Course Structure & Syllabus of B. Tech. Programme in Metallurgical & Materials Engineering Academic Year – 2019-20

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, ODISHA Burla, Sambalpur-768018, Odisha

www.vssut.ac.in

Vision

To be recognized as a center of excellence in education and research in the field of Metallurgical and Materials Engineering, so as to be the terminus for students, researchers and faculties for the pursuit of academic excellence, technical innovation, and industrial professionals for socio-economic upliftment of society to meet the global challenges.

Mission

Metallurgical and Materials Engineering Department of VSSUT Burla strives to achieve global excellence in education and research and preparing students for global competitiveness by fostering educational excellence through:

- M1: Maintaining state of the art academic and research facilities by keeping up with the technological advancement to provide quality technical education for analysis, design and operation of metallurgical and materials systems.
- **M2.** Fortifying collaboration with world class R&D organizations, national and international institutes, universities and industries and alumni for continuous evolution in teaching, research and consultancy practices to contribute in the national mission programs.
- **M3.** Providing the students with academic environment of excellence, leadership, ethical guidelines so as to stimulate to pursue life-long learning by enhancing knowledge and skills for professional advancement.

Program Educational Objectives (PEOs)

- PEO1: To acquire competency in solving real-life problems and to design/develop sustainable and cost-effective products according to the prevailing socio-economic context.
- PEO2: To create awareness of societal impact and professional ethics so as to lead a successful career in industries or pursue higher studies or entrepreneurial endeavors.
- PEO3: To offer techno commercially feasible and socially acceptable solutions to real life engineering problems in order to address the prevailing safety hazards, material degradation and environmental pollution in metallurgical industries
- PEO4: To create a congenial environment that promotes learning, growth and imparts ability to work with inter-disciplinary groups in professional, industry and research organizations by applying engineering and material science principles.
- PEO5: To demonstrate effective communication skill, ability to draw relevant conclusions for scholarly writing and presentation, professional attitude and a desire to learn.

	M1	M2	M3
PEO1	2	3	1
PEO2	1	3	2
PEO3	3	3	1
PEO4	2	3	3
PEO5	1	2	3

PEO-Mission Mapping

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Program Outcomes (POs)

- PO1: To apply knowledge of mathematics, science and engineering to solve complex problems in metallurgy and materials engineering.
- PO2: To identify, formulate, and solve complex metallurgy and materials engineering problems using first principle of mathematics, basic science & engineering.
- PO3: To design system components and processes for complex engineering problems to meet the specifications deliberating for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4: To use research-based knowledge including design of experiments, analysis and interpretation of data, and available information to provide valid conclusions.
- PO5: To create, select, and apply appropriate techniques, skills, and modern engineering tools necessary for relevant engineering practices
- PO6: To design, implement & evaluate metallurgy and materials engineering projects to meet societal and environmental needs.
- PO7: To recognize the sustainability and environmental impact of the engineering solutions
- PO8: To follow prescribed norms, responsibilities and ethics in engineering practices.
- PO9: To work effectively as an individual and in a team and in multidisciplinary settings.
- PO10: To communicate effectively through oral, written and pictorial means with engineering community and the society at large.
- PO11: To understand and apply engineering and management principles in executing project as a member and leader in a team in multidisciplinary environments.
- PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

At the time of graduation, the students will be able to:

- PSO1: Analyze, frame, design and examine Metallurgical and Materials Engineering problems using basic knowledge of engineering.
- PSO2: Establish themselves as practicing professionals in core sector or entrepreneurial actions by resolving real life engineering problems to offer techno-commercially feasible and socially acceptable solutions using contemporary knowledge and tools.
- PSO3: Communicate ethically and effectively, aspire to learn and be able to handle problems with professional attitude so as to lead a successful career in industries or entrepreneurial endeavors or undertake research in broad area of industrial metallurgy, independently as well as in group.

Course Structure and Detailed Syllabus

	FIRST YEAR: FIRST SEMESTER				
		THEORY			
S/N	Code	Subject	L-T-P	Credits	
1.	BMA01001	Mathematics-I	3-1-0	4	
2.	BCH01001	Physics/Chemistry	3-0-0	3	
3.	BEC01001	Basic Electrical Engineering/Basic Electronics	3-0-0	3	
4.	BIT01001	English For Business Communication/Programming for Problem Solving	3-0-0	3	
5.	BCE01001	Engineering Mechanics/Basic Civil Engineering	3-0-0	3	
		SESSIONALS			
1.	BCH01002	Physics Lab/Chemistry Lab	0-0-3	1.5	
2.	BEC01002	Basic Electrical Engineering Lab/Basic Electronics Lab	0-0-3	1.5	
3.	BIT01002	English For Business Communication/Programming for Problem Solving	0-0-3	1.5	
4.	BCE01002	Engineering Graphics & Design/ Workshop & Manufacturing Practices	0-0-3	1.5	
	NON-CREDIT				
1	BNC01001	Induction Programme and Participation in Clubs/Societies	0-0-0	0	
	TOTAL 15-1-12 22				

	FIRST YEAR: SECOND SEMESTER				
		THEORY			
S/N	Code	Subject	L-T-P	Credits	
1.	BMA02001	Mathematics - II	3-1-0	4	
2.	BPH02001	Physics/Chemistry	3-0-0	3	
3.	BEE02001	Basic Electrical Engineering/Basic Electronics	3-0-0	3	
4.	BHU02001	English For Business Communication/Programming for Problem Solving	3-0-0	3	
5.	BME02001	Engineering Mechanics/Basic Civil Engineering	3-0-0	3	
		SESSIONALS			
1.	BPH02002	Physics Lab/Chemistry Lab	0-0-3	1.5	
2.	BEE02002	Basic Electrical Engineering Lab/Basic Electronics Lab	0-0-3	1.5	
3.	BHU02002	English For Business Communication/Programming for Problem Solving	0-0-3	1.5	
4. BME02002 Engineering Graphics & Design/ Workshop & Manufacturing Practices 0-0-3			1.5		
NON-CREDIT					
1	BNC02001	NSS/NCC/Yoga	0-0-0	0	
	TOTAL 15-1-12 22				

	SECOND YEAR: THIRD SEMESTER			
		THEORY		
S/N	Code	Subject	L-T-P	Credits
1	BMA03001	Math-III	3-1-0	4
2	BMM03001	Metallurgical Thermodynamics and Kinetics	3-0-0	3
3	BMM03002	Introduction to Physical Metallurgy	3-0-0	3
4	BMM03003	Transport Phenomena	3-0-0	3
5	BHU03001	Economics for Engineers	3-0-0	3
	SESSIONAL			
1	BMM03004	Metallurgical Thermodynamics and Kinetics Lab	0-0-3	1.5
2	BMM03005	Transport Phenomena lab	0-0-3	1.5
3	BMM03006	Introduction to Physical Metallurgy Lab	0-0-3	1.5
4	BMM03007	Fuel Testing Lab	0-0-3	1.5
	NON CREDIT			
1	DNC02001	Essence of India Traditional Knowledge/		
1	BINC03001	Environmental Sciences	0-0-0	0
TOTAL 15-1-12 22				

SECOND YEAR: FOURTH SEMESTER					
	THEORY				
S/N	Code	Subject	L-T-P	Credits	
1.	BMA04001	Math IV	3-0-0	3	
2.	BMM04001	Mineral Processing	3-1-0	4	
3.	BMM04002	Unit Processes and Principles of Metal Extraction	3-0-0	3	
4.	BMM04003	Phase Transformation	3-0-0	3	
5.	BHU04001	Organizational Behavior	3-0-0	3	
		SESSIONAL			
1.	BMM04004	Phase Transformation Lab	0-0-3	1.5	
2.	BMM04005	Mineral Processing Lab	0-0-3	1.5	
3.	BMM04006	Process Metallurgy Lab	0-0-3	1.5	
4.	BMM04007	Non-Destructive Testing lab	0-0-3	1.5	
	NON CREDIT				
1	BNC04001	Environmental Sciences/ Essence of India Traditional	0-0-0	0	
1	DIAC04001	Knowledge	0-0-0	0	
2	BNC04002	Summer Internship/ Training	0-0-0	0	
	TOTAL 15-1-12 22				

	THIRD YEAR: FIFTH SEMESTER				
		THEORY			
S/N	Code	Subject	L-T-P	Credits	
1.	BMM05001	Iron Making	3-0-0	3	
2.	BMM05002	Heat Treatment	3-0-0	3	
3.	BMM05003	Deformation Behaviour of Materials	3-0-0	3	
4.		Professional Elective-I	3-0-0	3	
5.		Open Elective-I	3-0-0	3	
6.		Professional Ethics, Professional Law &Human Values / Financial Management, Costing, Accounting, Balance Sheet & Ratio Analysis	2-0-0	2	
		SESSIONAL			
1.	BMM05004	Heat Treatment Lab	0-0-3	1.5	
2.	BMM05005	Foundry Lab	0-0-3	1.5	
3.	BMM05006	Powder Metallurgy & Composite Materials Lab	0-0-3	1.5	
	TOTAL 17-0-9 21.5				

Professional Elective-I					
Sl.No.	Course Code	Subjects			
1.	BMMPE501	Powder Metallurgy and composite Materials			
2.	BMMPE502	Fuel, Furnace and Refractories			
3.	BMMPE503	Alternative Routes of Iron Making			

	Open Elective-I					
Sl.No.	Course Code	Subjects				
1.	BMMOE501	Nonequilibrium Processing of Materials				
2.	BMMOE502	Mechanical Working of Metallic Materials				

THIRD YEAR: SIXTH SEMESTER					
		THEORY			
S/N	Code	Subject	L-T-P	Credits	
1.	BMM06001	Casting Process and Solidification	3-0-0	3	
2.	BMM06002	Steel Making	3-0-0	3	
3.		Professional Elective-II	3-0-0	3	
4.		Professional Elective-III	3-0-0	3	
5.		Open Elective-II	3-0-0	3	
6.		Financial Management Costing, Accounting, Balance Sheet & Ratio Analysis/ Professional Ethics, Professional Law &Human Values	2-0-0	2	
	•	SESSIONAL		•	
1.	BMM06003	Computational Lab.	0-0-3	1.5	
2.	BMM06004	Material Processing Lab	0-0-3	1.5	
3.	BMM06005	Material Testing Lab	0-0-3	1.5	
	NON-CREDIT				
		Summer Industry Internship/Training/Project	0-0-0	0	
	TOTAL 17-0- 21.5 9				

Professional Elective-II				
Sl.No.	Course Code	Subjects		
1.	BMMPE601	Material Testing		
2.	BMMPE602	Sintering Theory and Practice		
3.	BMMPE603	Theory of Alloys		
	Professional Electi	ve -III		
Sl.No.	Course Code	Subjects		
1.	BMMPE605	Material Processing		
2.	BMMPE606	Welding Technology		
3.	BMMPE607	Failure analysis		
	Open Elective	-II		
Sl.No.	Course Code	Subjects		
1.	BMMOE601	Engineering Materials		
2.	BMMOE602	Modelling of Materials Processes		

	FOURTH YEAR: SEVEN SEMESTER			
		THEORY		
S/N	Code	Subject	L-T-P	Credits
1.	BMM07001	Introduction to Surface Engineering	3-0-0	3
2.	BMM07002	Material Characterization	3-0-0	3
3.		Professional Elective- IV	3-0-0	3
4.		Open Elective-III	3-0-0	3
		SESSIONAL		
1.	BMM07003	Material Characterization Lab	0-0-3	1.5
2.		Project – I	0-0-6	3
3.		Seminar on internship	0-0-3	1.5
TOTAL 12-0-12 18				

	Professional Elective-IV				
Sl.No.	Course Code	Subjects			
1.	BMMPE701	Non-ferrous Extractive Metallurgy			
2.	BMMPE702	Thermo-Mechanical Processing of Materials			
3.	BMMPE703	X-Ray Diffraction			
4.	BMMPE704	Fabrication of Materials			
	Open Elective -II				
Sl.No.	Course Code	Subjects			
1.	BMMOE701	Crystallography			
2.	BMMOE702	Introduction to Nano Science and Nano Technology			

		FOURTH YEAR: EIGHT SEMESTER		
		THEORY		
S/N	Code	Subject	L-T-P	Credits
1		Professional Elective-V	3-0-0	3
2		Professional Elective-VI	3-0-0	3
3		Open Elective-IV	3-0-0	3
		SESSIONALS		
1		Project II	0-0-12	6
2		Seminar on Project	0-0-2	1
		TOTAL	9-0-14	16

	Professional Ele	ective-V
Sl.No.	Course Code	Subjects
1.	BMMPE801	Advanced Materials
2.	BMMPE802	Finite Element Method
3.	BMMPE803	Modelling and Simulation
4.	BMMPE804	Numerical Methods in Engineering

	Professional Elec	ctive-VI
Sl.No.	Course Code	Subjects
1.	BMMPE805	Corrosion and Degradation of Metals
2.	BMMPE806	Biomaterials
3.	BMMPE807	Non-Metallic Materials
4.	BMMPE808	Hydro and Electrometallurgy

	Open Elect	ive -IV
Sl.No.	Course Code	Subjects
1.	BEMMOE801	Alloy Design and Selection of Materials
2.	BEMMOE802	Manufacturing and Design of Composites

Total Credits: 165

Syllabus for B. Tech in Metallurgical & Materials Engineering Veer Surendra Sai University of Technology (VSSUT) Odisha

FIRST SEMESTER

B. Tech.: Mathematics-I (Calculus and Linear Algebra) (BMA01001) [3-1-0]

Module 1: Calculus (8 Lectures)

Rolle's theorem, Mean value theorems (statements only) and applications. Introduction to improper integrals. Beta and Gamma functions and their properties.

Module 2: Calculus (8 Lectures)

Convergence of sequence and series, tests of convergence. Fourier series, arbitrary period, even and odd function, half range series.

Module3: Calculus (8 Lectures)

Limit, continuity and partial derivatives (two variables), maxima and minima. Vector and scalar point functions and fields, gradient of a scalar field, directional derivative, divergence of a vector field, curl of a vector field and applications

Module 4: Linear Algebra (8 Lectures)

Linear systems of equations, Gauss elimination, linear independence, rank of a matrix, Gauss-Jordan elimination. Vector Space; basis and dimension'

Module 5: Linear Algebra (8 Lectures)

Eigenvalues, eigenvectors, some applications of eigenvalue problems, symmetric, skewsymmetric and orthogonal matrices, diagonalization, quadratic forms, complex matrices and forms.

Text Book:

- Erwin Kreyszig, Advanced Engineering Mathematics (9th Edition), Wiley India Pvt. Ltd
- 2) S.C. Malik and S. Arora, Mathematical Analysis, New Age International

Reference Books:

- 1) George B. Thomas, Jr. and Ross L. Finney, Calculus and Analytic Geometry, Addison WesleyPublishing Company
- 2) B.V. Ramana, Higher Engineering Mathematics, McGraw Hill
- 3) A. Stroud, Advanced Engineering Mathematics, Industrial Press
- 4) S.K. Paikray, Text book of Matrix Algebra, Kalyani Publisher

Course Outcomes:

Upon completion of the subject the students will be able to:

C01	Recognize basic knowledge of differential calculus, improper integral, Beta and Gamma
	functions which are useful in various fields of engineering
CO2	Analyse periodic phenomenon and describe Fourier series expansion of periodic function
CO3	Demonstrate functions of several variables that is essential in most of the branches of
	engineering
CO4	Apply Gauss elimination method and rank of a matrix in solving linear equations
CO5	Implement knowledge of eigenvalues and eigenvectors in a comprehensive manner

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	2	1	-	-	-	1	1
CO2	3	3	2	2	1	2	1	-	-	-	1	1
CO3	3	3	2	2	1	2	1	-	-	-	1	1
CO4	3	3	2	2	1	2	1	-	-	-	1	1
CO5	3	3	2	2	1	2	1	-	-	-	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	2	1	2	1	-	-	-	1	1

Subject: Chemistry (BCH01001)

Credits: 4 [3-1-0]

Module–I (9 Hours)

Schrodinger Wave equations (not to be derived), Application to particle in ID box. Molecular rotational (microwave) spectroscopy: Basic principle and application to diatomic molecules, selection rules.

Molecular vibrational (IR) spectroscopy: Basic principle, types of vibrations and vibrational frequency, application to Harmonic and anharmonic oscillators, selection rules, modes of vibration. Electronic (UV-Visible) spectroscopy: Basis principle, types of electronic transitions, The Franck - Condon principle, and Jablonski diagram.

Module – II (9 Hours) Thermodynamics of Chemical Processes:

Concept of Entropy and free energy, Chemical Potential, Equilibrium Conditions.

Phase equilibria:

Phase, Components, Degree of Freedom, Phase Rule Equation.

Phase Diagrams: One Component Systems – Water and Sulphur, Basic idea of (a) Peritectic system, (b) Eutectoid system, (c) Binary phase diagrams of Pb-Ag & Fe-C system.

Module–III (9 Hours)

Electrochemistry:

Electrode Potentials and its Relevance to Oxidation and Reduction, Types of electrodes, Galvanic cell, Measurement of EMF and application of EMF measurements, Types of reference electrodes (Hydrogen, Glass, Quinhydrone Electrodes,) Determination of pH, Electrochemical energy systems its types (Dry Cells, lead acid cell and Fuel Cells: Construction, reaction, advantages and applications).

Corrosion: Concept, types of corrosion, dry or chemical and wet or Galvanic/electrochemical Corrosion, Factors affecting corrosion.

Module–IV (9 Hours)

Kinetics of complex Chemical Reactions: Reversible, Consecutive and Parallel Reactions, Steady State Approximation, Chain reaction.

Module-V (9 Hours)

Chemistry of engineering materials:

Nanomaterials: Applications of nanomaterials.

Organometallics: Application of organometallics

Books Recommended:

P. W. Atkins, Elements of Physical Chemistry, 4th Edition, Oxford University Press
C. N. Banwell and E. M. MacCash, Fundamentals of Molecular Spectroscopy, 5th Edition,
P. K. Kar, S. Dash and B. Mishra, B.Tech. Chemistry Vol. I, Kalyani Publications

Course Outcomes:

CO1: Apply the basic concept of classical mechanics and quantum chemistry to real life applications & to understand the basic concept of electromagnetic radiation, spectroscopic techniques and their applications.

CO2: Should perceive the spontaneity/feasibility of a process applying thermodynamics concepts and to keep up with the idea of phase equilibria, phase rule and its application to one and two component system.

CO3: Define the application of electrochemistry to commercial electrochemical cell and corrosion.

CO4: Able to apply the basic concept of kinetics of a reaction to complex reactions.

CO5: To demonstrate the properties and applications of organometallics and nanomaterials.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	-	-	-	1	-	-	1	1	1
CO2	3	3	1	-	-	-	1	-	-	1	1	1
CO3	3	3	1	-	-	-	1	-	-	1	1	1
CO4	3	3	1	-	-	-	1	-	-	1	1	1
CO4	3	3	1	-	-	-	1	-	-	1	1	1

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	3	1	-	-	-	1	-	-	1	1	1

BASIC ELECTRONICS (BEC01001)

MODULE	CONTENT	HOURS
MODULE 1	Introduction to Electronics: - Signals, Frequency Spectrum of Signals, Analog and DigitalSignals,	12
	Linear Wave Shaping Circuits: - RC LPF, Integrator, RC HPF, Differentiator.	
	Properties of Semiconductors: - Intrinsic, Extrinsic Semiconductors, Current Flow in Semiconductors,	
	Diodes: - p-n junction theory, Current-Voltage characteristics, Analysis of Diode circuits, Rectifiers,	
	Clippers, Clampers, Special diodes- LED, Photo diode, Zener Diode.	
MODULE 2	Bipolar junction Transistor (BJTs):- Device Structure and Operation, Current-Voltage Characteristics, BJT as an Amplifier and as a Switch. Introduction to Power Amplifiers: - A,B and Ctypes.	10
	JFET:- Physical Structure, Operation and Characteristics	
MODULE 3	Feedback Amplifiers: - General Feedback Structure, Properties of Negative Feedback, Four Basic Feedback Topologies (block diagram only), Practical feedback circuit.	08
	Operational Amplifiers (OP-AMPs): - The Ideal OP-AMP, Inverting Configuration, Non-Inverting Configuration. OP-AMP Applications (Adder, Subtractor, Integrator, Differentiator).	
MODULE 4	Digital Fundamentals:- Binary Numbers, Signed-binary numbers, Decimal-to-Binary & Binary-to-Decimal Conversion, Binary Addition, Subtraction, Multiplication and Division, Hexadecimal Number Systems, Logic Gates, Boolean Algebra, De Morgan's Theorems, Laws of Boolean Algebra, RS Flip Flop	06
MODULE 5	Introduction to Electronic Instruments: - CRO: CRT, Waveform Display, Applications of CRO, Electronic Multimeter, Audio Signal Generator: - Block diagram, Front Panel Controls.	06
	Principles of Communication:- Fundamentals of AM & FM, Block diagram of Transmitters	
TEXT BOOK	1. Microelectronics Circuits, A.S Sedra, K.C. Smith, Oxford Universit Selected portions from chapters 1 to 3, 5, 8,13.	yPress.
	2. Electronics Fundamentals and Applications, D Chattopadhyay a Rakshit, New Age International Publications. Selected portions from 4 to 12, 14, 16 to 18,20,21.	and P.C. nchapters

Syllabus for B. Tech in Metallurgical & Materials Engineering Veer Surendra Sai University of Technology (VSSUT) Odisha

REFERENCE	1. Integrated Electronics, Millman and Halkias, TMHPublications.					
BOOK 2.Electronic Devices & Circuit Theory, R.L Boylestad and L.Nashelsky, PearsonEducation.						
COURSE OUT	COME: After completion of course student should be able to					
1. Understand	different types of signals and its application to semiconductor devices and circuits.					
2. Understand	different BJTs and itsoperation.					
3. Understand	the Feedback Amplifiers and Operational Amplifiers.					
4. Understand	4. Understand fundamentals of different Digital arithmetic operations and Digital circuits.					

5. Understand some important Electronic Instruments and Communicationsystems.

Course Outcomes:

Upon completion of the subject the students will demonstrate the ability to:

CO1	Implement different types of signals and its application to semiconductor
	devices and circuits.
CO2	Analyze the concept of different BJTs and its operation.
CO3	Express the concept of the Feedback Amplifiers and Operational Amplifiers.
CO4	Apply fundamentals of different Digital arithmetic operations and Digital
	circuits.
CO5	Demonstrate basic principles of important Electronic Instruments and
	Communication systems.

	Relati	onship	of Co	urse Ou	itcome	es (CO) to Pr	ogran	1 Outc	omes (P	O)	
	1	– Low			2 - M	oderat	e	_	3 -	- High		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	1	2	-	-	-	-	1
CO2	3	2	2	3	2	1	1	-	-	-	-	1
CO3	3	2	3	3	2	1	2	-	-	-	-	1
CO4	3	3	3	3	3	1	1	-	-	-	-	1
CO5	3	3	3	3	2	1	3	-	-	-	-	1

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	2	3	3	2	1	2	-	-	_	-	1

PROGRAMMING FOR PROBLEM SOLVING (BIT01001)

L-T-P: 3-0-0

Module I:

(8 Lectures) Introduction to computing- Block architecture of a computer, fundamental units of storage: bit, bytes, nibbles, word size. Introduction to problem solving- Basic concepts of an algorithm, program design methods, flowcharts. Level of programming Languages, structure of C program, Compiling and Executing C program

Module II:

C Language Fundamentals- Character set, Identifiers, Keywords, Data Types, Constant and Variables, Statements. Input & Output - Input & Output Assignments, Formatted Outputs. Operators and Expressions-Operators, Precedence of operators. Decision Control Structure, Loop Control Structure and Case Control Structure.

Module III:

(8 Lectures)

(8 Lectures)

Functions: Monolithic vs Modular programs, User defined vs standard functions, formal vs Actual arguments, Functions category, function prototypes, parameter passing, Recursion.Arrays1D Array, 2D Array & Multi-Dimensional Array. Strings- Declaration & Initialization, String Handling Functions.

Module IV:

(8 Lectures)

Pointer variable and its importance, Pointer Arithmetic, Passing parameters, pointer to pointer, pointer to function. Dynamic Memory Allocation. Structure, Nested Structure, Array of Structures, Pointer to Structure, Structure & Functions, Union, Array of Union Variables, Union inside Structure, Bit Fields. Storage Class.

Module V:

(8 Lectures)

Preprocessor Directives- Types, Pragma Directives, Conditional Directives. typedef, Enumerated Data Type. Files- Reading data from Files, Reading data from Files, Writing data to Files, Error Handling during File Operations. Advanced Issues in Input & Output using argc&argv.

Text Books:

- 1. Programming in ANSI C, E Balaguruswamy
- 2. Computer Fundamentals & Programming in C: ReemaThareja, Oxford University Press.

Reference Books:

- 1. Let us C- Y.Kanetkar, BPB Publications.
- 2. Programming with ANSI and Turbo C- Kamthane, A.N. Pearson Education
- 3. C How to Program- Deitel and Deitel, Pearson Education.
- 4. The C Programming Language- Brian W. Kernighan and Dennis M. Ritchie, PrenticeHall.

Course Outcomes:

Upon completion of the subject the students will demonstrate the ability to:

- 1. grasp the fundamentals of Computer and problem solving.
- 2. conceptualize fundamentals of C Programming along with control structures.
- 3. Implement different problems on functions and arrays.

Cr.-3

- 4. Apply pointers structures and unions for problem solving.
- 5. Gain knowledge of pre-processor directives and file operations.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	2	-	-	3
CO2	3	3	3	3	2	-	-	-	2	-	-	3
CO3	3	3	3	3	2	-	-	-	2	-	-	3
CO4	3	3	3	3	2	-	-	-	2	-	-	3
CO5	3	3	3	3	2	-	-	-	2	_	-	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO	PO1	PO1	PO1								
Cours	3	3	3	3	2	-	-	-	2	-	-	3

Basic of Civil Engineering (BCE01001)

Module-II

Introduction to Civil Engineering – Various disciplines of Civil engineering, Importance of Civil engineering in infrastructure development of the country.

Introduction to types of buildings as per NBC, Selection of site for buildings, Components of a residential building and their functions, Introduction to Industrial buildings and types.

Building Planning – Basic requirements, elements, introduction to various building area terms, computation of plinth area, carpet area.

Module-II

Surveying – Principle and objectives, Instruments used, Horizontal measurements, Ranging (direct ranging only), Instruments used for ranging, Leveling – Definition, Principles, Instruments, Preparation of level book, problems on leveling, Modern surveying instruments – EDM, Total station, GPS (Brief discussion)

Building Materials – Bricks, properties and specifications, Cement – Types, properties, grades, other types of cement and uses, Cement mortar – Constituents, Preparation, Concrete – PCC and RCC, Grades, Steel – Use of steel in buildings, types.

Module-III

Building Construction – Foundations, Classification, Bearing Capacity of Soil and related terms (definition only), Masonry Works – classifications, definition of different technical terms, Brick masonry – types, bonds, general principle, Roofs – functional requirements, basic technical terms, roof covering material, Floors – function, types, flooring materials(brief discussion), Plastering and Painting – objectives, types, preparation and procedure of application.

Module-IV

Basic Infrastructure services – air conditioning & purpose, fire protection & materials, Ventilation, necessity & functional requirements, Lifts, Escalators.

Introduction to planning and design aspects of transportation engineering, Transportation modes, Highway engineering – historical development, highway planning, classification of highway, Railway Engineering – cross section of rail track, basic terminology, geometric design parameter(brief discussion only).

Module-V

Airport engineering – development, types, definition, characteristics of aircraft, basic terminology, Traffic engineering – traffic characteristics, traffic studies, traffic operations (signals, signs, markings), Urban engineering – classification of urban road.

Irrigation & Water Supply Engineering – Introduction, Types of Irrigation, different types of hydraulic structures, dam and weirs, types of dam, purpose and functions.

Text Books:

• Basic Civil engineering, Gopi, S., Pearson Publication

• Basic Civil Engineering, Bhavikatti, S. S., New Age.

Reference Books:

- Construction Technology, Chudley, R., Longman Group, England
- Basic Civil and Environmental Engineering, C.P. Kausik, New Age.
- American Society of Civil Engineers (2011) ASCE Code of Ethics Principles Study and Application

Course Outcomes:

- Analyze the fundamental aspect of building planning.
- Summarize general aspect of building material and surveying.
- Explain about building constructions.
- Judge transportation modes and planning.
- Describe about Airport & Irrigation Structures.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	1	-						
CO2	3	2	1	1	1							
CO3	2	1			3							
CO4	3	2	1	2	1	3						
CO5	3	2	3	2	1	1	3	1	2	2	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	2	2	2	1	2	3	1	2	2	2	3

SESSIONAL

<u>B Tech Chemistry Lab: BCH01002</u>

List of Experiments to be done (Any ten Experiments)

- 1. Determination of amount of sodium hydroxide and sodium carbonate in a Mixture.
- 2. Determination of Total hardness of water by EDTA method.
- 3. Estimation of calcium present in the limestone.
- 4. Standardization of KMnO4 using sodium oxalate.
- 5. Determination of ferrous iron in Mohr's salt by potassium permanganate.
- 6. Determination of Rate constant of acid catalyzed hydrolysis of ester.
- 7. Determination of dissolved oxygen in a sample of water.
- 8. Conductometric titration of strong acid and strong base
- 9. Determination of Viscosity of lubricating oil by red wood Viscometer.
- 10. Determination of Flash point of given oil by Pensky Marten's Flash Point Apparatus.
- 11. Determination of available chlorine in bleaching powder.

12. Preparation of acidic and basic buffer solution and measurement of PH using PH meter

Book Recommended:

B. Tech Practical Chemistry- .

Course Outcomes:

CO1: Develop knowledge of concepts and applications of chemistry, important laboratory analytical techniques, and instrumentation.

CO2: Apply fundamental principles for environmental analytical methods.

CO3: Identify suitable analytical techniques for analysing a specific compound in a sample and ensure quality control.

CO4: Implement suitable techniques for sampling and handling of environmental and chemical samples.

CO5: Hands on training on using different laboratory apparatus and equipments including data analysis and conclusions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	-	1	-	2	-	1	-	1	-
CO2	3	1	2	-	1	-	2	-	1	-	1	-
CO3	3	1	2	-	1	-	2	-	1	-	1	-
CO4	3	1	2	-	1	-	2	-	1	-	1	-
CO4	3	1	2	-	1	-	2	-	1	-	1	-

Course Articulation Matrix

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1-	PO11	PO12
CO	3	1	2	-	1	-	2	-	1	-	1	-

BASIC ELECTRONICS LAB (BEC01002)

Experiment No.	CONTENT
	Familiarity with electronic components and devices(Testing of
1	semiconductor diode, Transistor, IC Pins connection) Digital
	Multimeter should be used.
2	Study and use of CRO to view waveforms and measure its Amplitude
L	and Frequency.
3	Frequency response of LPF and HPF.
1	V-I Characteristics of a Semiconductor Diode. Determining DC and AC
4	resistance.
5	Clipper Circuit.
6	Clamper Circuit.
7	Half Wave and Full Wave Rectifier without Capacitor filter. Record of
1	Waveforms, Measurement of Average and RMS value.
0	V-I (Output) Characteristics of N-P-N/P-N-P Transistor in CE
0	Configuration.
0	OP-AMP: Inverting and Non-Inverting Configuration. Record of
9	Waveforms.
10	Verification of Truth table of Logic gates (AND, OR, NOT, NAND,
10	NOR, EX-OR)
SUPPLEMENTARY	1. Integrated Electronics, Millman and Halkias, TMHPublications.
BOOK	
	2. Electronic Devices & Circuit Theory, R.L Boylestad and L.
	Nashelsky, PearsonEducation.

Course Outcomes:

Upon completion of the subject the students will demonstrate the ability to:

CO1	Implement Acquire basic knowledge on electronic devices and components
CO2	Analyze different electronics circuits using semiconductor diodes.
CO3	Analyze and develop the characteristics of BJT and FET Circuits.
CO4	Apply fundamentals Operational amplifier circuits.
CO5	Implement knowledge on basic digital logic gates

	Relati	onship	o of Co	urse Ou	itcome	es (CO) to Pr	ogran	1 Outc	omes (P	0)	
	1	– Low			2 - M	oderat	e		3 -	- High		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	1	2	-	-	-	-	1
CO2	3	2	2	3	2	1	1	-	-	-	-	1
CO3	3	2	3	3	2	1	2	-	-	-	-	1
CO4	3	3	3	3	3	1	1	-	-	-	-	1
C05	3	3	3	3	2	1	3	-	-	-	-	1

Syllabus for B. Tech in Metallurgical & Materials Engineering Veer Surendra Sai University of Technology (VSSUT) Odisha

8												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	2	3	3	2	1	2	-	-	-	-	1

Program Articulation Matrix row for this Course

PROGRAMMING FOR PROBLEM SOLVING LAB

(BHU01002)

L-T-P: 0-0-3

Topics to be covered:

- 1. Programs using Input Output functions.
- 2. Programs on variable declaration, assignments, operators and typecasting.
- 3. Program on selection & iterative constructs.
- 4. Programs on functions.
- 5. Programs on arrays.
- 6. Programs on string manipulation.
- 7. Programs on pointers.
- 8. Programs on structure & union.
- 9. Programs on file handling.
- 10. A mini-project to be designed by students using features of C.

Course Outcomes

Upon completion of the subject the students will demonstrate the ability to:

CO1: Implement the basicsof C programming.

- CO 2: Exercise conditional and iterative statements to develop programs.
- CO 3: Exercise user defined functions to solve real time problems.
- CO 4: Demonstrate the concept of pointers to access arrays, strings and functions.
- CO 5: Create C programs on file manipulations.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	2	3	-	-	3
CO2	3	3	3	3	2	-	-	2	3	-	-	3
CO3	3	3	3	3	2	-	-	2	3	-	-	3
CO4	3	3	3	3	2	-	-	2	3	-	-	3
CO5	3	3	3	3	2	-	-	2	3	-	-	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation Program Articulation Matrix row for this Course

	PO	PO1	PO1	PO1								
Cours	3	3	3	3	2	-	-	2	3	-	-	3

Cr.-1.5

Engineering Graphics & Design (BCE01002)

Course Content

Module-I

Introduction to Engineering Drawing: Drawing instruments, lines, lettering and dimensioning.

Scales: Plain, Diagonal and Vernier Scales.

Module-II

Curves: Parabola, Ellipse, Hyperbola, Cycloid, Epicycloid, Hypocycloid and Involute.

Module-III

Orthographic Projections: Concepts, Orthographic projections of points, Lines, Planes and Solids. Sections of solids; Development of surfaces

Module-IV

Isometric Projections: Principles, Isometric Scale, Isometric Views, Isometric Views of lines, Planes, Simpleand compound Solids.

Module-V

Introduction to Auto-Cad:

Curves: Parabola, Ellipse, Hyperbola, Cycloid, Epicycloid, Hypocycloid and Involute

Reference Books:

1 Engineering drawing by N.D. Bhatt and V.M Panchal, Charotar Publishing House, Anand. Engineering Drawing by Venugopal, New Age publisher.

Course Outcomes:

- 1. Revise basics of engineering drawings and curves.
- 2. Use Orthographic projections of Lines, Planes, and Solids.
- 3. Apply Sectioning of various Solids and their representation.
- 4. Change Pictorial views to Orthographic Projections
- 5. Construct Isometric Scale, Isometric Projections and Views.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	1	1							
CO2	3	2	1	1	1							
CO3	2	1			2							
CO4	3	2	1	2	1	1						
CO5	3	2	2	2	1	1	3	1	2	2	2	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	2	2	2	1	1	3	1	2	2	2	2

SECOND SEMESTER

Mathematics-II (Differential Equations and Complex Variables)(BMA02001)[3-1-0]

Module 1: Differential Equations (8 Lectures)

Exact ODEs, integrating factors, linear ODEs, Bernoulli equation, homogeneous linear odes of second order, homogeneous linear ODEs with constant coefficients, Euler-Cauchy equations, non-homogeneous ODEs, Applications of ODEs to electric circuits

Module 2: Power Series Solution of Differential Equations (8 Lectures)

Series solution of differential equation (excluding Frobenius method), Legendre's equation, Legendre polynomials. Bessel's Equation, properties of Bessel's functions, Bessel Functions of the first and Second Kind.

Module 3: Complex Variables (8 Lectures)

Complex valued function, differentiation, analytic function, Cauchy-Riemann equations, harmonic and conjugate harmonic functions, exponential function, trigonometric and hyperbolic functions, logarithm, general power

Module 4: Complex Variables (8 Lectures)

Line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula, power series, radius of convergence, Taylor and Maclaurin series, singularities and zeros, Laurent series, Cauchy residue theorem (statement only) and applications.

Module 5: Elementary Numerical Methods (8 Lectures)

Solution of algebraic and transcendental equations by Newton-Raphson and secant method.

Interpolation: Lagrange's method, divided difference method, Newton's forward and backward method. Numerical Integration: Trapezoidal and Simpson's Rule. Numerical solutions of differential equations: Euler's method and improved Euler's method.

Text Book:

1) Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd, 9th edition.

Reference Books:

- 1) K.A. Stroud, Advanced Engineering Mathematics, Industrial Press
- 2) Milton Abramowitz and Irene A. Stegun, *Handbook of Mathematical Functions*, National Bureau ofStandards, Applied Mathematics Series 55
- 3) J. Sinha Roy and S. Padhy, Ordinary and Partial Differential Equation, Kalyani

Publisher.

4) B.V. Ramana, Higher Engineering Mathematics, McGraw Hill

Course Outcomes:

Upon completion of the subject the students will be able to:

CO1	Develop adequate knowledge of the effective mathematical tools for the solutions of differential
	equations that models various physical processes
CO2	Describe power series solution of differential equations
CO3	Demonstrate analytic functions and applications of Cauchy-Riemann equations
CO4	Evaluate integration of complex valued functions, and apply Taylor and Laurent series expansions of functions in various fields of engineering problems
CO5	Compute roots of algebraic and transcendental equations, and also evaluate the integrals by Trapezoidal and Simson's rules

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	2	1	-	-	-	1	1
CO2	3	3	2	2	1	2	1	-	-	-	1	1
CO3	3	3	2	2	1	2	1	-	-	-	1	1
CO4	3	3	2	2	1	2	1	-	-	-	1	1
CO5	3	3	2	2	1	2	1	-	-	-	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	2	1	2	1	-	-	-	1	1

ENGLISH FOR BUSINESS COMMUNICATION (BHU02001)

Course Description

The course is designed to give students a comprehensive view of communication, its scope and importance in business, and to build the proficiency needed to succeed in today's technologically enhanced workplace. Effective communication is an integral part of life. This course focuses on improving the LSRW skills, i.e. listening, speaking, reading and writing of the students. Students will learn how to communicate effectively though the prescribed syllabus followed by an intensive practice in the language lab. This integrated approach of theory and language lab sessions will help students to communicate clearly with an impact, by improving their verbal and non-verbal communication style, as well as enhancing their competency in grammar and pronunciation. This course further tries to conversant students with the correct practices and strategies in drafting effective business correspondence.

Syllabus

Module 1: Fundamentals of Communication (6 Hours)

- Process of Communication, Types of Communication (Verbal & Non Verbal)
- Channels of Business Communication
- ✤ Barriers to Communication.
- Plain English
- ✤ Bias free language
- ✤ Cross Cultural Communication

Module 2: Communicative Grammar (6 Hours)

- Time and Tense
- ✤ Aspects (Perfective & Progressive)
- Verbs of State and Event
- Passive and Active Voice
- Conditionals

Module 3: Sounds of English (06 Hours)

- ✤ The Speech Mechanism and Organs of Speech
- Consonant Sounds of English
- Vowel Sounds of English
- Stress Pattern: Syllable, Stress and Intonation.
- Problem sounds for Indian Speakers

Module 4: Business Writing (06 Hours)

- Paragraph writing
- Sentence Linker
- Business Letters
- Report Writing
- Proposal writing

Module 5: Professional Writing (06 Hours)

- ✤ Notice, Circular and Memo writing
- ✤ Agenda & Minute writing
- ✤ Writing Cover letter
- ✤ Résumé (CV) Writing

Reference Books

- 1. Effective Technical Communication by M Ashraf Rizvi (Tata McGraw Hill)
- 2. Business Communication by Hory Sanker Mukerjee (Oxford University Press)
- 3. Better English Pronunciations by J. D.O Conner (Cambridge University Press)
- 4. A Communicative Grammar of English by G.N. Leech and Jan Svartik (OUP)
- 5. Business communication by Ramachandran, Lakshmi and Krishna (Macmillan)

Programme Outcomes of BTech Programme

PO1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering
	problems and design system components or processes that meet the specified needs
	with appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of
	data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources,
	and modern engineering and IT tools including prediction and modelling to
	complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge
	to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member
	or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective
	presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of
	the engineering and management principles and apply these to one's own work, as
	a member and leader in a team, to manage projects and in multidisciplinary

Syllabus for B. Tech in Metallurgical & Materials Engineering Veer Surendra Sai University of Technology (VSSUT) Odisha

	environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of
	technological change.

Course Outcomes

Upon completion of the course the students will demonstrate the ability to:

CO1	Analyse various components of human communication and to identify key elements
	and principles of organizational communication.
CO2	Apply correct usage of English grammar in writing and speaking.
CO3	Evaluate students' ability to articulate English key sounds as well as its basic
	rhythm, stress and intonation patterns correctly.
CO4	Compile, plan and structure various forms of business writing in a professional
	manner.
CO5	Write various business documents appropriate for different business and
	employment situations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	-	1	-	-	1	3	-	-
CO2	-	-	-	1	-	1	-	-	1	3	-	-
CO3	-	-	-	1	-	1	-	-	1	3	-	-
CO4	-	-	-	1	-	1	-	-	1	3	-	-
CO5	-	-	-	1	-	1	-	-	1	3	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	-	-	-	-	-	-	-	-	1	3	1	-

ENGINEERING PHYSICS (BPH02001)

Module-I PROPERTIES OF MATTEER

Ideas of Elastic Constants (Y, K, η and σ), relation between elastic constants, torsion pendulum, determination of η , cantilever at one end.

Module-II OSCILLATION AND WAVES

Review of Simple Harmonic Oscillation and application to Compound pendulum, Damped Harmonic Oscillation, Forced Oscillation, Resonance, (Amplitude Resonance, Velocity Resonance, and Sharpness of Resonance).

Module-III OPTICS

Concept of Wave and wave equation, Superposition of Many harmonic waves, Interference, Concept of coherent sources (Division of wave front and division of amplitude), Interference in thin parallel film, Newton's ring (Theory, Application, Determination of Wavelength of Light, Refractive index of liquid)

Concept of Diffraction (Huygen's Principle), Types of Diffraction, Fraunhofer Diffraction due to a single slit and diffraction Grating, Determination of Wavelength, Dispersive Power and Resolving Power of a Plane Diffraction Grating, Polarization, Double Refraction, Half wave Plate, Quarter wave Plate.

Module-IV ELECTROMAGNETISM

Vector Calculus, Gradient, Divergence, Curl (Mathematical Concept), Gauss' Divergence Theorem and Stoke's Theorem (Statement Only), Derivation of Maxwell's Electromagnetic

Equations in Differential form and Integral form, Electromagnetic Wave equations for E

and *B* in vacuum and in conducting medium, Transverse nature of EM waves.

Module-V QUANTUM MECHANICS AND PHOTONICS

Wave particle duality, Matter Wave (de-Broglie Hypothesis), Wave Functions, Observables as Operators, Eigen Functions and Eigen Values, Normalization, Expectation Values, Schrodinger equation (Time Dependent and Time Independent), Particle in a box.

Lasers: Introduction and Characteristics of Lasers, Einstein's Coefficients and Relation between them, Lasing Action (Population Inversion, Three and Four level Pumping Schemes), Different types of Lasers (Ruby lasers, He-Ne Lasers).

Text Book:

- 1. Principle of Engg. Physics: Md. N. Khan and S. Panigrahi
- 2. Engg. Physics: H.K. Malik and A.K. Singh

Reference Books:

- 1. Oscillations and Waves: N. Subramanyam and Brij Lal
- 2. Optics: A. Ghatak

- 3. Electrodynamics: D.J. Griffith
- 4. Concept of Modern Physics: A. Beiser
- 5. Lasers: Theory and Applications: K. Thyagarajan and A.K. Ghatak

Course Outcomes:

Upon completion of the subject the students will be able to:

	I J
CO1	Explain the concepts of Stress, Strain, Elastic Modulus and Elastic Constant, Bending of
	Beams and identify the importance Elastic properties in Engineering Applications
CO2	Demonstrate simple harmonic Oscillator, Damped Harmonic and Forced Oscillators.
	Express Quality factor and resonance with applications
CO3	Explain the link between Simple Harmonic Motion and Waves. Understand the principle of
	superposition, the need of coherent sources, analyze the difference between Interference
	and Diffraction and their applications. Illustrate the concept of Polarization of light and its
	applications.
CO4	The basic mathematical concepts related to electromagnetic vector fields,
	Understand the concepts related to Gauss law, Electric and magnetic Flux, Faraday's law,
	induced emf, Displacement current, Ampere's Circuital law and Maxwell's equations.
	Expalin the transverse nature of electromagnetic wave
CO5	Identify and understand the kinds of experimental results which are incompatible with
	classical physics,
	Interpret the wave function and apply operators to it to obtain information about a particle's
	physical properties
	Solve the Schrodinger equation to obtain wave functions for some basic, physically
	important types of potential in one dimension
	Describe the requirements for a system to act as a laser.
	To explain lasing with need of metastable state and population inversion
	To explain the drawbacks of three level laser system and its solution in four level laser
	system.

Tabl	PO	PO1	POP1	PO1								
e	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	2	2	1	-	-	1	-	1	-	1
CO2	3	3	3	2	1	-	-	1	-	1	-	2
CO3	3	3	3	3	1	-	-	1	-	1	-	2
CO4	3	3	3	2	1	-	-	1	-	1	-	2
CO5	3	3	2	3	2	-	-	2	-	2	-	2

BASIC ELECTRICAL ENGINEERING (BEE02001)

MODULE-I (8 HOURS)

D.C circuit analysis and network theorems: Concept of network, Active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, source transformation, Kirchoff's Law: loop and nodal methods of analysis, star delta transformation, network theorems: Thevenin's theorem, Norton's theorem, maximum power transfer theorem. Transients, in R-L, R-C and R-L-C circuits with DC Excitation.

MODULE-II (8 HOURS)

Single phase and three phase ac circuit: Sinusoidal, square and triangular waveformsaverage and effective value, form the peak factors, concept of phasors, phasors representation of sinusoidally varying voltage and current, analysis of series-parallel RLC circuits. Apparent, active and reactive powers, power factor, power factor improvement, resonance in series and parallel circuits, bandwidth and quality factors, star and delta connections, balanced supply and balanced load, line and phase voltage/current relation, three phase power measurements.

MODULE-III (8 HOURS)

Magnet circuit & principle of electromechanical energy conversion: Analogy between electric and magnetic circuit, magnetic circuits with DC and AC excitation, magnetic leakage, BH curve, hysteresis and eddy current losses, magnetic circuit calculation, mutual coupling. Principles of dc motor & generator, types, emf equation of DC machine, torque equation of motor, Speed control of dc motor. characteristics and applications of DC motors.

MODULE-IV (8 HOURS)

AC MACHINES: Single Phase Transformer: Principle of operation, construction, emf equation, equivalent circuit, power losses, efficiency, Introduction to auto transformers. Three Phase Induction Motor: Type, principle of operation, slip-torque Characteristics, applications. Single Phase Induction Motor: Principle of operation and introduction to methods of starting, applications. Three Phase Synchronous Machines: Principle of operation, voltage regulation, applications.

MODULE-V (7 HOURS)

Measurement Instruments & Introduction to Power System: Types of instruments: construction and working principle of PMMC and MI type voltmeter and ammeters, single phase dynamometer type wattmeter and induction type energy meter, use of shunts and multipliers: general layout of electrical power system and function of its elements, concept of grid, Introduction to power converters.

TEXT BOOKS

[1]. Edward Hughes (revised by Ian McKenzie Smith), "Electrical & Electronics Technology", Pearson Education Limited. Indian Reprint 2002, 10th Edition.[2]. D.Kulshreshtha, "Basic Electrical Engineering" TMH, 1st Edition.

> Syllabus for B. Tech in Metallurgical & Materials Engineering Veer Surendra Sai University of Technology (VSSUT) Odisha

REFERENCE BOOKS

[1]. C.L. Wadhwa, "Electrical Engineering", New Age International Publishers, 2nd Edition.

[2]. S. Parker Smith, "Problems in Electrical Engineering", Asia Publications, 10th Edition.

Course Outcomes:

Upon completion of the subject the students will demonstrate the ability to:

CO1	Implement principles of DC network, theorems and transients.
CO2	Analyze the concept of Single phase and three phase AC circuits.
CO3	Express the concept of magnetic circuit and DC machines.
CO4	Apply basic principles of AC machines and their working.
CO5	Demonstrate basic principles of measuring instruments and power system.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	2	1	-	-	-	-	1
CO2	3	3	2	1	1	2	1	-	-	-	-	1
CO3	3	3	2	1	1	2	1	-	-	-	-	1
CO4	3	3	2	1	1	2	1	-	-	-	-	1
CO5	3	3	2	1	1	2	1	-	-	-	-	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

Program Articulation Matrix row for this Course

	PO	PO1	PO1	PO1								
Cours	3	3	2	1	1	2	1	-	-	-	-	1

ENGINEERING MECHANICS (BME02001)

Course Contents

Module - I (8 Hours)

Concurrent forces on a plane: Composition, resolution and equilibrium of concurrent coplanar forces, method of moment.General case of forces on a plane: Composition and equilibrium of forces in a plane, plane trusses, method of joints and method of sections, plane frame, equilibrium of ideal systems.

Module-II (8 Hours)

Friction: Problems involving dry friction, Ladder, WedgesPrinciple of virtual work.

Module - III (8 Hours)

Parallel forces on a plane: General case of parallel forces, center of parallel forces and center of gravity, centroid of composite plane figure and curves, Theorems of Pappus.

Moments of inertia: Plane figure with respect to an axis in its plane and perpendicular to the plane, Polar moment of inertia, parallel axis theorem

Module – IV (8 Hours)

Rectilinear translation: Kinematics, principle of dynamics, D Alembert's Principle,

Principle of work and energy for a particle and a rigid body in plane motion, Conservation of energy, Principle of impulse and momentum for a particle and a rigid bodies in plane motion, Conservation of momentum, System of rigid bodies, Impact, direct and central impact, coefficient of restitution.

Module – V (8 Hours)

Curvilinear translation: Kinematics, equation of motion, projectile, D Alembert's principle of curvilinear motion. Kinematics of rotation of rigid body.

Text Book:

1. Engineering Mechanics: S Timoshenko & Young; 4th Edition (International edition) McGraw Hill.

Reference Books:

- 1. Fundamental of Engineering mechanics (2nd Edition): S Rajesekharan& G ShankaraSubramanium; Vikas Pub. House Pvt ltd.
- 2. Engineering mechanics: K. L. Kumar; Tata MC Graw Hill.

Upon completion of the subject the students will be able to:

CO1	Draw free body diagrams and determine the resultant of forces and/or moments.
CO2	Solve the problems involving dry friction.
CO3	Determine the centroid and second moment of area of sections.
CO4	Apply Newton's laws and conservation laws to elastic collisions and motion of rigid bodies.
CO5	Determine the various parameters in projectile motion.

	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	-	-	-	3	1	-	1
CO2	3	3	2	1	2	-	-	-	3	1	-	1
CO3	3	3	2	1	2	-	-	-	3	1	-	1
CO4	3	3	2	1	2	-	-	-	3	1	-	1
CO5	3	3	2	1	2	-	-	-	3	1	-	1

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO	3	3	2	1	2	-	-	-	3	1	-	1
PHYSICS LABORATORY (BPH02002)

List of Experiments

- 1. Determination of acceleration due to gravity by using Bar pendulum
- 2. Determination of surface tension of water by capillary rise method
- 3. To draw the characteristics of a bipolar junction transistor
- 4. To determine the rigidity modulus of the material of a wire by using Barton's apparatus.
- **5.** Determination of wave length of monochromatic light with the help of Newton's ring apparatus.
- 6. Determination of grating element of a diffraction grating using spectrometer.

Course Outcomes

Upon completion of the subject the students will demonstrate the ability to:

CO1	Express the idea of calculation of acceleration due to gravity at any place using the concept
	of oscillatory system and simple harmonic motion.
CO2	Demonstrate the working and operational technique to calculate the mechanical properties of
	fluid and other materials.
CO3	Evaluate the voltage, current, power and characteristics behaviour of the electronic devices.
CO4	Analyze the mechanical properties of any material with the idea of elasticity and its various applications.
CO5	Implement the measurement of different characteristic properties and related calculations of optical devices.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	3	2	1	1	3	3	1	1
CO2	3	3	2	1	3	2	1	1	3	3	1	1
CO3	3	3	2	1	3	2	1	1	3	3	1	1
CO4	3	3	2	1	3	2	1	1	3	3	1	1
CO5	3	3	2	1	3	2	1	1	3	3	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	1	3	2	1	1	3	3	1	1

BASIC ELECTRICAL ENGINEERING LABORATORY (BEE02002)

List of Experiments

- Preliminary: Preparation of symbol chart for various systems & components as per ISS, to study the constructional & operational features for Voltmeter, Ammeter, Wattmeter, Frequency meter, multi-meter and Rheostat, Study of safety rules as per ISS
- **2.** Measurement of the armature & field resistance of D.C. Machine by volt-amp method. & Starting and speed control of a D.C. shunt motor
- 3. Study of BH Curve
- **4.** Determination of open circuit characteristics (O.C.C) of D.C shunt generator when separately excited at different speeds.
- 5. Measurement of earth resistance and insulation resistance.
- **6.** Starting of Induction motor and measurement of three phase power & power factor by 2- wattmeter method.
- 7. Callibration of a single phase Energy Meter by directed loading & Phantom loading.
- 8. Obtaining the voltage, current, power and power factor of fluorescent lamp.
- **9.** Demonstration of cut-out sections of machines: dc machine (commutator-brush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging slip ring arrangement) and single-phase induction machine.
- 10. Demonstration of (a) dc-dc converters (b) dc-ac converters PWM waveform

Course Outcomes

Upon completion of the subject the students will demonstrate the ability to:

CO1	Express the safety rules as per ISS and symbols of different electrical components and the
	use of various electrical instruments in laboratory.
CO2	Demonstrate the working and operational characteristics of dc motor and dc generator.
CO3	Evaluate the voltage, current, power and power factor of fluorescent lamp.
CO4	Implement the measurement of earth resistance and insulation resistance and demonstrate the
	internal structure of different machines.
CO5	Analyze the connection and calibration of single phase energy meter, three phase power and
	power factor by two wattmeter method and basic idea about converters.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	3	2	1	1	3	3	1	1
CO2	3	3	2	1	3	2	1	1	3	3	1	1
CO3	3	3	2	1	3	2	1	1	3	3	1	1
CO4	3	3	2	1	3	2	1	1	3	3	1	1
CO5	3	3	2	1	3	2	1	1	3	3	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation Program Articulation Matrix row for this Course

8	PO	PO1	PO1	PO1								
Cours	3	3	2	1	3	2	1	1	3	3	1	1

Business Communication and Presentation Skills Lab

(BHU02002)

Course Description

Good communication skills are indispensable for the success of any professional. The English language, in particular, has become essential in the lives of young engineers who aspire to build their careers anywhere in the world. In this regard the language laboratory plays an important role in developing the students' basic proficiency in English. Since a large number of engineering students completed their education from vernacular medium schools, they lack the basic English language proficiency which is a detrimental factor during recruitment drives in engineering colleges. In this context the language laboratory is very helpful in practicing and assessing students' speech in different communication environments. It provides them facilities to learn pronunciation, accent, stress and rudimentary communicative English grammar along with various practice sessions like presentations, group discussions, debates, case studies which are the part and parcel of corporate life.

Syllabus (Assignments)

- 1. Functional English grammar: Practice and exercises
- 2. Practice of English phonemes
- 3. Reading comprehension
- 4. Drafting business correspondence
- 5. Understanding the importance of body language
- 6. Oral presentations (Self Introduction, Extempore, Formal Presentation, power point presentations etc.)
- 7. Group discussion
- 8. Preparation for appearing an interview
- 9. Situational conversation practice

Reference Books

- 1. Effective Technical Communication by M Ashraf Rizvi (Tata McGraw Hill)
- 2. Business Communication by Hory Sanker Mukerjee (Oxford University Press)
- 3. Better English Pronunciations by J. D.O Conner (Cambridge University Press)
- 4. A Communicative Grammar of English by G.N. Leech and Jan Svartik (OUP)
- 5. Business communication by Ramachandran, Lakshmi and Krishna (Macmillan)

Programme Outcomes of BTech Programme

PO1	Engineering knowledge: Apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to the solution of
	complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering
	problems and design system components or processes that meet the specified needs
	with appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of
	data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources,
	and modern engineering and IT tools including prediction and modelling to
	complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge
	to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and
	responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member
	or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective
	presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of
	the engineering and management principles and apply these to one's own work, as
	a member and leader in a team, to manage projects and in multidisciplinary
	environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of
	technological change.

Course Outcomes Upon completion of the sessional the students will demonstrate the ability to:

CO1	Analyse various components of effective human communication and to apply them
	during various practice sessions.
CO2	Apply correct usage of English grammar in writing and speaking.
CO3	Articulate English key sounds as well as its basic rhythm, stress and intonation
	patterns correctly.
CO4	Compile, plan and structure various forms of business writing in a professional
	manner.
CO5	Confidently face various recruitment drives and qualify them.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	1	3	-	-
CO2	-	-	-	-	-	1	-	-	1	3	-	-
CO3	-	-	-	-	-	1	-	-	1	3	-	-
CO4	-	-	-	-	-	1	-	-	1	3	-	-
CO5	-	-	-	-	-	1	-	-	1	3	-	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	-	-	-	-	-	-	-	-	1	3	1	-

WORKSHOP & MANUFACTURING PRACTICES (BME02002) Course content

1. Carpentry Section:

Study of different Hand tools, measuring instruments and equipments used in

Carpentry work. Safety

precautions.

Preparation of Job:

Wooden rack/bench/chair/stool (any one)

Includes the operations:

Measuring, Marking, Sawing, Planing, Chiseling, Mortesing, Tenoning, making Half-lap joint,

Mortese&Tenon joint and Nail joint.

2. Fitting Section:

Study of different Hand tools, measuring instruments and equipments used in Fitting work. Safety

precautions. Study of Drilling Machine and Grinding Machine.

Preparation of Job:

Paper Wt. / Square or Rectangular joint (male-female joint) (any one)

Includes the operations:

Measuring, Marking, Filing, Sawing, Drilling, Tapping, Dieing and Punching.

3. Black Smith Section:

Study of different Hand tools, equipments, Open hearth furnace and Induction furnaces used in

Blacksmith work. Different types of heat treatment processes. Safety precautions.

Preparation of Job:

Weeding hook/Hexagonal headed bolt/Chisel (any one)

Includes the operations:

Measuring, Marking, Cutting, Upsetting, Drawing down, Bending, Fullering and Quenching.

Course Outcomes:

Upon completion of the subject the students will be able to:

CO1	Acquire knowledge on different types of hand tool, measuring instruments and
	machine tools are used in Fitting, Carpentry and Smithy work.
CO2	Know about different types of operations and joints performed in different shops
	i.e. in Fitting and Carpentry.

CO3	Know about the forging temperature of different types of ferrous metals and different types of operation (e.g. upsetting, edging, flattening and bending etc.) carried out on hot metals to prepare jobs.
CO4	Acquire skills for the preparation of different types of jobs Carpentry/fitting/smithy shops by using different types of hand tools and machine tools.
CO5	Understand the importance of safety precaution in different shops.

	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12
CO1	-	-	-	-	2	2	1	1	3	1	2	1
CO2	-	-	1	-	2	2	1	1	3	1	2	1
CO3	-	-	-	-	1	2	1	2	3	1	2	1
CO4	-	-	-	-	3	2	1	1	3	1	2	1
CO5	-	-	-	-	-	-	-	1	2	1	1	1

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	-	-	1	-	2	2	1	1	3	1	2	1

THIRD SEMESTER

Mathematics-III (Transforms, Probability and Statistics and Multi variate Analysis) [3-1-0] (BMA03001)

Module 1: Laplace Transforms (10 Lectures)

Laplace transforms, inverse transforms, linearity, shifting, transforms of derivatives and integrals, solution of ODEs, unit step function, Dirac's delta function, differentiation and integration of transforms, convolution, integral equations.

Module 2: Fourier Transforms (8 Lectures)

Basic concept of Fourier integral, Fourier sine and cosine integral, condition of convergence, Fourier transformation, Fourier sine transform, Fourier cosine transform, properties.

Module 3: Probability (6 Lectures)

Random variables, probability distributions, mean and variance, Binomial, Poisson and hyper- geometric distributions, Normal distribution.

Module 4: Statistics (8 Lectures)

Random sampling, point estimation of parameters, maximum likelihood estimation, confidence intervals, testing of hypotheses for mean and variance, correlation and regression.

Module 5: Multi-variate Analysis (8 *Lectures*)

Line integrals, double integrals, change of order, Green's theorem (statements only), surface integrals, triple integrals, Divergence theorem of Gauss (statements only), Stoke's theorem (statements only) and applications.

Text Book:

Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd, 9th edition

Reference Books:

- 1) B.V. Ramana, Higher Engineering Mathematics, McGraw Hill
- 2) K.A. Stroud, Advanced Engineering Mathematics, Industrial Press

Course Outcomes:

Upon completion of the subject the students will be able to:

- CO1 Develop adequate knowledge of Laplace and Fourier transforms, and apply this idea to solve differential equations
 CO2 Describe unit step function and Dirac's delta function which are useful in engineering problems
- CO3 Apply Binomial, Poisson and Normal distributions in probabilistic models

CO4 Demonstrate random sampling and estimation of parameters

CO5 Evaluate multiple integrals and with various applications

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	2	1	-	-	-	1	1
CO2	3	3	2	2	1	2	1	-	-	-	1	1
CO3	3	3	2	2	1	2	1	-	-	-	1	1
CO4	3	3	2	2	1	2	1	-	-	-	1	1
CO5	3	3	2	2	1	2	1	-	-	-	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	2	1	2	1	-	-	-	1	1

Sub	ject Code: BMM()3001	Met	allurgical Thermodynamics and Kinetics
Pre-	Requisite:	Mathematics-I,	Co-requisite:	Chemistry, Physics, Introduction to
		Mathematics - II		Physical Metallurgy
Mod	lule -I			[8 hours]
	Importance of T	Thermodynamics, De	finition of Therr	nodynamics; concept of state and path
	functions, Equation	ion of states, thermo	dynamic processe	s, Phase diagram of a single component
	system, Internal	energy, heat capacity	, enthalpy.	
Mod	lule -II			[8 hours]
	First law of ther	modynamics, Secon	d law of thermod	lynamics, entropy, and entropy changes
	for various proc	esses, free energy a	nd its significanc	e, free energy change as a function of
	temperature, rev	ersible and irreversi	ble process, crite	eria of equilibrium, auxiliary functions,
	combined statem	nents, Maxwell's rela	tions, transforma	tion formula, Gibbs-Helmoltz equation,
	Concept of stand	ard state.		
Mod	lule -III			[8 hours]
	Fugacity, activity	y, equilibrium consta	nt, Concept of Th	ird law of thermodynamics, temperature
	dependence of	entropy, statistical	interpretation of	entropy, relation between C_{p} and $C_{\text{v},}$
	consequences of	third law, Ellingham	– Richardson dia	grams.
Mod	lule -IV			[8 hours]
	Solutions: partia	l molal quantities, i	deal and non-ide	al solutions, Roult's law; Henry's law,
	Gibbs – Duhem	equation, regular s	olution, Chemica	l potential, Free energy – composition
	diagrams for bina	ary alloy systems, de	termination of liq	uidus, solidus and solvus lines.
Mod	lule -V			[8 hours]
	Introduction of r	netallurgical kinetics	: heterogeneous	reaction kinetics: gas-solid, solid-liquid,
	liquid-liquid and	l solid-solid systems	s, Concept of Jol	nnson-Mehl equation, thermal analysis,
	Thermodynamics	s of electrochemical	cells, solid electro	lytes.
ТΕХ	XT BOOK(S):			
1.	Introduction to the	ne Thermodynamics	of Materials by D	.R. Gaskell; Taylor and Francis.
2.	Textbook of Mat	terials and Metallurg	ical Thermodynar	nics by A. Ghosh; Prentice Hall of India
	Pvt. Ltd.			
REF	FERENCE BOOK	(S):		
1.	Problems in Met	allurgical Thermody	namics and Kinet	ics by Upadhyaya, G. S., & Dube,
	R. K.; Internation	nal Series on Materia	ls Science and Te	chnology, Elsevier.
2.	Introduction to P	hysical Metallurgy b	y Avner S.H., Mc	Graw Hill.

COURS	SE OUTCOMES:
CO1	Analyze and incorporate the modern thermodynamic models for description of chemical
	reaction and phase transformation in materials
CO2	Demonstrate reaction kinetics and stability criteria of different metals based on its energy
	content and temperature.
CO3	Define the use thermodynamic laws in day-to-day applications in both domestic and
	industrial sector.
CO4	Analyze and express the kinetics of the mass transport in solids including the process of
	surface and interfaces
CO5	Work independently with the literature in search, choice and checking of correctness of the
	necessary information

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	2	2	1	3	3	3	2
CO2	3	3	3	3	3	3	2		3	2	2	2
CO3	3	3	2	3	3	3	3	1	2	3	3	3
CO4	3	1	2	2	2	2	2	2	2	3	3	2
CO5	3	3	2	3	2	3	2	3	3	3	2	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	3	3	2	2	3	3	3	2

Bachelor of Technology in Metallurgical and Materials Engineering

Subjec	ct Code: BMM03002	Introduction to Physical Metallurgy
Modu	le -I	[8 Hours]
	Introduction, Atomic structure of m	aterials, Symmetry aspects in crystals, crystal systems,
	crystal planes and directions, atomic	e packing efficiency, voids in common crystal systems,
	Solidification of pure metal, Homog	eneous and heterogeneous nucleation processes, cooling
	curve, concept of super cooling, micro	ostructures of pure metals, solidification of metal in ingot
	mould. Crystal imperfections,	
Madu		[9 House]
Modu	le -11 Machanical proportion of motals, and	[o <i>Hours</i>]
	twinning Concept of cold working	r Pacovary: Pacrystallization and grain growth: Hot
	working Concept of equilibrium Co	c. Recovery, Recrystalization and grain growth, not
	factors governing solid solubility. Un	ary phase diagram, phase rule, binary phase diagrams.
	fuctors governing solid solubility, on	ary phase diagram, phase rate, omary phase diagrams.
Modu	le -III	[8 Hours]
	Isomorphous, Eutectic, Peritectic, Eut	ectoid, Peritectoid, Monotectic and Monotectoid system,
	Lever rule and its application, interpre-	etation of solidification behavior and microstructure of
	different alloys belonging to those sys	stems, effect of non-equilibrium cooling, coring and
	homogenization. Allotropic transform	ations, order disorder transformations.
Modu	le -IV	[8 Hours]
	Concept of heat treatment of steels	i.e., annealing, normalizing, hardening and tempering;
	Microstructural effects brought abou	t by these processes and their influences on mechanical
	properties. Effect of common alloying	g elements on the Fe-Fe ₃ C and Fe-C diagrams.
Modu	le -V	[8 Hours]
	Iron cementite and iron- graphite phase	se diagrams, microstructure and properties of different
	alloys (both steels and cast irons). Co	ncept to hardenability, factors affecting hardenability.
	Alloy steels- Stainless steels. Physica	l metallurgy of non-ferrous alloys Cu-Al, Bronze, and
	Brass.	
TEXT	BOOK(S):	
1.	Avner S.H., Introduction to Phys	sical Metallurgy 1997 (New Delhi: McGraw Hill
2	Education (India) Limited).	
2.	Callister W D 2007 Callister's Ma	terials Science and Engineering: Indian Adaptation
	adapted by K Balasubramaniam (N	ew Denn: whey)
DEEE	PENCE BOOK(S).	
КЕГЕ	Dhysical matallurgy principle by D	aza Lara and Robert F. Read bill
1. 2	Foundations of Materials Science a	eza, Lara and Robert E Recu IIII
۷.	Hashemi 1088 pages: McGraw Hil	1 Education (April 9, 2009)
	Hasheim 1000 pages, McOldw-All	1 Luucauon (April 7, 2007)

COURS	SE OUTCOMESS:
CO1	After successful completion of the course, the learners would be able to Familiarize
	themselves with those terms, concepts, and definitions used to describe the properties and
	processes of common engineering metals.
CO2	Students will be reacquainted with fundamental principles of chemistry and physics which
	predetermine and control behavior of metals in response to external forces, whether
	mechanical, physical (electrical, magnetic, optical, thermal) or chemical in nature.
CO3	A fundamental understanding can be developed about the relationships between material
	composition, structure, and properties resulting from processing or service.
CO4	Students can understand the testing procedures used to characterize some of the more
	common physical properties for engineering metals, and how these properties should be
	used when specifying conditions where optimum performance without failure can be
	expected.
CO5	Students can get insight idea about atomistic and defect structures, and how they result in
	the microstructure and influence the properties of metals.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	3	3	3	3	2	1	1	3	2
CO2	2	3	1	3	3	3	3	2	2	2	2	2
CO3	3	2	1	3	3	3	3	2	2	2	2	2
CO4	3	3	3	3	3	3	2	1	1	1	2	2
CO5	3	3	3	3	3	3	2	1	1	1	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО	3	3	2	3	3	3	3	2	2	2	2	2

Bachelor of Technology in Metallurgical and Materials Engineering

Subj	ect Code: BMM03003	Transport Phenomena									
Pre-l	Requisite: Calculus										
Mod	ule -I	[8 Hours]									
	Fluid Flow: Classification of fluids, En	nergy balance, Laminar and Turbulent flows. Flow									
	through pipes and ducts. Flow measurement, Application of dimensional analysis of fluid flow.										
Mod	ule -II	[8 Hours]									
	Heat Transfer I: Steady state and Transier	at conduction in solids. One-dimensional steady state									
	problems of heat flow through composite	walls, Cylinder and Spheres. Unsteady conduction in									
	one-dimensional system.										
Mad	1- III	[0 <i>II</i>]									
Mod	Converting heat transfer acception of an	[o Hours]									
	layer etc. as in problems and exercises I	rgy, nee and forced convections Concept of boundary									
	layer, etc. as in problems and exercises. C	se of meisler charts and applications.									
Mod	ule -IV	[8 Hours]									
WIOU	Heat Transfer II: Radiation Nature of t	permal radiation Black and Grev hodies Stefan and									
	Boltzmann law Kirchhoff's laws Intensity of rediction lambarts law View factor Heat										
	transfer between two black walls in an e	nclosure. Combined effect of convection conduction									
	and radiation. Overall heat transfer coeffi	cient.									
Mod	ule –V	[8 Hours]									
	Mass Transfer and Kinetics: Steady s	tate one-dimensional mass diffusion of component									
	through stationary media. Convective	mass transfer in fluids, concept of concentration									
	boundary layer, Mass transfer coefficient.										
TEX	T BOOK(S):										
1.	F.P. Incropera, D. P. Dewitt, T. L. Be	rgman and A. S. Lavine, Fundamentals of Heat and									
	Mass Transfer, Wiley.										
2.	H.S. Ray, Kinetics of Metallurgical Rea	ctions									
REF	ERENCE BOOK(S):										
1.	Heat and Mass Transfer: Fundamentals	and Applications 5 Edition, Yunus A. Cengel, Afshin									
	J. Ghajar										
2.	Heat Transfer 10thEdition by JP Holman	n Mc Graw Hill.									

COUR	SE OUTCOMESS:
CO1	Students will be able to express the different mode of heat transfer and develop heat transfer
	equipment as per need.
CO2	Demonstrate basic equations and Laws for heat transfer problems
CO3	Apply heat transfer principles to design and calculate performance of thermal systems
	related to one dimensional, steady state or transient state for conduction and convection
	heat transfer.
CO4	Evaluate performance of thermal systems related to one dimensional, steady state natural
	and Forced Convection heat transfer by Theoretically and Experimentally.
CO5	Apply the concepts of Heat Transfer theory and application in Industrial and day to day life.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	3	1	1	1	1	3	1
CO2	3	3	3	1	1	3	1	1	1	1	3	2
CO3	3	3	3	3	2	3	1	1	1	1	3	2
CO4	3	3	3	3	2	3	2	1	1	1	3	2
CO5	3	3	3	3	3	3	3	2	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	2	2	3	2	1	1	1	3	2

Economics for Engineers (3-0-0)

Course Objectives:

- To understand the basic economic principle as a consumer in an economy
- To be able to know the utility measurement in the presence of risk and uncertainty
- To prepare the Engineering students to learn about the production process and analyse the cost/revenue data.
- To provide the foundation for engineers to make good decisions in business environment and learn about the market mechanism.
- To be able to make decision on project alternatives and justify projects on an economic basis

Syllabus:

Module-1:

Theory of Demand: Demand and Utility, Demand function and the factors determining demand, Law of Demand, Reasons for downward sloping demand curve, Exceptions to the law of demand. The market forces of Supply and Demand, Elasticity of demand and its application, Utility analysis: cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equi-marginal utility

Module-2:

Indifference curve analysis of demand: Concepts, properties, Equilibrium of the consumer, Price Consumption Curve (PCC) and Income Consumption Curve, Decomposition of price effect into income effect and substitution effect, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis, Markowitz hypothesis

Module-3

Production function: short run analysis, Total product, Average product and Marginal product, output elasticity of input, law of variable proportion, Long run production function: Isoquants and concepts of returns to scale, Optimum factor combinations, Homogeneous Production Function, Cobb–Douglas production function, CES Production function, Cost Analysis: Concepts, Accounting cost, Fixed and variable cost, opportunity cost, Short run and long run cost curves, Relationships between average cost and marginal cost

Module-4

Market and its classifications, Perfect competition: Characteristics, Short run and long run equilibrium of firm under perfect competition. Monopoly market: Price and output determination. Modern theories of firms: Baumol's theory of sales revenue maximisation, Bain's limit pricing model

Module-5

Time value of money: use of cash flow diagram, Annual economic worth, present worth, future worth, Internal Rate of Return (IRR), Net Present Value (NPV), Payback period method, Analysis of public projects: Cost-Benefit analysis, cost effectiveness

Reference Books:

- 1. Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press Ltd., London
- 2. Varian, H. R. (1992). Introduction to Micro Economic Analysis, Norton and company, New York
- 3. Salvatore, D. (2008). Microeconomics: theory and applications. Oxford University Press
- 4. Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics, Pearson India, New Delhi
- 5. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi
- 6. Henderson, J. M. and R. E. Quant (2011). Microeconomic Theory: A Mathematical Approach, Indian Higher Education, New Delhi
- 7. Intriligator, M. D., R. G. Bodkin and C. Hsiao(1995). Econometric Models, Techniques, and Applications, Pearson India, New Delhi

Programme Outcomes of BTech Programme

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to

	comprehend and write effective reports and design documentation, make effective										
	presentations, and give and receive clear instructions.										
PO11	Project management and finance: Demonstrate knowledge and understanding of										
	the engineering and management principles and apply these to one's own work, as										
	a member and leader in a team, to manage projects and in multidisciplinary										
	environments.										
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to										
	engage in independent and life-long learning in the broadest context of										
	technological change.										

Course Outcomes:

Upon completion of the subject the student will be able to :

CO1	Utilise economics principles in consumption process
CO2	Describe the utility measurement and measure the utility associated with risk
CO3	Efficient use of resources in production and take decision regarding optimum output
CO4	Describe market mechanism and analyse product market to take proper decisions
CO5	Implement economic principles in company related decision making

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	2	2	-	-	-	3	3
CO2	-	-	-	-	-	3	2	2	-	-	2	1
CO3	-	-	-	-	-	3	3	-	-	-	3	-
CO4	-	-	-	-	-	2	2	1	1	1	3	-
CO5	-	-	-	-	-	1	2	1	2	-	3	1

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	-	-	-	-	-	3	2	1	1	1	3	2

Subject Code:	Subject Name: Metallurgical Thermodynamic & Kinetics Laboratory
BMM03004	
Experiment - 1	To determine the tumbler and abrasion indices of iron ore, sample.
Experiment - 2	To determine the micuum indices of cock sample.
Experiment - 3	To determine the partial molal volume of each component in binary solution.
Experiment - 4	To determine the aquarium constant and free energy change for the C+CO2
	=2CO reaction.
Experiment - 5	Reduction of iron ore pellets by cock powder and calculation of % reduction and
	% swelling.
Experiment - 6	Reduction of iron ore by non-coking coal power and calculation of % reduction
	and % swelling.
Experiment - 7	To carry out palletization of iron ore fines.
Experiment - 8	To carry out firing of pellets and measurement of their crushing strength.

COUD									
COUR	COURSE OUTCOMESS:								
CO1	Analyze and demonstrate the transport processes.								
CO2	Ability to analyze the heat, mass and momentum transfer analysis.								
CO3	Ability to analyze the industrial problems along with appropriate boundary conditions.								
CO4	Ability to develop steady and time dependent solutions along with their limitations.								
CO5	Analyze and demonstrate the pelletization process.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	3	3	2	3	3	2	3
CO2	3	3	1	3	3	2	2	2	3	3	2	3
CO3	3	3	2	3	3	3	2	2	3	3	2	3
CO4	3	3	2	3	3	2	2	2	3	3	2	3
CO5	3	3	2	3	3	2	2	3	3	3	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	3	2	2	2	3	3	2	3

Subject Code: BMM	03005 Transport Phenomena Laborate	ory
Experiment - 1	Study the type of flow by Reynolds experiment	
Experiment - 2	Determination of total thermal resistance and thermal conductivity of a	
	composite wall	
Experiment - 3	Determination of thermal conductivity of Asbestos	
Experiment - 4	Determination of thermal conductivity of a given metal rod	
Experiment - 5	Determination of heat transfer coefficient in natural convection	
Experiment - 6	Determination of heat transfer coefficient in forced convection	
Experiment - 7	Determination of emissivity of a given surface	
Experiment - 8	Determination of Stefan Boltzmann constant	
Experiment - 9	Determination of overall heat transfer coefficient in parallel and counter flow	
	runs and obtaining the effectiveness of the given heat exchanger	
Experiment - 10	Determination of exchange capacity of a cationic resin in the softening of wat	ter

COURS	E OUTCOMESS:
CO1	Students will be able to classify different types of flow of fluid.
CO2	Students will be able to determine thermal conductivity of different materials
CO3	Apply heat transfer principles to design and calculate performance of thermal systems related
	to one dimensional, steady state or transient state for conduction and convection heat transfer.
CO4	Evaluate performance of thermal systems related to one dimensional, steady state natural and
	Forced Convection heat transfer by Theoretically and Experimentally.
CO5	Apply the concepts of Heat Transfer and application in Industrial and day to day life.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	3	1	1	1	1	3	1
CO2	3	3	3	1	1	3	1	1	1	1	3	2
CO3	3	3	3	3	2	3	1	1	1	1	3	2
CO4	3	3	3	3	2	3	2	1	1	1	3	2
CO5	3	3	3	3	3	3	3	2	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	2	2	3	2	1	1	1	3	2

Subject Code: BM	IM03006	Subject Name: Introduction to Physical Metallurgy Laboratory
Experiment - 1	To make the	e crystal structures and to study these systems, with the help of ball
	models.	
Experiment - 2	To study the	e principles and operation of metallurgical microscope.
Experiment - 3	To prepare	specimen of some metals and alloys for microstructural examination.
Experiment - 4	To study th	e microstructure, grain size of the carbon steels.
Experiment - 5	To study the	e microstructure, of the given cast iron samples.
Experiment - 6	To study the	e microstructure, grain size of the selected nonferrous alloys.
Experiment - 7	To find out	the grain size number of the given metals and alloys.
Experiment - 8	Colour meta	llography of different ferrous metals.

COURSE	E OUTCOMESS: Upon completion of the laboratory the student will
CO1	Demonstrate the different features of optical microscope and their use in metallography
CO2	Develop fundamental skills to prepare best metallographic sample for metallography study
CO3	Develop skills to analyze the microstructure type and evaluate the corresponding property the sample will show
CO4	Define different microstructures and defects seen under a microscope
CO5	Characterize different samples both ferrous and nonferrous with the help of color etching techniques

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	3	3	3	2	-	-	-	-	1
CO2	2	3	1	3	3	3	3	-	-	-	-	1
CO3	3	2	1	3	3	3	3	-	-	-	-	1
CO4	3	3	3	3	3	3	2	-	-	-	-	1
CO5	3	3	3	3	3	3	2	-	-	-	-	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	3	2	3	3	3	3	-	-	-	-	1

Subject Code: BN	MM03007 Fuel Testing Laboratory
Experiment - 1	To determine the calorific value of coal and coke using bomb calorimeter.
Experiment - 2	Proximate analysis of coal and coke.
Experiment - 3	To determine flash point and fire point of a given sample such as kerosene oil.
	Diesel and petrol by Pensky- Martins /or other apparatus.
Experiment - 4	To determine the effect of temperature on kinematic viscosity of glycerin by
	redwood viscometer.
Experiment - 5	To determine the bulk and true density of coal sample by using density meter.
Experiment - 6	To determine the flow rate of oil with the help of flow meter.

COUF	RSE OUTCOMESS:
CO1	Able to measure the calorific value of solid fuels.
CO2	Analyze the percentage of moisture, volatile matter, ash and fixed carbon of coal and coke.
CO3	Evaluate the concept of flash and fire point of liquid fuels.
CO4	Analyze the kinematic viscosity of different liquid fuels.
CO5	Demonstrate the significance of testing of solid and liquid fuels.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	3	1	1		3	2	1
CO2	3	2	2	3	1	2	3	1		3	2	1
CO3	3	2	2	3	1	2	3	2		2	2	1
CO4	3	2	2	3	1	2	3	2		3	2	1
CO5	3	2	2	3	1	2	3	2		1	2	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	2	3	3	3	2	2	2	

Fourth Semester MATHEMATICS-IV (Numerical Methods)

Module I: Errors and Root Extraction (8 Lectures)

Definition and sources of error, Propagation of errors, finding roots of algebraic and transcendental equations by Bisection method, Newton's method, Secant method, fixed point iteration method.

Module I: Interpolation(8 Lectures)

Interpolation, Lagrange's interpolation, Newton's divided differences, Forward differences, Backward differences, Central differences, Interpolation error.

Module I: Numerical integration (8 Lectures)

Numerical integration: Newton-Cotes Integration formula (without derivation), Trapezoidal rule, Simpson's rule, Gaussian quadrature, Errors in Numerical Integration.

Module I: Numerical Solution of Differentianal Equations (8 Lectures)

Solution of ODE's: Euler's method, Improved Euler's method, Runge-Kutta Methods of order-2 and 4.

Module I: Numerical Solution of system of linear equations(8 Lectures)

Numerical Solution of system of linear equations, Gauss Elimination method, LU decomposition, Gauss-Jordan Elimination method, Gauss Jacobi and Gauss-seidal iteration methods

Text Books:

- 1. An introduction to numerical analysis, Jain, Iyengar and Jain, New AgeInternational
- 2. Numerical Analysis, B. S. Grewal, Khanna Publishers

Course Outcomes

Upon completion of the subject the students will be able to:

CO1	Recogniserecursive definitions and structural induction
CO2	Demonstrate equivalence of relations, recurrence relations and generating functions
CO3	Describe Euler and Hamilton paths, Planar graphs, Graph colouring with applications
CO4	Recognise Group structure, homomorphism, isomorphism and automorphism
CO5	Analyse Lattice theory and Boolean algebras

	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	2	1	-	-	-	1	1
CO2	3	3	2	2	1	2	1	-	-	-	1	1
CO3	3	3	2	2	1	2	1	-	-	-	1	1
CO4	3	3	2	2	1	2	1	-	-	-	1	1
CO5	3	3	2	2	1	2	1	-	-	-	1	1

	PO	PO1	PO1	PO1								
Cours	3	3	2	2	1	2	1	-	-	-	1	1

ORGANIZATIONAL BEHAVIOUR Credit- 3-0-0 Class Hours - 30 Syllabus

Module I (6 hours)

Fundamentals of OB: Learning objectives, Definition, scope and importance of OB, why to study OB, Relationship between OB and the individual, Evolution of OB, Theoretical framework (cognitive), Behavioristic and social cognitive, Models of OB, New Challenges of OB Manager, Limitations of OB

Learning: Nature of learning, Determinant of learning, How learning occurs, Learning and OB

Case Study Analysis

Module II (6 hours)

Personality: Definition and importance of personality for performance, Nature and Determinants of personality, Theories of Personality, Personality Traits, Personality and OB Perception: Meaning and concept of perception, Perceptual process, Importance of perception in OB Motivation: Definition & amp; Concept of Motive & amp; Motivation, Theories of Motivation (Herzberg's Two Factor model Theory, Maslow's Need Hierarchy, Aldefer's ERG theory)

Case Study Analysis

Module III (6 hours)

Communication: Importance, The Communication Process, Types of communication, Barriers to communication, Communication networks, Making communication effective

Groups in organization: Nature, Types of Groups, Why do people join groups? Stages of Group Development, Group cohesiveness, Group decision making and managerial implication,

Developing Work Teams, Team Building, Effective team building

Leadership: Concept of Leadership, Styles of Leadership, Theories of leadership (Trait theory,

Behavioral theory, Contingency theory), How to be an effective leader, Success stories of today's Global and Indian leaders.

Case Study Analysis

Module IV (6 hours)

Conflict: Nature of conflict, Sources of Conflict, Conflict resolutions, Stages of conflict episode,Conflict management technique

Transactional Analysis (TA): Meaning of TA, Ego states, Types of transactions, Life position

Case Study Analysis

Module V (6 hours)

Organizational Change: Why organizational change? Types of Organizational Change, Planned change, Kurt Lewin's-Three step model, Resistance to Change, Managing resistance to change. Organizational Culture: Meaning & amp; definition, Types of culture, creating, sustaining and

changing a culture, Concept of workplace spirituality.

International OB: Introduction to International business, Individual and group behavior in International organization, How culture influence International OB? Case Study Analysis

Reference Books

1. Stephen P. Robbins, Organizational Behaviour, Printice Hall of India, New Delhi, 2013

2. K. Aswathappa, Organizational Behaviour, Himalaya Publishing House, Bombay, 2018

3. Nelson, D. L., and Quick, J. C. (2007)., Understanding Organizational Behaviour (3rded.).,

Thompson South-Western Publication

4. Pareek, U. (2012), Understanding Organizational Behaviour (3rded.)., Oxford University Press.

Programme Outcomes of BTech Programme

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE OUTCOMES: At the end of this course, the students will be able to

CO1	Explain the transition process of management thought from traditional period to modern approaches.
CO2	Transfer the different motivational theories and evaluate motivational strategies used in a variety of organizational settings.
CO3	Identify and analyze the factors affecting individual and group behavior and evaluate the appropriateness of various leadership styles.
CO4	Evaluate the appropriateness of various conflict management strategies used in organizations and develop strategies for resolving group conflict.
CO5	Explain how organizational change and culture affect working relationships within organizations.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	2	2	2	1	1	3	2
CO2	-	-	-	-	-	1	1	1	3	1	-	
CO3	-	-	-	-	-	2	1	-	3	3	3	-
CO4	-	-	-	-	-	-	1	-	1	2	1	1
CO5	-	-	-	-	-	3	1	1	2	1	3	3

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	-	-	-	-	-	2	1	1	3	2	3	2

Subject	Code: BN	MM04001	Subject Name: Mineral Processing
Pre-Rec	uisite:	Mathematics-I, Mathematics - II	Co-requisite: Unit process of extraction
Module	-I		[8 hours]
In	ntroductio	n to mineral beneficiation, sam	pling, liberation studies and its importance.
C	omminuti	ion: Fundamentals of comminution	, crushing: construction and operational features
0	i jaw, gyr	atory, cone and fon crushers.	
Module	-II		[8 hours]
G	rinding: '	Theory of ball mill, rod mill, Crit	ical speed of the mill, open circuit and closed
ci	rcuit, cir	culating load, Size separation: Si	eving and screening, laboratory sizing and its
ir	nportance	e, representation and interpretation of	of size analysis data, industrial screening.
•			
Module	-III		[8 hours]
C	lassificati	ion: Movement of solids in fluids,	free setting and hindered settling of particles,
d	ifferent ty	ypes of classifiers, e.g. sizing an	d sorting classifiers used in mineral industry.
C	oncentrat	ion: Gravity separation, concentrat	ion criteria, jigging, flowing film concentration
a	nd tabling	, dense media separation.	
Module	JV		[8 hours]
F	roth flot:	ation. Theory reagents used in	floatation processes machines and practice
N	Iagnetic a	and electrostatic separation: Theor	v and application of magnetic and electrostatic
Se	eparation	techniques in mineral industry.	
•			
Module	-V		[8 hours]
D	ewatering	g and drying: Theory and pra	actice of thickening; filtration and drying.
A	gglomera	tion techniques: Sintering, palletiz	ing, briquetting and their applications in ferrous
a	nd non-fe	rrous metal industries, testing of ag	glomerates, important mineral deposits in India.
TEVTI	DOCK(S)		
	Principle	: of Mineral Dressing by A. M. Gau	ndin
2	Mineral	Processing Technology by Berry A	Willis
	ivinci di	Trocessing reentology by belly A	
REFER	ENCE BO	OOK(S):	
1	Rate Pro	ocesses In Metallurgy by Mohanty,	A. K.; PHI Learning.
2	Callister	W D 2007 Callister's Materials So	cience and Engineering: Indian Adaptation
	adapted	by R Balasubramaniam (New Delh	i: Wiley).
COURS	SE OUTC	OMES:	
CO1	Analyze	and demonstrate the mineral benef	iciation process in an economical way.
CO2	Evaluate	e different mineral beneficiation pro	ocess according to the nature of the minerals and
	selective	ely apply the most suitable process of	of beneficiation.
CO3	Develop	the technology to use the available	low-grade ores and minerals.
CO4	Use of v	wastes and recovery of associated	minerals and metals, which will satisfy the "go

	green slogan".
CO5	Analyze and demonstrate the in-plant studies in order to improve the productivity of
	mineral beneficiation plants.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	3	2	3	3	3	3	3	2	3
CO2	2	1	3	3	3	3	3	3	3	3	2	3
CO3	3	2	2	3	3	3	3	2	3	3	3	3
CO4	1	1	2	2	3	3	3	3	3	2	3	3
CO5	2	2	3	3	3	3	2	2	2	3	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	1	3	3	3	3	3	3	3	3	3	3

Subjec	t Code: BMM04002	Subject Name: Unit Process and Principle of Extraction
Modul	e -I	[8 Hours]
	Overview of Extractive Meta	llurgy processes; Pyro-metallurgy, Hydrometallurgy and
	Electrometallurgy; Thermodyna	mic and Kinetic Principles of metal extraction; Ellingham
	diagrams, Calcinations; Roast	ting; Predominance Area Diagram, Roasting Practices,
	Smelting, Formation and function	on of slag and their calculations,
Module	e -II	[8 Hours]
	Metallo-thremic and carbotherm	nic reduction of oxides, Smelting Furnaces, Matte Smelting,
	Pyro metallurgical processes usi	ng vacuum
	Hydrometallurgy: Leaching; Tl	neory of Leaching; Role of oxygen in leaching operation;
	Bacterial and microbial leaching	g; Contact reduction of metals in aqueous solutions;
Modul	e -III	[8 Hours]
	Gaseous reduction of metals in a	aqueous solutions; Ion exchange, Solvent Extraction and
	Electrolysis, Electrometallurgy:	laws of electrolysis, electrolyte Structure of solvent media;
	Electrolysis of aqueous solution	; Electrolysis of fused salts; Cell design; Electro refining
Modul	e -IV	[8 Hours]
	Halide Metallurgy and Haloge	nation., Basic approaches of refining, preparation of pure
	compounds; Purification of cruc	le metals produced in bulk;
Modul	e –V	[8 Hours]
	Concept of activity, chemica	l potential, fugacity, real and idle solution, and thee
	significance in metal extracti	on, Numerical problems relevant to Pyro, Hydro and
	Electrometallurgical processes	
TEXT	BOOK(S):	
1.	Principles of Extractive Metallu	rgy: A. Ghosh & H.S. Ray, IIN Publications, Kolkata 1984
2.	Principles of Extractive Metallu	irgy: Rosenquist, T., McGrawhill - Kogakusha International
	- 1983	
DEFE		
REFE	KENCE BOOK(S):	
1.	Mineral Processing and Extracti	ve Metallurgy by Corby G. Anderson (Editor), Robert C.
	Dunne (Editor), John L. Uhrie (Editor)
2.	Metallurgy a Brief Outline of th	e Modern Processes for Extracting the More Important
	Metals by W. Borchers.	

COURSE OUTCOMESS:

CO1	Illustrate flowsheet of process route for any types of ore.
CO2	Student can able to apply thermodynamics principles when dealing with any type of ore.
CO3	Students can clearly analyze the proper requirement of different raw materials for metal
	production.
CO4	Student can solve existing issue and new issues which occurs in a plant.
CO5	Analyze the best route and techniques for metal extraction and refining economically n
	profitably.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	2	3	2	1	1	1	3	2
CO2	3	3	3	3	2	3	3	1	1	1	2	3
CO3	3	3	2	3	3	3	2	1	1	1	2	3
CO4	3	3	3	3	2	3	1	1	1	1	2	3
CO5	3	3	3	3	3	3	1	1	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2	3	2	1	1	1	2	3

Bachelor of Technology in Metallurgical and Materials Engineering

Subject Code: BMM04003	Subject Name: Phase Transformation							
Pre-Requisite: Introduction to Physical Metallurgy	Co-requisite: Thermodynamics & Kinetics of Materials							
Module -I	[8 hours]							
Classification of phase transformations. The	rmodynamics and Kinetics: Introduction, Equilibrium,							
Gibbs free energy change with single comp system, Binary phase diagrams, Free energy	oonent system, Thermodynamic parameters in binary Vs Composition phase diagrams.							
Module -II	[8 hours]							
Diffusion: Driving force for diffusion atomic	machanisms of diffusion interstitial diffusion: steady							
state diffusion, Non-steady state diffusion	, Solutions to the diffusion equation substitutional							
diffusion, High diffusivity paths. Crystal int	erfaces: Interfacial free energy, Boundaries in Single-							
phase solids, Bond breaking model, Interpha energy effects, misfit strain effects.	se interfaces in solids: interface coherency, interfacial							
Module - III	[8 hours]							
Nucleation and growth: Homogeneous nucl	eation, homogeneous nucleation rate, Heterogeneous							
nucleation, Heterogeneous nucleation rate, C	Frowth of a pure solid, Diffusional transformations in							
Sonds: Overall transformation kinetics: 1	I diagrams, Precipitation in age nardening alloys,							
Particle coarsening, Spinodal decomposition.								
Module -IV	[8 hours]							
Ferrite: Nucleation and growth. Pearlitic	transformation: mechanism, nucleation and growth.							
Bainitic transformation: mechanism, nucle hardenability, CCT diagrams, massive transfo	ation and growth, Effect of alloying elements on ormations, ordering transformations.							
	, ,							
Module -V	[8 hours]							
Diffusionless transformations: Martensitie	transformations: characteristics, crystallography,							
theories of Martensitic nucleation, marten growth.	site growth. Recovery, Recrystallization and grain							
TEXT BOOK(S):								
1. Phase transformations in metals and alloys by	D.A. Porter, K.E. Easterling and Sharif, CRC press.							
2. Phase transformation in materials by Romesh	C Sharma, CBS publishers & Distributors.							
REFERENCE BOOK(S):								
1. Solid State Phase Transformations by V Rag	navan, PHI.							
2. Materials Science and Engineering by W D C Delhi: Wiley)	Callister and adapted by R Balasubramaniam (New							

COUI	RSE OUTCOMESS: Upon completion of the course, the students will be ability to:												
CO1	develop enhanced critical thinking, analytical and problem-solving skills in materials science												
	and engineering based on concepts of metallurgical thermodynamics and kinetics.												
CO2	demonstrate the basic principles underlying liquid to solid and solid-state phase												
	transformations in a range of materials.												
CO3	implement the importance of phase transformations for controlling microstructure and												
	properties in engineering alloys.												
CO4	define the driving forces and kinetic barriers for phase transformations in solid state.												
CO5	produce the desired properties of materials which are affected by the atomistic diffusion												
	processes.												

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	3					
CO2	3	3	3	3	3	3	3					
CO3	3	3	3	3	3	3	3					
CO4	3	3	3	3	3	3	3					
CO5	3	3	3	3	3	3	3					

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3	3	3					

Bachelor of Technology in Metallurgical and Materials Engineering

Subject Code:	BMM04004 Subject Name: Phase Transformation Laboratory
Experiment - 1	Measurement of volume fraction, surface area in two phase and single-phase
	materials.
Experiment - 2	To study the Recovery, Recrystallization and Grain growth behavior of given
	material.
Experiment - 3	To study the phase transformation of Pb-Sn eutectic alloy using DSC.
Experiment - 4	Draw the cooling curves of Pb-Sn alloy with the help of DTA.
Experiment - 5	To study the precipitation Hardening behavior mechanism in Al-alloys.
Experiment - 6	Nucleation of Ice from Water: A Modelling Approach.
Experiment - 7	Study of nucleation and growth in Eutectoid steel.
Experiment - 8	To study the surface hardening treatments like carburizing/Boronizing on steels.
	•

COURS	E OUTCOMESS: Upon completion of the course, the students will be able to:
CO1	analyze the role of phase transformations on the development of microstructure and
	properties of metallic materials.
CO2	produce the microstructures resulting from near-equilibrium vs. far-from-equilibrium
	thermal treatments
CO3	apply the fundamental principles that determines the evolution of structures from liquid
	melt as well as diffusional processes.
CO4	demonstrate the experimental techniques in correlating the structure with the desired
	properties.
CO5	implement the mechanism of phase transformation in surface hardening treatments.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	3	2				3		
CO2	2	2	1	3	3	2				2		
CO3	2	2	2	2	2	3				2		
CO4	2	2	2	2	2	2				3		
CO5	2	2	2	2	3	2				2		

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	2	3	2				2		

Subject Code- BM	Mineral Processing Laboratory
Experiment - 1	To determine and analyze the size distribution of a fixed granular solid by
	using a test sieve stack and a vibratory shaker.
Experiment - 2	Crushing of ore/coal in the jaw crusher and average size determination by
	sieving.
Experiment - 3	To study the jaw crusher and determine the actual capacity and reduction ratio,
	and verification of Rittinger's law of crushing.
Experiment - 4	Crushing of ore/coal in a roll crusher and average size determination by
	sieving.
Experiment - 5	To study the effect of grinding with grinding time in ball mill.
Experiment - 6	To separate a mixture of two minerals of different densities by gravity
	concentration using Wilfley Table and determine the weight and density of
	each fraction of the products
Experiment - 7	Beneficiation of ore pulp mix using floatation cell.
Experiment - 8	Study of magnetic separator and effect of field on the efficiency of the process.

Laborat	ory Outcomes:
CO1	To analyze and identify different minerals.
CO2	To demonstrate the principles of density separation.
CO2	To calculate and analyze the role of average size and reduction ratio on mineral
003	beneficiation process.
CO4	To demonstrate and analyze different crushing laws to define the relationship between the
04	energy consumption and final product size.
CO5	Demonstrate the role of gravity separation using wilfley table.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	3	2	2	2	3	3	3
CO2	2	2	2	3	2	2	2	2	3	3	2	3
CO3	3	3	1	3	3	3	2	2	3	3	2	3
CO4	3	3	3	3	3	3	2	2	3	3	2	3
CO5	1	1	3	3	3	2	2	3	3	3	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	3	3	3	2	2	3	3	2	3

Syllabus for B. Tech in Metallurgical & Materials Engineering Veer Surendra Sai University of Technology (VSSUT) Odisha

Subject Co	ode: BMI	M04006 Subject Name: Process Metallurgy Laboratory								
Experimen	nt - 1	To study the calcination process using carbonate ore and roasting process using								
		sulphide ore.								
Experimer	nt - 2	To find out percentage reduction of given iron ore using coal and coke								
		separately.								
Experimer	nt - 3	To find out percentage swelling of given iron ore using coal and coke								
		separately.								
Experimer	nt - 4	To carryout palletisation of iron ore fines and to measure its green strength and								
		strength after hardening.								
Experimen	ıt - 5	To carry out extraction of metals from oxide and sulphide ore using								
		hydrometallurgy route.								
Experimer	1t - 6	To carry cementation process /contact reduction process of copper from leach								
		liquor (copper sulphate).								
Experimer	ıt - 7	To carryout electro refining/electro plating of metals like cu/nickel/zinc.								
Experimer	1t - 8	To prepare a sand mould for casting.								
Experimer	ıt - 9	To perform casting of low melting point metals and to study the ingot								
		microstructure from different zones.								
Experimer	nt - 10	To carry out purification of two liquid compounds using distillation process.								
COURSE	OUTCO	MESS: Upon completion of the laboratory the student will be able to:								
CO1	Produce	e a suitable product from carbonate and sulphide ore for subsequent metal								
	product	tion								
CO2	Evaluate the property of iron ore pellet and lump iron ore so as to select the best raw									
	materia	materials from iron making								
CO3	Develo	p skills to produce metal using hydrometallurgy route								
CO4	Develo	p skills to produce metal by melting and casting route and can evaluate the macor								
	structur	e of ingot.								
CO5	Develo	p skills to produce pure metals out of a given ore.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	3	3	3	2	-	-	-	-	1
CO2	2	3	1	3	3	3	3	-	-	-	-	1
CO3	3	2	1	3	3	3	3	-	-	-	-	1
CO4	3	3	3	3	3	3	2	-	-	-	-	1
CO5	3	3	3	3	3	3	2	-	-	-	-	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	3	3	2	3	3	3	3	-	-	-	-	1
Subject Code: BM	IM04007	Subject Name: Non-destructive Testing Laboratory										
------------------	----------------	---										
Experiment - 1	To study the	microstructure of given material without destroying it (Replica										
	method).											
Experiment - 2	To inspect the	discontinuous in the material using ultrasonic testing.										
Experiment - 3	To inspect the	discontinuous in the material using Dye penetrate testing.										
Experiment - 4	To inspect the	discontinuous in the material using Magnetic particle testing										
Experiment - 5	To inspect the	discontinuous in the material using ultrasonic testing										
Experiment - 6	To inspect the	discontinuous in the material using leak testing										
Experiment - 7	To study the d	iscontinuous in the material using Eddy current testing										
Experiment - 8	To study the d	iscontinuous in the material using Radiography testing										

COURS	SE OUTCOMESS:									
CO 1	Have a complete theoretical and practical understanding of the radiographic testing,									
	interpretation and evaluation.									
CO 2	Select appropriate materials for specific engineering applications considering									
	manufacturing and working conditions									
CO 3	Select the appropriate technique and exposure time for a better imaging.									
CO 4	Differentiate various defect types and characterize them.									
CO 5	Follow proper safety precautions to avoid radiation hazards									

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	1	3	3	3		3
CO2	3	3	3	3	3	3	3	3	2	3	1	3
CO3	3	3	3	3	3	1	3	3	1	3	3	3
CO4	3	3	3	3	3	3	3	1	3		3	1
CO5	3	3	3	3	3	3	3	3	3	3	3	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

-												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3	3	2	3	2	2	2	2

FIFTH SEMESTER

Subject Code: BMM05001	Subject Name: Iron Making
Pre-Requisite: Basic idea about there	modynamics
	1
Module -I	[8 hours]
History of Iron making in India, Indian an	d other resources of raw materials required for iron
making. coke making. Blast furnace plant	and -Modern blast furnace, plant layout, Details of
construction of blast furnace and its r	nain accessories; gas cleaning system, hot blast
generation. Blast furnace refractories and b	blast furnace cooling system.
	1
Module -II	[8 hours]
Agglomeration of iron ore fines, sinterin	g and pelletizing, evaluation of properties of blast
furnace, burden materials and application	to blast furnace performance. Blast furnace plant
operation, blowing in, blowing out and ba	inking of blast furnace, role of burden charging and
distribution in iron extraction, irregularitie	s in Blast furnace operation and their remedies.
Module -III	[8 hours]
Blast furnace products their quality control	and disposal, coke rate and fuel efficiency of B.F.
operations Modern trends in Blast Furnad	ce Practice-Production of super flux sinter, pellets,
super flux and cold bonded pellets. Auxil	liary fuel injection in the blast furnace. High temp.
blast, humidified and oxy generated blast,	high top pressure, Desulphurization of hot metal.
Module -1V	[8 nours]
Chemical processes in Blast Furnace, Rea	actions in Tuyere, hearth and bosh zone. Reduction
and coke gasification, Reactions in stack	and exit gases. Thermodynamics of Blast Turnace
process requirement in Blast furnace, temp	b). prome in the furnace. Free energy and equilibrium
balance, testing of agglemerates	sussion on blast furnace storemometry and enthalpy
balance, testing of aggiomerates	
Module -V	[8 hours]
Alternate route for iron making charcoal	blast furnace low shaft furnace and electro thermal
processes of iron making Direct reduc	tion processes their classification choice of DR
process. Introduction to Production of Fer	ro-allovs. Production of various ferro-allovs Fe-Mn.
Fe-V. Fe-Cr etc. uses of ferro-allovs in iro	n and steel industry
EXT BOOK(S):	
1. Modern Iron Making - Dr. R.H. Tupkar	V
2. Principles of Blast Furnace iron making	- Dr. A K Biswas
REFERENCE BOOK(S):	
1. Ahindra Ghosh and Amit Chatterjee:	Ironmaking and Steelmaking Theory and Practice,
Prentice-Hall of India Private Limited, 2	2008.

2.	Metallurgical Thermodynamics, Kinetics and Numericals by Dr. S. K. Dutta and Prof. A. B.
	Lele

COURS	COURSE OUTCOMESS:							
CO1	Can make a division regarding ferrous metal and alloys							
CO2	Apply theoretical knowledge to solve as well as try to minimize the irregularities in blast							
	furnace and other furnace							
CO3	Can apply knowledge to increase the efficiency of smelting process							
CO4	Can apply knowledge to reduce the fuel consumption							
CO5	Can think of some other alternative routes of iron making							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	3	3	2	1	1				1
CO2	3	3	3	1	1	1	1	1	1			2
CO3	1	2	1	2	2	3	3			1		3
CO4	2	2	3	1	3	3	1	1	1	1	1	3
CO5	3	1	3	1	3	3	1	1	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO11	PO11	PO12
Course	2	2	2.2	1	2	2	1	1	1	1	1	2

Subject	Code: BMM050	02		Heat Treatment					
			-	-					
Pre-Rec	juisite:		Co-requisite:						
			1						
Module	-1	. 1.1		[8hours]					
0	bjective and vari	lables of heat treatment	s, Classification of st	teels, Heat treatment of steel –					
ai	nnealing, normal	izing, hardening, tempe	ering; Phase transfor	mation mechanisms, Fe-Fe ₃ C,					
F d	e-C phase diagi	rams, 111, CC1 diag	grams, Microstructur	e evolution during austenite					
	ecomposition, wi		luning reneating, Stier	iguiening mechanisms in steel.					
Module	-11			[8hours]					
E	ffects of Alloving	g Elements on Heat Tre	atment Processing of	Iron–Carbon Alloys, Effect of					
A	lloving Element	ts on Austenite Trans	formations. Definition	on of Hardenability. Factors					
Ir	fluencing Depth	of Hardening, Determin	nation of Hardenabili	ty, Grossmann's Hardenability					
C	oncept, Jominy	End-Quench Hardena	bility Test, Hardena	bility Bands, Application of					
Н	ardenability Cor	ncept for Prediction of	Hardness after Quer	nching, Hardenability in Heat					
Т	reatment Practice	2.							
Module	-III			[8hours]					
H	leat Treatment w	ith Gaseous Atmospher	es: Carburizing, Read	ctions with Hydrogen and with					
0	xygen, Nitriding	and Nitro-carburizing,	Quenching: Metallur	gical Transformation Behavior					
d	during Quenching, Quenching Processes, Determination of Cooling Characteristics, quenching								
as	s a Heat Transfer	Problem, Process Varia	bles Affecting Coolin	g Behavior and Heat Transfer.					
	TT 7		1	F01 1					
Module	-IV	4 T 1 C	Desis Distantian M	[8hours]					
	vistortion of Hea	Reat Quarab Processi	Basic Distortion M	of concerel ancineering steeler					
	nstortion during	Post Quench Processii	ng. Heat treatments	of general engineering steels:					
S S	tainless steels. He	eets, 1001 steets, HSLF	A steel and whataging	steels, Dual phase steels and					
5	tanness steers, m	eat treatment cast nons.							
Module	-V			[8hours]					
H	eat Treatments of	f Nonferrous alloys. Al-	allovs Brass Bronze	and Ti-allovs Superallovs					
				, and IT anoys, superanoys					
TEXT H	BOOK(S):								
1.	Ieat treatment –I	Principles & Technique	s by T.V. Rajan, C.P	. Sharma and A. Sharma, PHI					
	publishers.		v 5 ·						
2.	Singh, Heat Tre	eatment of Metals, Stand	lard Publishers.						
	·								
REFER	ENCE BOOK(S)):							
1.	Steel Heat Trea	atment Handbook (Stee	el Heat Treatment Ha	andbook, Second Edition)" by					
	George E Totte	n and Maurice A H How	ves						
2.	Heat Treatment	t of Metals" by B Zakhar	rov						

COUR	SE OUTCOMESS:
CO1	Evaluate the possible microstructure evolution for a given composition of Carbon steel
CO2	Apply suitable heat treatment technique to get desired set of properties for a given service
CO3	Analyze suitable ways to strengthen a given steel and nonferrous metal and alloys for real
	application
CO4	Develop skills to carry out all the essential heat treatment on a large scale
CO5	Can selects the best steel for desired application and can modify the properties according
	the recent demands.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	3	2	1	2	1	2	2
CO2	3	2	3	3	3	3	2	1	2	1	2	2
CO3	3	3	3	3	3	3	2	1	2	1	2	2
CO4	3	2	3	3	3	3	2	1	2	1	2	2
CO5	3	3	3	3	3	3	2	1	2	1	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	3	3	3	2	1	2	1	2	2

Subject C	code: BMM050	003	Subject Name: Def	ormation Behavior of Materials
		1	1	
Pre-Requi	isite:		Co-requisite:	
Madula	r			[94]
Module -	oduction: Scot	a of the subject al	estic plastic and visco el	[onours]
heh	avior: Tensile	and compression to	esting effect of temperat	ure and strain rate Continuum
med	chanics: Conce	epts of stress and stra	ain in 3D stress and strain	tensor.
		F		
Module -	Π			[8hours]
Prir	ncipal stresses	and strains and prin	cipal axes, mean stress, s	tress deviator, maximum shear,
equ	ilibrium of stre	esses, equations of o	compatibility. Elastic beha	avior of materials: Constitutive
equ	ations in elast	icity for isotropic a	and anisotropic materials,	strain energy, elastic stiffness
and	l compliance te	nsor.		
			1	
Module -				[8hours]
Effe	ect of crystal	structure on elastic	c constants. Plastic respo	onse of materials-a continuum
app	oroach: classifi	cation of stress-stra	ain curves, yield criteria	. Microscopic basis of plastic
disl	location	lients of dislocation	i theory, movement of th	siocation, elastic properties of
uisi				
Module -	IV			[8hours]
Inte	ersection of di	slocation, dislocation	on reactions in different	crystal structures, origin and
mul	ltiplication of	dislocations. Plastic	c deformation of single c	rystals: Critical resolved shear
stre	ess, deformation	n by twinning, defo	ormation band and kink b	and, strain hardening of single
crys	stal; stress-stra	in curves of fcc, bcc	and hcp materials.	
			.	
Module -	V			[8hours]
Plas	stic deformation	on of polycrystallin	e materials: Role of gra	in boundaries in deformation,
stre	ngthening by	grain boundaries, y	ield point phenomenon, s	strain ageing, strengthening by
solu	utes, precipitat	es, dispersoids and	fibres. Deformation in no	on-metallic materials: structure
and	deformation o	of polymers, concept	in coromics	s in inter metallics, and concept
010	sharge association			
TEXT BO	OOK(S)			
1.	Mechanical M	etallurgy, 3rd Ed., N	AcGraw Hill Book Compa	any, New Delhi, 1986 - G.E
	Dieter			,,,
2.	Mechanical Be	havior of Materials	, McGraw Hill Book Com	pany, New Delhi, 1990 - T.H.
	Courtney			
	-			
REFERE	NCE BOOK(S):		
1.	Mechanical Be	ehaviour of Material	s by Norman E. Dowling	
2.	Mechanical Be	ehaviour and Testing	g of Materials" by a K Bha	argava and C P Sharma

COURS	SE OUTCOMESS:
CO1	Calculate and develop the concepts of stress and strain relationships for homogenous,
	isotropic materials.
CO2	Calculate and predict the yielding phenomena occurs in metals and alloys using yield
	criteria.
CO3	Calculate and describe the internal stresses and deformations that result in combined
	loading conditions
CO4	Evaluation of different strengthening mechanism occurs in metals and alloys.
CO5	Basic knowledge of deformation mechanism in polymers and intermetallics.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	2	3	2	1	3	2	1	3
CO2	2	3	1	3	1	2	2	3	2	2	3	1
CO3	3	2	2	2	3	1	3	2	2	3	2	3
CO4	2	2	3	2	2	2	1	3	2	2	3	2
CO5	3	2	2	2	3	2	3	2	2	2	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	2	2	2	2	2	2	2	2	2

Subject Code: BMMPE501 Subject	ct name: Powder Metallurgy and Composite Materials
Pre-Requisite:	Co-requisite:
Module -I	[8hrs]
Introduction to powder metallurgy: meta mechanical methods of production. Me composition, particle size, surface area, o	and alloy powder production, chemical, physical and etal powder characterization: introduction, chemical lensity, compressibility and strength.
Module -II	[8hrs]
Powder compaction, Sintering intro Reinforcements: galss fibre, carbon fibr review of current developments; Basic n of fibers in a matrix.	duction, Introduction to Composites: Matrices, re, whiskers, Fundamental concept of reinforcement, nechanics of reinforcement, stiffness of parallel arrays
Module -III	[8hrs]
Polymer Matrix Composites (PMCs): composite, structural defect and mechan (MMCs): Aluminum alloy, copper all processing, high temperature properties a	processing of thermoplastic and thermoset matrix ical properties, application. Metal Matrix Composites oy, titanium alloys, solid state processing, in situ and strength, applications.
Module -IV Ceramic Matrix Composites (CMCs): propagating high temperature synthesis, and toughness.	[8hrs] cold pressing and sintering, hot pressing, self- thermal shock resistance properties, crack deflection
	[0] J
Nodule - V Nano composites: polymer clay nano con	nposite, bio composite, hybrid composite.
TEXT BOOK(S):	
1. Powder metallurgy technology by G.	S. Upadhyaya
2. Composite materials science and engin	neering by K. Chawla
REFERENCE BOOK(S):	
I. Powder Metallurgy: An advanced B.K.Datta.	technique of processing engineering materials by
2. An Introduction to Composite Materia	ls by T.W.Clyne and D.Hull.

COURS	SE OUTCOMESS(COs)
CO1	Develop the basic knowledge of the powder metallurgy processing; and the theory and
	technology of powder production, consolidation and sintering.
CO2	Acquire the basic knowledge of composite materials, matrices, reinforcements and
	interfaces used in the different composite materials.

CO3	Evaluate the different processing methods used for Polymer, Metallic and ceramic matrix
	composite
CO4	Analyze the difference between polymer clay nano-composites over bio-composite
CO5	Develop an idea about hybrid composite

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3						
CO2	3	3	3	3	3	3						
CO3	3	3	3	3	3	3						
CO4	3	3	3	3	3	3						
CO5	3	3	3	3	3	3						

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	2	3	1	1	2	2		1	

Subject	Code: BMMPE502	Subject name: Fuel, Furnace and Refractories
Module	e -I	[8hrs]
In a c d a	ntroduction of fossil fuels and their world nd non-coking coals, Characterization alorific value, proximate and ultimate ifferent parameters; Properties of coke, S nd Formed coke.	dwide reserves; Primary and secondary fuels, Coking of coal properties (caking and swelling indices, analyses, etc.); Coal carbonization and effects of Selection of coal for sponge iron making, Ferro coke
Module	, -∏	[8hrs]
F	urnacees and its Accessories: common	v used furnaces basic principle of furnace design
f	urnace instruments, and furnace accessor	ies.
Module		[8hrs]
Filoduk	Pefractory mortars and cements. Refract	
	con blast furnace, copper convertor, soa	king reheating furnaces and heat treatment furnaces
a	nd electric arc furnaces, Classification of	Furnaces: basis and uses.
Module	e -IV	[8hrs]
Ν	Aechanism of combustion and combustion	on calculations, Ignition temperature, Flames: Flame
p f	ropagation, flame speed and inflammab lames and their characteristics.	ility limits, types of flames; premixed and diffusion
Module	e-V	[8hrs]
F	flame temperature and type, Heat losse	s in furnaces: Heat balance and furnace efficiency.
E	Burners for liquid and gaseous fuel combi	ustion.
TEXT	BOOK(S):	~
1	Fuel, Furnace, and Refractories by O.P	.Gupta.
2	Fuels, Furnaces and Refractories by J.I.	D. Gilchrist.
DEFE		
REFER	ENCE BOOK(S):	~
1	Fuel, Furnace, and Refractories by R.C	.Gupta.
2	Fuels, Furnaces and Refractories, 1st E	dition, International Series on Materials Science and
ļ	Technology by J. D. Gilchrist and Edite	or: R. W. Douglas

COURS	SE OUTCOMESS:
CO1	Develop a basic knowledge of different types of fossil fuels, concept of carbonization and
	physico-chemical properties of coke.
CO2	Analyze the different types of refractories and their properties used in various metallurgical
	furnaces.
CO3	Express the concept of different types of furnaces and their applications.
CO4	Evaluate the mechanism of combustion and combustion calculation
CO5	Demonstrate the different types of burners used for liquid and gaseous fuel combustion.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	1	2	2	3	2	1
CO2	3	2	2	3	3	2	3	2	2	3	2	1
CO3	3	2	2	3	3	2	3	2	2	3	2	1
CO4	3	2	2	3	3	2	3	2	2	3	2	1
CO5	3	2	2	3	3	2	3	2	2	3	2	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	1	3	3	1	2	2	2	1

Subject Code: Bl	MMPE503	Subject name:	Alternative Routes of Iron Making
Pre-Requisite:	Metallurgical Thermodynamics & Kinetics	Co-requisite:	Iron Making
Module -I			[8 hours]
Introduction and their pr	n: Present and future of sponge eparation. Thermodynamics and	iron industries in In Kinetics aspects.	ndia; Characteristics of raw materials
Module -II			[8 hours]
Direct Red Classification features of g	uction Processes: Reduction of on of DR processes; Salient feat gas-based DR processes.	F Iron bearing mat tures of coal- based	erials in shaft furnace, rotary kiln. (rotary kilns) DR processes; Salient
Module -III			[8 hours]
Retort and problems. (MIDREX, I	fluidized bed with special refer Commercially available processe HyL, Purofer, Iron Carbide, etc.	rence to reductant, es like SL/RN, AC	energy consumption and operational CAR, Krup-CODIR, Kinglon Meter,
Module -IV			[8 hours]
Uses of DF product cha Hismelt etc	I in steel making, iron making aracteristics. Smelting Reduction	and foundries; effe Processes: CORE	ct on DRI on EAF performance and K, ROMELT, Fluidized bed reactors,
Module -V			[8 hours]
Strengths a usage of D iron making	nd weaknesses of different DR J RI; Pollution issues in the Indiar g in India.	Drocesses particular DR industries. Pro	ly in context to India; Properties and esent status of alternative methods of
TEXT BOOK(S)	:		
1. Alternativ	ve Routes of Iron Making by Am	it Chatterjee, PHI	
2. Beyond t	he Blast Furnace by Amit Chatter	rjee	
REFERENCE B	OOK(S):		
1. Modern I	ron Making - Dr. R.H. Tupkary		
2. Rate Proc	cesses In Metallurgy by Mohanty	, A. K.; PHI Learnii	ng.
COURSE OUTC	COMES:		
CO1 Aware	of different alternative routes of	iron making proce	esses and their present status in India

COURS	E OUTCOMES.
CO1	Aware of different alternative routes of iron making processes and their present status in India
	and throughout the world.
CO2	Provide fundamental knowledge and demonstrate the differences between different alternative
	routes of iron making.
CO3	Define and solve the major issues in the iron and steel industries.

CO4	Analyze and incorporate the ideas of increasing productivity of iron by means of various
	alternative iron making processes.
CO5	Evaluate and implement the suitable analysis to produce high grade iron steel for best use in
	engineering applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	3	3	2	2	3	3	3	3	3
CO2	1	1	2	1	3	2	1	2	2	3	2	2
CO3	3	2	3	2	3	2	2	3	3	3	3	2
CO4	2	2	3	3	3	3	3	2	3	3	3	3
CO5	3	3	3	3	3	3	3	2	3	3	3	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	3	2	3	2	2	2	3	3	3	3

Subject Code: BMMOE501	Subject Name: No	nequilibrium Processing of Materials
Pre-Requisite:	Co-requisite:	
	eo requisite.	
Module -I		[8 hours]
Introduction to non-equilibrium proce	ssing Thermodynan	nics of meta-stable phase formation:
Free energy of elements and alloy ph	ases-determination of	of free energy of metastable phases
lattice parameter of the super-satura	ted phase: Kinetics	of meta-stable phase formation –
Nucleation of metastable and allov pha	ses. Grain growth rat	te of metastable phases.
	6	1
Module -II		[8 hours]
Rapid solidification: Methods, co	nstitution and mi	crostructure formation, properties
performance and applications. Med	hanical Alloving:	process, mechanism of alloving.
consolidation, synthesis of non-equilibrium	rium phases, industri	al applications.
	1 /	
Module -III		[8 hours]
Laser processing: principles, classificat	ion, laser quenching	, laser surface-alloying and cladding,
laser annealing, laser beam joining,	micro joining. Ther	mal plasma processing: advantages,
principles of plasma generation, plasm	a processing system	s, processing of materials by plasma
spraying.		
Module -IV		[8 hours]
Spray forming: Principles, applicabilit	y, non-equilibrium p	phenomena in spray forming, effects
of non-equilibrium features on mechan	ical/physical properti	ies.
Module -V		[8 hours]
Physical Vapor Deposition and Chem	ical Vapor Depositi	on: basic principles, processing and
application. Bulk amorphous alloys.		
TEXT BOOK(S):		
1. Non-equilibrium processing by C Surya	anarayana.	
2. Elements of Rapid Solidification: Fui	ndamentals and App	blications, Editor Monde A. Otooni,
Springer series in Materials Science.		
DEFEDENCE DOOK(S).		
REFERENCE BOOK(S):	· ·	
1. ASIVI Handbook Volume 5 - Surface E	ngineering.	Edition D E Smallman A H W
2. Physical Metallurgy and Advanced F	materials, Seventh 1	cultion, K E Smallman, A. H. W.,
Butterworth-Heinemann, 2007, ISBN:	013009003	

COU	COURSE OUTCOMESS: Upon completion of the course, the students will be able to:									
CO1	apply the knowledge of materials thermodynamics and kinetics in predicting the formation									
	and stability of metastable phases during the nonequilibrium processing of materials.									
CO2	produce materials industrially via rapid solidification process and mechanical alloying for									

	engineering applications.
CO3	implement the laser and plasma technology in selection and design of advanced materials via
	modern processing routes.
CO4	demonstrate the applicability of spray forming by nonequilibrium features.
CO5	create amorphous alloys using the vapor deposition techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	3	3	3					
CO2	2	3	3	3	3	3	2					
CO3	2	2	2	3	3	3	2					
CO4	2	3	3	3	3	3	2					
CO5	2	3	3	3	3	3	2					

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	3	3	3	3	3	2					

Subject Code: BMMOE502	Subject name: Mechanical Working of Metallic Materials
Pre-Requisite: Calculus	Co-requisite:
Tre-Requisite. Calculus	co-requisite.
Module -I	[8 hours]
Fundamentals of Meta working, Hot working, for hot working, Frictio	Working: Classification of forming processes; Temperature in Metal– Cold working and Warm working of metals, Heating of metals and alloys n in Metal working, Lubrication, concept of yield criteria.
Module -II	[8 hours
Rolling of Metals: Clas rolling; Forces and Ge Rolling Torque and HP Slabs, Blooms, Billets,	sification of Rolled products, Types of rolling mills, terminology used in ometrical relationships in rolling, rolling variables, Theories of rolling, calculations. Rolling practice adopted for some common products such as Plates, Sheets etc. Rolling defects and their control.
Module -III	[8 hours]
Forging of Metals: For forging load under stick	ging principles, types of forging and equipment's needed, calculation of ing and slipping friction conditions, Forging defects and their control
Module -IV	[8 hours]
Extrusion: Types, Princ	iples and Equipment's. Variables in extrusion, deformations in extrusion,
calculation of extrusion tubes and seamless pipe	pressure under plane strain conditions; extrusion defects; production of
Module –V	[8 hours]
Wire Drawing: Drawin Sheet Metal Forming: I deep drawing, and rec explosive forming (eler	g of Rods, Wires and Tubes, calculation of drawing load; drawing defects. Forming methods such as bending stretch forming, shearing and blanking, rawing. Defects in formed products, Special forming methods such as mentary ideas excluding mathematical treatment).
TEXT BOOK(S)	
1. G. W. Rowe, Princ	ples of Industrial Metal Working processes. Crane Russak, 1977.
2. Amitabh Ghosh, A latest reprint-1991	sok Kumar Mallick, Manufacturing sciences, East-west press private ltd;
DEEDEMOE DOOM(C)	
KEFEKENCE BOOK(S): 1 Diotor C E P	poor D. I. (1086) Machanical matallurary (Val. 2) Now Vark
McGraw-hill	icon, D. J. (1900). Mechanical metallurgy (Vol. 5). New York:

COUR	SE OUTCOMES:
CO1	Differentiate various metal forming processes such as Hot and Cold Working, Rolling,
	Forging, Extrusion and Drawing Processes.
CO2	Select an appropriate forming process to manufacture a component.
CO3	Design different metal forming equipment
CO4	Design different sheet metal working processes
CO5	To capture the international market with latest mechanical industry needs with the
	knowledge and support of advanced manufacturing techniques, so student with this
	judgment will be absorbed in any mechanical industry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	1	3	3	1	1	1	1	3	1
CO2	1	1	3	1	3	3	1	1	1	1	3	1
CO3	1	1	3	1	3	3	1	1	1	1	3	1
CO4	1	1	3	1	3	3	1	1	1	1	3	1
CO5	1	1	3	1	3	3	3	2	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	1	1	3	1	3	3	1	1	1	1	3	1

Subject Code: BMM05004	Subject Name: Heat Treatment Laboratory
Experiment - 1	To study the microstructure, grain size and hardness of annealed steel.
Experiment - 2	To study the microstructure, grain size and hardness of normalized steel.
Experiment - 3	To study the microstructure, grain size and hardness of hardened steel.
Experiment - 4	To study the microstructure, grain size and hardness of tempered steel.
Experiment - 5	To study the hardenability of a given material (Jominy End Quench Test)
Experiment - 6	To study/draw the TTT diagram of a material.
Experiment - 7	To study/draw the CCT diagram of a given material.
Experiment - 8	To study the heat treatment cycles for Titanium and Super alloys.

COUI	RSE OUTCOMESS: Upon completion of the course, the students will be able to:
CO1	assess the behavior of materials built into a device or structure from the viewpoint of the
	selected heat treatment.
CO2	create surface integrity yielded by different heat treatment processes and ensure the required
	quality for the operation of a product.
CO3	evaluate the microstructural transformations in the material after different thermal and
	thermochemical treatments.
CO4	analyze and interpret the experimental data for quantitative and qualitative research.
CO5	apply the concepts of heat treatment processes at industry level.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	3	2				3		
CO2	2	2	1	3	3	2				2		
CO3	2	2	2	2	2	3				2		
CO4	2	2	2	2	2	2				3		
CO5	2	2	2	2	3	2				2		

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	1	2	3	2				2		

Subject Code: BMM05005	Subject Name: Foundry Laboratory
Experiment - 1	Preparation of sand specimen's and conduction of the following tests.
Experiment - 2	Compression, Shear and Tensile tests on Universal Sand Testing Machine.
Experiment - 3	Permeability test
Experiment - 4	Core hardness & Mould hardness tests.
Experiment - 5	Sieve Analysis to find Grain Fineness number of Base Sand
Experiment - 6	Clay content determinations in Base Sand
Experiment - 7	Compression, Shear and Tensile tests on Universal Sand Testing Machine.

COUR	SE OUTCOMESS:											
CO1	The ability to assess the behavior of materials built into a device or structure from the											
	viewpoint of the selected heat treatment.											
CO2	Select appropriate materials for specific engineering applications considering											
	manufacturing and working conditions											
CO3	The ability to evaluate the microstructural transformations in the material after different											
	thermal and thermochemical treatments.											
CO4	Differentiate various defect types and characterize them.											
CO5	Follow proper safety precautions to avoid radiation hazards											

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	3	3	1	3	3	1
CO2	3	3	3	3	3	3		3	3	1	2	3
CO3	3		3	3	2	3	3	1	3	2	3	
CO4	3	3	3	3	3	2	2	3	1		3	3
CO5	3	3	2	3	3	3	3	3	3	1	1	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	3	3	3	3	2	3	2	1	2	1

Subject Code: BMM05006	Subject Name: Powder Metallurgy & Composite Materials Laboratory
Experiment - 1	To Determination the particle size and size distribution of metal powder by using
	particle size analyzer.
Experiment - 2	To determine the apparent and tap density of metal powders by using density
	meter.
Experiment - 3	To determine the flow rate of powder sample.
Experiment - 4	To study the compaction of metal powder by uniaxial compaction machine.
Experiment - 5	To study the sintering behavior of metal powders by scanning electron
	microscopy.
Experiment - 6	To determine the surface area of metal powders before and after sintering.
	·

COUR	SE OUTCOMESS:
CO1	Able to determine the different size of powder particles.
CO2	Analyze the density and flow rate behavior of metallic and ceramic powder particles
CO3	Acquire the knowledge of powder compaction
CO4	Develop an idea about the sintering practice used for the powder compacts
CO5	Demonstrate the concept of production of an engineering component through powder
	metallurgy

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	1	3	1	2		3	2	
CO2	3	2	2	3	1	2	3	2		3	2	
CO3	3	2	2	3	1	2	3	2		3	2	
CO4	3	2	2	3	1	2	3	2		3	2	
CO5	3	2	2	3	1	2	3	2		3	2	

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	2	3	3	3	2	2	2	

SIXTH SEMESTER

Subject Code: BMM06	6001	Subject name: Casting Processes and Solidific	ation
Pre-Requisite:		Co-requisite:	
Module -I			[8hrs]
Introduction: Cas	sting as a proces	ess of Manufacturing. Advantages, dis advantages	s and
application, casti	ng terms, gating	g system, parts of gating system Molding Proc	esses,
Equipment's and	Mechanization:	Different types of Molds and moulding sands, Mo	olding
Materials and Mo	lding processes.		
Module -II	11 1. D		[8hrs]
Properties of more	alding sand, Patter	ern and its type, allowances, types of Pattern allowa	ances,
steps involve in s	and casting, sand	t testing and its type, Different types of binders and	their
uses in mold and o	core makings.		
Module III			[Shre]
Melting of Metals	and Allovs for ca	asting: Brief mention of various melting units melting	g and
nost melting treat	ments melting pr	actices as adopted for a few metals and alloys such a	as CI
steels Solidificati	on of Metals and /	Allovs: Nucleation Growth Role of allov constitution	us C1, n
Module -IV			[8hrs]
Principles of Gati	ing and Risering s	system: Types of Gates and Risers, gating ratio, desi	ign of
rising system, crit	teria for riser desig	gn, method for improving riser efficiency, Chvorinov	rule,
concept of directi	onality in solidific	cation Significance and practical control of cast stru	cture,
Caines method, m	odulus method.		
Module -V			[8hrs]
Special casting N	Aethods: Investme	ent casting, die casting, Centrifugal casting, Full r	nould
casting, Vacuum	sealed casting. Ca	asting Defects: A detailed analysis of casting defects	Their
causes and prescri	ption of remedial	measures.	
TEXT BOOK(S):			
1 P. R. Beeley, F	oundry Technolog	gy, Newnes -Buttterworths, 2001.	
2 P. D. Webster,	Fundamentals of F	Foundry Technology, Portwillis press, Red hill, 1980.	
REFERENCE BOOK(S			
1 Solidification a	nd Casting: By Br	rian Cantor, K O'Reilly	
2 Principles of Se	olidification by Gli	licksman, Martin Eden	

COURS	SE OUTCOMESS:
CO 1	The features of casting problem; a survey and scope of foundry industry.
CO 2	Interpret different casting process and its different terminology
CO 3	Able to understand Pattern, Core, Gating, Riser system
CO 4	Able to differentiate between different furnaces likeGas fired furnace, pit furnace,
	Resistance furnace, Coreless furnace, Electric arc furnace and Cupola Furnaces.
CO 5	Apply advanced casting methods like V-process, lost foam process, Gravity die casting,
	Pressure die casting, Centrifugal casting, Squeeze casting, slush and Continuous Metal
	mold castings in the industrial purpose.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	3	3	2	3	3	
CO2	3	3	3	3	1	3	3	3	3	1	3	3
CO3	3	3	2	3	3	3	3	3	3	3	1	3
CO4	3	3	3	3	2	2		3	3	2		2
CO5	3	3	3	3	3	3	2	3	3	2	2	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

8												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	2	3	2	3	3	2	2	2

Program Articulation Matrix row for this Course

Subject Code: BMM06002	Subject name: Steel Making
Pre-Requisite:	Co-requisite:
Module -I	[8hrs]
Introduction: History of modern stee	lmaking, Principles of steel making reactions:
Decarburisation, Dephosphorisation, Des	ulphurisation, silicon and manganese reaction. Slag
Theories: Molecular and Ionic theories; In	nterpretation of the above reactions in terms of ionic
theory of slag.	
Module -II	[8hrs]
Fundamentals of converter steelmaking te	chnology: LD Process, Design of converter & lance,
Quality of raw materials charged, Opera	tion of the converter and control of bath and slag
composition, Characteristics of L. D	blow: emulsion formation, lance height for P_{AB}
Concept and operation of the process	Mixed/Combined blowing Processes Oxygen top
blowing with inert gas purging at bottom	Oxygen top blowing with inert and oxidizing gases
at bottom. Oxygen top and bottom blowir	Onen Hearth Furnace: Its modification into Twin
Hearth, Operational principle and advanta	
	50.
Module -III	[8hrs]
Steelmaking in electric arc furnace; desig	gn and operation, Development in Electric Furnace
steel making Electric Arc Furnace: Advar	tages, Charging, Melting and Refining practices for
plain carbon and alloy steels, Use of DRI	in arc furnace and its effect on performance. Duplex
processes of stainless steel making using V	/OD, AOD.
Module -IV	[8hrs]
Induction Furnace: Advantages, principle	e of induction melting, Deoxidation of liquid steel:
Requirements of deoxidisers, deoxidation	n practice, Use of complex deoxidisers, Inclusions
and their influence on quality of steel,	Killed, Semi-killed and Rimming steel, Secondary
refining of steel: Objectives, Principle of o	legassing, Different industrial processes such as DH,
RH, VAD, SD. LF, and ESR, Limitations	and specific applications.
Madula V	[01]
Module - V	[onrs]
continuous Casting of Steel: Advanta	ges, types of machines, Mould lubrication and
conservation. Near-net-shape casting. Strip	b casting
conservation, real-net-shape casting, Surj	b casting.
TEXT BOOK(S):	
1. Iron and steel making theory and practic	ced - Ahindra Ghosh, Amit Chatteriee
2. Introduction to Modern Steel Making, H	Khanna Publishers, Delhi - R.H.
67	
REFERENCE BOOK(S):	
1. Steel Making by A.K.Chakrabarti, PHI	Learning Pvt. Ltd., 19-Dec-2006 - Technology &
Engineering.	
2. Design of Steel Structures: By Limit St	ate Method as Per IS: 800-2007" by S S Bhavikatti.

COUR	SE OUTCOMESS(COs)
CO1	Define the principles of steel mking reactions
CO2	Demonstrate different converter steelmaking technologies
CO3	Create an idea in different aspect of electric arc furnace steel making
CO4	Analyze the advantages of secondary refining of steel
CO5	Apply the knowledge of continuous casting process to enhance the quality and productivity
	of steel

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3						
CO2	3	3	3	3	3	3						
CO3	3	3	3	3	3	3						
CO4	3	3	3	3	3	3						
CO5	3	3	3	3	3	3						

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	2	3	3	1	1		2		

PE601	Su	ubject Name: Material Testing
	1	1
	Co-requisite:	
	1	[0. 1]
		[8 Hours]
nais and their application	ons, testing of materia	als: Types of testing systems,
significance of massure	d parameters packing	a stress distribution dustility
significance of measure	d parameters, neckin	g, sucess distribution, ductinity
		[8 Hours]
ngth, effect of strain rate	and temperature on flo	ow properties, Machine stiffness
system, measuring inst	trument computerizati	ion, Torsion Test: Mechanical
on. torsion vs tension test.		
		[8 Hours]
ckwell, Brinell, Vickers a	and micro-hardness, el	astic and plastic behavior
sting, Special hardness te	sts: superficial, micro	and shore.
	1	
		[8 Hours]
s: Introduction, Strain-E	Energy Release Rate, S	Stress Intensity Factor, Fracture
esign, KI _c Plane-Strain	Toughness Testing D	Ductile, brittle fracture, Griffith
Stitue transition, Notch el	flect in fracture.	
		[8 Hours]
es cucles SN curve effe		tion size and surface conditions
Stress runture tests Cr	eep curve and its and	alvsis Non-destructive Testing.
radiographic, ultrasonic,	electromagnetic, pene	etrant tests, their applications in
l inspection.		
*		
	D' /	
cal Metallurgy George E.	. Dieter.	
s Testing by S. Bhargava	. Dieter.	
s Testing by S. Bhargava	. Dieter.	
cal Metallurgy George E s Testing by S. Bhargava	. Dieter.	
cal Metallurgy George E s Testing by S. Bhargava (S): cal Behavior of Materials	s, Cambridge Universit	ty Press, UK, 2005 - William F.
cal Metallurgy George E s Testing by S. Bhargava (S): cal Behavior of Materials	s, Cambridge Universit	ty Press, UK, 2005 - William F.
cal Metallurgy George E s Testing by S. Bhargava (S): cal Behavior of Materials Metallurgy 2nd Edition b	s, Cambridge Universit	ty Press, UK, 2005 - William F.
cal Metallurgy George E s Testing by S. Bhargava (S): cal Behavior of Materials Metallurgy 2nd Edition t Testing, ASM Internation	s, Cambridge Universit by Sindo Kou, Wiley-I al, United States of Ar	ty Press, UK, 2005 - William F. Interscience nerica, 2004 - J.R. Davis Davis
	PE601 ials and their applicative asurement of properties ignificance of measure gth, effect of strain rate system, measuring inst n. torsion vs tension test ekwell, Brinell, Vickers a sting, Special hardness te s: Introduction, Strain-E esign, KI _c Plane-Strain orittle transition, Notch e ss cycles, SN curve, effect Stress rupture tests, Ch radiographic, ultrasonic, inspection.	PE601 St Co-requisite:

COURS	SE OUTCOMESS:
CO1	Demonstration of different testing techniques and their relationships for homogenous,
	isotropic materials.
CO2	Calculate and predict the necking phenomena and distribution of stresses occurs in metals
	and alloys.
CO3	Evaluation of effect of gauge length, effect of strain rate and temperature on flow
	properties, machine stiffness in tensile testing system in tensile testing of a materials.
CO4	Basic knowledge of fracture mechanics, fracture toughness and KIc plane-strain toughness
	for design and application aspect.
CO5	Basic knowledge of fatigue test, creep test and non-destructive testing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	2	3	2	2	3	2	1	3
CO2	2	3	1	3	2	2	2	3	2	2	3	1
CO3	3	2	2	2	3	1	3	2	2	3	2	3
CO4	2	2	3	2	2	2	1	3	2	2	3	2
CO5	2	2	2	2	3	2	3	2	2	2	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	2	2	2	2	2	2	2	2	2

Subjec	t Code: BMMPE602	Subject name: Sintering Theory and Practice
Pre-Re	misite:	Co-requisite:
110-100	quisite.	co-requisite.
Module	e -I	[8hrs]
	ntroduction to sintering over view, bri echnique, goals in sintering, related pro	ef history, the sintering process, overview of sintering blems.
Module	-II	[8hrs]
F	Fundamental of solid-state sintering	coarsening and densification sintering stress mass
tı d	ransfer, stages of sintering rearrangeme	ent mechanism, coarsening and densification, sintering g.
Module	e -III	[8hrs]
I	iquid phase sintering over view, rearra	ngement mechanism, grain growth mechanism.
Module	e -IV	[8hrs]
N p	Aixed power sintering novel sintering, process overview.	sintering atmosphere, sintering practices, post sintering
Module	e-V	[8hrs]
	Sintering Measurement Techniques, S	Sintering behavior of a wide variety of engineered
n	naterialsmetals, alloys, oxide ceram	ics, composites, carbides, intermetallics, glasses, and
p	orymers.	
TEXT	BOOK(S):	
1	Sintering Theory and Practice by Rar	ndall M. German
2	Powder metallurgy technology by G.	S. Upadhyaya
		1 55
REFER	RENCE BOOK(S):	
1	Sintering Theory and Practice by Car	l Burt.
2	Sintering : Densification, Grain Grow	th and Microstructure by Suk-Joong L. Kang

COURS	SE OUTCOMESS(COs)
CO1	Develop an idea about the principle of sintering.
CO2	Evaluate the concept of solid and liquid state sintering.
CO3	Express the various mechanism of mass transfer during sintering process.
CO4	Analyze the growth mechanism as well as rearrangement mechanism during solid and
	liquid phase sintering
CO5	Demonstrate the effect of sintering process on different engineering materiials.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	1	2	2	3	2	1
CO2	3	2	2	3	3	2	3	2	2	3	2	1
CO3	3	2	2	3	3	2	3	2	2	3	2	1
CO4	3	2	2	3	3	2	3	2	2	3	2	1
CO5	3	2	2	3	3	2	3	2	2	3	2	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	1	3	3	1	2	2	2	1

Subject Code:	BMMPE603		Subject Name: Theory of Alloys
	1	I	1
Pre-Requisite:	Introduction to Physical	Co-	
	Metallurgy	requisite:	
Madula I			[9 hours]
Structure	and physical proparties of alar	mante: Allove	formation: primary solid solution
intermetall	ic compounds concept of atomi	c size factor n	formation. primary solid solution,
compound	s in noble metals and transition m	etal systems si	ze compounds borides carbides and
silicide of	metals.	ictal systems, si	ze compounds, bondes, carbides and
Module -II			[8 hours]
Experimen	tal methods for the study of allo	bying behavior	of metals Aluminium alloys. Phase
diagrams.	Alloys and tempers. Alloy ch	aracteristics. F	Review of precipitation hardening,
oxidation,	corrosion resistance and fatigue.		
Module -III			[8 hours]
Titanium	alloys: Pure Ti. Alloying Ti. S	pecific alloys:	α , α + β , and β . Superplasticity.
Magnesiur	n alloys: Heat treatment of Mg a	lloys. Nickel al	lloys: overview and superalloys: Ni-
base, Fe-ba	ase and Co-base superalloys and the	heir properties.	
Module -IV			[8 hours]
Steels. Re	view of plain C, alloy steels and	cast irons. Co	immercial steels: high-strength, low-
	(A); Staimess steers.		
Module -V			[8 hours]
Bainitic st	eels Martensitic steels Dual-pha	se steels transt	formation induced plasticity (TRIP)
TWIP Stee	ls. IF steels.	se steers, runs	formation mediced plusticity (1101),
TEXT BOOK(S):		
1. The structu	rre of metal and alloys - William I	Hume Rothery.	
2. Physical M	Ietallurgy Principles - Reza Abbas	schian and Robe	ert E.Reed Hill.
REFERENCE	BOOK(S):		
1. Physical M	letallurgy and Advanced Materia	ls, Seventh Edi	tion, R E Smallman, A. H. W.,
Butterwort	h-Heinemann, 2007, ISBN: 07506	569063	
2. ASM Hand	lbook Volume 3 – Alloy Phase Di	agrams, 1992	

COUI	RSE OUTCOMESS: Upon completion of the course, the students will be able to:										
CO1	evaluate a comparative analysis of principles of alloy formation.										
CO2	organize the different types of ferrous and nonferrous alloys based on structure and										
	properties.										
CO3	apply different experimental methods to study the alloy behavior.										
CO4	analyze the material properties according to their specific application.										
CO5	develop the engineering materials by observing structure-property relation.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	3	3	2					
CO2	1	1	1	2	2	2	1					
CO3	2	2	2	3	2	2	1					
CO4	2	2	3	3	2	2	2					
CO5	3	3	3	3	3	3	3					

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	3	2	2	2	-	-	-		

Subject	Code: BM	MPE604		Subj	ect Name: Material Processing
Pre-Rec	juisite:			Co-requisite:	
Module	-I				[8 Hours]
Four	ndry: Sand c	asting, Introd	luction to patte	erns and foundry proce	ess, Sand binders and different
addi	tives, Sand t	esting.			
Module	-II				[8 Hours]
Prine	ciples of Ga	ting and Rise	ering: Types of	of Gates and Risers, S	Solidification of castings, gating
syste	em design.				
				1	
Module	-III				[8 Hours]
Cont	inuous casti	ng process: F	Precision inves	stment casting, centrif	ugal casting, die casting,
Cast	ing defects.				
				Γ	
Module	-IV				[8 Hours]
Weld	ding and cu	tting: Introdu	iction to gas	welding, cutting, Arc	welding and equipment's. TIG
(GT.	AW) and M	IIG (GMAW	/) welding, re	esistance welding and	1 thermit welding. Weldability,
New	er Welding	methods like	e plasma Arc	, Laser Beam, Electro	on Beam, Ultrasonic, Explosive
and	triction weld	ing. Brazing	and soldering	, welding defects.	
Madula	V				
Dlast	-v	ion of motol	II.of and asl	d modeling of motols	[8 Hours]
form	ic deformat	ion of metals	s. Hot and col	d working of metals,	brief idea about different metal
Iorm	ing process.				
TEVTI	POOK(S)				
	500K(5).				
1	P D Web	ster Fundam	entals of Four	dry Technology Port	willis press Red hill 1980
1.	Kalnakijan	S & Schm	id S R 2008	Manufacturing proce	esses for engineering materials:
2.	Pearson Fo	lucation	ild, D. R. 2000	. Manufacturing proce	indefinition in the second sec
	I curson Ex	lucution			
REFER	ENCE BOC	K(S)			
1.	Principles	$\frac{1}{0}$ of Modern N	Ianufacturing.	by Mikell P. Groover	.5th Edition SI Version
2.	Welding N	Ietallurgy 2n	d Edition by S	indo Kou, Wiley-Inte	rscience
3.	Manufactu	ring processe	es and materia	ls for engineers. Lawr	ence E.Doyle, Prentice-Hall
		0 r		0	· · · · · · · · · · · · · · · · · · ·

COURS	SE OUTCOMESS:
CO1	Select appropriate Manufacturing Processing to manufacture any component.
CO2	Interpret foundry practices like pattern making, mold making, Core making and Inspection
	of defects.
CO3	Select appropriate Joining Processes to join the Workpiece, Design different sheet metal
	working processes.
CO4	Classify different plastic molding processes, Extrusion of Plastic and Thermoforming.
CO5	Implement the Knowledge of Gained Subject in Industry.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	1	3	3	1	1	1	1	3	1
CO2	1	1	3	1	3	3	1	1	1	1	3	1
CO3	1	1	3	1	3	3	1	1	1	1	3	1
CO4	1	1	3	1	3	3	1	1	1	1	3	1
CO5	1	1	3	1	3	3	3	2	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	1	1	3	1	3	3	1	1	1	1	3	1

Subject Code: BMMPE605	Welding Technology
Pre-Requisite:	Co-requisite:
	•
Module -I	[8 hours]
Introduction: Principle, Theory and Cla	ssification of welding and other joining processes.
Manual metal arc (MMA): Equipment rec	quirement, electrodes for welding of structural steels,
coating constituents and their functions,	types of coatings, current and voltage selection for
electrodes.	
Module -II	[8 hours]
Arc welding power sources; Conventior	al welding transformers, rectifiers and current and
voltage. The influence of these power s	sources on welding, metal transfer. Submerged arc
welding (SAW): Process details, consuma	ables such as fluxes and wires for welding mild steel,
Variations in submerged arc welding proc	ess.
	f0.1 1
Gas metal arc welding (GMAW) or MI	G/ MAG weiding: Process details, shielding gases,
electrode wires, their sizes, and welding	current ranges. TIG welding: Process details, power
sources requirements, electrode sizes an	a materials, current carrying capacities of different
electrodes, shielding gases, application of	process.
Module IV	[8 hours]
Resistance walding: General principle of	best generation in registance welding application of
resistance welding processes. Process	letails and working principle of spot seam and
projection welding electrode materials	shapes of electrodes electrode cooling selection of
welding currents voltages	shapes of electrodes, electrode cooling, selection of
wording currents, vortuges.	
Module –V	[8 hours]
Welding metallurgy of carbon and alloy	steels. Cast irons. Stainless steels. Al- and Cu-based
allovs. Weldability and Heat affected zon	es (HAZ). Welding defects and detection techniques.
Soldering and brazing: Difference betwee	en both the processes, consumables used, methods of
brazing, fluxes used, their purposes and fl	ux residue treatment.
TEXT BOOK(S):	
1. J F Lancaster, Allen and Unwin, Metal	lurgy of Welding.
2. R L Little, Welding and Welding Tech	nology, TMH
REFERENCE BOOK(S)	
1. Sindo Kou "Welding Metallurgy,2nd E	dition, John wiley and sons.
2. R.S. Parmar, Welding Engineering and	Technology, Khanna Publishers.

COUR	SE OUTCOMESS:
CO1	Classify welding processes based on different industrial and commercial requirements.
CO2	Differentiate gas and electric arc welding processes and their use in the field of
	engineering.
CO3	Evaluate weld joints and its failure conditions and provide suitable solutions.
CO4	Explain the importance of welding metallurgy in developing best weld structures for
	practical purposeand usage.
CO5	Know the importance of alternative joining processes required in materials processing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	3	1	1			1		3
CO2	2	1	2	1	1	1	1			1		3
CO3	2	1	2	1	1	1	1			1		3
CO4	2	1	2	1	2	1	1			1		3
CO5	3	1	3	1	1	1	1			1		3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	1	2	1	1	1	1			1		3

Subjec	t Code: BMMI	PE606	S	bubject name: Failure Analysis
				0
Pre-Ree	quisite:	Material Testing	Co-requisite:	
			T	
Module	e-I			[8 hours]
	Causes & Source	es of Failures, Method	lology, Art of Questionin	ng, Fractography: ductile versus
	verload Calcul	apny: Faugue, Cree	b, Stress Calculations,	Faligue Design Fractography:
		ations. Case studies ie.	lated this topic.	
Module	e -II			[8 hours]
F	Fracture Tough	ness, Creep, Wear, R	olling Contact Fatigue,	Advanced Fractography, Case
s	tudies related th	is topic.		
Module	e -III			[8 hours]
Ν	Ion-Destructive	Evaluation (NDE)	Metallography, Introdu	ction to Corrosion, Forms of
0	Corrosion, Galva	anic, Pitting, crevice c	orrosion etc.	
	XX 7			F 0 1 - 1
Module	e -IV	([8 hours]
	his topic	mers, Cerannics and C	mass, Liquid Metal Emt	brittlement, Case studies related
	ins topic.			
Module	e -V			[8 hours]
F	ailures related	to Casting, Welding,	Metal working, Fastene	ers (screws bolts, rivets), Shafts
a	nd Gears, Sequ	encing, Case studies r	elated this topic.	
TEXT	BOOK(S):			
1.	Handbook of	Materials Modeling, S	Springer, 2005 - S. Yip (I	Ed)
2.	Numerical M	ethods for Engineers,	New Age International	(P) Limited, New Delhi, 1998 -
	Santosh K. G	upta		
DEED	ENCE DOOK	(C) .		
	K M Hangos	D):	Process Modeling and M	[odo] Analysis" Acadomic
1.	Press:London	. 2001.	Frocess Modeling and M	iouel Analysis, Academic
2.	Rate Processe	s In Metallurgy by M	ohanty, A. K.; PHI Learr	ning.
	1		• •	-
-				

COURS	SE OUTCOMESS:
CO1	Have information about the various factors that needs to be considered in material selection,
	design and the service environment.
CO2	Be able to recognize some of the basic features and characteristics of different failure
	mechanisms.
CO3	Be knowledgeable in the laboratory testing methods and procedures that can help determine
	the cause of the failures.
CO4	Be able to provide precisive solutions to the failure of engineering structures.

CO5 Have the basic ideas and necessities of doing case studies of failed components

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	2	3	2	2	3	2	1	3
CO2	2	3	2	3	2	2	2	3	2	2	2	2
CO3	3	2	2	2	3	2	3	2	2	3	2	3
CO4	1	2	2	2	2	2	1	3	2	2	3	2
CO5	2	2	2	2	3	2	3	2	2	2	3	2

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	2	2	2	2	2	2	2	2	2
Subject Code: BMMOE601	Subject Name: Engineering Materials											
---	--											
	Sasjeer (
Pre-Requisite: Introduction to Physical Metallurgy	Co-requisite:											
Module -I	[8 hours]											
Introduction, Metals: the generic metals and allo	bys; iron-based, copper-based, nickel-based,											
aluminum-based and titanium-based alloys. Metal can be altered to get different properties: crystal ar compounds, grain and phase boundaries, equilibrium	structures the range of metal structures that nd glass structure, structures of solutions and n shapes of grains and phases;											
Module -II	[8 hours]											
The light allovs where they score over steels.	solution, age and work hardening: thermal											
stability; Alloy steel, solution strengthening, preci and austenitic (f.c.c.) steels.	ipitation strengthening, corrosion resistance,											
Module -III	[8 hours]											
Introduction: Ceramics and glasses: the generic cera	amics and glasses: glasses, vitreous ceramics,											
high technology ceramics. Cements and concretes	s, natural ceramics (rocks and ice), ceramic											
composites; Structure of ceramics, crystalline c	eramics; glassy ceramics; ceramic alloys;											
ceramic micro-structures: pure, vitreous and compo	osite; mechanical properties of ceramics high											
stiffness and hardness; poor toughness and the	rmal shock resistance; the excellent creep											
resistance of refractory ceramics.												
Modulo IV	[9 hours]											
Introduction: Polymers and composites Polymer	[0 nours]											
thermosets, elastomers, natural polymers; The stru architecture; molecular packing: amorphous or crys	cture of polymers giant molecules and their talline.											
	-											
Module -V	[8 hours]											
Mechanical behavior of polymers how the modul time, making giant molecules by polymerizatio particulate and foamed how adding fibres or particulate strength and toughness; why foams are good for abs	us and strength depend on temperature and n; polymer "alloys"; Composites: fibrous, cles to polymers can improve their stiffness, sorbing energy.											
1 Engineering Materials 1 by Michael F Δ show & Day	vid R H Iones											
2 Engineering Materials 2 by Michael F Ashby & Da	vid R H Jones											
REFERENCE BOOK(S):												
1. Physical Metallurgy: principles & practice, by V R	aghayan, PHI											
2. Introduction to Physical Metallurgy by Sydney Avn	er. McGraw Hill.											

COUI	RSE OUTCOMESS: Upon completion of the course, the students will be able to:									
CO1	Define the resulting configuration and potential applications of light alloys.									
CO2	Analyze the crystallinity of a polymer and predict its effect on mechanical properties.									
CO3	Write the effect of Tg on the mechanical properties of a polymer as a function of temperature.									
CO4	Design a suitable sintering schedule for heat-treating ceramics and understand the effects of									
	existing microstructural features.									
CO5	Apply prior knowledge of materials science and engineering to composition-processing									
	structure-properties-performance relationships for polymer composites and ceramic									
	composites.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	3	3	3	3		-			
CO2	2	3	3	3	3	3	2					
CO3	2	2	2	3	3	3	2					
CO4	2	3	3	3	3	3	2					
CO5	2	3	3	3	3	3	2					

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	3	3	3	3	3	2	-				

Subject	t Code: BMMOE602 Sul	bject name: Modeling of Materials Processes
Pre-Req	quisite: Mathematics-I, Mathematics-II,	Co-requisite: Iron Making
Module	e -I	[8 hours]
S	Solution of linear, non-linear algebraic equation	ons, ordinary differential equations and related
m	netallurgical problems, transport phenomena-b	ased Modeling.
Module	e -II	[8 hours]
M	Model formulation based on heat, mass and	momentum transfer, governing equations and
bo	ooundary conditions.	
Module	e -III	[8 hours]
N	Numerical solution of differential equations,	, process related numerical problems, Stress
A	Analysis. Mesoscopic Modeling: CA based mod	deling.
Module	e-IV	[8 hours]
	Vonte Carlo Simulation, application to n Dynamics Modeling and its applications in mate	erials
Module	e -V	[8 hours]
O	Optimization and control. Elements of modern	artificial intelligence (AI) related techniques.
In	ntroduction to Genetic Algorithm and Artificia	ll Neural Networks
TEXT E	BOOK(S):	
1.	Handbook of Materials Modeling, Springer,	2005 - S. Yip (Ed)
2.	Numerical Methods for Engineers, New Age Santosh K. Gupta	e International (P) Limited, New Delhi, 1998 -
REFER	RENCE BOOK(S)	
1.	K. M. Hangos and I. T. Cameron, "Process M	Aodeling and Model Analysis", Academic
	Press:London, 2001.	
2.	Rate Processes In Metallurgy by Mohanty, A	A. K.; PHI Learning.
COLIDO		

COURS	SE OUTCOMESS:
CO1	To analyze and demonstrate the fundamentals and basic concepts of mathematical
	modeling.
CO2	To fit in the linear, non-linear and differential mathematical knowledge in solving
	metallurgical problem.
CO3	To analyze different numerical problems to apply modelling technique and define CA based
	modeling
CO4	To apply Monte Carlo simulation in different metallurgical process.
CO5	To get knowledge about classical molecular dynamics modeling and its application.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	2	2	3	3	3	2	3
CO2	3	3	2	3	3	2	2	3	3	3	2	3
CO3	3	3	1	3	3	2	1	2	3	3	2	3
CO4	3	3	1	3	3	2	1	2	3	3	2	3
CO5	3	3	2	3	3	2	2	3	3	3	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	3	2	2	3	3	3	2	3

Subject Code: B	SMM06003 Subject Name: Computational Laboratory
Experiment-1	Basics of numerical mathematics Concept of physical domain and computational domain numerical, Integration, Initial value problems.
Experiment-2	Assumptions and limitations in numerical, Initial value problems, assumptions and limitations in numerical solutions, simulation, instrumentation and data acquisition systems.
Experiment-3	To draw a circle using MATLAB
Experiment-4	To solve a system of linear equations using MATLAB
Experiment-5	To solve an ODE using MATLAB
Experiment-6	To find out the standard deviation of a given set of values using MATLAB
Experiment-7	Curve fitting techniques using regression and interpolation
Experiment-8	Using MATLAB fit a linear curve for given set of data
Experiment-9	To draw a sphere using MATLAB and extend the program to draw FCC and BCC crystal structures
Experiment-10	To find out the lattice parameter from the XRD data of an element belonging to the cubic system using MATLAB
Experiment-11	To create your own design using MATLAB codes

COUI	RSE OUTCOMES:
CO1	Classify the different numerical solving methods with their inherent merits and limitations.
CO2	Analyze the obtained different data acquisition systems and their solutions and limitations
CO3	Develop the knowledge of the standard deviation of a given set of values using MATLAB.
CO4	Analyze & draw a sphere using MATLAB and extend the program to draw FCC and BCC
	crystal structures
CO5	Create your own design using MATLAB codes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	3	3	2	3	3	2	3
CO2	3	3	1	3	3	2	2	2	3	3	2	3
CO3	3	3	2	3	3	3	2	2	3	3	2	3
CO4	3	3	2	3	3	2	2	2	3	3	2	3
CO5	3	3	2	3	3	2	2	3	3	3	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	3	2	2	2	3	3	2	3

Subject Code: BI	MM06004 Subject Name: Material Processing Laboratory
Experiment-1	To Study the Gas tungsten arc welding process
Experiment-2	To Study the Gas Metal arc welding process
Experiment-3	To Study the different zone in a welded joint.
Experiment-4	To Study the microstructure of a cast sample.
Experiment-5	To Study the microstructure of a forging sample.
Experiment-6	To Study the microstructure of a Rolled sample.
Experiment-7	To study the friction stir welding process
Experiment-8	To study the microstructure of a friction stir welded joint.
Experiment-9	To study the resistance spot welding process.
Experiment-10	To study the dilution and microstructure of weld cladding.

COUR	SE OUTCOMESS:
CO1	Select appropriate Manufacturing Processing to manufacture any component.
CO2	Correlate the mechanical properties from microstructure.
CO3	Can operate a welding machine.
CO4	Select a proper process parameter to improve quality as well as strength.
CO5	Implement the Knowledge of Gained Subject in Industry.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	1	3	3	1	1	1	1	3	1
CO2	1	1	3	1	3	3	1	1	1	1	3	1
CO3	1	1	3	1	3	3	1	1	1	1	3	1
CO4	1	1	3	1	3	3	1	1	1	1	3	1
CO5	1	1	3	1	3	3	3	2	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

0												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	1	1	3	1	3	3	1	1	1	1	3	1

Subject	Code: BM	M06005 Subject name: Material Testing Laboratory									
Experin	nent-1	Hardness Measurement: definition, various methods of measurements -									
Experim	nent-2	Rockwell, Vickers, Brinell, - testing procedure, derivation of various									
		expressions.									
Experim	nent-3	Tension Testing: theory of testing, standard specimens, calculation of various									
		engineering and true properties - yield strength, tensile strength, fracture									
		strength, % elongation, % area reduction, resilience, toughness.									
Experim	nent-4	Impact Testing: determination of Impact strength of metallic materials using									
Charpy test methods.											
Experim	nent-5	Wear Testing: Conduct the Friction and Wear test of a given material									
Experim	nent-6	Conduct the Ericson Cupping Test of a given material.									
Experim	nent-7	Fatigue Testing: Study the principle of fatigue testing and construction of an S-									
		N curve (stress level - number of cycles to failure) of the test samples provided.									
Experin	nent-8	Creep Testing: Study of the principle of creep testing and determination of									
		creep strength of the given sample.									
Experin	nent-9	Compression testing of metallic material.									
Experin	nent-10	Study the principle of Strain Ageing and Yield Point Phenomenon in metallic									
		materials.									
Laborat	ory Outcom	les:									
CO1	Classify th	e different mechanical testing methods with their inherent merits and limitations.									
CO2	Analyze the obtained mechanical properties in relevant to the nature of each material and										
	use										
CO3	This inform	nation as a tool for selecting suitable materials for engineering applications.									
CO4	Ability to a	analyze the industrial problems along with appropriate boundary conditions.									
CO5	Ability to a	develop steady and time dependent fracture mechanics calculations									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	3	3	2	3	3	2	3
CO2	3	3	1	3	3	2	2	2	3	3	2	3
CO3	3	3	2	3	3	3	2	2	3	3	2	3
CO4	3	3	2	3	3	2	2	2	3	3	2	3
CO5	3	3	2	3	3	2	2	3	3	3	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	3	2	2	2	3	3	2	3

SEVENTH SEMESTER

Subject Cod	le: BMM070	01	Subject name: Introductio	n to Surface Engineering
			1	
Pre-Requisit	te:		Co-requisite:	
			1	[0] J
Module -I		1 1 .		[8hrs]
Introd	luction, Surf	ace dependent er	igineering properties, viz.,	Friction and wear, corrosion,
fatigu	e, etc.; co	mmon surface-1	nitiated engineering failu	ires; mechanism of surface
degrad	uation; impo	a in motals correctly	ssity of surface engineering	g; classification and scope of
advan	ced materials		annes, porymers and comp	osites, tanoning of surfaces of
auvan				
Module -II				[8hrs]
Surfac	ce protection	(Physical); sur	face modification (Chemic	cal) techniques: classification,
princi	ples, method	s, and technology	· ·	
Module -III				[8hrs]
Conve	entional sur	face engineering	methods: carburising, n	itriding, cyaniding, diffusion
coatin	ig, hot dippi	ng, galvanizing	etc. Electrochemistry and	electro-deposition; scope and
applic	ation of co	onventional surf	ace engineering technique	es in engineering materials;
advan	tages and lin	nitations of conve	ntional processes.	
			1	
Module -IV				[8hrs]
Recen	it trend in	surface engineer	ing: physical/chemical vap	por deposition; plasma spray
coatin	ig; plasma as	sisted ion implant	ation.	
Madada V				[0]]
Module - V		on her dimensional a		[8nrs]
Suriac	ce mounicau	f the directed end	energy beams like ion, electrony beams assisted surface n	ctron and laser beams; energy
uansi	er, noverty of		gy beams assisted surface in	nouncation techniques.
TEXT BOO	K(S)			
1 K.	G. Budinski:	Surface Engineer	ring for Wear Resistance. Pr	rentice Hall, New Jersey 1988.
2 J. H	R. Davis: Su	rface Engineering	for Corrosion and Wear H	Resistance, ASM International.
Ma	terials Park,	Ohio, 2001.		······
	,	· · ·		
REFERENC	CE BOOK(S)	:		
1 Sur	face Enginee	ering Processes an	nd Applications by K.N.Stra	fford.
2 Intr	roduction to S	Surface Engineeri	ng by P.A.Dearnley.	

COURS	SE OUTCOMESS:
CO1	Able to express the fundamental concept of surface engineering
CO2	Implement the principle of surface engineering on the different engineering materials
CO3	Evaluate the concept of conventional surface engineering methods to enhance material
	property
CO4	Analyze the recent surface engineering methods applied on different engineering materials
CO5	Demonstrate the advanced surface modifications through electron, ions and laser beams

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	1	2	3	3	2	1
CO2	3	2	2	3	3	2	3	2	3	3	2	1
CO3	3	2	2	3	3	2	3	2	3	3	2	1
CO4	3	2	2	3	3	2	3	2	3	3	2	1
CO5	3	2	2	3	3	2	3	2	3	3	2	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3	3	3	3	2	2	2	1

Subject Code: BMM070	002	Subject name: Materials Characterization
Pre-Requisite:	Basic idea about ato structures, optics, Inter	omic structure, bonding, introduction to crystal ference, diffraction
Module -I		[8 hours]
Introduction to m levels of charac aberrations (spher	aterials characterization terization (macro, mes- rical, chromatic and astig	& its importance, Fundamentals of Crystallography, o and micro), Resolution, depth of field/focus, matism) and its remedial measures
Module -II		[8 hours]
Optical microscop microscope, theo principle of imag field, dark field, j Sample preparatio	by (OM) – Microscope c retical and practical res- ge formation, effective/en- polarized light and phase on for optical microscopy	construction and working, reflected/transmitted light olution of optical microscope, numerical aperture, mpty magnification, Types of illumination - bright e contrast, applications of each type of illumination. r, features of an image.
Modula III		[& hours]
Introduction to advantages/disadv them. Electron - s spot size, apertu Robinson detecto Chemical analys EDS/WDS detect	scanning electron m vantages as compared to pecimen interaction, ima ares, accelerating volta r, solid state segmented is using SEM, EDS/WI or, advantages/disadvanta	nicroscope (SEM), working and construction, OM, types of electron gun and comparison between ging modes (secondary and backscattered), effect of ge on SEM image, Everhart-Thornley detector, detector, atomic number and topological contrast. DS working principle, construction, resolution of ages.
Module -IV		[8 hours]
X-ray diffraction Diffraction metho applications of X structure, lattice p	a: Generation of X-ray ods: Laue method, rotatin X-ray diffraction in ma parameter.	ys, characteristic X-ray spectrum, Bragg's Law, ng crystal method, powder method, structural factor, aterials characterization: determination of crystal
Madula V		
Thermal analysis thermal analysis analysis (TGA). advanced microso	techniques & its Impo (DSC), differential sca Brief idea of TEM: pr copic techniques.	prtance, principles and applications of differential nning calorimetry (DSC) and thermo gravimetric inciple of operation, application. Introduction to
TEXT BOOK(S):		
1. Materials Char 2. Microstructura and Sons, 2008	acterization by Yang Len l Characterization of Ma 3.	ng, - 2nd Edition, Wiley-VCH Verlag GmbH & Co. aterials- D. Brandon and W.D. Kaplan, John Wiley
DEEEDENCE DOOV/S	1.	
1.P.J. Goodhew,Edition, Taylor	F.J. Humphreys, and R. and Francis, NY, 2001.	Beanland, Electron Microscopy and Analysis: 3rd

COURS	SE OUTCOMESS:							
CO1	Characterize the structures and chemistries of materials using traditional analytical							
	experimental techniques.							
CO2	Select the proper characterization techniques to solve problems in research and/or industry							
CO3	Students will be able to understand the basic microscopy images of materials							
CO4	Students will be able to read the basic spectra of materials characterizations and can							
	characterize the chemical composition of materials.							
CO5	Students will be able to understand correlation between Processing, microstructure,							
	properties and performance analysis.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	1	3	2	1	3	3	1	3	3
CO2	3	1	3	1	3	2	1	3	3	1	3	3
CO3	3	1	3	1	3	2	1			1	3	3
CO4	3	1	3	1	3	2	1			1	3	3
CO5	3	1	3	1	3	2	1				3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

-												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO11	PO11	PO12
Course	3	1	3	1	3	2	1	1	1	1	3	3

Subjec	t Code: BMMPI	E 701	Subject name: Non-F	errous Extractive Metallurgy							
		1		1							
Pre-Red	quisite:		Co-requisite:								
Module	-T			[8hrs]							
	General principles	s of extraction of n	netals from oxides and sulph	nides; Mineral resources of non							
_	ferrous metals i	n India; their prod	luction, consumption and de	emand; Future of non – ferrous							
n	metal industries in India, extraction of metals from Sulphide ores , pyrometallurgy extraction										
0	of Cu, Matte smelting; Converting; Refining; by-products recovery; recent developments;										
C	Continues copper production processes, hydrometallurgy of copper, extraction of Zn, Imperial										
S	melting Process,	slag fuming proce	ess.								
Module				[Shre]							
F	xtraction of Ni-	nyro metallurgy	and hydrometallurgy route	• Extraction of Ph from base							
b	ullion, refining	of base bullion	Aluminimum: Bayer's pro	cess and factors affecting its							
о	peration; Hall –	Heroult process: p	rinciple & practices, use of a	electrodes, anode effect.							
	_										
Module	e -III			[8hrs]							
R	efining of Alun	ninimum; Alterna	tive methods of Alumina	and Aluminimum production-							
A	LCOA process,	ALCAN process.	, TOOTH process, Extraction	on of metals from oxide ores,							
e	xtraction of Sn.										
Module				[Shre]							
F	Extraction of Mg	nidgeon process	magnotherm process extra	action of magnesium from sea							
v v	ater, extraction of	of Ti, kroll process	s, hunter process								
I											
Module	e-V			[8hrs]							
E	lectro winning a	and Electro refining	ng of metals: From aqueou	us salts (Cu, Ni, Au, and Ag);							
F	rom fused salts (Al and Mg); Extra	action of metal halides route	e, extraction of zirconium from							
E	invironmental po	ollution and its a	ddress related to various	metal extraction processes in							
g	eneral.										
TEXT	BOOK(S)										
1	Extraction of N	Non - Ferrous Me	tals by H.S. Ray, R. Sridh	ar& K.P. Abraham. Affiliated							
	East West Press	s, New Delhi.	5	,							
2	Principles of Ex	xtractive Metallurg	gy, by T. Rosenquist, McGra	aw hill, 1974.							
3	Non-Ferrous Ex	xtractive Metallurg	gy – G B Gill John Wiley &	Sons 1980.							
REFER	ENCE BOOK(S):									
1	Extractive Meta	allurgy of Copper	- WGL Davln Port, U King,	M Schelesinger and A.K.							
2	Biswas, Elsevie	er Science 2002.	a WII Donnia								
2	Nuclear Chemi	cal Engineering	is - WH Dennis. Manstion Bendict and Thom	pas H Pigfort							
5		car Engliteeting -		103 11. 1 151011							

COUR	SE OUTCOMESS:
CO1	Describe and explain processes and reactors for extraction and refining of metals and
	alloys
CO2	Explain processes based on a thermodynamic perspective and Awareness about modern
	extraction and refining techniques in production of different non-ferrous metal like Copper,
	Zinc, Aluminium, Titanium, Uranium, Thorium and Zirconium.
CO3	Describe and explain material and energy flows related to extraction of metals and alloys
CO4	Describe and explain ore treatment techniques and Different route for the extraction of
	metal
CO5	Environmental pollution and its address related to various metal extraction processes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	2	1
CO3	3	2	1	3	1	3	2	3	2	3	3	-
CO4	3	3	3	3	3	3	2	3	3	3	3	3
CO5	3	1	3	3	1	3	3	3	2	3	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

-												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	2	3	2	3	3	3	3	3	3	2

Subject Code: BMMPE702 Subject	name: Thermo-mechanical Processing of Materials
Pre-Requisite:	Co-requisite:
Module -I	[hrs]
General introduction, Microstructure	and Properties: Solidification, Interfaces, Properties:
Physical Properties, Chemical Prope	erties, Mechanical Properties, Electrical Properties,
Magnetic Properties, Thermal Prope	erties, Plasticity: Introduction, Fundamentals, Flow
Stresses and Strains, Generalized Stress	ses and Strains, Yield Criteria, Stress–Strain Relations,
Plastic Anisotropy, Fracture, Failure Me	echanisms
Module -II	
Work hardening Mechanisms and the	eories: Introduction, Basic Microscopic Mechanisms.
Low Temperature. Influence of Allo	oving Elements, Microscopic Hardening Laws, Hot
Deformation, Flow Stresses, Hot D	eformation Microstructures, Softening mechanisms:
Introduction, Recovery, Recovery N	lechanisms, Recovery Kinetics, Structural Changes
During Recovery, Extended Recovery	
Module -III	[]
Continuous Recrystallization, Sour	ces of Recrystallized Grains, Recrystallization
Mechanisms, Recrystallization Kinetic	s, Role of Second Phase, Dynamic Recrystallization,
Grain Coarsening, Theories of Grain Co	Darsening, Factors Affecting Grain Growth, Alternative
deformation mechanisms: introduction,	Deformation Mechanism Maps,
Module -IV	[]
Creep, The Creep Curve, Creep Mechan	nisms, Influence of the Microstructure, Grain Boundary
Sliding, GBS and Superplasticity, Co	nditions for Superplasticity, Twinning, Introduction,
Twinning Mechanism, Influence of	Some Parameters on Twinning, Twinning and
Deformation, Phase transformations du	ring thermo-mechanical processing
Module - V	
lextural developments during thermo	-mechanical processing, Residual stress modeling of
Simulation of Properties, Case studies	Thermo mechanical processing of steel aluminum
magnesium titanium and other advand	and allow systems, recent trends in thermo mechanical
processing, new Technologies	and anoy systems, recent tiends in thermo meenamen
F	
TEXT BOOK(S):	
1. Recrystallization and related phenom	ena - F.J. Humpherys and M. Hatherly
2. Thermo-mechanical Processing of	Metallic Materials - Bert Verlinden, Julian Driver,
Indradev Samajdar, Roger D. Dohert	у
REFERENCE BOOK(S):	
1. Mechanical Behavior of Materials,	Cambridge University Press, UK, 2005 - William F.
Hostord	

2.	Introduction to Dislocations, Printed and bound in Great Britain, UK, 2011 - D. Hull and D.
	J. Bacon

COURS	SE OUTCOMESS:
CO1	Demonstration of different testing techniques and their relationships for homogenous,
	isotropic materials.
CO2	Calculate and predict the necking phenomena and distribution of stresses occurs in metals
	and alloys.
CO3	Evaluation of effect of gauge length, effect of strain rate and temperature on flow
	properties, machine stiffness in tensile testing system in tensile testing of a materials.
CO4	Basic knowledge of fracture mechanics, fracture toughness and KIc plane-strain toughness
	for design and application aspect.
CO5	Basic knowledge of fatigue test, creep test and non-destructive testing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	2	3	2	2	3	2	1	3
CO2	2	3	2	3	2	2	2	3	2	2	2	2
CO3	3	2	2	2	3	2	3	2	2	3	2	3
CO4	2	2	3	2	2	2	1	3	2	2	3	2
CO5	2	2	2	2	3	2	3	2	2	2	3	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	2	2	2	2	2	2	2	2	2

Subject Code: BMMPE703	Subject Name: X-ray Diffraction				
Des Dequisiter	1				
Pre-Requisite:					
Module I	[8 hours]				
Design of V rays Droduction and detection of V rays	Departing of V David continuous and				
Basics of A-rays, Production and detection of A-rays,	Properties of X-Rays; continuous and				
Characteristic- X-Rays, absorption, inter.					
Module -II	[8 hours]				
Geometry of crystals Reciprocal lattice stereographic pro	iection point groups and space groups				
Bragg's law derivation Diffraction Methods: Laue I	Method Powder method Diffraction				
relationship with reciprocal space.	victuod, rowder method, Dimaction				
Module -III	[8 hours]				
X-ray scattering. Intensities of the diffracted beam. Factor	prs affecting intensities of X-ray peaks-				
continuation Diffractometer measurements, Intensity of difference	ffracted beam.				
Module -IV	[8 hours]				
determination, Order-disorder transformation, Qualitative	ameter determination, Phase diagram phase analysis				
Module -V	[8 hours]				
Chemical analysis by X-ray fluorescence, Chemical anal	ysis by X-ray absorption, Particle size				
determination by X-rays, Texture determination by	X-rays, Stress analysis by X-rays,				
Determination of single crystal orientation by X-rays					
TEXT BOOK(S):					
1.B.D.Cullity, "Elements of Ray Diffraction", Third	Edition, Addison Wesley Publishing C				
ompany, Inc., Reading, 2004					
2. Structures of Metals by Charles Barrett & T. B. Massalski by McGraw Hills Publisher					
REFERENCE BOOK(S):					
1. Physical Metallurgy by R.W. Cahn & Peter Hassar	n Vol I to Vol IV				
2. Modern Physical Metallurgy by R. E. Smallman					

COURS	SE OUTCOMESS:
CO1	Demonstrate the principles of X-ray Diffractrometer (XRD)
CO2	Determine crystal structure, lattice parameter, phase identification, solvus line estimation
	and residual stress analysis using XRD
CO3	Apply the principles and knowledge of the capabilities and limitations of
	different types of analysis covered in the course.
CO4	Select appropriate methods for particular problems and have a good understanding of

	the data obtained in XRD.
CO5	Able to apprehend the behavior and use of X-ray in material characterization

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	3	1		1		1	2
CO2	3	3	1	3	3	3	1		1		1	2
CO3	3	3	1	3	3	3	1		1		1	2
CO4	3	3	1	3	3	3	1		1		1	2
CO5	3	3	1	3	3	3	1		1		1	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	1	3	3	3	1		1		1	2

Subject	t Code: BMMPE7	04	FABRICATION OF N	MATERIALS
Pre-Re	quisite:		Co-requisite:	
	_			
Module	e -I			[8 hours]
F	Foundry: Introduc	tion to patterns and fou	ndry process, Sand binders and differ	ent additives,
f	and testing and n urnace, Arc furna	elting furnaces for ferro	bus and non-ferrous metals such as cupo	ola, Induction
Module	e -II			[8 hours]
F	rinciples of Gat	ing and Risering: Feed	ing characteristics of alloys. Types of	of Gates and
F	Risers, Solidificati	on of castings.		
Module				[8 hours]
Module		a process: Procision in	wastmant costing contributed costing	[o nours]
(Casting defects.		ivestinent casting, centinugai casting,	, the castilig,
Module	e -IV			[8 hours]
V	Velding and cutti	ng. Introduction to gas	velding cutting Arc welding and equi	pment's TIG
(GTAW) and MI	G (GMAW) welding. re	sistance welding and thermit welding.	Weldability.
Ň	Newer Welding m	ethods like plasma Arc.	Laser Beam, Electron Beam, Ultrason	ic, Explosive
a	nd friction weldi	ng. Brazing and solderin	g, welding defects.	· 1
Module	e –V			[8 hours]
F	Plastic deformatio	n of metals. Hot and col	d working of metals, brief idea about d	ifferent metal
f	orming process			
TEXT	BOOK(S):			
1.	P. D. Webster,	Fundamentals of Found	y Technology, Portwillis press, Red hil	1, 1980.
2.	Kalpakjian, S.,	& Schmid, S. R. 2008. N	Manufacturing processes for engineering	g materials:
	Pearson Educat	ion		
REFER	RENCE BOOK(S):		
1.	Principles of M	odern Manufacturing. b	Mikell P. Groover 5th Edition SI Vers	sion
2.	Manufacturin	g processes and materia	ls for engineers. Lawrence E.Doyle,, Pr	entice-Hall
	1			

COUR	SE OUTCOMESS:
CO1	Select appropriate Manufacturing Processing to manufacture any component
CO2	Interpret foundry practices like pattern making, mold making, Core making and Inspection
	of defects
CO3	Select appropriate Joining Processes to join the Workpiece, Design different sheet metal
	working processes.
CO4	Classify different plastic molding processes, Extrusion of Plastic and Thermoforming.
CO5	Implement the Knowledge of Gained Subject in Industry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	1	3	3	1	1	1	1	2	1
CO2	1	1	3	1	3	3	1	1	1	1	2	1
CO3	1	1	3	1	3	3	1	1	1	1	2	1
CO4	1	1	3	1	3	3	1	1	1	1	2	1
CO5	1	1	3	1	3	3	3	2	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	1	1	3	1	3	3	1	1	1	1	2	1

Subject Code: BMMOE701	Subject Name: Crystallography
Pre-Requisite: Basic idea about cryst	al structure
Madula I	
Module -1	[9 firs]
point group, symmetry operation: transl	tion rotation symmetry plane degree of symmetry
crystal basis unit cell face-centered c	bic simple cubic body-centered cubic beyagonal
close-packed. Weiss Zone Law, Point Gr	oup Symmetry.
Module -II	[7 hrs]
Stereographic projections: Introduction,	Utility of stereographic projections, construction and
characteristics, Stereographic representat	on of point groups.
Module -III	[8 hours]
Low symmetry system: Stereograms for	Low Symmetry Systems, Hexagonal System, Space
Groups: Screw axes and glide planes Pyr	te, Cementite, Shape of Precipitates.
Module -IV	[7 hrs]
The Reciprocal Lattice and Diffraction:	The Reciprocal Basis, Crystallography of diffraction,
Intensities, Diffraction from Thin Crystal	S.
Module - V	[9 hrs]
Deformation and lexture, Slip in a	Single-Crystal, Orientation Distribution Functions
Crystallography of Martansitic Transf	formations. The Shape Deformation Bain Strain
Martensitic transformations	ormations, The Shape Deformation, Bain Stram
TEXT BOOK(S):	
1. Geometry of crystals, polycrystals and	phase transformations, 2017, H. K. D. H. Bhadeshia.
2. Crystallography and crystal defects, 3r	d edition 2020, A. Kelly and K. M. Knowles
REFERENCE BOOK(S):	
1. M. Buerger, Elementary Crystallograp	hy, MIT Press.
2. B.D. Cullity and S.R. Stock, Elements	of X-Ray Diffraction (3rd Edition), Prentice Hall

COURS	SE OUTCOMESS:
CO1	Students will be able to identify the particular type of crystal structure and know their
	application
CO2	Students will be able to describe complicated structures.
CO3	Students will be able to sketch Miller indices of crystallographic planes
CO4	Students will be able to formulate Bragg's diffraction formula which is useful in
	determination of crystal structure using X-ray diffraction technique.
CO5	Students will be able to envisage the importance of crystallography in metallurgical field.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	1	3	3	1	3	3	1	3	3
CO2	3	1	3	1	3	3	1		3	1	3	3
CO3	3	1	3	1	3	3	1		3		3	3
CO4	3	1	3	1	3	3	1		3		3	3
CO5	3	1	3	1	3	3	1	3	3	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO11	PO11	PO12
Course	3	3	3	3	3	3	3	1	3	1	6	3

Subject	t Code: BMMPE702	Introduction to Nano Science & Nano Technology
Pre-Rec	quisite:	Co-requisite:
Module	-I	[8 Hours]
Ir	troduction to Nano sc	ience and nanotechnology, Definition, Background and Development
0	f nanotechnology, Ba	sic ideas about Atoms, Molecules and structure. Length scale and
p	roperties of matter. To	chniques for Synthesis and preparation of Nanostructured materials,
	concept of Bottom Up a	ind top down approach of nanotechnologies
Module	-II	[8 hours]
N	anolithography, mask	and resist technology, electron beam lithography, dip pen lithography.
m	echanical milling.	Self- assembly, Sol – Gel method, Chemical Vapor deposition
((CVD)/PECVD etc.	
Module	-III	[8 hours]
N	leasurement and Chara	acterization of Nanocrystal line Materials: Structure (Atomic structure,
P	articles size determin	ation, surface structure), Microscopy scanning probe microscopy,
p	rinciple of working of	f STM and AFM, Electron microscopy, resolution vs. magnification
is	sue, SEM, Field Ion, h	igh resolution TEM.
Module	-IV	[8 hours]
C	arbon nanostructure: I	ntroduction to Carbon Molecules, Carbon Clusters (C60, Bucky ball),
C	arbon Nanotube – Typ	e of Carbon Nanotube, Formation of Carbon Nanotube and properties
a	nd Application of Carb	on Nanotube.
Module	-V	[8 Hours]
	utting age areas of a	nplication of Nanotechnology: state of art of the nano technology
	urrent areas of researc	the scope and opportunity of the technology some special tonics on
a	pplication of nanomate	rials
TEXT I	BOOK(S):	
3.	Introduction to Nan	otechnology. Charles P Pool. Frank J Owens, JhonWiely and Son
	Publication, New	Jersey, 2003
4.	Introduction to Na	noscience and Nanotechnology, K K Chattopadhyay and A. N
	Banerajee, PHI, Lear	ning Privet Limited, New Dehli, 2010
REFER	ENCE BOOK(S):	
3.	Introductory Nanosci	ence: Physical and Chemical Concepts by Masaru Kuno
4.	A Textbook of Nanos	cience and Nanotechnology by Pradeep T.

COURS	SE OUTCO	OME	SS:									
CO1	Students	can	incorporate	the	knowledge	in	synthesizing	and	developing	a	new	Nano

	materials
CO2	Students can analyze the advantages and disadvantages between bottom up and top down
	approach for synthesis Nano material's
CO3	Student can able to characterize different Nano materials using various advanced techniques
	such as TEM
CO4	Students can able to analyze the various properties of material at different length scale
CO5	Student can define the different types of Nano materials and their suitable application

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	3	3	3	2	-	-	-	2	1
CO2	2	2	1	3	3	3	2	-	-	-	1	1
CO3	2	2	2	2	2	2	2	-	-	-	1	2
CO4	2	2	2	2	2	2	2	-	-	-	1	1
CO5	1	1	3	3	3	2	2	-	-	-	1	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	5	3	3	2	2	-	-	-	1	1

Subject	t Code. BN	AM07003 Laboratory Name: Materials Characterization Laboratory								
Subject										
Pre-Ree	quisite:	Basic idea about atomic structure, bonding, introduction to crystal structures,								
		optics, Interference, diffraction								
Experin	ment 1	Micro structural analysis of a given (Ferrous & Nonferrous) sample using								
		Optical Microscope								
Experin	ment 2	Study of electron microscope (SEM &TEM)								
Experin	ment 3	Determination of interlamellar spacing of pearlite using SEM								
Experin	ment 4	Study of precipitation hardening of Al-Cu alloy using SEM								
Experin	ment 5	Compositional Analysis of an unknown sample using EDX Study of electron								
		microscope (SEM &TEM)								
Experin	ment 6	Determination of phase transformation temperature of given sample using DSC								
Experin	ment 7	Determination of melting temperature of a unknown metal using DTA								
Experin	nent 8	Indexing of XRD Pattern of a given sample								
Experin	ment 9	Determination of lattice parameter of a given sample								
Experin	ment 10	Determination of crystallite size of a powdered sample using XRD								
Experin	ment 11	Determination of lattice strain of a deformed sample using XRD								
COUR	SE OUTCO	OMESS:								
CO1	Understa	nd the principles and knowledge of the capabilities and limitations of different								
	types of a	analysis covered in the course.								
CO2	Select ap	propriate methods for particular problems and have a good understanding of the								
	data obta	ined.								
CO3	Describe	the principles of operation and uses of optical microscopy and Interpret								
	metallogi	raphic images.								
CO4	Able to re	ealize the importance of DSC and DTA characterization in phase transformation								
CO5	Able to a	pprehend the behavior and use of X-ray in material characterization								
	•									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	2	2	2	1	3	3	2	3
CO2	3	3	3	3	3	3	3	2	3	3	2	3
CO3	3	2	3	3	2	2	2	1	3	3	2	3
CO4	3	2	3	2	2	2	2	1	3	3	2	3
CO5	3	2	3	2	2	2	2	1	3	3	2	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO11	PO11	PO12
Course	3	2	3	2	2	2	2	1	3	3	2	3

EIGHTH SEMESTER

Subject Code: BMMPE801	Subject Name- Advanced Materials
Pre-Requisite: Basic idea about differ	ent types of materials and their properties
Module -I	[8 hours]
Organic LED.	ics, Organic semiconductor, Printed electronics,
Module -II	[8 hours]
Nanostructures, Nanomaterials, Nanocor 316L stainless steel, Co-Cr Alloys, Titaniu	nposites. Biomaterials: Metallic biomaterials like im Ti6Al4V.
Module -III	[8 hours]
Ceramic biomaterials like Alumina.	Zirconia, Carbon Hydroxy-apatite, Polymeric
biomaterials like Ultra high molecular w Piezoelectric materials, Shape memory all	veight polyethylene, Polyurethane Smart Materials: oys and shape memory polymers.
Module -IV	[8 hours]
Monel, Nitronic, Cobalt based alloys Functional and Engineering Ceramics: d microwave devices, polycrystalline diamo	alloys, 11 alloys, AI-L1 alloys, Hastelloy, Inconel, and commercially available pure nickel alloys. iverse applications as cutting tools, mobile phone nd and fuel cells.
Module -V	[8 hours]
Hybrid Materials: Design, Synthesis and disparate materials such as plastics v Superplastic, spray forming, rapid solidifie	Properties of hybrid materials created by blending with metals. Processing of Advanced Materials: cation. Materials selection and design.
TEXT BOOK(S):	
1. Mark J. Hampden-Smith Wiley-VCH, Leonard V. Interrante, 1st edition 0471185901	(1997) ISBN-10: 0471185906 ISBN-13: 978-
2. R E Smallman, A. H. W., Butterwor Materials, Seventh Edition, 2007, ISBN	th-Heinemann, Physical Metallurgy and Advanced : 0750669063.
DEEEDENCE DOOV(S).	
NerEnce DOOR(S); 1 Nanostructures And Nanomaterials: Sx	unthesis Properties And Applications by Guarbong
Cao	nucesis, i roperues And Applications by Odozilong

COURS	SE OUTCOMESS:
CO1	Visualize the recent the world of miniaturization.
CO2	Understand the recent nanotechnology applications and its advantages.
CO3	Integrate different synthesis process which may lead to develop new nanostructures with
	improved properties.
CO4	Different alloy system for diverse application.
CO5	Describe processing of advanced materials.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	3	3	3	1			1	3
CO2	2	2	3	1	3	3	3	1			1	3
CO3	3	3	3	3	3	3	3	1			1	3
CO4	2	2	3	1	3	3	3	1			1	3
CO5	2	2	3	1	3	3	3	1			1	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO11	PO11	PO12
Course	2	2	3	1	3	3	3	1			1	3

Subject Code: BMMPE	802	Subject N	ame: Finite Element Method
			1
Pre-Requisite:		Co-requisite:	
Modula I			٢٥٦
Objective of the (Course Basic Steps in	FFM Formulation	[0] General Applicability of the
Method: Variation	al Functional. Ritz Me	ethod. Variational F	EM: Derivation of Elemental
Equations, Assemb	bly, Imposition of Bour	ndary Conditions, So	olution of the Equations, 1 -D
Elements, Basis	Functions and Shape	e Functions, Conv	vergence Criteria, h and p
Approximations			
Module -II			[8]
Natural Coordinat	es, Numerical Integrati	ion, Gauss Eliminat	ion based Solvers, Computer
implementation: P	re-processor, Processor,	, Post-processor, Alt	ternate Formulation: Weighted
Residual Method,	, Galerkin Method; F	roblems with CI	Continuity: Beam Bending,
	Assembly of C1 Continu	ity Elements	
Module -III			[8]
Variational Function	onal: 2-D Elements (Tr	riangles and Ouadril	laterals) and Shape Functions.
Natural Coordina	ates, Numerical Integr	ration, Elemental	Equations, Connectivity and
Assembly, Imposit	ion of Boundary Condit	ions, Axisymmetric (Heat Conduction) Problem,
		÷	
Module -IV			[8]
Plane Strain and P	lane Stress Solid Mecha	anics Problems, Sub-	parametric, Iso-parametric and
Super-Parametric	Elements; Elements	with C1 Continuity	y, Free Vibration Problems,
Formulation of Eig	en Value Problem, FEM	I Formulation,	
			101
Module - V	Desklauer Constinution	of Colutin FEM	[8]
Mathod) Converg	roblems, Combination	OI Galerkin FEM	and FDM (Finite Difference
Direct Solution Tec	chnique	D Scheme, Floblem	is with Material Non-Incarity,
Direct Solution Tex	ennique		
TEXT BOOK(S):			
1. Concepts and ap	pplications of Finite elem	nent analysis: Cook, I	Malkus and Plesha, John Wiley
and Sons, 2003.		•	
2. T.R. Chandrupa	tla and A.D. Belegund	u, Introduction to Fi	inite Elements in Engineering,
Second Edition,	Prentice-Hall, 1997		
REFERENCE BOOK(S)	:		
1. W. L. Luyben, McGraw Hill, 19	, Process Modelling, S 990.	Simulation and Con	trol for Chemical Engineers,
2. Hussain and K.	Gangaiah, Optimisation	n Techniques for Ch	nemical Engineers, Macmillan,
2001		*	

COURS	SE OUTCOMESS:
CO1	Solve problems related to engineering applications by modeling.
CO2	Formulate model related to heat, mass and momentum transfer.
CO3	Use artificial neural network to predict the chemical and physical behavior of different
	alloys produced by different synthesis process.
CO4	Solve the real time problems in hand
CO5	Got the knowledge of approximation used in real time problems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	2	3	2	2	3	2	1	3
CO2	2	3	2	3	2	2	2	3	2	2	2	2
CO3	3	2	2	2	3	2	3	2	2	3	2	3
CO4	2	2	3	2	2	2	1	3	2	2	3	2
CO5	2	2	2	2	3	2	3	2	2	2	3	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	2	2	2	2	2	2	2	2	2

Subject Co	ode: BMMPE803	Subject Nam	e: Modelling and Simulation
Pre-Requis	site: Material Science, Deformation Behavior of Materials, Transport Phenomena	Co-requisite:	Mathematical Modelling & Simulation,
X 1 1 X		1	
Module -I	1		[8 hours]
class phys	sification. Basic modeling procedure. Classical phenomena. Length scales and the corre	sification of ma esponding mode	aterials science processes and ling techniques.
Module -II	[[8 hours]
Diffu	usion based phenomena: Mass and Heat t	ransfer by diffu	ision. Various systems where
these	e are important. Basic heat and mass transfe	r differential eq	uations. Their formulation into
discr effec	retized algebraic equations and solution us et of various kinds of boundary conditions.	ing Finite Diffe	erence Method. Analyzing the
	_	1	
Module -II	1		[8 hours]
as a spect	modification of classical diffusion equat tral implementation for numerical solutions	ion with the ir of Cahn-Hilliar	d equation.
Mion	v	loulating diffus	[ð liðurs]
of di simu syste	iffusion, vacancy diffusion in substitutional ilations, constant temperature MD simulationer em using constant temperature MD	al solid solutior	Sus, Molecular dynamics (MD) Susion in forced Lennard-Jones
Madula V	7	1	[0 h anno]
Module - V	hanical habaviar Diclosoftian dynamics	Looking at plac	[8 nours]
colle as a f	ective behaviour of dislocation motion and function of orientation.	interactions. Sin	nulating dislocation dynamics
TEXT BO	OK(S):		
I. K.	. M. Hangos and I. T. Cameron, "Process	s Modeling and	Model Analysis", Academic
2 R	Aris "Mathematical Modelling Technique	s" Dover New '	York 1994
K.	The manufacture modeling rechnique	5, 20,01.110W	· • · · · · · · · · · · · · · · · · · ·
REFEREN	ICE BOOK(S):		
1. M	lechanical Metallurgy by G.E. Dieter, McGr	aw Hill Book C	ompany.
2. Ra	ate Processes In Metallurgy by Mohanty, A.	K.; PHI Learni	ng.

COUR	SE OUTCOMESS:
CO1	Analyze different modelling techniques and incorporate the suitable one in material science.
CO2	Analyze and apply the suitable modelling technique in heat and mass transfer process.
CO3	Analyze and incorporate the microstructural modelling in a macroscale.
CO4	Analyze and incorporate the microstructural modelling in a microscale.
CO5	Analyze and incorporate the suitable simulation technique to simulate the dislocation
	activities.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	2	2	3	3	3	2	3
CO2	3	3	2	3	3	2	2	3	3	3	2	3
CO3	3	3	1	3	3	2	1	2	3	3	2	3
CO4	3	3	1	3	3	2	1	2	3	3	2	3
CO5	3	3	2	3	3	2	2	3	3	3	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	3	2	2	3	3	3	2	3

Subject Code: BMMPE804	Numerical Methods in Engineering
Pre-Requisite:	Co-requisite:
Module -I	[8 hours]
Sources of errors Approximation and F	Errors in computing: Introduction Significant digits
Inherent error Rounding error Trun	cation error Absolute and relative error Error
propagation.	callon ener, nebelade and relative ener, Ener
1 1 0 0 0 0	
Module -II	[8 hours]
Roots of non-linear Equations and solution	on of system of Linear Equations: Bisection method,
False position Method, Newton-Raphson	Method, fixed – point iteration, Muller's method for
complex and multiple roots, convergence	of Bisection, Newton- Raphson's and False position
methods, Gauss Elimination method by	pivoting, Gauss – Jordan method, Iterative methods:
Gauss-Jacobi and Gausss - Seidel method	ls, Relaxation method.
Module - III	[8 hours]
Difference Operators & Interpolation: Fo	rward and Backward difference operators and table,
Interpolation with equidistant point, Lagr	ange Interpolation Polynomial, Newton Interpolating
Polynomial using divided Difference Tab	le.
Module -IV	[8 hours]
Numerical Differentiation and Inte	egration: Differentiating continuous functions.
differentiating tabulated functions. Hig	her order derivatives. Richardson's Extrapolation.
Newton – cotes integration formula, Trap	ezoidal rule, Simpson's rule.
Module –V	[8 hours]
Numerical Solution of Ordinary and Pa	artial Differential Equations: Taylor series method,
Euler and modified Euler method, Runge	Kutta methods, Finite differences approximations of
partial derivatives	
TEXT BOOK(S):	
1. B.S. Grewal, "Numerical Methods in Er	ngineering & Science", Khanna Publication, Ed. 9th
2. Santosh K. Gupta: Numerical Methods	for Engineers, New Age International (P) Limited,
New Delhi, 1998.	
REFERENCE BOOK(S)	
1 Numerical Methods That Work by For	man S. Acton
Computational Partial Differential Equa	tions by Hans P Langtangen
COURSE OUTCOMESS:	
CO1 Students will be aware of the use of nu	merical methods in scientific computing.
CO2 Students will become familiar with c	alculation and interpretation of errors in numerical
methods	-

CO3	Students will become familiar with numerical interpolation and approximation of functions.
CO4	Students will become familiar with familiar with numerical solution of ordinary differential
	equations.
CO5	Students will become familiar with use of optimization techniques in solving engineering
	problems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	3	1	1	1	1	3	1
CO2	3	3	3	1	1	3	1	1	1	1	3	2
CO3	3	3	3	3	2	3	1	1	1	1	3	2
CO4	3	3	3	3	2	3	2	1	1	1	3	2
CO5	3	3	3	3	3	3	3	2	1	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	2	2	3	2	1	1	1	3	2

Subject	Code: BMMPI	E805	Subject Name: Corrosion and Degradation of Materials
Pre-Re	quisite:	Basic idea a	about different types of materials and their properties
X 11	•		
Module	2 -1		[8 hours]
	ntroduction, im	portance of co	orrosion study, factor affecting corrosion, Difference between
a	ry and wet co	rrosion, corre	bion rate expressions, Different forms of corrosion-uniform
a	ttack, galvanic	corrosion and	list characteristic, E.M.F Series and Galvanic Series, crevice
	orrosion and its	mechanism, s	selective leaching, dezinchication.
Module	>_II		[8 hours]
Module	tting corrosio	n and its me	[0 nours]
	orrosion cracki	ng stress corre	osion cracking -their characteristic features causes and remedial
n	neasures	ig, suess conc	ssion cracking -then characteristic reatures, causes and remediar
Module	e -III		[8 hours]
(Corrosion fatigu	e, Hydrogen I	Damage-Sources, Types of damage, Liquid metal attack -liquid
n	netal embrittle	ment, preven	tive measures Principles of corrosion prevention-material
s	election control	of environme	nt, changing composition, microstructure, design.
Module	e -IV		[8 hours]
U	Jse Inhibitors	and its type,	Cathodic protection, impressed current cathodic protection,
S	acrificial anode	, anodic protec	ction, coatings and its type. Corrosion testing methods.
Module	e-V		[8 hours]
I	ntroduction to h	igh temperatu	re corrosion, Pilling- Bedworth ratio, electrochemical principles
0	f corrosion-ce	ll analogy c	oncept of single electrode potential, reference electrodes
p	olarization, pas	sivity.	
TEXT	BOOK(S):		
1.	M. G. Fontana	i: Corrosion E	ngineering, third edition, Mc Graw Hill International, 1987.
2.	U. K. Chatter	ee, S. K. Bose	e and S. K. Roy: Environmental Degradation of Metals, Marcel
	Dekker, 2001.		
REFER	ENCE BOOK(S):	
1.	Corrosion and	Environmenta	al Degradation by Michael Schütze, Robert W. Cahn Peter
	Haasen, E. J.	Kramer	hand Warness and MC should be the
2.	Corrosion han	udook by Ger	naru Kreysa and Michael Schutze

COURS	SE OUTCOMESS:
CO1	apply fundamental knowledge and concepts in corrosion and List various atmospheres
	responsible for corrosion.
CO2	Classify various corrosion forms and the mechanisms involved.
CO3	solve numerical and problems on corrosion
CO4	Calculate corrosion rate using Tafel extrapolation and linear polarization techniques and
	select, test materials and apply corrosion prevention methods
CO5	Compare high temperature metal-gas reactions and corrosion of metals at high temperature
	in atmospheres such as sulphur dioxide, chlorine etc

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	3	3	3	3		3
CO2	3	3	3	3	2	3	2	1	3		3	1
CO3	3	3	3	3	3	3	3	3		2	3	2
CO4	3	3	3	3	3	2	2	1	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	1	3	3

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Artici	ulation Matrix	row for th	is Course
1 logium i muo		1000 101 01	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3	3	3	2	2	2	2	2

Subject Code: BMMPE806	Subject Name: Bio Materials
Pre-Requisite:	Co-requisite:
Module -I	[8 hours]
Introduction, importance Properties re Properties requirement of Biomaterial Bioresorable Biomaterials, Biocompatibili	quirement of Biomaterials and its applications, s and its applications, Bioactive, Bioinert and ity and its types
Module -II	[8 hours]
Difference between Biomaterials and biolo of Biomaterials, Processing of Bioma Evaluation of biocompatibility	ogicals materials, Science of Biomaterials, selections terials, Methods for testing of biocompatibility,
Module -III	[8 hours]
In Vitro Testing, In Vivo Testing, biocompatibility, Biomaterials used in application and its advantages, Properti application of Co-Cr alloy	Tissue response Biomaterials, Assessment of different metals, Stainless steel as Biomaterial les and synthesis of Co-Cr alloy, Advantage and
Module -IV	[8 hours]
Titanium as Biomaterials application a microstructure of titanium, Properties applications Ceramics materials and its ap	nd its Advantage, Heat treatment to change the and phases of Shape memory alloys, Ceramics, plication
Module -V	[8 hours]
Types of Bio-ceramics – Tissue Attack Glasses and Glass-Ceramics, Resorbal Biomaterial, Surface modification of in Plasma spraying technique, hard tissue rep	iment, Processing of Porous Ceramics, Bioactive ble Ceramics and its applications, Polymer as mplant materials Electrostatic spraying technique, placement.
TEXT BOOK(S).	
1 I B Parkand D Boonzino Biomateria	als Principles and application CBC Press 2002
1. J.B. Faikand, D. Boolizino, Biolilatera 2. RE Smallman, A.H. W. Butterworth Materials, Seventh Edition, 2007, ISBN	n-Heinemann, Physical Metallurgy and Advanced 1:0750669063
DEFENSIOE DOOK(S)	
KEFERENCE BUUK(S):	1
Biomaterials Edited By Joon P. Derk a	nd Joseph D. Bronzino
2. Diomacriais Edited By Joon D. Falk a	

CO 1 Analyse the common use biomaterials	s as metals, ceramics and polymers and its chemical
structure, properties and morphology	

CO 2	describe general structure and function of cells, extracellular matrix and tissue.
CO 3	explain methods to modify surfaces of biomaterials and choose material for desired
	biological response.
CO 4	Devlop interactions between biomaterials, proteins and cells and also able to express the
	interaction between biomaterial and tissue for short term and long-term implantations,
	distinguish between reactions in blood and in tissue.
CO 5	apply and account for methods to characterise interactions between materials and tissue.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	3	3	2	3	1	3
CO2	3	3		3	1	3	3		3	2	3	
CO3	3	3	2	1	3	3	3	3	3	1	3	2
CO4	3	3	3	3	3	3	3	1	1		1	
CO5	3	3	3	3	3	3		2	3	3	2	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	2	3	3	3	2	2	2	2	2	1
Subject	t Code: BMMPE807	Subject Name: Non-Metallic Materials										
-------------	---	---										
Pre-Red	quisite:	Co-requisite:										
	*	Å										
Module	e -I	[8 hours]										
C	Classification of non-metallic materials.	Rubber: Properties, processing and applications.										
I												
Module	e -II	[8 hours]										
P o F	Plastics: Thermosetting and Thermoplast of polymer: Stress–Strain Behavior, M Fracture of Polymers.	ics, Applications and properties. mechanical behavior lacroscopic Deformation, Viscoelastic Deformation,										
Module		[8 hours]										
Wiodule	z-mi	[o nours]										
P a F	Products, Refractories, Abrasives, Cemer and processing of ceramics Fabricatio Fabrication and Processing of Clay Product	nts, Advanced Ceramics and applications. Fabrication n and Processing of Glasses and Glass-Ceramics, acts, Powder Pressing, Tape Casting.										
Modula		[9 hours]										
Wiodule		[o nours]										
	Autorives. 1 Toperties and applications.	spitcal notis. Troperties and applications.										
Module	e-V	[8 hours]										
	Composites, Particle-reinforced composites, Particle-reinforced composites Drientation and Concentration, The Composites, Metal-Matrix Composites Composites, Hybrid Composites, Process	sites, Influence of Fiber Length, Influence of Fiber Fiber Phase, The Matrix Phase, Polymer-Matrix es, Ceramic-Matrix Composites, Carbon–Carbon sing of Fiber-Reinforced Composites.										
TEXT	BOOK(S):											
1.	Materials Science and Engineering by	William D. Callister.										
2.	Handbook of Materials Science :Nonn	netallic Materials & Applications										
	By Charles 1. Lynch											
DEEED	DENCE DOOV(S).											
KEFER	ENCE BOOK(S):	Easy course for everything worth knowing for non										
1.	metallic materials (Materials and elem	ents) Kindle Edition by Ben T Athan										
2.	Nonmetallic Materials and Composite David	ents) Rindle Edition by <u>Den Pritoan</u> es at Low Temperatures by Hartwig, Günther, Evans,										

COURS	COURSE OUTCOMES:						
CO1	classify of non-metallic materials in terms of application.						
CO2	able to classify properties and application of plastic material with other.						

Syllabus for B. Tech in Metallurgical & Materials Engineering Veer Surendra Sai University of Technology (VSSUT) Odisha

CO3	Introduce various traditional and advanced ceramic products and industries that
	manufacture them
CO4	Familiarize the ceramic products which the students come across in their day to day life.
CO5	Able to classify composite material in term of their application and industrial uses.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	3	3	3	3	1	3		3
CO2	3	3	1	3	2	1	2		3	3	3	
CO3	3	2	2	3	3	2	3	1			1	3
CO4	1	1	3	2	1	3		3	2	1	3	1
CO5	3	3	2		3	3	1	2	2	3	3	2

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	2	2	2	3	2	2	2	2	2	2

Subject Code: BMMPE808	Subject Name: Hydro and Electro Metallurgy
Pre-Requisite:	Co-requisite:
Module -I	[8 Hours]
Introduction: Justification of Hydrometa	illurgical selection of solvent processing, Eh- Pt
Diagrams Principles underlying hydrometallurgical processes	rometallurgical processes, various commercial
Module -II	[8 hours]
hydrometallurgical processes, Unit operation filters	ions in hydrometallurgical processing, Thickness &
Module III	[8 hours]
	[8 nours]
Counter current decantation, Application metals etc, Solvent Extraction & Ion Excha	ange, Purification methods of leach solutions.
Module -IV	[8 Hours]
of concentration. Mass balance calculation	Precipitation methods Thermodynamics & Kinetics s.
Module -V	[8 hours]
Electrolytic Recovery: Electro wining of n Salt Electrolysis –Extraction of Aluminiun	nethods from Aq. Solutions Electro Refining, Fused a& Magnesium from their ores.
TEXT BOOK(S):	
1. H. S. Ray, K. P. Abraham and R. Sridha	r, Extraction of Non- Ferrous Metals, Affiliated
East- West Press.	
2. E. Jackson, Hydrometallurgical Process	ing & Reclamation, John Wicky & Sons.
REFERENCE BOOK(S):	
1. Hydrometallurgy Principle and applicate	ion by T. Havlik
2. Rosequist, T., Principles of Extractive N	fetallurgy.

COUR	COURSE OUTCOMESS:								
CO1	Students can evaluate the production cost and can solve critical issues such as anode effects								
	while working in an electrometallurgical plant.								
CO2	Students can recover metals using hydrometallurgy route in laboratory scale								
CO3	Students can produce metals using electrometallurgy route in laboratory scale								
CO4	Students can Analyze the loss of current efficiency while working in an smelter								
CO5	Analyze the best solvent selection and techniques for metal recovery and refining								
	economically n profitably								

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	2	-	-	-	-	1
CO2	2	2	2	2	2	2	2	-	-	-	-	1
CO3	2	2	2	2	2	2	2	-	-	-	-	1
CO4	3	3	1	2	2	2	1	-	-	-	-	-
CO5	2	2	2	2	2	2	1	-	-	-	-	1

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	2	2	2	2	2	2	-	-	-	-	1

Subject Code:	BMMOE801	Subject Name	e: Alloy	y Design & Selection	of Materials
Pre-Requisite:	Introduction to Phys Transformation, Hea	ical Metallurgy, Phase at Treatment	e	Co-requisite:	
Module -I					[8 hours]
Basic con overview o processes f	cepts of materials sc of conventional and or metals, polymers, c	cience: processing-str advanced materials, eramics, glasses and c	ructure- Brief i compos	property-performanc ntroduction to the 1 ite materials.	e correlation; nanufacturing
Module -II					[8 hours]
Overview alternatives function, o design fo thermomeo manufactur materials s	of the design proce s to develop material objective and constra- r maximum perfor- hanical applications, rability, Ashby's mate- election.	ss: concepts and sta s with tailored proper ints in design, speci- rmance, Performanc damage tolerant design erial property charts.	ages of erties; 1 fic stift ce ind gns for Applica	f engineering design Performance indices fness-limited and strices for thermal, structural application ation of statistics in	n and design of materials; rength-limited mechanical, ns. Design for materials and
Modula III					[8 hours]
Specification and non-for resistant, h	on of steels, Composi errous alloys, cerami igh temperature, low-t	ition, heat treatment, cs and polymers for emperature and cryog	micros r light genic, w	structure and propert and heavy structur ear resistant.	ies of ferrous ral, Corrosion
Module -IV					[8 hours]
Materials s vessels an Composite	selection – case stud d boilers, springs, b s, shape memory alloy	ies: magnetic, electri earings, tools, medic s, metallic glasses.	cal and cal imp	l electronic application lants and prosthese	ions, pressure s application,
Module -V					[8 hours]
Decision n materials s glasses, co and the En	natrices and decision election and processir mposite materials (MI vironment.	matrix techniques in ng; Case studies: desi MC, CMC and PMC/	materia gning c (FRC)	als selection, relation of Metals and alloys, for specific application	ceramics and ons. Materials
TEXT BOOK(S):				
1.Engineerin2.Materials	g Materials, 4th Editic Selection in Mechanic	on by M.F. Ashby. al Design by M.F. As	hby.		
REFERENCE	BOOK(S):				
1. Materials S	belection and Design, A	ASM Publication, Vol	1.20.		
2. The Princip	oles of Materials Selec	ation and Design by Pa	at L. Ma	angonon	

Syllabus for B. Tech in Metallurgical & Materials Engineering Veer Surendra Sai University of Technology (VSSUT) Odisha

COUI	RSE OUTCOMESS: Upon completion of the course, the students will be able to:
CO1	plan the need of material science tetrahedron for stimulating innovation in all branches of
	engineering.
CO2	apply the concepts and stages of engineering design and design alternatives to develop
	materials with tailored properties.
CO3	compile the data required for material selection in high performance applications.
CO4	implement the decision matrix techniques in material selection to carryout material failure
	case studies.
CO5	apply prior knowledge of materials science and engineering to composition-processing
	structure-properties-performance relationships for all types of materials.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	3	3					
CO2	3	3	3	3	3	3	2					
CO3	3	2	2	3	3	3	3					
CO4	3	3	3	3	3	3	3					
CO5	2	3	3	3	3	3	2					

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	3	3	3	3	3	3	3	-	-			

Subject Code: BMMPE802 Subj	ject Name: Manufacturing & Design of Composites
Pre-Requisite:	Co-requisite:
· · · · · · · · · · · · · · · · · · ·	
Module -I	[8 hours]
Introduction - Definition & classific	cation of composites; Reinforcing Fibers-Types,
Characteristics & Selection; Natural fibers	, Boron; Carbon; Ceramic; Glass; Aramid; Particulate
fillers; Matrices-Polymer; Graphite; Cer	amic & Metal matrices, Short & continuous fiber
reinforced composites.	
Module -II	[8 hours]
Processing - Pultrusion; Filament windi	ng; Pre-page technology; Injection & compression
molding; Bag molding; Resin transfer mo	olding. Other manufacturing processes; Processing of
MMC- Diffusion bonding; Stir casting; Sq	ueeze casting.
Modulo III	
Module - III	[8 nours]
mechanics - Rule of mixture; Volume &	mass fractions; Density & void content; Stress-strain
engineering constants for orthotronic mate	rials
engineering constants for orthou opic mate	
Module -IV	[8 hours]
Stress-strain relations for plane stress in	n orthotropic materials: Stress-strain relations for a
lamina: Characteristics of fiber reinforced	lamina Analysis - Classical lamination theory: Stress
analysis of composite laminates.	
r i ji i i ji i i r	
Module -V	[8 hours]
Failure predictions -Maximum stress theo	bry; Maximum strain theory; Tsai-Hill theory; Modes
of failure of composites; First ply failure; I	Partial ply failure; Total ply failure.
TEXT BOOK(S):	
1. Mechanics of composite materials, R. M. J	lones, Mc Graw Hill Book Co.
2. Mechanics of composite materials & struct	tures, M Mukhopadhay, Universities Press
REFERENCE BOOK(S):	
1. Composite Materials – science and engine	ering by KK Chawla, MRE, Springer-Science &
Business Media, B.V.	
2. ASM HandBook Volume 21 - Composites	,

COUI	COURSE OUTCOMESS: Upon completion of the course, the students will be able to:									
CO1	compile and explain the types of composite materials and their characteristics features.									
CO2	express the difference in the strengthening mechanism of composite and its corresponding									
	effect on performance and application.									
CO3	demonstrate and implement the methods employed in composite fabrication.									
CO4	organize the theoretical basis of the experimental techniques utilized for failure mode of									
	composites.									
CO5	develop expertise on the applicable engineering design of composite.									

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	1	2	2	2					
CO2	2	2	2	2	2	2	1					
CO3	1	1	1	1	2	2	2					
CO4	2	2	2	2	2	2	2					
CO5	2	2	2	2	2	2	2					

1: Slight (Low); 2: Moderate (Medium); 3: Substantial (High); "---": No Correlation

Program Articulation Matrix row for this Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	2	2	2	2	2	2	2					