stresses using Theories of failure
2	
	Design riveted joint for boiler drums and to find diameter of rivet for lozenge joint
3	Design for a cotter and knuckle joint subjected to axial load
4	Design for shafts and couplings (rigid & flexible) subjected to various loads
5	Design for connecting rod and piston of an IC engine

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3			3			3	1
CO2	3	3	3	3	2			3			2	3
CO3	3	3	3	3	1			3			2	2
CO4	3	3	3	3	2			3			2	2
CO5	3	3	3	3	2			3			1	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2			3			2	2

Subject	Code: BPE05005	Metrology Lab.
Pre-requ	nisite: None	Co-requisite: None
LIST O	FEXPERIMENTS	
1.	To study the Tool Maker's Microscope	e and to measure the pitch, depth and angle of the thread of a given specimen.
2.	Measurement of Spur gear profile using	ng Profile Projector.
3.	Measurement of geometric features of	f metric thread using optical profile projector.
4.	Calibration of slip gauge using sine bar	ar.
5.	Measurement of geometrical feature co	oncentricity and flatness using CMM.
6.	Comparison of surface roughness of sp	pecimens machined by conventional and non-conventional method.
7.	To study the gauge blocks or slip gauge	ge to measure the diameter of holes and distance between their centers.
COURS	E OUTCOMES: At the end of this cours	rse, students will demonstrate the ability to
l .	Measure different dimensions of indust	strial components using various measuring instruments.
2.	Use Profile Projector to determine geor	ometrical parameters of gear and thread.
3.	Identify the use of slip gauges and sine	e bar.
4.	Comprehend the fundamentals of surfa	ace roughness measuring instruments.
5.	Use CMM for measurement of flatness	s and parallelism of parts.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			3	3		3	2				
CO2	3			3	3		2	3				
CO3	3			3	3		2	2				
CO4	3			3	3		2	1				
CO5	3			3	3		1	2				

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3			3	3		2	2				

Subject Code: BPE05006

Tool Design Sessional

Pre-Requisite: Theorem

Theory of Metal Cutting Co-I

Co-Requisite: Tool Design

LIST OF	THE EXPERIMENTS
1	Determination of tool geometry in ASA, ORS and NRS.
2	Design of single point cutting tool.
3	Design of form tool.
4	Design of internal and surface broach tool.
5	Design of progressive and compound die for sheet metal.
6	Design for Jig for 2D and 3D objects.
COURS	E OUTCOMESS:
1	Able to identify and design the cutting tool geometry of single point cutting tool, broach tool and form tool for
	industrial use.
2	Identify press tool requirements to build concepts pertaining to design of press tools

3 Prepare working drawings and setup for economic production of sheet metal components
 4 Demonstrate construction of drill jig and design assembly of jigs and fixtures on simple workpiece

5 Select proper material for the design of the tool and dies and to design of those as per the requirements.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1			3			1	3
CO2	3	3	3	3	2			3			2	3
CO3	3	3	3	3	3			3			3	1
CO4	3	3	3	3	2			3			2	1
CO5	3	3	3	3	2			3			2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2			3			2	2

SIXTH SEMESTER

Subject C	Code :BPI	E06001		Theory o	f Metal Forming
Pre-Req	uisite:	Basic Manufacturing	g Process, Strength of Materials	Co-requisite:	None
Module	-I				[08]
		two dimensional str	ess and strain, state of stress in	three dimensions	
			imensional state of stress, strain at		
			ents of stress, Elastic stress-strain r		· · · · · · · · · · · · · · · · · · ·
Module					[10]
me	etals, Vo	n Misses & Teresa y	r; Flow curve, True stress & true ield criteria, combined stress tests ses, PrandtlReuss Stress-Strain rela	. The yield locus	
Module	-III				[10]
the	eory- Ge		sses- Method based on homogene aneky's theorem, hodograph for s alysis.		
Module	-IV				[06]
		on of forming proces	ses variables in metal forming. H	ot working, Cold	
			e effect, Friction and lubrication	_	-
W	orkabilit	y, Residual stress.			
	**				50. (1
Module		C 1 C 1		T 1 1 1 . .	[06]
fo	rging, rol	01	sses (only limited portion), forging etrical relationship in rolling, Rollin	•	-
TEXT B			Neter McCreere Hill Deels Co		
27.		0, ,	Dieter, McGraw Hill Book Co.		
28.	Plasticit	y- Chakraborty- McGi	aw Hill.		
REFER	ENCE B	OOK(S):			
25.			hson& Mellor, Van Nostrand.		
26.	-	orking –Avitzur, McG			
I		U /			
COURS	E OUTC	COMESS: At the end	of this course, students will able to		
CO1	Recall th	ne state of stress and st	train at a point in 3D, stress tensors	and invariants.	
	Demons	4		erions etc	
CO2	Demons	trate the theory of plas	sticity such as flow curve, yield crit	chons etc.	
CO2 CO3			sticity such as flow curve, yield crit		
	Select th	ne different methods for		ess.	ing process.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3							2	2
CO2	3	3	3	3							2	2
CO3	3	3	3	3							2	2
CO4	3	3	3	3							2	2
CO5	3	3	3	3							2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3							2	2

Subject C	ode: BPE06002			Principle of Machine Tools
				- 1
Pre-Requis	ite: T	heory of Metal Cutting	Co-Requisite:	None
Module -I	a 11. m			[4]
		ission and its elements, general		lics transmission and its elements, s.
			•	
Module -II				[7]
]	Kinematics of Mac	chine Tools:- Stepped and step	less drive, basic consideration	n in the design of drives, variablespeed
				election of optimum raydiagram, design
	of speed and feed g	gearboxes, stepless regulation o	f speed and feed rates.	
Module -II				[7]
				, basic design procedure, design of
	beds and columns,	model technique in design of n	hachine structures.	
	,			
Module -IV				[7]
				ication, design criteria and calculation of ys, antifrictionguide ways, combination
				recirculation power screw assemblies,
	elimination of back		gli principie of power serew	,recirculation power serew assemblies,
Module -V				[5]
	Control system	in Machine Tools: Class	ification, control, Changi	
		ied to design of control membe		
	**	<u> </u>		*
TEXT BOO	OK(S):			
1.	Machine Tool De	esign- N.K.Mheta,TMH		
-				
REFEREN	CE BOOK(S):			
1	Design of Machin	ne Tools- S.K.Basu and D.K.Pa	l, Oxford&IBH.	
2	Principle of Mac	nine Tools- G.C.Sen and A.Bha	ttacharya, New Central Book	Agency
COURSE (DUTCOMESS:			
1	Describe the basic	design considerations for gene	eral Machine Tools.	
2		d step-less Drives for Machine	Tools.	
3		esigns for Machine Structures.		
4		dge for designing guide ways a		
5	Describe the princ	iples of machine control system	n.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2			3			3	2
CO2	3	3	3	3	2			3			1	2
CO3	3	3	3	3	3			3			2	1
CO4	3	3	3	3	2			3			3	2
CO5	3	3	3	3	1			3			1	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2			3			2	2

Subject (Code : I	BPEPE601		Fluid Mechanics & Fluid Power Engineering
		-		
Pre-Requ	isite:	None		Co-requisite: None
Module -I	r			[06]
Int El: Ne Flu pro	troductic asticity, ewtonian uid Stat	Surface tension, Capillar and Non Newtonian Fluid ics: Pressure-Density-Heig Buoyancy, Stability of imm	ity, Vapour pressu s. ght relationship, M	[06] ecific weight, Specific volume, Specific gravity, Compressibility, ure, Viscosity, Ideal and real fluids, Concept of shear stress, Manometers, Pressure on plane and curved surface, Centre of bodies, Fluid masses subjected to uniform acceleration, Free and
Module -I	T			[06]
Flu to Di	uid Dyna obtain B imension	Bernoulli's equation and Me al Analysis and Principle	omentum equation. s of Model Testing	, One-dimensional Euler's equations of motion and its integration
Module -I	III			[06]
Dr lay	rag and l yer sepa	tration & its control. Dr	ag over flat plate	nd friction drag on stream lined body and bluff body. Boundary e. Profile drag. Drag characteristics of sphere, cylinder and ffect. Circulation and lift on an Airfoil.
Module -I	V			[06]
Ka	aplan tur		init quantities, perfo	t heads and efficiencies of turbines, Study of Pelton, Francis and ormance of turbines, Governing of turbines, Cavitation in reaction
Module -	V			[06]
mi Re	inimum s	speed of pump to deliver lie	quid, multistage pur	changes in a pump.Velocity vector diagrams and work done, mps. Similarity Relations and specific speed. one, effect of acceleration and frictional resistances, separation, air
TEXT BC)OK(S).			
1.			achines – By: Modi	and Seth, Standard Book House, New Delhi
2.				K. BansalLaxmi Pub. (p) Ltd.)
3.	Fluid N	lechanics & Fluid Machine	es – By S. K. Som, O	G. Biswas& S. Chakraborty, TMH
REFERE				
1.		ction to Fluid Mechanics b		
2. 3.		Aechanics by F.M White, M nechanics & hydraulic mac		
5.	riula li	lechanics & hydraune mac	nines by Subramany	ya, IMH
COURSE		OMES : At the end of this	ourse students wil	ll demonstrate the ability to
1.				and in motion and express the principles of continuity,
	momen	tum, and energy as applied	to fluid motions.	
2.	mechar	nics.	0 1	lict physical parameters that influence the flow in fluid
3.		e concepts of drag and lift		
4.				ydraulic turbines, pumps and its applications.
5.	Evaluat	te the performance characte	eristics of hydraulic	turbines and pumps.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2			3			2	3
CO2	3	3	3	3	3			3			3	3
CO3	2	3	3	3	1			3			1	1
CO4	3	3	2	3	2			3			2	2
CO5	3	3	3	3	1			3			3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	Н	Н	Н	Н	М			Н			М	М

Subject	Code: BPEPE602	Manufacturing & Design of Composites
Pre-requ	nisite: None	Co-requisite: None
Module	-I	[06]
C	Composites, Metal Matrix Composites, Ce	rix material, Reinforcement and interfaces, Classification: Polymer Matrix ramic Matrix Composites, relative merits and demerits, applications. Hybrid d performance of composites, Applications.
Module	11	[05]
		ulding process, compression moulding processes, Filament winding process
1	rocessing of the composites. Conduct the	utding process, compression moulding processes, i nument when grocess
Module	-III	[07]
	Aicromechanical Analysis of Composite s tiffness, transverse modulus, inplane shear	trength and stiffness: volume and weight fractions, longitudinal strength and modulus, Poission's ratio
Module	-IV	[07]
		relations of anisotropic materials-Engineering constants for orthotropic and
		Stress-strain relations for a lamina of arbitrary orientation-strength of an
0	rthotropic lamina	
Module		[05]
	Analysis of laminated composites: Lamina amination plate theory.	tes, stress-strain relations, equilibrium equations, laminate stiffness, classical
TEXT B	OOK(S):	
1.	Analysis and performance of composite	materials by B.D. Agarwal, L.J. Broutman and K. Chandrasekhar, Wiely
2.	Mechanics of composite Materials by R.	M.Jones, Mc Grew Hill Book Co.
REFER	ENCE BOOK(S):	
1.	K.K.Chawla, Composite Materials – Sci	ence & Engineering, Springer-Verlag, New York
2.	Basel	Anufacturing and Design. P.K.Mallick Marcel Dekken, Inc. New York &
3.	Engineering mechanics of composite ma	terials by Isaac M.Daniel and OriIshai, Oxford University Press
COUDS		. 1
	E OUTCOMES: At the end of this course	
1.	Express classification of composite mate	
<u>2.</u> 3.	Demonstrate the processing of FRP com Analyze the micro-mechanical behavior	
<u> </u>	Analyze the micro-mechanical behavior Apply the macro-mechanical behavior o	
<u>4.</u> 5.	Construct the laminated composites.	i composites.
э.	Construct the familiated composites.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		3			2	3	2	3		3
CO2			3		2	2	2			3	3	2
CO3	3	2		3		2			2		3	3
CO4	3	2	3	3	2	2	2			3	3	3
CO5	3		3	3				3	2	3		3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	3	2	2	2	3	2	3	3	3

Subject C	Code :	BPEPE603			Industrial Hydraulics
Pre-Requi		None		Co-requisite:	None
110 110 qui	.52000				
Module -I					[06]
					lic systems - Requirements of hydraulic oil -
		es, Packing and Seals.	eat exchanges, Filters	and Strainers etc	- Reservoir design criteria - Principle hydraulic
Jac	k - rip	es, racking and Seals.			
Module -I	I				[06]
		ypes of pumps and moto	ors like Gear type, Pis	ston type, (radial &	&axial), Vane type (intra vane etc.) - Selection
crit		r a specific application 1			on, Blow molding etc Working principles and
Module -I	II				[06]
Ty	pes - C	Classification - Details o	f flow control; Metho	ds of flow control	l, Meter in, Meter out, Bleed off, Flow control
					il with applications. Directional control valves;
					pilot operated etc., two-way valves rotary type,
spo	ool type	e, operating controls, spo	ol central conditions,	deceleration valves	S.
Module -I	V				[06]
		lassification - Details of	of pressure controls -	relief valves of ty	ypes simple and compound, venting and relief
					balance valve, brake valve, pressure reducing
		0 1	11		pplication in molding machines.
			•	• •	
Module -V	7				[06]
					separator, piston type - with advantages and
					ing and double acting, applications with various
					valves like Mechanical, Electrohydraulic, single
sta	ge/two	stage spool type, High p	performance servo valv	res with torque mot	tors, Its application in industries.
TEXT BO	OK(S)	•			
1		• rial Hydraulics Manual 5	Se 2nd Printing- Eator	Hydraulics Traini	ing Services (Vickers)
2		rial hydraulics- John J. P			
			-FF8, - J8-		
REFEREN	NCE B	OOK(S):			
1	Essent	ial Hydraulics: Fluid Pov	wer Basic, M. Winstor	n, CreateSpace Inde	ependent Publishing Platform
2		Power Dynamics, R Mob			
3	Hydra	ulics and Pneumatics: A	Technician's and Engi	neer's Guide, E. A	ndrew Parr, Elsevier
COURSE					
1		to demonstrate properly			
2					otors and its selection criteria.
3					v and directional control valves.
4					rol valves and its applications.
5	Ability	to handle various types	of valves like mechan	ical and electrohyd	draulic besides Its applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3			3			2	1
CO2	3	3	3	3	2			3			2	2
CO3	3	3	3	3	1			3			2	2
CO4	3	3	3	3	3			3			3	2
CO5	3	3	3	3	1			3			1	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2			3			2	2

Subject Code: B	PEPE604			Precision Engineering
Pre-Requisite:	None		Co-requisite:	None
Modulo I				[4]
Module -I		and Mianaduilling	Miana Elastra Maa	[4] [4] chanical Systems, Microelectronics fabrication
	Principles of MEMS, mecha			
Module -II				[5]
				nanometre accuracies, mechanism of material ad electrochemical atomic-bit processing.
Module -III				[7]
	suring Systems of Sub-Na	nometre Accuracy	and Resolution: In	process or in situ measurement of position of
processing	point, Post process and or	n machine measure	ment of dimensiona	al features and surface, Mechanical measuring tern recognition and inspection systems
Module -IV				[7]
	tioning System of Nanome	etre Accuracy and	Repeatability: Guide	e systems for moving elements, Servo control
				sition control, Future development of micro
actuators.			F F	
Module -V				[7]
Machining		diamond turning, I		Photolithography, Electron beam lithography, eramics, Ultraprecision block gauges, balls for
TEXT BOOK(S):				
,	chnology- N. Taniguchi, O	xford University P	ress.	
	nanufacturing and Nanotec			
	8		,	
REFERENCE BO	DOK(S):			
1 Founda	ation of MEMS- C. Liu, Pre	entice Hall.		
	ction to Nanotechnology-		Owens, Wiley Inter	rscience
I				
COURSE OUTC	OMES:			
1 Expres	s the knowledge in micro a	nd nano manufactu	ring methods.	
	p MEMS system for indust			
3 Apply	the quality concepts parts,	accuracy requirem	ents of machine too	ols and use of latest machining process such as
	nachining and micro fabric			·
	strate tolerance allocation			
5 Plan se enginee		cision design optil	nization and aware	eness of the needs and benefits of precision
enginee	лш <u></u>			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2	2	2	2	3		2	2
CO2		3		3	2	2	2	2	3	3	3	2
CO3	3	3		3	2		2	2		3	3	2
CO4	3	3	2		2	2	2	2	3	3	2	2
CO5	3	3	2	3	2	2		2	3	3	2	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	2	2	2	2	3	3	2	2

Subject	Code :BPE	CPE605	Statistica	al Methods and Design of Experiments
Pre-Reg	quisite:	Mathematics - II	Co-requisite:	
Module	_1			[06
Sa H	ampling I ypothesis		ting of mean with different co	& Standard Error, Point Estimate onditions, differences in mean, Ch
50	juares as t	est of independence, test	of goodness fit.	
Module				[06]
pa co C	arameters, omparing hoice of s	Comparison of individ contrasts, comparing pai	lual treatment means, Orthogors of treatment means. Model a	effect model, Estimation of mode onal contrasts, Schaffer method of adequacy checking, plot of residuals response curves, regression approach
Module	-111			[06
C		-		of fixed effect model, Estimation curves and surface. General factoria
Module	-IV			[06]
		Design, single replicate, Vates of Algorithm for 2^k		design, Yates algorithm for 2 ^k design
Module	-V			[06
R	esponse s	-	n, Methods of steepest Ascent, ation. Taguchi approach to paran	Analysis of 2 nd order model. Fitting
TEXT F	BOOK(S):	:		
29.			s- D.C. Montgomery, John Wile	ey & Sons.
30.	Statistics	for Management- Richar	rd I. Levin, PHI.	
REFER	ENCE BO			
27.			nts- J.Antony, Butterworth-Hein	nemann.
28.	-		luction- J.Morrison, WileyBlack	
COUDE		OMESS		
COURS CO1	SE OUTC		ares as test of independence and	goodnoss fit
CO1 CO2		experiments with single 1		goodness m
CO2 CO3		1 0	factorial design and analyze fixe	ed effect model
CO3		Taguchi approach to para	e i	
CO4	Evaluate	• • • •	ctors and their interactions on or	ne or more response variables using

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	3	2	1	1	1	3	1
CO2	1	2	3	3	3	3	2	1	2	1	2	2
CO3	2	2	3	3	3	3	1	2	2	2	3	3
CO4	3	3	3	3	3	2	1	2	2	2	3	3
CO5	3	3	3	3	3	2	1	2	2	2	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	3	3	3	3	3	1	2	2	2	3	2

Subject Code:	BPEPE606	F	inite Element Method in Manufacturing
Pre-requisite:	Mathematics, Design of Machine Elements, Strength of Materials, Casting and Metal Cutting,	Co-requisite:	None
Module -I			[06]
Basics of Discretiz		characteristic matrix,	and Raleigh Ritz methods- Steps in FEA- shape function, assembly and imposition of
Module -II			[06]
noded qu			onal elements- Three noded triangular and four d transformations- Basics of two dimensional
Module -III			[06]
FE analy	sis of metal casting- Special considerations, la	atent heat incorporation	on,
Gap elen	nent-Time stepping procedures-Crank-Nichols	son algorithm-Predict	ion of grain structure.
			F0.6
	ncepts of plasticity- Solid and flow formula tting, chip separation criteria, incorporation of		ntal deformation formulation- FE analysis of cy.
Module -V			[06]
Pre Pro character		view of application	nditions, input of material and processing packages such as ANSYS and DEFORM
TEXT BOOK(S): 		
	troduction to the Finite Element Method- J.N.	. Reddy, McGraw-Hil	11
	e Element Method in Engineering- S.S. Rao, P		
REFERENCE I			
	Forming and the Finite Element Methods- S.		
		7818- R.W. Lewis, K. I	Morgan, H.R. Thomas and K.N. Seetharaman,
	Wiley. amentals of Finite Element Analysis by David	V Hutton TMH Pul	plications edition 2005
J. Tullu	amentals of 1 line Element Analysis by David		Sheatons, eartion 2005.
COURSE OUT	COMES: At the end of this course, students v	vill:	
	rstand the steps of finite element methods and		ple engineering problems.
	ess the shape functions of different elements for		
	zemetal casting problems using FEM.	_	
	ement FEM for solving metal cutting problem		
5. Appl	y up-to-date interactive modeling and simulati	on techniques and co	mmercial software packages for solution of

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		3	3	3	3	3	2	3		3
CO2	3	3	3		3	3	3	3	2	3		2
CO3	3	3		3	3	3	3	3	2	3		3
CO4	3	3	3	3	3	3	3	3	2	3		3
CO5	3	3	3	3	3	3	3	3	2	3		3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	3	3	3	3	3	2	3	0	3

Subject	Code:	BPEPE607/BPEO	E602		Production and Operation Management
Pre-requ	isite:	None		Co-requisite:	None
Module	T				[06]
	Dperation new prod nanufactu	luct design, Product uring, Process techno	life cycle, Process tec	hnology: project, technology trend	tion. Design in products, services & processes, job shop, batch, assembly line, continuous s, FMS, CIM, CAD, CAM, GT, Design for
Module	_11				[06]
F S J V	Forecastir moothing ob Desig Work mea	g, Forecasting error an gn & work Measurem	alysis. hent, Method study: Tec surement principles usin	hniques of analys	age exponential smoothing, double exponential is, recording, improvement & standardization. e study, predetermined motion time standard &
Module	TTT				[06]
N N S n	Manufacti Material 1 nonitorin Sequencir ninimizin	requirement planning, g, & control. ng and scheduling: S ng mean flow time, pa	Capacity requirement p Single machine scheduli	blanning, Loading ng: Basics and ation of makespan	ion scheduling, Rough- cut capacity planning, s, scheduling & dispatching function, progress performance evaluation criteria, methods for n, flowshop sequencing: 2 and 3 machine cases:
Module	-IV				[06]
F p N	Facility lo procedure Minimax	& models; qualitative	e models, Breakeven anal tial covering model. Lay	ysis, Single facilit	of location on cost & revenue. Facility location by location model, Multi facility location model, but types; Process layout, Product layout, Fixed
Module	_V				[06]
P c N	Project m crashing c Modern tu	of project network, pro rends in manufacturin	ject scheduling with limi g: Just in Time (JIT) sys	ted resources, line stem, shop floor co	ork construction, CPM, Network Calculation,
TEXT B	OOK(S)	:			
1.		• •	g analysis and control- J.		ey.
2.	Produc	ction and Operations N	Anagement- R.Panneers	elvam, PHI.	
DEEDI					
1.		OOK(S): ction and Operation M	anagement- E.E.Adam a	nd R I Ebert PHI	
2.		-	Anagement- S.N.Chary,		
2.	Tiouu	tion and operations is	funugement birt.chury,		
COURS	E OUTC	COMES: At the end of	f this course, students wil	l demonstrate the	ability to
1.	Analyz	ze different manufactu	ring systems with associa	ated improvement	tools.
2.	Apply	demand forecasting to	ools to reduce associated	costs and method	study for job improvement.
3.	Evalua	ate material requireme	nt planning and sequenci	ng techniques for	material management.
4.	Design	n plant layout for optir	nal plant location.		
5.	Constr	uct specific projects u	sing project management	tools.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3			3	2	3	2	3	3
CO2	3	2	2	3			2	3	3	3	3	3
CO3	3	2	2	2			2	3	2	2	3	3
CO4	3	3	2	3			2	2	3	3	3	3
CO5	2	2	3	3			3	2	2	3	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	2	3			2	3	3	3	3	3

Subject	Code BPEPE608	Advanced Material Science
Ŭ		
Pre-Req	uisite: Material Science	Co-requisite:
Module		[06]
		of materials; Classification of materials. Advanced Materials,
		es, Crystalline and non-crystalline materials. Miller indices. Structure and properties of polymers and ceramics. Imperfections
	n Solids: Point defects, Line defects and dislocations. In	
1	in Solids. Four defects, Ene defects and disideations. In	icitatian derects. Durk of volume derects.
Module	-II	[06]
		Plastic deformation. Interpretation of tensile stress-strain curves
		croscopic aspects of plastic deformation. Property variability and
	lesign factors	
		echanics. Impact fracture. Ductile brittle transition. Fatigue. Crack
11	nitiation and propagation. Creep. Stress and temperature	effects
Module	_111	[06]
		<i>y</i> state diffusion. Factors that influence diffusion. Non-equilibrium
	ransformation and microstructure	suce diffusion. I detors that influence diffusion. F(on equilibrium
		ngthening in metals. Recovery, recrystallization and grain growth.
	Strengthening by second phase particles. Lattice resistant	
Module		[06]
		trengthening by precipitation. Precipitation reactions. Kinetics of
	Aicrostructure and property changes in iron-carbon system.	transformations. Transformation rate effects and TTT diagrams.
	merostructure and property changes in non-carbon syste	
Module	-V	[06]
		s of metals and alloys. Fabrication of metals. Thermal processing
0	of metals. Heat treatment. Precipitation hardening.	
		al Usage: Economic considerations. Environmental and societal
с	onsiderations. Recycling issues. Life cycle analysis and	its use in design
TEXT B 31.	OOK(S): W. D. Callister, 2006, "Materials Science and Engine	ering An Introduction" 6th Edition Wilow India
31.		
32.	Indian Reprint, 2002.	ineering Materials", Prentice Hall of India Private Limited, 4th
	Indian Reprint, 2002.	
REFER	ENCE BOOK(S):	
29.	V. Raghavan, "Material Science and Engineering', Pr	entice Hall of India Private Limited, 1999.
30.	U. C. Jindal, "Engineering Materials and Metallurgy"	
		,,
COURS	E OUTCOMES: Upon completion of this course studen	ts will be able to:
21.		or various materials with associated mechanical properties.
22.		and non-ferrous alloys during different loading conditions.
23.	Analyze the mechanical integrity with failure in mate	
24.	Analyze the phase transformations of iron-carbon sys	
25.	Describe the recycling issues using life cycle analysis	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	3	3	1	2	1	1	1	1	3
CO2	1	2	3	3	3	1	2	1	1	1	1	3
CO3	1	2	3	3	3	1	2	1	1	1	1	3
CO4	1	2	3	3	3	1	2	1	1	1	1	3
CO5	1	2	3	3	3	1	2	1	1	1	1	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	1	2	3	3	3	1	2	1	1	1	1	3

Subject	Code:BPEOE6	01			Automotive & System Engineering
Pre-Req	uisite:	None		Co-requisite:	None
Module					[06]
			•		components viz Cylinder block, Cylinder
					ft, Crank case, Cam, Cam shaft, Engine body panel radiator, brake lining etc.
					polymers in automobile.
	ppneuron of no			posite, ceruinicuna	
Module	-II				[06]
					ms, Engine performance characteristics,
					Design of Engine Systems: Design of
					cooling system Design of fuel system for cylinder and portinjection system for SI
					wear, Selection of lubricant, lubricating
	stem, pump and)		
Module	-111				[06]
		sis. Design of Suspen	sion Syster	n. Automotive Steer	ring System, Automotive Brakes, Wheels
	nd Tyres		j	,	<i>,</i> ,,,,,,
Module	-IV				[06]
		ricants- introduction,	properties,	standard test met	hods for automotive lubricants, testing,
			•		on fluids, gear lubricants, axle lubricants,
		0			onitoring, SOAP, Ferro-graphy and other
ra	ipid testing meth	ods of lubricant conta	amination, I	Hydrostatic and Elas	sto-hydrodynamic Lubrication.
Module	-V				[06]
		y and Regulations: S	Safety and	Crash Testing, Acti	ve and passive safety, Tests, Regulatory
re	equirements for a	crash testing, instrume	entation, hi	gh speed photograp	hy, image analysis; Pedestrian Safety and
	0			0 0 0	t Signalling Devices, Safety regulations:
A	s Issued from the	ne to time by Govern	ment of Inc	lia as per AIS 037 (A	Automotive Indian Standard).
TEXT B	OOK(S):				
33.		n-Smith 'An Introduct	tion to Mod	ern Vehicle Design	'SAE,
34.	Schwaller, "M	otor Automotive Tech	hnology", I	Delmar Thomson Le	earning
	ENCE BOOK(S				
31.		omotive Engine – A. l			
32.		itomotive Chassis, Ch			
33.	Recent Develo	pment in Automotive	e Safety Tec	hnology. SAE, Inte	rnational Publication.
COURS	E OUTCOMES	<u>.</u>			
CO1		roper selection of mat	terials for a	utomotive compone	ents.
CO2		al automotive engine		_	
CO3		e suspension, steering		-	obile.
CO4		e methods for automo			
CO5	•	ledge on automotive s		•	0
L	.		-	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	-	2	2	3	-	-	1	2
CO2	2	1	3	2	2	3	3	3	2	2	2	2
CO3	2	1	3	2	2	3	3	3	2	2	2	2
CO4	1	1	2	2	3	3	3	3	-	2	1	1
CO5	1	-	1	-	3	3	3	3	1	2	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	1	1	2	1	2	3	3	3	1	2	2	2

Subject	Code :BPI	E 06003			Me	tal Forming Lab.
Pre-Req	uisite:	None			Co-requisite:	None
LIST OI	F EXPERI	MENTS				[08]
1. R	ing Compr	ession Test.				
2. D	isc Compre	ession Test				
3. D	eep Drawii	ng.				
4. F	orward Ext	rusion				
5. B	ackward E	xtrusion.				
6. H	ydraulic B	ulging				
COURS	E OUTCO	MESS: At the er	d of this course, s	tudents will demonstra	te the ability to	
CO1	Recall di application	U	process and their	relative advantages/	disadvantages with re	spect to different
CO2	Demonst	rate different meta	al forming process	es.		
CO3	Experime	ent with various m	etal using metal for	orming setups.		
CO4	Discover	metal formed cor	nponents for their	project work.		
CO5	Build ind	ustrial products u	sing forming proce	esses.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3							2	2
CO2	3	3	3	3							2	2
CO3	3	3	3	3							2	2
CO4	3	3	3	3							2	2
CO5	3	3	3	3							2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3							2	2

Subject (Code:	BPE06004		Fluid Dynamics
Pre-Requi	site:	None	Co-requisite:	Fluid Mechanics
List of ex	perime	nts		
1.	Verific	ation of Bernoulli's equation	·	
2.	Determ	ination of metacentric height of a pant	oon	
3.	Determ	ination of coefficients of a circular ori	fice (Cd, Cc, Cv)	
4.	Determ	ination of discharge coefficient (Cd) o	f venturimeter	
		nination of discharge coefficient (Cd) o		
		nination of characteristics curves of a co		
		nination of characteristics curves of a re-		
		nination of characteristics curves of an		
		nination of characteristics curves of a re-		
10). Deter	mination of drag coefficient of sphere l	by Stokes law	
TEXT BO			Madi and Cath. Ctandar	d De als Hause, New Delle
2		Mechanics & Hydraulics Machines –B Mechanics & Hydraulic Machines- By		
3				
3	Fluid	Mechanics & Fluid Machines – By S. I	K. Solli, G. Diswasa S. Ci	
REFEREN	NCE BO	OK(S):		
1		uction to Fluid Mechanics by Fox & M	IcDonald, Willey Publishe	er.
2	Fluid	Mechanics by F.M White, McGraw Hi	ll Publisher	
3	Fluid	mechanics & hydraulic machines by Su	ıbramanya, TMH	
		× ×	•	
COURSE				
1				tion and metacentric height of a pantoon.
2		y to describe various coefficients of cir		
3	Abilit	y to illustrate discharge coefficient of o	orifice meter and character	istics curves of centrifugal pumps.
4		y to describe characteristics curves of r		
5	Abilit	y to describe characteristics curves of r	eaction turbines and drag	coefficient of sphere by Stokes law

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2			3			3	2
CO2	3	3	3	3	1			3			2	2
CO3	3	3	3	3	2			3			2	3
CO4	3	3	3	3	3			3			1	2
CO5	3	3	3	3	2			3			2	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2			3			2	2

Subject	Code: B	SPE06005					Sin	nulation I	Lab.
Pre-req	uisite:	None		Co-requisite:	Statistical Experiment		&	Design	of
LIST O	F EXPE	RIMENTS							
1.	Genera	ation of Pseudo-random	numbers using exce	el add ins.					
2.	Perfor	mance of Chi-square test	on a given sample	as test of indep	endence.				
3.	Perform	mance of Chi-square test	on Goodness of fit	t.					
4.		mance of ANOVA test of							
5.	Perform	mance of t-distribution to	est using excel add	ins on a given s	ample.				
6.		mance of 2k factorial Al							
7.		mance of two factor AN							IS.
8.		mance of two factor AN		lication on a giv	en set of sam	ples using	excel	add ins.	
9.	Design	n an Experiment using D	DE Tool.						
COURS	E OUT	COMES: At the end of t	his course, students	s will demonstra	ate the ability	to			
1.	Design	n and conduct statistical t	ests.						
2.	Condu	ct Chi-square tests.							
3.	Impler	nent factorial design.							
4.	Condu	ct ANOVA tests.							
5.	Apply	Design of Experiment (I	DoE) tools in indus	trial sectors.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		3	3	3	2		3					3
CO2		2	3	3	2		1					3
CO3		2	3	3	2		1					3
CO4		2	3	3	2		3					3
CO5		1	3	3	3		2					3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course		М	Н	Н	М		М					Н

Subject Code	Summer Ir	ndustry Internship/ Training/ Project	
Pre-requisite:	None	Co-requisite:	None
	None	Co-requisite:	None

SEVENTH SEMESTER

	ine
Pre-Requisite: Mathematics - II Co-requisite:	
Module -I [0)6]
Introduction: Automation, types, Reasons for automation, Types of production, Functions in manufacturin	_
Automation Strategies, Costs in manufacturing. Flow Lines: Automated Flow lines, transfer mechanism	ns,
Automation for machining operations, Line balancing- basic concepts, general procedure, rank positional weig	
method. Computer aided line balancing (CALB), Manual & Flexible assembly line, Automated assembly system	18-
Types, Part feeding device.	
Module -II [0)6]
Fundamentals of CAD: The design process, Application of computer for design, automated drafting, creating	ng
manufacturing data base, benefits of CAD, Design workstation - graphic terminal, operator input and outp	
devices, Software of graphic system- graphic package, Data Base Structure, Wireframe Model and Solid Mod	el,
Graphics standards.	
Module -III [0	081
Numerical Control: Components of NC system, NC procedure, NC co-ordinate system, motion control	
applications, NC part programming-manual part programming, computer assisted part programming, A	TP
language-macro statements, programming with interactive graphics, NC part programming using CAD/CAI	
Writing simple part programme. Computer control in NC: Problems with conventional NC. Controller technolog	3y,
CNC, DNC Adaptive Control.	
Module -IV [0	041
Automated material handling: Type of equipment, Principles of material handling, Conveyor system.	
)6]
Group Technology cell formation: Part classification & coding, Rank order clustering method for machi	
component assignment. Computer Aided Process Planning (CAPP) - Retrieval & Generative type process planni system.	ng
TEXT BOOK(S):	
35. Automation, Production System and CIM- M.P. Groover, PHI.	
36. CAD/CAM- Groover&Zimmers, PHI.	
REFERENCE BOOK(S):	
34. CAD/CAM/CIM- Radhakrishnan&Subramanyan, Wiley Eastern.	
35. CAD/CAM Theory and Practice- I. Zeid, TMH.	
COURSE OUTCOMESS:	
CO1 Design and analyze graphics systems (Packages and Modelling).	
CO2 Design and analysis of manufacturing automation process.	
CO3 Solve practical problems using NC part programing.	
CO4 Analyze automated material handling system in a manufacturing industry.	
COT That y to automated material handling system in a manufacturing industry.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	3	3	1	2	1	2	3	2
CO2	2	3	3	2	3	3	1	1	1	2	3	2
CO3	2	1	3	1	3	3	1	1	1	3	3	3
CO4	1	2	3	1	3	3	3	3	1	1	2	2
CO5	1	1	2	1	2	3	2	3	1	1	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	3	1	3	3	2	2	1	3	3	2

Subject Co	le: BP	E07002		Non Traditional Machining
Pre-requisite	:	Theory of Metal Cutting	Co-requisite:	NA
Module -I				[05]
	luction	Need for Non-traditional Machini	ng Classification proce	ss selection. Ultrasonicmachining: Principle,
			•	Rate by Shaw, Effect of process parameters,
	cation.	Magneto-strictive material, Analysis	s for whaternar Kennovar I	tate by shaw, Effect of process parameters,
Арри	cation.			
Module -II				[05]
	ive Iet	Machining Principle Application A	Advantages and disadvanta	ges, Variables in AJM, Water Jet Machining-
		quipment, Principle, advantages, Prac		
Module -III				[06]
		• • •		ate, Dynamics of ECM process, Tool design,
Adva	ntages,	Application, Limitation, Electro -che	emical grinding, Deburring	and Honing.
Module -IV				[07]
		6		circuitry and principles of operation, Analysis
of rel	axatior	circuits, Concepts of critical resista	ance, Machining accuracy	and surface finish, Tool Material, Dielectric
fluid,	Applic	ation limitation.		
Laser	Beam	Machining: Lasing process and princ	tiple, population inversion	, Principle of Ruby laser, Nd: YAG Laser and
CO2	Laser, l	Power control of laser output, Applica	ation.	
ľ				
Module -V				[07]
Elect	on Bea	m Machining: Basic principle, Contr	olling parameters and foca	al distance, Application. Ion Beam Machining:
Princ	iple and	l Mechanism, Application.		
Plasn	na Arc	Machining: generation of Plasma,	Equipments, Torch, Cla	ssification, Direct and indirect torches and
applie	cations,	parameters effecting cutting, Advanta	ages.	
!				
TEXT BOO				
1. M	odern 1	nachines process- P.C. Pandey and H	.S. Shan. TMH	
2. N	on-Con	ventional Machining- P.K. Mishra, N	arosa.	
i				
	E BOO			
REFERENC		JN (3):		
	anufac	curing Processes- Amstead, Ostwald &	Begeman, John Wiley &	Sons.
1. M				Sons.
1. M		suring Processes- Amstead, Ostwald &		Sons.
1. M 2. P1	ocesses	suring Processes- Amstead, Ostwald &	ndberg, PHI.	
1. M 2. Pr COURSE OF	ocesses	suring Processes- Amstead, Ostwald & and Materials of Manufacturing- Lir	ndberg, PHI. nts will demonstrate the al	pility to
1. M 2. Pr COURSE O 1. Ez	UTCO	MES: At the end of this course, stude he contribution of non-traditional machine	ndberg, PHI. nts will demonstrate the al chining process in micro a	bility to nd precision manufacturing field.
1. M 2. Pt COURSE O 1. Ez 2. In	UTCO UTCO Apress t	MES: At the end of this course, stude the contribution of non-traditional machine the selection of appropriate machine	ndberg, PHI. nts will demonstrate the al chining process in micro a ning process for suitable m	bility to nd precision manufacturing field. aterials.
1. M 2. Pr COURSE O 1. Ex 2. In 3. D	OCESSES UTCO Apress t Corpora efine th	MES: At the end of this course, stude he contribution of non-traditional machine	ndberg, PHI. nts will demonstrate the al chining process in micro a ning process for suitable m applications of different n	bility to nd precision manufacturing field. naterials. on-traditional machining processes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3	3	2	2			3	3	2	2
CO2	3	2	3	3	3	2	3	3	3	3		2
CO3		2	3	3	3	2	3	3			2	2
CO4	3	2	3	3	3		3	3	3	3	2	2
CO5	3		3	3			3	3	3	3	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	3	3	2	3	3	3	3	2	3

Subject	Code : I	BPEPE	701					Engineering Ergonomic
Pre-Requ	icitor	Non	2			Co-requisit	to.	None
Pre-Kequ	iisite:	NOI	e			Co-requisit	le:	None
Module -	I							[06
		tors in a	production	system: cha	racteristics fe	atures of man	-machi	ine system: quantitative and qualitative visua
di	isplays; H	luman fa	ctors associ	ated with sp	eech commur	ication.		
						T		
Module -						l .		[06
								aman motor activity; performance analysis o onships of stimuli and responses
Module -	III							[05
		control	function T	ools and re	lated control	devices and	control	l systems. Design of work place and work
	omponent		runetion. T	Jois and re		devices and	control	systems. Design of work place and work
						•		
Module -								[07
								provement strategies; Design of individual ise, pollution. Static and dynamic conditions.
**	ork place	. mumai	i periormano		u, colu, mum		1011, 110	ise, polititoli. State and dynamic conditions.
Module -	V							[06
А	pplication	n of res	ults from h	uman facto	rs data and	analysis in w	ork stu	udy; work design; Method study and worl
m	neasureme	ent techr	iques; perfo	rmance ratir	ng and time st	andards.		
TEXT B			<u> </u>				.	
1								Dul, Bernard Weerdmeester, CRC Press.
2						ger, CRC Pres		$\mathbf{C} = \mathbf{L} = \mathbf{C} \mathbf{L} + \mathbf{C} \mathbf{L} + \mathbf{C} \mathbf{L} + \mathbf{C} \mathbf{L} \mathbf{L} + \mathbf{C} \mathbf{L} + $
3			(1 March 19		ign, Ernest J.	McCormick, I	Mark S	5. Sanders (Editor) McGraw-Hill Inc., US; 6th
COURSI								
1					ors in a produc			
2							of hum	an motor activity.
3					control device		•	
4						activity analy	S1S.	
5	Analyz	e the res	uits from hu	man factors	data in work	study		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3		3	2	3		3	2	3	3
CO2	2	3	3	2	3	2	3					3
CO3	2	3	3	2	3	2	3	2	3		3	3
CO4	2			2	3							3
CO5	2	3		2	3	2	3	2	3	2	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	3	3	2	3	2	3	2	3	2	3	3

Subject C	ode: BPEPE702	Surface Engineering Principles & Systems
Pre-requisi	te: None	Co-requisite: None
Module -I	Machanisms of Waar and Matal Cleaning: Pasia Mac	[07] [07] chanisms of wear-abrasive, adhesive wear, contact fatigue,
		diagnosis of wear, general cleaning process for ferrous and
		processes, alkaline cleaning, emulsion cleaning, ultrasonic
	cleaning, pickling salt bath descaling, abrasive bath clean	
Module -II		[07]
		tings: Thermal spraying materials, characteristics of thermal
		gs coating production, spray fused coatings, Principles of ystems, Properties and applications of electrodeposits, Non
	aqueous and electroless deposition, plasma coating.	ystems, Properties and applications of electrodeposits, Non
	aqueous and electroless deposition, plasma countig.	
Module -II	Ι	[06]
		Surface preparation, Batchcoating and continuous coating
		of cementation, Cladding-vacuum deposition, Sprayed metal
	coating, Structure of diffusion coatings, Chemical vapou	ir deposition (CVD), Physical vapour deposition (PVD).
Module -IV	7	[05]
Niouule I		: Plating coating, lacquers, rubbers and elastomers, vitreous
		nium, magnesium, tin, zinc, cadmium copper and silver,
	phosphating primers.	
		[07]
Module -V	Quality Assumption Testing and Selection of Costinger	[05]
	porosity measurement, selection of coatings, industrial a	The quality plan, design, testing and inspection, thickness and publications of engineering coatings
	porosity measurement, selection of coatings, industrial a	ppreations of engineering coatings.
TEXT BO	DK(S):	
1.	Engineering Coatings-design and application- S. Grainge	er, Jaico Publishing House.
2.	Principles of Metals surface treatment and protection- D	. R. Gabe, Pergamon.
	CE BOOK(S):	
1.	Electroplating Handbooks- N.V.Parathasarathy, Prentice	e Hall.
2.	Advances in surface treatment- Niku-Lavi, Pergamon.	
	DUTCOMES: At the end of this course, students will den	
1.	Express the important of surface engineering to industrie	28
2.	Develop the application of thermal spray for coating	
3.	Define the process and mechanism of different diffusion	coating process
4.	Demonstrate the methods of non metallic coating	
5.	Express the testing procedure for quality assurance	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		3		2	2	3		3	2	3	2
CO2	2	2		3	2							2
CO3	2		3	3		2		2	3	2	3	
CO4			3	3				2		2	3	2
CO5	2	2		3	2		3		3	2	3	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	3	3	2	2	3	2	3	2	3	2

Subject	Code:BPEPE70	3			Design for Manufacturing & Asse	embly
				Γ		
Pre-Req	uisite:	None		Co-requisite:	None	
Madala	т					[0.4]
Module		ringinlas for manuf	octurability	estrongth and ma	echanical factors, mechanisms sele	[04]
	v 1		•	0	tric tolerances, Assembly limits, I	
	eatures, and Tole		. i cuture	toleranees, Geome	The tolerances, resemply minus, I	Jatam
Module	-II					[04]
					Aanufacture, Design- Possible solu	
		Influence of materi	als on for	m design, form de	esign of Welded members, forging	s and
Ca	astings.					
Module	ш					[08]
		n-I. Machining Cons	ideration I	Design features to f	acilitate machining: drills, milling cu	
					n of machined area, simplification	
					bility, Design for economy, Desig	
cl	ampability, Desi	ign for accessibility, I	Design for a	assembly.		
				Γ		
Module						[06]
					gs based on parting line considera	
	÷			0	embers to obviate cores. Identification of the provident	ion of
u	neconomical des	igh, Moullying the de	esign, grou	b technology, Comp	buter Applications for DrimA.	
Module	-V					[08]
D	esign for the En	vironment: Introducti	ion, Enviro	nmental objectives,	, Global issues, Regional and local i	ssues,
					asic method, environmentally respo	
					o reduce environmental impact, Des	
					ability, Design for remanufacture, D)esign
10	or energy efficien	ncy, Design to regulat	tions and st	andards.		
ТЕХТ В	SOOK(S):					
37.	· · ·	nd Kristin Wood, Proc	duct Design	. Pearson Publication	on	
38.		d S.D. Eppinger, Proc	-			
		II 8, I	8	r ,		
REFER	ENCE BOOK(S	5):				
36.	Boothroyd, G,	Design for Assembly	Automatic	on and Product Desi	ign. Marcel Dekker.	
37.	Bralla, Design	for Manufacture hand	dbook, Mc	Graw Hill.	-	
38.	Fixel, J. Design	n for the Environment	t McGraw	Hill.		
	E OUTCOMES					
CO1		*	•		on and assembly limits.	
CO2		gn of welded member				
CO3	Design for mad	chinability, economy,	clampabili	ty, accessibility and	d assembly.	
CO4		ting consideration and				
CO5	Incorporate en	vironment considerati	ion, regulat	ions and standards v	while designing and remanufacturing	g.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	-	3	3	3	3	2	1	3	1
CO2	3	1	3	-	3	3	3	3	2	1	2	1
CO3	2	1	3	-	3	3	2	3	2	2	2	1
CO4	3	1	3	-	3	3	3	3	2	1	2	1
CO5	1	1	3	-	3	3	3	3	2	1	2	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	1	3	-	3	3	3	3	2	1	2	1

Subject Code:BPEOE701	Performance Measurement and Benchmarking
Pre-Requisite: None	Co-requisite: None
Module -I	
÷ .	erformance Indicators, Ideal Evaluations, Benchmarking
	fficient Production and Best Practice, Farrell Efficiency,
Efficiency, Choice Between Efficiency Measures.	ith Prices Dynamic Efficiency, Structural and Network
Enterency, choice between Enterency measures.	
Module -II	[06]
	ext, The Technology Set, Free Disposability of Inputs and
	ormance Analysis: DEA Technologies, DEA as an Activity
Analysis, Dual Cost: Benefit Interpretations, The	DEA Game, Numerical Examples.
Module -III	[06]
5	lysis: Introduction, Production Functions and Efficiency
	-Douglas Production Functions, Estimating Production
	rministic Frontier Models, Stochastic Frontier Models,
Stochastic Cost Function, Stochastic Distance Fur	iction Models
Module -IV	[06]
	Budgeting, Balanced Scorecards, Budget Properties,
v v v	Margins and Marginal Products, Keep, Drop, Accept and
Reject, Account for Quality.	
Module -V	[06]
Performance Restructuring: Importance, Horiz	ontal Mergers, Learning, Harmony and Size Effects,
	unsferability and Ex Post Efficiency, Disintegration Gains,
Numerical Examples and Case Studies.	
TEXT BOOK(S):	
39 Performance Benchmarking- Measuring and Mana	
40. Quantitative Models for Performance Evaluation a	nd Benchmarking, Joe Zhu, Springer.
REFERENCE BOOK(S):	
39. Performance Management: A business process ben	chmarking approach, Bjorn Andersen and
AsbjornRolstadas, Springer Netherlands.	
40. Managing by Measuring, Mark T. Czarnecki AMA	COM American Management Association.

COUR	SE OUTCOMESS:
CO1	Express the performance indicators, efficiency and benchmarking for an organization.
CO2	Develop performance models and implement data envelopment analysis.
CO3	Implement stochastic frontier analysis for performance evaluation.
CO4	Plan for strategic planning and budget analysis.
CO5	Plan and implement performance restructuring.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	1	1			1	1		1
CO2	2	3	3	2	2	3	2	2	1	1	1	2
CO3	3	3	3	2	3	2	2	2	1	1	1	2
CO4	2	3	2	1	2	2	1	2	3	2	3	2
CO5	2	3	2	1	2	2	2	2	3	2	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	3	3	2	2	2	1	2	2	1	2	2

Subject	t Code BPEOE702	Total Quality System and Engineering
Pre-Requ	misite: Co-ru	equisite:
Module -		[06]
	Principles of Quality Management- Pioneers of TQM, Benchmarking, Re-engineering, Concurrent Engineering.	Quality costs, Quality system Customer Orientation,
Module -	II	[06]
L	Leadership- Organizational Structure, Team Building, Informa 9000- QS 9000.	
Module -	-III	[06]
	Single Vendor Concept- JIT, Quality Function deployment, Q Methods.	Quality Circles, KAIZEN, SGA, POKA-YOKE, Taguchi
Module -	117	[06]
ex	Methods and Philosophy of Statistical Process Control, Control exponentially weighted moving average control charts, Others accuracy.	
Module -	V	[06]
A	Acceptance Sampling Problem, Single Sampling Plans for attri standards, The Dodge-Roming sampling plans.	
1EAT B (41.	BOOK(S): Total Quality Management for Engineers- M. Zairi, Woodhe	ad Publishing
42.	Introduction to Statistical Quality Control- D.C. Montgomery	
72.	Introduction to Statistical Quarty Control- D.C. Montgomer	y, John Whey and Sons.
REFERE	RENCE BOOK(S):	
41.	ISO 9000- A Manual for Total Quality Management- S. Dale	ela and Saurabh, S.Chand and Company Ltd.
42.	Statistical Quality Control- E.L. Grant and Leavensworth, M	cGraw-Hill.
-	SE OUTCOMESS: Upon completion of this course students will	
26.	Demonstrate the product quality cost along with qu	• •
27.	organize are concept of reductionsp in an organizati	
28.	Evaluate for the selection of the best quality impro	vement technique.
29.	Apply different statistical analysis tools for process	s control.
30.	Incorporate the best sampling plan for specific qua	lity problems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	3	1	1	2	2	1	3	3
CO2	2	2	3	3	3	1	1	2	2	1	3	3
CO3	2	2	3	3	3	1	1	2	2	1	3	3
CO4	2	2	3	3	3	1	1	2	2	1	3	3
CO5	2	2	3	3	3	1	1	2	2	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	3	3	3	1	1	2	2	1	3	3

Subjee	ct Code: BPEOE703		Subject name : P	roject Management
Pre-R	equisite: Production and Operation Man	agement	Co-requisite:	None
	· · ·			50.61
Modu			1 Commission Desired Asso	[06]
	ject Management: An Overview, Project Selection F praisal: Part II Project Selection Project Planning: De			
	Redundancy in Project Networks.	evelopment of Troject	terwork, riojeet Repres	chution, consistency
I				
Modu	le -II			[06]
	ject Scheduling: Basic Scheduling with A-O-A Network			
	h Probabilistic Activity Times, Time/Cost Trade-off			
	proach. Resource Considerations in Projects: Reso			
	npletion, Project Completion, Review and Future Direct		inding and Leadership	in Flojecis, Flojeci
	inpretion, i roject Completion, review and i atare Di			
Modu	le -III			[06]
	duction Management: Introduction to Production S			
	duction System and Major managerial Decisions. F			
Me	asures of a Production System, Financial Evaluation of	of Capital Decisions, De	cision Trees and evaluati	on of risk.
Modu				[0/]
	signing Products and Services: Introducing New Prod	lucts and Services Prod	luct Mix Decisions Prod	[06]
	dium Term Horizon: Aggregate Production Plann			
	nning.	0 1	0 11	
Modu				[06]
-	erational Decisions over the Short Term: Basic Inve	•	ntory Modeling, Invento	ry related Decisions,
Ma	terial Requirements Planning, and Scheduling of Job S	Shops.		
TEVT	BOOK(S):			
	Project Management by Nagarajan K			
	Project Management by Panneerselvam R.&Senthilku	ımar P.		
2.				
REFE	RENCE BOOK(S):			
	Elements of Project Management Paperback by K. Na	agarajan		
COUF	RSE OUTCOMES:			
CO1	Define basic concepts and plan project management			
CO2	Create, Analyze and Evaluate schedule projects with	h and without resource	constraints.	
CO3	Plan financial evaluation of a project.			
CO4	Create design product and services based on aggreg			
CO5	Plan inventory decisions related to products or com	ponents.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	1	2	3	3	3	3	3
CO2	3	2	2	3	2	1	2	3	3	3	3	3
CO3	3	2	2	3	2	1	2	3	3	3	3	3
CO4	2	2	2	3	2	1	2	3	3	3	3	3
CO5	3	2	2	3	2	1	2	3	3	3	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	2	3	2	1	2	3	3	3	3	3

Subje	ct Code: BP	PE07003	Subj	ect name: NTM & FMS Lab.
Pre-R	equisite:	Non-Traditional Machining ,Robotics	Co-requisite:	Mechatronics
Part-I	(Any three			[09]
1.		on of gyroscopic couple.		[07]
2.		characteristics of spring loaded governor.		
3.		on of critical speed of rotating shaft.		
4.	Experiment of	on static and dynamic balancing apparatus.		
5.	Determinatio	n of natural frequency under damped and un-damped	vibration.	
Part-l	I (Any thre	e)		[09]
1.	Machining in	CNC Lathe by writing part programs		
2.	Machining in	CNC Milling by writing part programs		
3.	Pick and pla	ce operation with revolute Robot		
4.	Programming	g of AS/RS		
COU	RSE OUTC	OMES:		
C01	Demonstra	te and apply machining in Non-Traditional Machining	<i>.</i>	
CO2		ate and apply machining in CNC Lathe by writing par		
CO3	Demonstra	te and apply machining in CNC milling by writing pa	rt programs.	
CO4	Apply Picl	k and place operation with revolute Robot.		
CO5	Apply Pro	gramming of AS/RS.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3		2	2	3	2	2	2
CO2	3	3	3	3	3		2	2	3	2	2	2
CO3	3	3	3	3	3		2	2	3	2	2	2
CO4	3	3	3	3	3		2	2	3	2	2	2
CO5	3	3	3	3	3		2	2	3	2	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3		2	2	3	2	2	2

Subject Code			Project – I
Pre-requisite:	None	Co-requisite:	None

Subject Code				Seminar on Internship
Pre-requisite:	None	Co-requisite:	None	

EIGHTH SEMESTER

Subject	Code :BPEl	PE801	Robotics & Flexible Manufacturing Systems
Pre-Req	uisite:	Mathematics - II	Co-requisite:
Madada	T		[00]
Module		montale Definitions La	[08] vs of Robotics, Robot Specification, Anatomy of a Robot, Robot
			presentation of robot arms, common types of arms, Robot end effectors-
			tions in gripper selection and design, Robot application in Manufacturing-
			ading and unloading, Processing - spot and continuous arc welding and
			on. Manipulator Kinematics: Homogeneous coordinate transformation,
			insformation, D-H representation of kinematics linkages, Forward and
Ir	verse Kinen	natics of manipulators, Eule	r's angle and fixed rotation for specifying position and orientation.
Madada	TT		1041
Module		amice: Valocity Kinamati	[04] [04] cs, Acceleration of rigid body, Lagrange-Euler Formulation, Newton–
	uler's formu		es, Acceleration of fight body, Lagrange-Luter Formulation, Newton-
I			
Module			[08]
			nd external sensors, Position- potentiometric, Optical sensors, Encoders -
			ensors, Velocity and acceleration sensors, Proximity sensors, Force and
	orque sensors nerits and der	•	eumatic and Electrical, Comparison of actuating systems and their relative
	ients and dei	mernts.	
Module	-IV		[04]
		llers: Open and close loop	control, Manipulator control problem, Linear control, PD and PID control
		· · ·	otic manipulators. Robot Programming: Methods of robot programming-
		6	AL and DELAY commands, Capabilities and limitations of lead through
pi	rogramming,	, Robot language structure,	Motion, sensor and end effectors commands, Programming examples.
Module	V		[06]
		ufacturing Systems: Type	[06] [06] s of production, Characteristics, Applications, Flexibility in Machining
			ation, Where to apply FMS technology, Components of FMS- FMS layout
			stations, Material Handling systems, Automatic Guided vehicle systems,
			FMS Layout configurations, Applications and benefits of FMS, problems
	n implementi		
	OOK(S):		Decision Edu
43.		Robotics- Groover M P et a	
44.	Robotics a	nd Control- R.K. Mittal and	I.J. Nagrath, IMH.
REFER	ENCE BOO)K(S).	
43.		Cechnology and Flexible Au	tomation-S.R.Deb. TMH.
44.		ngineering- Richard D. Klaf	
45.		Fu K S et al., McGraw Hill.	
ч.).	Robotics- I		
COURS	E OUTCON	MESS:	
CO1	T		ots, their applications and develop forward and inverse kinematics of
	manipulato	ors.	
CO2		rse formulations for robotic	
CO3			specific application and demonstrate their relative merits and demerits.
CO4	•		chanisms and write simple robot programing.
CO5	Implement	the concept of \overline{FMS} and au	tomation to solve practical industrial problems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	3	3	3	1	1	1	2	2
CO2	2	3	2	2	2	3	1	1	1	2	2	2
CO3	1	1	3	1	2	2	3	3	1	1	2	3
CO4	2	2	3	1	3	3	1	3	1	3	2	3
CO5	3	2	3	3	3	3	3	1	1	1	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	3	2	3	3	2	2	1	2	2	3

	Code : BPEPE802	Plant Layout and Automated Material Handling
Pre-Requ	uisite: None	None
Module -	T	roo
P. F. ai	LANT LOCATION AND FACILITIES actors to be considered – influence of lo	[08] cation on plant layout, selection of plant site, Consideration in facilities planning at operation, Capacity, serviceability and flexibility and analysis in selection of power requirements.
Module -		[08]
N fc pl	or developing layout, process chart, flow	nfluencing product, process. Fixed and combination layout: tools and techniques w diagram, string diagram, template and scale models – machine data. Layout ut, revision and improving existing layout, balancing of fabrication and assembly
Module -	·III	[10]
Ir	IATERIAL HANDLING nportance and scope. Principles of ma andling systems, factors influencing their	terial handling. Planning, operating and costing Principles, types of material r choice.
Module -	IV	[12
G		sfer lines without and with buffer storage, partial automation, implementation of
	nethods, ways of improving line balance,	
m	nethods, ways of improving line balance,	Ind line balancing: Assembly process and systems assembly line, line balancing flexible assembly lines.
Module - A T vo	Nethods, ways of improving line balance, Nethods, analysis,	flexible assembly lines. [10
Module - A T va ha	Nethods, ways of improving line balance, Nethods, ways of improving line balance, Nethods, ways of improving line balance, Nethods, ways of equipment, functions, analysis ehicle systems. Automated storage system andling and storage with manufacturing.	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided
Module - A T vo	Nethods, ways of improving line balance, Nethods, ways of improving line balance, Nethods, ways of improving line balance, Nethods, ways of ways of the balance, Nethods, ways of the balance, Nethods, ways of the balance, Nethods, ways of improving line balance, Nethods, analysis ehicle systems. Automated storage system and ling and storage with manufacturing. OOK(S):	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing
Module - A T Va ha	Nethods, ways of improving line balance, Nethods, ways of improving line balance, Nethods, ways of improving line balance, Nethods, ways of ways of the balance, Nethods, ways of the balance, Nethods, ways of the balance, Nethods, ways of improving line balance, Nethods, analysis ehicle systems. Automated storage system and ling and storage with manufacturing. OOK(S):	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing y- James M. Apple, John Wiley & Sons.
Module - A T Va ha TEXT Be 45.	Nethods, ways of improving line balance, Nethods, ways of improving line balance, Nethods, ways of improving line balance, Nethods, ways of equipment, functions, analysis ehicle systems. Automated storage system andling and storage with manufacturing. OOK(S): Plant Layout and Material Handling, b	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing y- James M. Apple, John Wiley & Sons. y- B. K. Aggarwal, Jain Brothers.
Module - A T va ha TEXT Be 45. 46. 47.	Nethods, ways of improving line balance, Nethods, ways of improving line balance, System Systems, Automated storage system andling and storage with manufacturing. OOK(S): Plant Layout and Material Handling, b Plant Layout and Material Handling, b Plant Layout and Material Handling, b	flexible assembly lines.
Module - A T va ha TEXT B 45. 46. 47. REFERF	Nethods, ways of improving line balance, Nethods, ways of improving line balance, years of equipment, functions, analysis ehicle systems. Automated storage system andling and storage with manufacturing. OOK(S): Plant Layout and Material Handling, b Plant Layout and Material Handling, b Plant Layout and Material Handling, b ENCE BOOK(S):	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing y- James M. Apple, John Wiley & Sons. y- B. K. Aggarwal, Jain Brothers. y- S. C. Sharma, Jain Brothers.
Module - A T va ha TEXT Ba 45. 46. 47. REFERF 46.	An ethods, ways of improving line balance, NUTOMATED MATERIAL HANDLING Sypes of equipment, functions, analysis ehicle systems. Automated storage system andling and storage with manufacturing. OOK(S): Plant Layout and Material Handling, b Plant Layout and Material Handling, b Plant Layout and Material Handling, b Plant Layout and Material Handling, b ENCE BOOK(S): Plant Layout and Material Handling, b	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing y- James M. Apple, John Wiley & Sons. y- B. K. Aggarwal, Jain Brothers. y- S. C. Sharma, Jain Brothers. y- Fred E. Meyers, Prentice Hall.
m Module - A T va ha TEXT Be 45. 46. 47. REFERF 46. 47.	A proving line balance, N N N N N N N N N N N N N	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing y- James M. Apple, John Wiley & Sons. y- B. K. Aggarwal, Jain Brothers. y- S. C. Sharma, Jain Brothers. y- Fred E. Meyers, Prentice Hall. lytical Approach, by Richard L, Francis, Pearson India.
Module - A T va ha TEXT Ba 45. 46. 47. REFERF 46.	A proving line balance, N N N N N N N N N N N N N	flexible assembly lines.
Module - A T va A T va A T va 45. 45. 46. 47. REFERF 46. 47. 48. COURSE	Nethods, ways of improving line balance, Nethods, Waterial Mandbook, by-Rame E OUTCOMESS:	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing y- James M. Apple, John Wiley & Sons. y- B. K. Aggarwal, Jain Brothers. y- S. C. Sharma, Jain Brothers. y- Fred E. Meyers, Prentice Hall. lytical Approach, by Richard L, Francis, Pearson India. ymond A. Kulwiec, John Wiley & Sons.
Module - A T va ha TEXT Be 45. 46. 47. 46. 47. 48. COURSI 31.	A set of the set of th	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing y- James M. Apple, John Wiley & Sons. y- B. K. Aggarwal, Jain Brothers. y- S. C. Sharma, Jain Brothers. y- Fred E. Meyers, Prentice Hall. lytical Approach, by Richard L, Francis, Pearson India. ymond A. Kulwiec, John Wiley & Sons. plays in achieving the goals of an organization;
Module - A T va A T va A T va A T Va A T TEXT Ba 45. 46. 47. REFERF 46. 47. 48. COURSE	A provide the set of t	flexible assembly lines. [10 G and design of material handling systems conveyor systems, automated guided ms, automated storage and retrieval systems; work in process storage, interfacing y- James M. Apple, John Wiley & Sons. y- B. K. Aggarwal, Jain Brothers. y- S. C. Sharma, Jain Brothers. y- Fred E. Meyers, Prentice Hall. lytical Approach, by Richard L, Francis, Pearson India. ymond A. Kulwiec, John Wiley & Sons. plays in achieving the goals of an organization;
Module - A T va table 45. 45. 46. 47. 48. COURSI 31.	A point of the problems in organizing, industrial production; and provide the problems in organizing principal production; and principal prin	flexible assembly lines. [10 [3] [10] [3] [3] [3] [4] [4] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5
Module - A T va ha T va A T va A T va 45. 46. 47. REFERH 46. 47. 48. COURSH 31. 32.	 ways of improving line balance, W W	flexible assembly lines. [10 [3] [10] [3] [3] [3] [4] [4] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				3	3	2	3	3		3	3
CO2	3	3	2	2	3		2				3	
CO3		3	2	2	3	3	2	3	3	2	3	3
CO4	3	3	2	2		3	2	3		2		
CO5	3		2		3		2	3		2	3	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	2	3	3	2	3	3	2	3	3

Subject	Code :BPEPE803/BEPEOE801	Micro Electro-Mechanical Systems
		~
Pre-Req	uisite: Mathematics - II	Co-requisite:
Module -	I	[06]
In do st	troduction to MEMS technology: Introduction omain: How small is different- some natural ex-	to MEMS and motivation, Basic definitions, Scaling in Micro camples, Scaling laws in electrostatic, electromagnetic, rigidity of and fluid interfaces, etc. Scaling in overall system performance
Module -	II	[08]
M M pł	IEMS Materials: Mechanical and other p licromachining: Overview of microfabricat	properties of materials used in MEMS Microfabrication / ion, Review of microelectronics fabrication processes like structural and sacrificial materials, other lithography methods,.
Module -	Ш	[08]
Ti el	ransduction Principles: Transduction principles	in microdomain. MEMS Modeling: Basic modeling elements in s, analogy between 2nd order mechanical and electrical systems.
Module -	N 7	[04]
R M	adio Frequency (RF) MEMS: Introduction, H	[04] Review of RF-based communication systems, RF –MEMS like hators, phase shifters, switches. Optical MEMS: Preview, passive tors for active optical MEMS.
Madada	17	[04]
		[04] micro and nanotechnologies. Need and issues in handling nano
TEXT B 48.		asture Tei Der Hau TMH
48.	MEMS and Microsystems Design and Manufa Foundations of MEMS- Chang Liu, Pearson I	
49.	Foundations of MEMIS- Chang Liu, Pearson h	
REFERE	ENCE BOOK(S):	
49.	MEMS- N. P. Mahalik, TMH.	
50.	Fundamentals of Microfabrication- Madou, C	RC Press.
-	E OUTCOMESS:	
CO1	Analyze fundamental science behind micro-el	-
CO2		ng material and fabrication technique for MEMS.
CO3	Design and modeling a micro-electro mechani	
CO4	Analyze radio frequency and optical MEMS d	
CO5	Apply fundamental knowledge of nano techno	ology and MEMS.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	2	3	3	1	1	1	1	2	2
CO2	2	2	3	1	2	3	1	1	1	1	3	3
CO3	2	2	3	2	3	3	3	2	1	1	2	2
CO4	1	2	2	2	3	3	3	2	2	1	3	2
CO5	1	1	3	3	3	2	3	3	1	1	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	3	2	3	3	2	2	1	1	2	2

Subject (Code 1	BPEPE804			Quality Assurance & Reliability
Pre-Requi	site:	None		Co-requisite:	None
Module -I					[06]
Att qua lim	tributes ality; (nits, Sp	Quality Control: Causes of	variation, standard d Revised Control	d errors of mean,	conomics of quality and measurement of cost of Process capability analysis, Natural tolerance abgroups, Control Charts for variables (X, R, S,
Module -I	I				[06]
Ac	ceptanesign of				ptance sampling for variables, Sampling Plans ag plans, O.C. curve, AOQ, AOQL, ATI, AFI
Module -I	II				[06]
Qu sel	ality E	Engineering: Taguchi's qua	adratic loss function	on, Off line & on	s for parameter and tolerance design aline quality control, importance of parameter design, two-level experimental for full factorial
Module -I	V				[06]
Cir	cle: In		QC, Kaizen and P		lity function deployment, PDCA cycle, Quality , Quality Cost, Concept of Zero defect, Quality
Module -V	7				[06]
inc ma	lices, th intaina	neir evaluation, uses and lin	nitation, reliability in nents in series, pai	models of maintain rallel and standby,	perational readiness, serviceability, performance ned systems, relationship between reliability and Maintainability prediction.Reliability analysis modelling reliability
TEXT BO	OK(S)):			
1.		mentals Of Quality Control	-		
2.		uction to Statistical Quality		togomery, John Wi	iley & Sons.
3.	Total	Quality Control- A.V.Feige	nbaum, TMH.		
REFERE	NCE B	OOK(S):			
1.		ical Quality Control- E.L. C	Grant and R.S. Leav	enworth, McGraw	Hill.
2.		hi techniques for Quality E			
3.	-	y Assurance through ISO 9			ion.
COURSE	ουτο	COMES: At the end of this of	course students wil	l demonstrate the a	ability to
1.		quality control charts for p			
2.	11 0	in the best sampling plan for		lated problems.	
3.	-	e Taguchi method to minim		-	
		6	⊥ ✓		
4.	Analy	ze different quality manage	ment tools.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3			1	2		3	3
CO2	2	3	3	3	2			3	3		3	3
CO3	2	2	3	2	3			3	2		3	3
CO4	2	3	2	3	3			2	1		3	3
CO5	2	1	3	2	2			2	2		3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	3	3	3			2	2		3	3

Subject Code: BPEPE805 **Rapid Prototyping & Tooling Pre-requisite:** None **Co-requisite:** None Module -I [06] Introduction: Definition of Prototype, Types of prototype, Need for the compression in product development, Survey of applications, Growth of RP industry, Classification of RP systems. Stereolithography Systems: Principle, Process parameter, process details, Data preparation, data files and machine details, Application. **Module -II** [06] Selective Laser Sintering: Type of machine, Principle of operation, process parameters, Data preparation for SLS, Applications, Fusion Deposition Modeling: Principle, Process parameter, Path generation, Applications. Solid Ground Curing: Principle of operation, Machine details, Applications, Aminated Object Manufacturing: Principle, of operation, LOM materials, process details, application. Module -III [06] Concepts Modelers: Principle, Thermal jet printer, 3-D printer, GenisysXsprinter HP system 5, Object Quadra systems, Laser Engineering Net Shaping (LENS). Module -IV [06] Rapid Tooling: Indirect Rapid tooling -Silicon rubber tooling- Aluminum filled epoxy tooling Spray metal tooling, Cast kirksite, 3D keltool, Direct Rapid Tooling- Direct, AIM, Quick cast process, Copper polyamide, Rapid Tool, DMILS, ProMetal, Sand casting tooling, Laminate tooling, Soft Tooling vs. Hard tooling. Module -V [06] Software for RP: STL files, Overview of Solid view, magics, mimics, magic communicator, etc. Internet based software, Collaboration tools, Rapid Manufacturing Process Optimization: factors influencing accuracy, data preparation errors, Part building errors, Error in finishing, influence of build orientation. Surface digitizing, surface generation from point cloud, surface modification- data transfer to solid models. **TEXT BOOK(S):** 1. Stereolithography and other RP& M Technologies- Paul F. Jacobs, Society of Manufacturing Engineers, NY. 2. Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling- D.T. Flham and S.S.Dimov, Springer Verlag. **REFERENCE BOOK(S):** Rapid Prototyping: Principles and Applications in Manufacturing- Kai and Fai, World Scientific. 1. 2. Rapid Prototyping & Manufacturing- Paul F. Jacobs, McGraw-Hill. **COURSE OUTCOMES:** Express the fundamentals of rapid prototype and their classifications. 1. 2. Implement the Selective Laser Sintering techniques. 3. Analyze the Modelers printer techniques. 4. Develop knowledge of Rapid tooling and implement in rapid manufacturing. 5. Write the software aspects of rapid manufacturing and product modeling.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3		3	2	2	3	2			3	2
CO2		3	2		2		3	2		2	3	
CO3			2		2	2	3	2		2	3	
CO4	2			3		2	3	2	3	2		2
CO5		3	2		2	2		2	3	2	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	3	2	3	2	2	3	2	3	2	3	2

Subject C	Code BPEPE806	Computer Integrated Manufacturing
Pre-Requi	isite: Computer aided design and manufacturing	Co-requisite:
Module -I	-	[06]
Intr con Pro	troduction: The meaning and origin of CIM, The mmunication, Islands of automation and software, D	changing manufacturing and management scenario, External edicated and open systems, Manufacturing automation protocol, engineering, Production planning, Plant operations, Physical
Module -II	T	[06
Cor		nning in CAD/CAM integration, Approaches to computer aided
Module -II	Π	[06]
me FM	ethods- Bar code technology, Automated data collectio	ases, Factory data collection system, Automatic identification n system, Material handling and storage systems, FMS layout, Computer
Module -I	V	[06]
ope imp	en system architecture (CIMOSA), Manufacturing ent plementation software.	tem modeling tools-IDEF models, Activity cycle diagram, CIM erprise wheel, CIM architecture, Product data management, CIM
Module -V		[06]
mar Dat	anagement and installations.	ocal area networks, Topology, LAN implementations, Network e terminology, Architecture of database systems, Data modeling erators, Advantages of data base.
TEXT BO	OOK(S):	
50.	Automation, Production Systems and Computer Integ	rated Manufacturing- M.P.Groover, Pearson Education.
51.	Computer Integrated Manufacturing System- Y. Kore	n, McGraw-Hill.
	NCE BOOK(S):	
REFEREN		
	CAD/CAM/CIM- P. Radhakrishnan, S. Subramanyan	and V. Raju- New Age International.
51.	CAD/CAM/CIM- P. Radhakrishnan, S. Subramanyan Computer Integrated Manufacturing- Paul G. Ranky,	
51. 52.	Computer Integrated Manufacturing- Paul G. Ranky,	Prentice Hall International
51. 52.	Computer Integrated Manufacturing- Paul G. Ranky, OUTCOMESS:Upon completion of this course stude	Prentice Hall International Ints will be able to:
51. 52. COURSE 36.	Computer Integrated Manufacturing- Paul G. Ranky, OUTCOMESS:Upon completion of this course stude Demonstrate the concept of open system in computer	Prentice Hall International Ints will be able to: integrated manufacturing.
51. 52. COURSE 36. 37.	Computer Integrated Manufacturing- Paul G. Ranky, OUTCOMESS:Upon completion of this course stude Demonstrate the concept of open system in computer Develop common database for integration in CIM sys	Prentice Hall International Ints will be able to: integrated manufacturing. tems.
51. 52. COURSE 36. 37. 38.	Computer Integrated Manufacturing- Paul G. Ranky, OUTCOMESS:Upon completion of this course stude Demonstrate the concept of open system in computer	Prentice Hall International ints will be able to: integrated manufacturing. tems. trol in flexible manufacturing systems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	2	3	3	3	3	1	2	2
CO2	3	3	3	1	2	3	3	3	3	1	2	2
CO3	3	3	3	1	2	3	3	3	3	1	2	2
CO4	3	3	3	1	2	3	3	3	3	1	2	2
CO5	3	3	3	1	2	3	3	3	3	1	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	1	2	3	3	3	3	1	2	2

Subject	Code:	BPEPE807			Safety Engineering
J					
Pre-requi	isite:	Industrial Engineerin Ergonomics, Enviror	ng & Management, mental Engineering	Co-requisite:	None
Module -	T				[06]
	Concepts managen functions Incident	hent – planning for s for safety-budgeting f	afety for optimization or safety-safety policy. aster control, job safe	of productivity-p	modern safety concept- general concepts of productivity, quality and safety-line and staff y survey, safety inspection, safety sampling,
Module -	II				[06]
	Biologic		ion of Biohazardous sitic agents, infectious		s, bacterial agents, rickettsial and chlamydial
Module -	ш				[06]
	Ergonon handling	biological safety cabin	ets building design.		ram-laboratory safety program-animal care and Γ S- Tendon pain-disorders of the neck- back
Module -	117				[06]
	Hazardo classifica	tion technological opt		atment and dispos	dia waste identification, characterization and sal of hazardous waste selection charts for the
Module -	V				[06]
	Safety E seminars governm	, conferences, compet ent agencies and priva	itions – method of pr ate consulting agencie	omoting safe praces in safety training	training needs-training methods – programmes, ctice - motivation – communication - role of g – creating awareness, awards, celebrations, fety campaign – Domestic Safety and Training.
TEXT BO					
1.			lution engineering:, Wi		
2.	S.P.Ma	najan, "Pollution contro	ol in process industries'	', Tata McGraw H	ill Publishing Company, New Delhi, 1993.
DEFE	NCEDO				
REFERE 1.			ion equipment", Spring	er Publishers Sec	and Edition
2.			afety and Health", Nat		
3.					ned by International LabourOffice, Geneva,
	0.000		,		
			his course, students wil		
1.	write fa	nures in machine com	ponents and suggest the	e preventive measu	res using various techniques for disaster
2.		strate the biological has	ards and suggest the p	reventive measures	s using various techniques for its control
3.					using various techniques for its control.
4.		- · ·	nd take the preventive		* *
5.			plicies and able to do sa		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		3	3	3	3	3	2	3	3	3
CO2	3	3	3		3	3	3	3	2	3	3	2
CO3	3	3		3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	2	3
CO5	3	3	3	3	3	3	3	3	2	3	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	3	3	3	3	3	2	3	2	3

Subje	ct Code:	BPEOE802		Entrepreneurship & E-Business
				* *
Pre-ree	quisite:	Industrial Engineering and Management,	Co-requisite:	None
	-	Engineering Economics	-	
			1	
Modul				[06]
				ing countries and their positions vis-a-vis large acteristics and types of small scale industries;
				ernment policy for small scale industry; Stages
		a small scale industry.	control types. Gov	erinnent poncy for sman scale industry, stages
	in starting	sindi souro moustry:		
Modul	e -II			[06]
		entification- assessment of viability, form	ulation, evaluation	on, financing, field-study and collection of
				nce and output methods, benefit cost analysis,
	discounted	cash flow, internal rate of return and net prese	ent value methods.	
			1	
Modul				[06]
				tative analysis of authentication and payment
	services, C	apacity planning methodologies, Performance	models for e-busi	ness sites, Modelling web-server workload.
	177			[0/]
Modul		None Managing Dusinger in the Digital W		[06]
		e: None Managing Business in the Digital wo	orid: Introduction,	How IT has changed the concepts of traditional
	with with t	xamples and case studies.		
Modul	e -V			[06]
1120000		rstanding of e-business building blocks, Eme	rging e-Business n	nodels, B2B, B2C, C2C etc., Case-studies on e-
				chains, e-marketing, e-customer relationship
		nt, e-finance systems, and negotiations suppor		
TEXT	BOOK(S):			
1.		r E-Business: Technologies, Models, Perform	ance, and Capacity	y Planning, Daniel A. Menasc, Virgilio A. F.
	,	Prentice Hall		
2.	Managem	ent Information Systems- Managing Informat	ion Technology in	E Business Enterprises, James A. Brien, TMH
DINDIN				
	RENCE BC	DOK(S): eneurship" Forbat, John, New Age Internation	<u>a</u> 1	
1.			al.	
<u>2.</u> 3.		heory, Vijay Krishna, Academic Press. l of Management", Joseph, L. Massod, Prentic	e Hall of India	
5.	Essentia	n of Management, Joseph, L. Massou, Frenti	c man or mula.	
COUR	SE OUTCO	DMES: At the end of this course, students wil	1	
1.		d Entrepreneurship and analyze the growth of		tries and national economy
2.		t projects through assessment and field study		
3.		Business Infrastructure and Capacity Planning		
4.	1	Business in the Digital World.		
5.	1	ate and implement e-business.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		3	3	3	3	3	2	3	3	3
CO2	3	3	3		3	3	3	3	2	3	3	2
CO3	3	3		3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	3	3	3	3	3	2	3	3	3

Subject Code				Project	II
Pre-requisite:	None	Co-requisite:	None		

Subject Code				Seminar on Project
Pre-requisite:	None	Co-requisite:	None	
The requisite.	Trone	eo requisite.	Ttone	